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Abstract
Optimizing leaf angle and other canopy architecture traits has helped modern maize

(Zea mays L.) become adapted to higher planting densities over the last 60 years. Tra-

ditional investigations into genetic control of leaf angle have focused on one leaf or

the average of multiple leaves; as a result, our understanding of genetic control across

multiple canopy levels is still limited. To address this, genetic mapping across four

canopy levels was conducted in the present study to investigate the genetic control of

leaf angle across the canopy. We developed two populations of doubled haploid lines

derived from three inbreds with distinct leaf angle phenotypes. These populations

were genotyped with genotyping-by-sequencing and phenotyped for leaf angle at four

different canopy levels over multiple years. To understand how leaf angle changes

across the canopy, the four measurements were used to derive three additional traits.

Composite interval mapping was conducted with the leaf-specific measurements and

the derived traits. A set of 59 quantitative trait loci (QTLs) were uncovered for seven

traits, and two genomic regions were consistently detected across multiple canopy

levels. Additionally, seven genomic regions were found to contain consistent QTLs

with either relatively stable or dynamic effects at different canopy levels. Prioritiz-

ing the selection of QTLs with dynamic effects across the canopy will aid breeders in

selecting maize hybrids with the ideal canopy architecture that continues to maximize

yield on a per area basis under increasing planting densities.

1 INTRODUCTION

With dwindling amounts of arable land and a growing human

population, it is crucial that more food is produced on the

same amount of land. Over the last 60 years, maize breed-

ers have developed hybrids that continually maximize the

amount of yield per unit of land by maintaining constant yield

per plant under high planting density stresses (Duvick et al.,

Abbreviations: GBS, genotyping-by-sequencing; LA, leaf angle; QTL,

quantitative trait locus; SNP, single nucleotide polymorphism.
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2004; Hammer et al., 2009). Canopy architecture traits like

leaf angle and tassel size have changed during this time, as

modern hybrids have upright leaf angles and smaller tassels

(Duvick et al., 2004; Lambert & Johnson, 1978; Mock &

Pearce, 1975). Prior research has established a strong link with

this type of canopy architecture and increased light intercep-

tion and grain yield (Duncan, 1971; Duncan, Williams et al.,

1967; Duvick et al., 2004; Lambert & Johnson, 1978; Ma

et al., 2014; T. Wang et al., 2011; Xue et al., 2020). Under

high planting densities, these traits improve and equalize

spatial light distribution across the canopy, improve canopy
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photosynthesis, and partition more assimilates to the ear

(Duvick & Cassman, 1999; Hammer et al., 2009; Lee &

Tollenaar, 2007; Xue et al., 2020).

The ideal maize canopy architecture has upright leaf angles

in the top canopy that gradually become less upright in

the lower canopy (Duncan, Loomis et al., 1967; Zhu et al.,

2010). In our previous study, we genetically mapped lower

canopy leaf angle by developing two segregating popula-

tions using three inbred lines (B73, PHW30, and Mo17) to

represent important maize heterotic groups (Dzievit et al.,

2019). From these populations, we detected 12 quantita-

tive trait loci (QTLs) for the second leaf below the ear but

observed segregation for other leaves in the canopy. Addi-

tionally, our meta-analysis of 20 leaf angle genetic mapping

studies revealed that most studies used a single leaf or the

average of multiple phenotyped leaves, thus making it diffi-

cult to determine how these detected regions of the genome

contribute to the ideal canopy architecture (Dzievit et al.,

2019).

Research across numerous species, including rice, wheat,

sorghum, and tomato, have also genetically mapped leaf angle

(e.g., Isidro et al., 2012; Z. Li et al., 1999; Nakano et al.,

2016; Truong et al., 2015); however, only a few have done so

with multiple phenotyped leaves. For example, leaf-specific

and canopy-wide QTLs were detected in a rice population

phenotyped for tiller angle, flag leaf angle, and leaf angle

under the flag leaf (Z. Li et al., 1999). Only a handful of

maize studies investigated multiple individual leaves, but

these leaves were consecutive rather than spanning the entire

plant canopy (e.g., Chang et al., 2016; Chen et al., 2015; Z.

Liu et al., 2014; K. Zhang et al., 2020). Furthermore, a study

that phenotyped multiple leaves across the canopy only con-

ducted genetic mapping with the average of all leaves in the

canopy and the average of leaves above and below the ear

(X. Zhang et al., 2017). The few QTLs detected across multi-

ple leaves or levels of the canopy from these studies reported

QTL that appear to have varying or similar genetic effects

across the canopy. Genetically mapping individual leaves at

multiple canopy levels provides us with an opportunity to fur-

ther explore these two classes of QTLs and determine their

impact on developing maize varieties with the ideal canopy

architecture.

In this study, we report the discovery of 59 QTLs linked

to leaf angle in four different leaves and three derived traits

through genetic linkage mapping. We first developed dou-

bled haploid lines in two populations from previously selected

F2 plants (Dzievit et al., 2019) and genotyped these dou-

bled haploid lines using genotyping-by-sequencing (GBS).

Four leaves at different canopy levels (Figure 1) were pheno-

typed for leaf angle across multiple environments. From these

measurements, three additional traits were derived to model

how leaf angle changes across the canopy. Finally, composite

Core Ideas
∙ Leaf angle is an important plant architecture trait

in breeding for high planting density.

∙ Research into the genetic control of leaf angle

across multiple canopy levels is limited.

∙ Genetic mapping discovered many quantitative

trait loci (QTLs), with two consistently detected

across multiple levels.

∙ Seven genomic regions were found to contain

QTLs with either stable or dynamic effects.

interval mapping was conducted to map QTLs for all seven

traits.

2 MATERIALS AND METHODS

2.1 Genetic materials

Inbred lines were developed through the doubled haploid pro-

cess from previously selected F2 individuals (Dzievit et al.,

2019). Briefly, we phenotyped F2 plants for leaf angle and

selected plants from both phenotypic extremes and near the

population average from two biparental populations derived

from B73, Mo17, and PHW30, with PHW30 as the com-

mon parent. From each selected F2 plant, 25 F2:3 seeds were

sent to the Iowa State Doubled Haploid Facility to develop

inbred lines. A male inducer was crossed to each F3 plant. The

induced haploid seeds indicated by the morphological marker

were planted in trays, injected with colchicine for genome

doubling, and transplanted to the field for selfing. A maxi-

mum of two doubled haploid lines were selected from each

F2:3 family that returned selfed seeds, resulting in 309 dou-

bled haploid lines (130 for the B73 population and 179 for the

Mo17 population).

2.2 Phenotyping for leaf angle

Four canopy levels were phenotyped for leaf angle on the

parents, hybrids, and doubled haploid lines, starting after all

plants completed anthesis. The number of leaves above or

below the ear and below the flag leaf (final leaf below the tas-

sel) delineated the leaves that we phenotyped for leaf angle. In

total, four canopy levels were phenotyped based on the posi-

tion of the tassel and ear: “one below flag” (two below the

tassel), “three above ear,” “one above ear,” and “two below

ear.” These leaves were chosen to capture leaf angle varia-

tion across the canopy and avoid referencing specific total
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F I G U R E 1 Distinct leaf angle architecture for inbred lines B73, Mo17, and PHW30 across different canopy levels. The distinct leaf angle

phenotypes (panel A) for B73 (left), PHW30 (middle), and Mo17 (right). Segmented portions of each inbred line in panel B further highlights how

leaf angle changes across four levels of the canopy (panel B).

leaf positions that may vary slightly for individuals within a

plot, lines, and environments. Leaves with or below the main

ear are typically altered due to ear growth and appearance

of second ear; leaves lower than “two below ear” are typ-

ically senescing at the time of phenotyping. We utilized a

digital imaging method (Dzievit et al., 2019) that uses dig-

ital images and ImageJ (Schneider et al., 2012) to measure

leaf angle for each canopy level. Three representative plants

from the middle of each row were chosen, and leaf angle was

measured for each plant and canopy level. A digital image

was taken for each leaf angle, and ImageJ was then used to

measure the angle formed from horizontal and middle of the

leaf’s mid-rib. The average of all three phenotyped leaves

for each canopy level was recorded for each plot. In 2016,

leaf angle was only measured for “one below flag” and “two

below ear,” while all four were measured in 2017 and 2018.

To compare results with previous studies, an additional trait,

“canopy average,” was calculated as the mean of angles for

those four measured leaves for 2017 and 2018. Two additional

traits were derived from leaf position and leaf angle to model

leaf angle variation across the canopy. The canopy level of

each phenotyped leaf was assigned a numerical value centered

on the ear leaf, which was assigned the 0 position (“one below

flag” = 5, “three above ear” = 3, “one above ear” = 1, and

“two below ear” = −2). Leaf angle was regressed on canopy

level (𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖, where yi is the leaf angle value of

the ith leaf, xi is the leaf position, and ei is the residual). From

this regression model, two additional traits were derived for

each plot: the intercept 𝑎 or “canopy intercept” and the slope

𝑏 or “canopy slope.” These two traits were calculated in 2017

and 2018.

2.3 Experimental design

From 2016–2018, 309 doubled haploid lines were grown at

two planting dates using an augmented randomized complete

block design (ARCBD). The parents were used as checks for

each block and were randomly designated a plot within each

block of 32–40 plots (block size depended on year and plant-

ing date). The doubled haploid lines from both populations

were randomly assigned to the remaining plots across blocks.

The first planting date occurred within the first week of May,

while the second occurred approximately three weeks after

the first. We discarded the second planting date in 2018 due

to uneven growth from early-season flooding. The parents

and doubled haploid lines were planted at 72,000 seeds per

hectare (∼29,000 plants per acre) in 5.5-m-long plots spaced

76 cm apart. Additionally, two hybrids (B73 × PHW30 and

Mo17 × PHW30) were evaluated under the same conditions

and planted only on the first planting date in 2017 and 2018.

Best linear unbiased predictions across environments were

obtained for each of the doubled haploid lines. Following

previous methods for analyzing an ARCBD (Federer, 1956;

Scott & Milliken, 1993; Wolfinger et al., 1997), the following

model was fit across environments and populations with SAS
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software v9.4 for Windows (SAS Institute, 2018):

𝑌𝑖𝑗𝑘𝑙 = Env𝑖 + Block(Env)𝑖𝑗 + Grp + Grp × (Env)𝑖

+ Switch × (Grp × Pop)𝑘 + Switch

× (Grp × Pop × Env)𝑖𝑘 + Switch

×
[
Grp × Gen (Pop)

]
𝑘𝑙

+ Switch

×
[
Grp × Gen (Pop) × Env

]
𝑖𝑘𝑙
,

where Env𝑖 is the effect of environment 𝑖, Block(Env)𝑖𝑗 is

the effect of block 𝑗 nested within environment 𝑖, Grp is an

auxiliary variable to indicate the groups of checks or two pop-

ulaions of doubled haploid lines, Grp × (Env)𝑖 is the effect

of the group within environment 𝑖, Switch × (Grp × Pop)𝑘
is the effect of the population k {1 = B73, 2 = Mo17}

and Switch is an indicator variable {0 for checks and 1 for

doubled haploid lines}, Switch × (Grp × Pop × Env)𝑖𝑘 is

the effect of the population 𝑘 in environment 𝑖, Switch ×
[Grp × Gen(Pop)]kl is the effect of genotype 𝑙 of the pop-

ulation 𝑘, and Switch × [Grp × Gen(Pop) × Env]ikl is the

effect ofgenotype 𝑙 of the population 𝑘 in environment 𝑖.

All effects were considered random except Grp effect and

Env effect. Trait correlations among all seven traits were

calculated within and across the two populations using the

Pearson correlation. Additionally, best linear unbiased esti-

mates across environments were obtained for each of the

parents, while the calculated mean was recorded for each of

the hybrids.

The estimated variance components from the model were

used to calculate broad-sense heritability on an entry-mean

basis with the following equation:

𝐻2 =
σ̂2pop + σ̂2g

σ̂2pop +
σ̂2pop × e

eh
+ σ̂2g +

σ̂2ge
eh

+ σ̂2
eh

,

where σ̂2pop is the estimated between-population genetic

variance, σ̂2pop × e is the estimated variance for between-

population genetic by environment interaction, σ̂2g is the

estimated within-population genetic variance, σ̂2ge is the esti-

mated within-population genetic by environment interaction,

σ̂2 is the estimated error variance, and eh is the harmonic mean

for the environments (Holland et al., 2010; Piepho & Möhring,

2007).

2.4 Genotyping, filtering, and imputation

To identify QTLs associated with leaf angle variation across

the seven traits, 10 leaf punches were taken from a represen-

tative plant from each plot. DNA was extracted by a Qiagen

DNeasy plant kit for conducting GBS (Elshire et al., 2011) at

the University of Minnesota Genomics Center using a 1 × 150

NextSeq rapid sequencing and a previous pipeline for single

nucleotide polymorphism (SNP) calling (Dzievit et al., 2019).

The resulting SNPs were called based on the B73 RefGen_v4

reference genome.

Segregating SNPs were identified within the parents and

allele frequencies from the progeny. The genotype results

were stored in a variant call format file (Danecek et al., 2011)

and split into different datasets containing B73 doubled hap-

loid lines, Mo17 doubled haploid lines, and parents using

TASSEL v5.0 (Bradbury et al., 2007). In addition, we used

TASSEL v5.0 to set any genotype call in the doubled haploid

lines that were heterozygous to missing. To identify segre-

gating SNPs in the parents, we identified SNP sites through

two steps. First, we uplifted previously obtained SNPs for the

parents (Dzievit et al., 2019) to RefGen_v4 using CrossMap

with the chain file downloaded from Ensembl (Herrero et al.,

2016) and identified overlapping SNPs with the current set.

Next, we obtained allele frequencies for the progeny using the

program “VCFtools v0.1.15” (Danecek et al., 2011). We com-

bined these two SNP sources and estimated genotyping error

frequency using an in-house R script with the genotype calls

of the new parental data. Together, 77,501 segregating SNPs

were identified for the B73 population and 79,026 SNPs for

the Mo17 population.

The filtered progeny SNPs were corrected for genotyping

errors and imputed. An in-house python (v3.0) script called

“VCF_to_MAP-AB” (https://github.com/mdzievit/VCF_to_

MAP-AB) was developed to convert a variant call format

file to the MAP-AB format used in the genotyping error

and correcting suite of tools called “Genotype-Corrector”

(GC, Miao et al., 2018, accessed 5/15/2018). After convert-

ing to the MAP-AB format with PHW30 labeled as the A

allele, each genotype file was pre-processed by removing

markers with more than 40% missing data and individu-

als with more than 80% missing data (GC program “fil-

ter_samples_markers.py”). Next, markers with segregation

distortion were removed (by testing the Mendelian seg-

regation ratio with a p-value < 0.1 using GC “program

preprocess_markers.py”), and consecutive markers within

a 150-bp window were combined (GC “program prepro-

cess_markers.py”). The “config-file” was kept with default

settings, except the SNP error rate was set for each parent

and used to run the “Genotype-Corrector.py” script from GC.

Finally, corrected markers were binned (combining adjacent

SNPs with the same genotype call) while allowing for one

mismatch (GC program “bin_corrected_markers.py”), and

any heterozygous calls resulting from the imputation process

were set to missing. This process resulted in 3019 bins for the

B73 population and 1186 bins for the Mo17 population. The

numbers of initial SNPs, informative SNPs, and final bins can

be affected by genetic diversity between parental inbreds, and

https://github.com/mdzievit/VCF_to_MAP-AB
https://github.com/mdzievit/VCF_to_MAP-AB
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sequencing and alignment processes. After determining miss-

ing data rates for each GE, a total of 32 doubled haploid lines

(18 from B73 population and 14 from Mo17) were excluded

from genetic mapping because of high missing data.

2.5 Linkage map construction and genetic
mapping

Individual and consensus genetic linkage maps were con-

structed from the corrected, imputed, and binned genotypic

data. Binned genotypic data were formatted for input into

the R package “qtl v1.42-8” (Broman et al., 2003). Mark-

ers and individuals with more than 10% missing data were

removed. A genetic map was initially constructed for each

population using the “MSTmap” algorithm (Wu et al., 2008)

and implemented with the R package “ASMap v1.0-2” (Taylor

& Butler, 2017). Genotyping errors were investigated using

the “calc.errorlod” function within “qtl,” and genotype calls

with scores greater than four were set to missing. The genetic

maps were constructed again using the same procedures as

previously mentioned and were both approximately 1368.0

cM in length. Finally, the two individual genetic maps were

integrated to construct a consensus genetic map 1394.2 cM

in length using the R package “Lpmerge v1.6” (Endelman &

Plomion, 2014).

The consensus genetic map was used to conduct compos-

ite interval mapping for the two populations. Combining our

two populations may increase our QTL mapping power; how-

ever, it could also cancel out the effect if B73 and Mo17

have opposite effects. For this reason, we chose to keep

the two populations separate. Markers from the B73 and

Mo17 populations were assigned consensus genetic map posi-

tions. The genotypic data files were formatted for input into

Windows QTL Cartographer v2.5 (S. Wang et al., 2012),

with PHW30 labeled as parent A and coded appropriately.

Composite interval mapping with a walk speed of 1 cM,

forward and backward regression with an in and out proba-

bility of 0.10, and a window size of 10 cM were conducted

for each of the seven traits. Permutation testing with 1000

replications was used to identify a trait-specific significance

threshold at the 5% level for QTL detection. A positive

additive effect for detected QTLs indicates parent A’s allele

(PHW30) increased leaf angle, while a negative additive

effect indicates parent B’s allele (B73 or Mo17) increased

leaf angle. In addition, a genome-wide single-marker analysis

using an F-test with physical distance and uncorrected geno-

typic data was conducted for the seven traits with 37,831 SNPs

from the B73 population and 39,922 SNPs from the Mo17

population to corroborate the composite interval mapping

results.

3 RESULTS

3.1 Phenotype data

Analysis of variance indicated genotype and genotype-by-

environment were significant sources of variation for all

traits (Table 1; p < 0.01), while environment was a signifi-

cant source of variation for all traits except “canopy slope”

(Table 1; p < 0.01). Broad-sense heritability on an entry-

mean basis was high for all traits and ranged from 0.87 to 0.97

(Table 1).

Phenotypic distributions of the combined best linear unbi-

ased predictors within and across populations were normally

distributed across all traits and varied widely (Figure 2).

Leaf angle measurements for the four phenotyped leaves were

significantly correlated with each other (p < 0.001) and con-

sistent across two populations (Figure 2). The strength of the

correlation between leaves increased as the distance between

them decreased (Figure 2). For example, in the combined

population, “one below flag” was strongly correlated with

“three above ear” (r = 0.88, Figure 2), whereas “one below

flag” was only moderately correlated with “second below ear”

(r= 0.41, Figure 2). This trend was also consistent across both

populations (Figure 2).

The three derived traits, “canopy average,” “canopy inter-

cept,” and “canopy slope,” varied in strength of correlation

with the measured leaf angle traits. In the combined pop-

ulation, “canopy average” was significantly and positively

correlated with all traits (p< 0.001), and it had the highest cor-

relation with “one below flag” (r= 0.90, Figure 2) among four

measured traits. Similarly, “canopy intercept” was also signif-

icantly and positively correlated with all traits (p< 0.001), and

it had the highest correlation with “one above ear” (r = 0.948,

Figure 2) among four measured traits. On the other hand,

“canopy slope” was significantly and positively correlated

with all other traits (p < 0.001) except for “two below ear,”

where it was significantly but negatively correlated (p < 0.05,

r = −0.13, Figure 2).

3.2 Modeling leaf angle across canopy levels

Leaf angle was regressed on canopy level to model how leaf

angle fluctuates across the canopy, and it was done for the

parents, hybrids, and doubled haploid lines. A strong posi-

tive slope was observed for B73, while PHW30 had a slightly

positive slope (Table 2). In contrast, Mo17 had a moderately

negative slope (Table 2). This trend for the three parents con-

tinued in the doubled haploid lines, where doubled haploid

lines from the B73 population tended to have positive slopes,

whereas those from the Mo17 population tended to have
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F I G U R E 2 Trait correlations between the four phenotyped and three derived leaf angle measurements both within and across populations.

Plots on the diagonal line describe the distribution of each measurement. The bottom triangle depicts the scatter plot between the seven

measurements, while the upper triangle shows the correlation and significance level (***p-value < 0.001; **p-value < 0.01; and *p-value < 0.05).

negative slopes (Table 2; Figure 3). Overall, doubled haploid

lines from the two populations had a similar “canopy inter-

cept” (Table 2), but those from the B73 population tended to

have a higher “canopy average” (Table 2).

3.3 Genetic mapping

Composite interval mapping was conducted separately for

each population across all seven traits. Trait-specific signif-

icance thresholds ranged from 3.1 to 3.4 logarithm of odds.

In total, 59 QTLs were identified in the two populations and

were detected on all chromosomes except 9 and 10 (Table

S1; Figure 4). In the B73 population, 22 QTLs were detected,

while 37 were detected in the Mo17 population (Table S1;

Figure 4). The number detected for each trait ranged from

five in “three above ear” to 11 in “canopy average” and “one

below flag” (Table S1; Figure 4). A single-marker scan with

genomic position of unprocessed genotypic data supported

these detected QTLs (Figure S1). Additive effects ranged from

−0.46 to 0.35 for “canopy slope” and −3.35 to 4.14 for leaf

angle traits (Table S1). Additionally, the amount of pheno-

typic variation explained by the individual QTL ranged from

4.2% to 26.7%, while the total variation explained for each

trait ranged from 14.1% to 54.4% (Table S1).

Seven genomic regions were detected across at least four

traits, three of which were detected in at least five traits. The

genomic region on chromosome 5 was detected across all

seven traits in the Mo17 population and has a positive addi-

tive effect (Table S1; Figure 4). Another genomic region at

300 Mb on chromosome 1 was detected for five of the seven

traits in the Mo17 population and suggestive for two other

traits (“three above ear” and “canopy slope”) and has a posi-

tive additive effect. For the B73 population, only one genomic

region at 148 Mb on chromosome 3 was detected for four

traits. Among these seven genomic regions, three had QTLs

detected for “canopy slope” (Table S1).

Relationships among leaf angle measurements at different

positions can be viewed as a form of allometry, which is one

aspect for developmental reaction norm (two other aspects

being ontogeny and plasticity) (Pigliucci et al., 1996). To

reveal the genetics underlying the observed leaf angle vari-

ation across the canopy, we plotted the genetic effects of

the seven genomic regions (Figure 5; Table S2). Assuming

the same loci were underlying these genomic regions, even

though the peak signal region varied slightly for some of

the QTLs, both dynamic and stable effects across the canopy

were observed. The additive effects varied more across dif-

ferent canopy levels for the dynamic QTLs than the stable

QTLs. For example, the additive effect range for the QTLs

on chromosome 5 was 4.14 for “one below flag” and 1.29 for

“two below ear”, and it was considered a dynamic QTL. The

QTLs on chromosome 1 near 300 Mb had a range of 2.37 for

“one below flag” and 1.59 for “two below ear”, and it was

considered a stable QTL.

When additive effects were regressed on leaf positions, the

slopes for three stable QTLs were not significant, agreeing

with the non-significance of these three genomic regions for

“canopy slope” (Table S2). The slopes for two (chr3:2 Mb and

chr3:183–197 Mb) of the four dynamic QTLs were signifi-

cant, agreeing with the QTLs detection for “canopy slope.”

The QTL effects of chr3:148 Mb were clearly not following

a linear pattern, and the slope were not significant. While the

additive effects of chr5:55–90 Mb were not following the lin-

ear pattern and the slope was not significant, this QTL was

significant for “canopy slope.”
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F I G U R E 3 Modelling of leaf angle across canopy levels for the three parents and two populations. Four canopy levels were phenotyped for

leaf angle and were represented by four leaves based on their distance from the flag (final) or ear leaf. Leaf angle measurements were regressed on

the numerical positions of the leaves with the ear leaf positioned as zero. Regression lines are plotted for each genotype and colored according to the

overall canopy average (average of all four leaves phenotyped).

4 DISCUSSION

Simulation and empirical research have determined the ideal

canopy architecture for high planting densities should involve

upright leaf angles in the upper canopy that gradually transi-

tion to less upright in the lower canopy (Duncan, 1971; Long

et al., 2006; X. Zhang et al., 2017). This canopy configura-

tion distributes light more efficiently throughout the dense

canopy by allowing light to penetrate deeper into the canopy

to intercept more light (Duncan, Loomis et al., 1967; Lee &

Tollenaar, 2007; Zhu et al., 2010) and contributes to the adap-

tation to high planting densities seen in the United States and

other countries (Duvick et al., 2004; Hammer et al., 2009;

Ma et al., 2014; T. Wang et al., 2011). Leaf angle is one

of many traits that have contributed to the differential yield

response maize hybrids from different decades have shown in

the United States and China (Duvick et al., 2004; Ma et al.,

2014). While yield responds to different leaf angles and den-

sity configurations, the response of leaf angle under various

planting densities has been small, less than five degrees from

low to high (L. Ku et al., 2016; H. Wang et al., 2017), or lim-

ited to specific genetic backgrounds (Pioneer, 2015). While

plant density is an important area of research, it was not a

main focus of the current study.

Even though the ideal canopy architecture distributes light

more efficiently throughout the dense canopy, most previous

genetic mapping studies have not investigated leaf angle vari-

ation across the canopy (Dzievit et al., 2019; Mantilla-Perez &

Salas-Fernandez, 2017). This study followed up on observa-

tions made from our recent leaf angle genetic mapping and

meta-analysis study. We used doubled haploid lines devel-

oped from the populations used in the previous study (Dzievit

et al., 2019) to investigate leaf angle variation at four different

canopy levels.

Previous research typically used the average of multiple

phenotyped leaves for genetic mapping (Ding et al., 2015;

L. X. Ku et al., 2010, 2012; L. Ku et al., 2016; C. Li et al.,

2015; Lu et al., 2007; Mickelson et al., 2002; X. Zhang et al.,

2017); however, few investigated the correlation between mul-

tiple phenotyped leaves (Mickelson et al., 2002) or portions

of the canopy (X. Zhang et al., 2017). Three representa-

tive plants were sampled from the middle of each row and

showed little within-row variation (data not shown), thus serv-

ing as the best proxy for a canopy-level phenotype. The high
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F I G U R E 4 Linkage mapping of leaf angle across seven traits. Logarithm of odds plots for selected chromosomes from the composite interval

mapping. Results for two populations are combined into each plot for each of the four phenotyped traits (A–D) and three derived traits (E–G).

Chromosomes were selected for plotting if they contained a significant quantitative trait locus above the significance threshold among all results. The

horizontal red line indicates the trait specific significance threshold and vertical dotted lines separate the selected chromosomes.
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F I G U R E 5 Seven quantitative trait loci (QTLs) have either stable or dynamic genetic effects across the canopy. Linkage mapping of leaf angle

across seven traits revealed seven consistent QTLs. Dynamic QTLs have different effects depending on the canopy level, whereas stable QTLs have

similar effects across the canopy levels.

correlations of “canopy average” with all leaves above the ear

(> 0.90) were consistent with previous research (Mickelson

et al., 2002). On the other hand, the correlation of “canopy

average” with the lower leaf (“two below ear”) was smaller

(0.69). This was consistent with a similar study that found

“canopy average” was less correlated with the average of the

lower canopy than the average of the upper canopy (X. Zhang

et al., 2017). This suggests that the “canopy average” might

not be suitable for representing the lower canopy in genetic

mapping, and the upper and lower canopy may be dynamically

controlled.

Phenotyping individual leaves at different canopy levels

allowed us to investigate the static allometry of leaf angle

and unravel its genetic control. Static allometry describes

the growth rate between two traits at the same developmen-

tal stage. In this study, we calculated a “canopy slope” by

phenotyping leaves at different canopy levels at the same

developmental stage (after anthesis). This trait explains the

rate at which leaf angle changes in relation to canopy level.

The three parents used in this study vary in their overall leaf

angles and “canopy slope.” Inbred line B73 had a configu-

ration close to the ideal canopy. It had upright leaf angles

in the upper canopy and slightly less upright in the lower,

resulting in a strong positive “canopy slope.” On the other

hand, Mo17 had relatively flat leaf angles across the canopy

and a small negative “canopy slope,” meaning the leaf angle

became slightly upright lower in the canopy. The “canopy

slope” for the common parent, PHW30, was close to 0, indi-

cating a leaf angle throughout the canopy levels. The doubled

haploid lines generally followed the trend of the parents, with

the B73 population generally having a positive “canopy slope”

while the Mo17 generally having a negative “canopy slope.”

Together, these results suggest different genetic mechanisms

may control the rate at which maize plants change leaf angle

throughout canopy levels. On the other hand, modeling leaf

angle throughout the canopy with a linear model is the initial

step in this emerging field, as fitting more complex models

will require more datapoints from additional measured leaves

in the future. Additional high-throughput measurement and

analytic methods are needed to systematically detect QTLs

with different effect changes and define different groups of

QTL.

Genetic mapping with individual leaves rather than only

the average of all phenotyped leaves enabled us to explore

leaf angle QTL effects throughout the canopy and begin

unraveling the genetic basis of static allometry. Positive or

negative genetic effects for the detected QTLs indicate the

source of upright leaf angle (positive indicates PHW30, while
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negative indicates either B73 or Mo17). When visualizing

the leaf angle QTL effects at the different canopy levels, two

classes of leaf angle QTLs emerged: a stable effect across

canopy levels and a dynamic effect based on canopy level. The

stable effect class is most illustrated by two well-characterized

mutants, liguleless1 and liguleless2, that have consistently

upright leaves across the canopy (Harper & Freeling, 1996).

The QTLs detected on chromosomes 1 (∼300 Mb), 2 (∼210

Mb), and 4 (∼159 Mb) had stable additive effects across

the canopy. These three include peaks that did not pass the

trait-specific significance thresholds, which could be due to

our sample size not being large enough to declare those

differences as significant across all leaves in the canopy. Nev-

ertheless, the range of the additive effects within this class of

leaf angle QTL was small. The findings suggest these QTLs

are affected only to a small degree by spatial or temporal

effects.

The QTLs detected with “canopy slope” generally fit into

the dynamic effects class. For example, a major-effect QTL

with dynamic effects was detected on chromosome 5. Since

this QTL included “canopy slope,” we suspected the addi-

tive effect to be strongest in the upper or lower canopy and

weaker in the opposite part of the canopy. The dynamic effects

we observed for this locus confirmed our hypothesis. Sim-

ilar results, but with smaller effects, were observed for two

of the QTLs (chr3:2 Mb and chr3:183–197 Mb). Had we

only used “canopy average” for genetic mapping, all seven

genomic regions would have been detected, but we would not

have observed the dynamic effects at different canopy lev-

els. A QTL with similar dynamic effects was detected in a

previous study from genetic mapping with averaged leaves

from the upper and lower canopy (X. Zhang et al., 2017).

Additionally, dynamic effects were observed for cloned genes

ZmCLA4 (J. Zhang et al., 2014) and ZmTAC1 (L. Ku et al.,

2011). Together, these observations suggest that these types

of QTLs are developmentally dependent, meaning the struc-

tural leaf components influencing leaf angle may degrade over

time, with a greater effect in older more developed leaves

(lower in the canopy). Phenotyping the same leaves across the

growing season may elucidate this matter. Additionally, this

class of leaf angle QTL reflects the composition of the ideal

canopy architecture under high planting density (upright in

the upper canopy and less upright in the lower). For example,

an analysis of Chinese hybrids released from the 1950s to the

2000s showed older hybrids with more horizontal and consis-

tent leaf angles, while modern hybrids have the ideal ideotype

for high planting densities (Ma et al., 2014). Breeders select-

ing high-yielding varieties under those conditions may have

favored dynamic leaf angle QTL to help maximize canopy

light absorption.

Detection of a third class of QTL that only affects a sin-

gle leaf or portion of the canopy could be possible; however,

it is difficult to know whether these are truly leaf-specific or



DZIEVIT ET AL. 11 of 15The Plant Genome

T A B L E 2 Leaf angle phenotypic values for parents, hybrids, and doubled haploid lines.

Group
One below
flag

Three above
ear

One above
ear

Two below
ear

Canopy
average

Canopy
intercept Canopy slope

B73 80.6 ± 0.33 77.3 ± 0.47 70.0 ± 0.71 60.0 ± 0.49 72.0 ± 0.39 66.7 ± 0.54 3.0 ± 0.12

Mo17 52.7 ± 0.52 61.1 ± 0.68 64.3 ± 0.63 61.6 ± 0.62 59.9 ± 0.45 62.0 ± 0.60 −1.2 ± 0.16

PHW30 74.3 ± 0.28 77.7 ± 0.57 76.9 ± 0.51 73.2 ± 0.24 75.5 ± 0.36 75.1 ± 0.37 0.2 ± 0.06

B73 × PHW30 75.9 ± 0.64 72.1 ± 0.97 68.5 ± 0.90 64.4 ± 1.07 70.3 ± 0.74 67.4 ± 0.78 1.6 ± 0.18

Mo17× PHW30 60.7 ± 1.40 64.1 ± 0.98 67.8 ± 0.76 64.6 ± 0.85 64.2 ± 1.17 65.2 ± 0.89 −0.5 ± 0.22

B73 Population 72.3 ± 0.58

(52.4–84.9)

73.1 ± 0.44

(60.9–84.4)

69.7 ± 0.40

(58.4–79.8)

66.7 ± 0.42

(52.4–77.3)

70.6 ± 0.40

(55.4–79.9)

68.7 ± 0.37

(56.6–77.8)

0.9 ± 0.08

(−1.6 to 2.6)

Mo17 Population 62.6 ± 0.76

(36.9–82.7)

68.3 ± 0.55

(45.3–82.5)

69.1 ± 0.39

(50.6–79.2)

68.0 ± 0.40

(53.2–80.9)

66.8 ± 0.50

(47.5–79.4)

68.3 ± 0.42

(50.8–80.6)

−0.7 ± 0.08

(−4.7 to 1.8)

Note: Values after number are the standard error, and values within parentheses represent the range.

merely cases from the other two classes. Examples of this third

class were identified in our study, but the small sample size

may have limited our power to detect QTLs in other parts of

the canopy. For example, a QTL on chromosome 5 (4.4 Mb) in

the B73 population was only detected for “one above ear”; yet

a different study, also using B73 as a parent, detected a QTL

for “one below flag” in a similar physical position (Tian et al.,

2011). Despite this, there is evidence to support our hypoth-

esis that QTLs can control specific leaves or portions of the

canopy. The QTL on chromosome 3 (∼219.8 Mb) was only

detected for “one above ear” in the B73 population and for the

same leaf and similar region in a different study (Pan et al.,

2017). In addition, a QTL in the same region was detected

from our previous study for “two below ear” (Dzievit et al.,

2019), thus suggesting leaf or canopy-specific QTL may be

possible. Phenotyping leaves at different canopy levels with

larger sample sizes may provide more evidence to support the

existence of this third class of QTL.

The major QTL on chromosome 5 was supported by mul-

tiple studies that phenotyped different leaves throughout the

canopy (Chen et al., 2015; C. Li et al., 2015; X. Liu et al.,

2019; Pan et al., 2017; Potts, 2014; Tian et al., 2011; X.

Zhang et al., 2017). Since most of the studies phenotyped a

single leaf or conducted genetic mapping with the average

of multiple leaves, it is difficult to see the dynamic canopy

effect. The QTL effects for “one below flag” were higher than

other leaves in the canopy, which would be expected since we

observed the highest variation in that part of the canopy across

both populations (Figure 2). The other major QTL on chromo-

some 1 (∼300 Mb) was only supported by a single study that

mapped with multiple leaves near the ear (C. Li et al., 2015).

Similarly, the consistent QTL on chromosome 2 (∼209 Mb)

was only supported by a single study that mapped with the

average of all leaves in the canopy (X. Zhang et al., 2017).

The three derived traits, “canopy average,” “canopy slope,”

and “canopy intercept,” co-localized with QTLs identified for

phenotyped leaves except for two detected for “canopy slope”

on chromosomes 1 (199.7 Mb) and 6 (95.0 Mb). While these

were not supported by the phenotyped leaves in this study,

they were supported by other studies that phenotyped leaves

in multiple parts of the canopy (Chang et al., 2016; C. Li et al.,

2015; Pan et al., 2017; Tian et al., 2011; X. Zhang et al., 2017),

thus supporting the validity of these QTLs.

Leaf angle-related candidate genes from maize and rice

were identified near the overlapping QTLs detected in this

study. The major-effect QTLs located between 58 Mb and

90 Mb on chromosome 5 overlaps with the maize ortholog

of the rice gene LC2 (∼83 Mb). This rice gene alters the

expression of cell division in the lamina joint that affects

leaf angle for the upper three rice leaves (S.-Q. Zhao et al.,

2010). Additionally, the QTL detected on chromosome 1

near 13.7 Mb is downstream of an orthologous rice gene,

OsMDPI. It is located at approximately 18.3 Mb and reg-

ulates cell-expansion-related genes in the lamina joint of

rice (Duan et al., 2006). A recently cloned maize gene, drl1
(26.7 Mb), is located slightly upstream of the overlapping

QTLs on chromosome 1 near 23.5 Mb and controls proper

leaf patterning, including restricting auricle expansion at the

midrib (Strable et al., 2017). Known mechanisms control-

ling leaf angle in maize include variation in auricle size

(Kong et al., 2017; Strable et al., 2017), while variations

in cell size in the lamina joint control leaf angle for rice

(Duan et al., 2006; Feng et al., 2016; Gao et al., 2014; Je

et al., 2010; Jiang et al., 2012; H. Li et al., 2013). Maize

orthologs of similar types of rice genes were also identified

for the two consistent QTLs on chromosome 3: CYP90D2/D2
(4.7 Mb, H. Li et al., 2013) and LAX (186.0 Mb, Komatsu

et al., 2003). Together, these underlying candidate genes for

the consistent QTL support our previous hypothesis regard-

ing the contribution of cell size near the blade and sheath

boundary to leaf angle variation in maize (Dzievit et al.,

2019).
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The progenitors of the doubled haploids developed in this

study were previously used for genetic mapping of leaf angle

in the lower canopy (Dzievit et al., 2019). Six of the over-

lapping QTLs previously detected were consistent with the

newly detected QTLs, and all but the one on chromosome

8 matched the allele source (Dzievit et al., 2019). The non-

matching additive effects for the QTLs on chromosome 8 were

detected in different leaves. Previously, a small positive addi-

tive effect and a large dominance effect were detected in the

B73 population for the leaf in the lower canopy (Dzievit et al.,

2019), whereas in this study, a negative additive effect was

detected for “one below flag” in the B73 population. The

allelic effect of this locus may depend on the leaf position.

Similar results have been obtained when genetic mapping has

been conducted with above- and below-canopy averages (X.

Zhang et al., 2017).

5 CONCLUSION

As additional research continues to unravel the genetic con-

trol of complex traits, it is imperative that phenotyping efforts

are expanded to help us in this process. Our study investigated

leaf angle variation across multiple canopy levels (four traits)

and three derived traits. For the seven traits, 59 QTLs were

uncovered with two major genomic regions detected across

multiple canopy levels. Investigating genetic effects at differ-

ent canopy levels revealed seven genomic regions that can be

grouped into two classes of QTLs: stable and dynamic. Stable

QTLs had similar effects at different positions of the canopy,

while dynamic QTLs had varied effects. Breeders may have

inadvertently selected QTLs with dynamic leaf angle effects

as they selected inbreds to generate high-performing hybrids

under high planting densities. Together, these results further

advance our understanding of how leaf angle changes across

canopy levels and how targeting QTLs with dynamic effects

could contribute to the development of maize hybrids with the

ideotype for high planting densities.
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