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ABSTRACT: The application of machine learning models to the

prediction of reaction outcomes currently needs large and/or highly

featurized data sets. We show that a chemistry-aware model, NERF, I
which mimics the bonding changes that occur during reactions, allows
for highly accurate predictions of the outcomes of Diels—Alder
reactions using a relatively small training set, with no pretraining and
no additional features. We establish a diverse data set of 9537 I
intramolecular, hetero-, aromatic, and inverse electron demand

Diels—Alder reactions. This data set is used to train a NERF (o)
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model, and the performance is compared against state-of-the-art

classification and generative machine learning models across low- and high-data regimes, with and without pretraining. The
predictive accuracy (regio- and site selectivity in the major product) achieved by NERF exceeds 90% when as little as 40% of the
data set is used for training. Another high-performing model, Chemformer, requires a larger training data set (>45%) and pretraining
to reach 90% Top-1 accuracy. Accurate predictions of less-represented reaction subclasses, such as those involving heteroatomic or
aromatic substrates, require higher percentages of training data. We also show how NERF can use small amounts of additional
training data to quickly learn new systems and improve its overall understanding of reactivity. Synthetic chemists stand to benefit as
this model can be rapidly expanded and tailored to areas of chemistry corresponding to the low-data regime.

B INTRODUCTION

The prediction of reaction outcomes using machine learning
(ML) has attracted significant interest due to its prospects for
expediting synthetic route design and execution, e.g., for new
pharmaceuticals."” Although reaction prediction tools have
existed since the 1970s in the form of expert-guided rule-based
programs,” a strong focus on data-driven approaches led to a
proliferation of computational and big-data technologies.”™"*
Reaction prediction by ML is, however, a nontrivial task. It
requires careful attention to both model architecture and
feature selection. Graph-based approaches™”*”'*'* (which
encode chemically interpretable connectivity information) and
transformers””'"" (which apply language translation methods)
have both shown promise when developed with large and
diverse data sets. However, a current limitation is encountered
when making predictions for certain reactions that are
underrepresented in the benchmark data sets. The main ML
models used for reaction prediction are notoriously data-
hungry, requiring large numbers of data points across the
chemical or reaction space of interest and/or chemically
meaningful features for training and usage. A need for dense
data sets that incorporate many reaction types suggests that a
model is not highly robust or capable of effective interpolation.
This in turn limits the application of ML-assisted synthesis or
other techniques to common low-data regimes'* in chemistry
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such as underrepresented reactions and/or substrate classes.
When applied to burgeoning areas of chemistry, data-efficient
models need fewer experiments to be carried out to develop a
sufficient model.

Here, we investigate the question of data efficiency of ML
models for the prediction of Diels—Alder reaction products, a
task entailing questions of site-, regio-, and diastereoselectivity
(Figure 1). First reported in 1928,"° the Diels—Alder reaction
is today a mainstay of the synthetic chemist’s toolkit, albeit
more so in academia than industry.'°™'® It enables the
simultaneous formation of two new bonds with perfect atom
economy and typically high selectivity. One noteworthy
application is the construction of polycyclic structures via
transannular Diels—Alder reactions of macrocycles, an
application of particular significance to the fragrance and
flavor industries."® From a technical viewpoint, the Diels—
Alder reaction embodies a challenging reaction class for
machine learning prediction due to the diversity of distinct
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Figure 1. (A) Standard Diels—Alder reaction between butadiene and
ethene and the corresponding bond change. (B) Site-selectivity
illustrated by reactions between different possible dienes and
dienophiles. (C) Regioselectivity shown through different diene and
dienophile atom pairings. (D) Diastereoselectivity arising through
different combinations of exo/endo and top/bottom attack.

subclasses, e.g., normal electron demand (NED) vs inverse
electron demand (IED), aliphatic vs aromatic vs heteroatom-
containing substrates, and intermolecular vs intramolecular
(including transannular). These technical challenges, coupled
with the reaction’s widespread value to synthetic chemistry and
the associated diversity of substrates, motivated our interest in
developing predictive models for the Dlels Alder reaction.

In 2019, Grzybowski and co-workers'’ reported a random
forest model for predicting the outcomes of Diels—Alder
reactions. Trained on subsets of a data set of 6355 reactions—
all of which were intermolecular reactions—the model
predicted the regiochemistry, site-selectivity, and diastereose-
lectivity (our definition of diastereoselectivity in Figure 1 may
differ) of intermolecular Diels—Alder reactions (major
products) with accuracies of 93.6, 91.3, and 89.2%,
respectively. The best-performing feature set incorporated
molecule fingerprints and substituent constants (Hammett
constants and topological steric indices’’). They showed that
these features provided superior interpolation accuracy
compared to quantum mechanical (QM)-derived features
(e.g., Parr functions). Other models including a neural network
(NN) classifier” and a graph-based NN° gave lower
accuracies. It was suggested that the use of chemically relevant
descriptors representing reaction center and substituent effects
was important for accurately predicting reactlon outcomes.
More recently, Alexandrova and co-workers’ developed a
predictive model for Diels—Alder reactions that used
topological descriptors of charge density to predict barrier
heights in solution, while Grayson and co-workers™ applied
ML and transfer learning techniques to improve semiempirical
QM-derived Diels—Alder barrier heights.

We report the first examples of ML models that display
useful levels of predictive accuracy across all of the major
subclasses of Diels—Alder reactions. We demonstrate that
generative ML architectures display superior performance for
predicting reaction outcomes, such as regio- and site-
selectivities with accuracies of >95%. Notably, the best-
performing model architecture learns the chemical principles
of the reaction, namely the cyclic movement of electrons, as
opposed to template models usmg curated features in analogy
to the physics-aware models™* encoding the underlying physics
of the reactions described. The best performance is achieved
solely based on connectivity information rather than on
specific chemical descriptors. High predictive accuracy is
achieved by two different models: a generative graph-based

model, NERF, that makes predictions based on chemically
interpretable edge/bond changes without pretraining, and a
pretrained transformer model, Chemformer, ' based on natural
language processing of SMILES strings. Both models give high
levels of predictive accuracy across diverse reaction classes, viz.
normal/inverse-electron demand, aliphatic/aromatic/hetero,
and intermolecular/intramolecular/transannular. The latter
case is particularly noteworthy: we achieve the first successful
predictions (accuracies >90%) of intramolecular reactions,
indicating the development of models that can correctly
describe these geometrically more challenging reactions. In
contrast to Chemformer, new chemistry can be included in
NERF with minimal training; therefore representing an ideal
platform for future incorporation into retrosynthesis programs.

B METHODS

Data Set Curation. Experimentally reported Diels—Alder
reactions were extracted from Reaxys,” which provided substance,
reaction, and property data sourced from patents and literature
articles spanning the full-time frame since the discovery of the Diels—
Alder reaction. Through the use of Diels—Alder-related search terms,
we extracted an initial 37,891-entry data set (April 6, 2021)
containing 27,349 unique reactions. A filtering process shown in
Figure 2a was then implemented to produce a working data set of
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Figure 2. (A) Workflow used for generating the working data set of
9537 Diels—Alder reactions. (B) Identification of major product via
yield. (C) Identification of reactants accounting for atom economy
(sum of reactant masses must equal the product mass). (D) Detection
of Diels—Alder bonding patterns. (E) Verification that atoms
undergoing bond changes are located on the reaction center. The
reaction center is defined here as the reacting diene and dienophile
atoms. (F) Detection of the formation of a new six-membered ring.

9537 reactions. The sequence of filtration steps involved (i)
determining reaction SMILES by identifying the major products
and taking into account the atom economy of the Diels—Alder
reaction (Figure 2b,c), (ii) checking for the presence of correct
cycloadduct bonding patterns through substructure searches (Figure
2d), (iii) performing reaction mapping with RXNMapper® to atom-
map the reaction SMILES and check that the atoms undergoing
bonding changes were located on a Diels—Alder reaction center
(Figure 2e), and (iv) eliminating tautomerizations and other non-
Diels—Alder reactions by confirming the formation of a six-membered
ring (Figure 2f).

Density Functional Theory (DFT) Calculations. A range of
molecular features were %enerated for the reactants in our data set
using RDK.it,27 XTB, 282 and Gaussian 16.°° To create starting
geometries for DFT optimizations, 3D coordinates were generated in
RDKit using the MMFF94°'[8] force field and the ETKDGv2*>*
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conformational search algorithm. Geometry optimizations and single-
point calculations were then performed in Gaussian 16 using M06-
2X/6-311+G(d,p)//B3LYP-D3(BJ)/6-31G(d).”*** This DFT meth-
od was chosen to provide a cost-effective treatment of dispersion
effects across chemically diverse systems. Because the experimental
data from which the data set was derived were obtained in a wide
range of solvents and the Diels—Alder reaction generally shows a low
dependence on solvents, all DFT calculations were performed in the
gas phase for internal consistency. This automated approach provided
DFT-optimized structures for 7171 of the 9537 reactions, herein
referred to as the DFT subset. Its purpose was to probe the effects of
DFT-calculated features, such as charges and atomic contributions to
molecular orbitals, on model performance.

Fingerprinting Methodology. To support an analysis of the
diversity of the data set, an adaptation of a fingerprinting method
originally reported by Hu and co-workers® was applied. Molecule-
wide descriptors were removed and the atom and bond matrices were
restricted to the reaction center and neighboring atoms only (Figure
3). Atoms and bonds in the reaction center region were characterized

9% Cov= OO

. Reaction center
@ Direct neighbors

Figure 3. Visualization of reaction center and direct neighbors upon

which atom and bond features were extracted and used for clustering.

by various factors such as formal charge, hybridization, and bond type
using one-hot encoding. Ring membership and size were added as
additional atomic features. A sequential combination of principal
component analysis (PCA) reductions and variational auto encoding
(VAE) was then applied to detect patterns in the data.

Machine Learning Architectures. We examined the perform-
ance of a range of machine learning model architectures:

(1) A template-based %raph neural network (GNN) as used by
Stuyver et al.***" which had shown strong predictive
performance for substitution reactions.

(2) Other template-based baseline models* including support
vector machines, multilayer perceptron, linear regression,
Bayesian ridge, kernel ridge, and random forest.

(3) The generatlve natural language processing (NLP) models,
Chemformer'' and TSChem,” are examples of chemical
applications of NLP** and are both capable of SMILES2S-
MILES translation and product prediction. In both cases, a
pretrained model trained on subsets of the USPTO™ data set
was fine-tuned on our data set.

(4) The generative graph-based model NERE" (Nonautoregres-
sive Electron Redistribution Framework). Molecular graphs,
which are reminiscent of 2D representations of molecules,
represent atoms by nodes and bonds by edges. The network
allows for message passing between nodes, leading to atoms
learning about their surrounding environment. See Friederich
and co-workers®® for a detailed review on GNNs, in which
molecular graphs can be applied, in chemistry. To the best of
our knowledge, NERF has not previously been applied to
predicting products for specific reaction classes; it has only
been applied to benchmark predictions using USPTO data. In
NERF, nodes are featurized by atom type, charge, aromaticity,
segment embedding, and positional embedding. Multiple-order
bonds are designated by multiple edge values. Using this graph,
NEREF assesses the likelihood of interaction between each node
and every other node for edge formation and edge breaking
before summing up and rounding these values to determine
the change in edge value (Figure 4). Changes in edges thus
resemble changes in bonds and the associated electron flow,
even though it is important to note that this is a result of the
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graph representation »' @ ?
O S ©
=z
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£
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Figure 4. Simplified visualization of product prediction from SMILES
by the NERF model.

Predict new edge values
Round values
Generate corresponding product

equivalency of edges and covalent bonds used in molecular
graphs. We anticipated that this property would be appropriate
for Diels—Alder reactions, which involve a shuffling of bonds
around a cyclic array.

Data Set Splits. To account for the effects of randomness in the
data set splits, 10 random splits of the data set were used to train 10
models for each experimental run of each model architecture.
Performances are reported as the average + standard deviation (SD)
of the 10 models. This approach was used for all model types except
for the GNN from Stuyver and Coley,** where each fold from the 10-
fold cross-validation was used to calculate standard deviations.

B RESULTS AND DISCUSSION

Data Set Diversity. As the basis for our predictive model
building, we constructed a data set of 9537 Diels—Alder
reactions listed by their Reaxys IDs in the Supporting
Information. The diversity of the data set—and the
applicability of any models trained on it—is determined by
various metrics including selectivity and substrate type shown
in Figure S. llustrating its diversity, our data set includes 5226

Dataset Diversity

% of 9537 Reactions

Figure S. Percentage distribution of reaction subclasses contained in
the data set.

regioselective reactions, 9436 site-selective reactions, and 7200
diastereoselective reactions (see Figure 1 for definitions). With
regards to site selectivity, 5044 reactions had multiple possible
dienes while 9187 had multiple possible dienophiles (multiple
double, aromatic, and triple bonds found on the dienophile).
Our detection of site selectivity does not entail any judgment
on chemical reasonableness but rather on whether another
outcome is theoretically possible. The ratio of intermolecular
to intramolecular reactions in the full data set was 5:1. Among
the intramolecular reactions, 2.4% (38) were transannular.
Aromatic and hetero-Diels—Alder reactions comprised 13.4
and 6.2%, respectively, of the data set. The normal electron
demand (NED) to inverse electron demand (IED) ratio was
8.2:1, as calculated by comparing HOMO/LUMO energies for
5576 intermolecular reactions from the DFT subset. Details
about substructures are available in the Supporting Informa-
tion.

https://doi.org/10.1021/jacs.4c03131
J. Am. Chem. Soc. 2024, 146, 16052—16061


https://pubs.acs.org/doi/suppl/10.1021/jacs.4c03131/suppl_file/ja4c03131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c03131/suppl_file/ja4c03131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c03131/suppl_file/ja4c03131_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c03131/suppl_file/ja4c03131_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c03131?fig=fig5&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c03131?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

2

— O

OO o
\\/N\/\/\

o

o o
@+©/\)K’(°v_. I
o o
o 9
©+w)l\f4,
\LXQ—'
/No
N’//\*’o@*'

O 40,

Figure 6. Diversity of the data set, as visualized using T-SNE dimensionality reduction and agglomerative clustering. Features were derived from
the reaction center and immediate neighboring atoms. Different colors demarcate different clusters. Example reactions from each cluster (cluster

numbering is shown in the central panel) are provided.

To further dissect reaction subclasses, we apglied a
clustering method adapted from Hu and co-workers™ which
analyzed the atom and bond information around the reaction
center. These clusters, visualized using T-SNE dimensionality
reduction, are shown in Figure 6 along with selected
representative reactions. The clustering grouped reactions
together into distinct, chemically meaningful sets. For example,
two clusters (S and 8) contained predominantly aromatic
reaction centers (93.7 and 100%, respectively) but differed
with respect to whether the center was contained in a 5- or 6-
membered ring. Another cluster (7) contained twice the
proportion of hetero-Diels—Alder reactions (13.6%) compared
to the full data set. Further evidence of the chemically distinct
character of the clusters was provided by the challenge that
each one posed when it was used as the testing set for our ML
models (see SI for more details).

Product Prediction. A requirement for any model is that it
must have high accuracy of predicting the experimentally
observed product as the Top-1 ranked choice. We used a target
of >90% Top-1 accuracy across the wide diversity of Diels—
Alder chemistry in our data set. We investigated a variety of
model architectures with different molecule representations
and capabilities. Template-based approaches were explored as
they are conceptually simple while generative models were
used on account of their straightforward input and versatility.
Herein we explore how NERF on account of its chemistry-
aware design, is able to learn the Diels—Alder reaction, as
exemplified by its performance across different data set splits,
substrate classes, and extrapolation tasks.

Template-Based Models. Template-based models were
used as a starting point because they are simply a classification
task between products, in our case generated using RDChiral*°
and templates allowing for any combination of carbon,
nitrogen, oxygen, and sulfur atoms, even if located in aromatic

rings. These template-based models can handle site- and
regioselectivity but not diastereoselectivity. These selectivity
variables, along with symmetry, and the need to maintain
consistent data set sizes with models using reactant DFT
features (7171 reactions) reduced the number of distinct
templates. As a result, our primary data set of 6198 reactions
was a subset of the full 9537-reaction data set.

The two best models were a random forest (RF) model with
Gasteiger charg6527’47 features for the six reaction center atoms
and the template-based GNN. For the former, Gasteiger
charges proved more effective descriptors compared to the
HOMO/LUMO contributions with respective accuracies of
85.3 and 39.5%. In comparison, the Diels—Alder trained GNN
model achieved an accuracy of 81.1% for the same set of
reactions and templates. Reducing the number of products to
choose from by restricting atom type and aromaticity in the
templates reduced the amount of training data and subsequent
performance; a 4621-point carbon-only template data set had
an accuracy of just 77.8% (see SI). In contrast, for the 6198
reaction data set, the generative models Chemformer and
NERF had respective Top-1 accuracies of 92.1% and 96.0%. As
these template models could not exceed 90% accuracy, they
were therefore not considered further in this study.

Generative Models. An advantage of generative models
over template-based methods is that in cases where there are
multiple possibilities of dienes and dienophiles (e.g, in
aromatic systems), the different possibilities do not have to
be enumerated in multiple templates.**** Template-based
methods are constrained by the specific reactions and
mechanisms they are designed to identify, making it
impractical to comprehensively outline every possible reaction.
In contrast, generative models are capable of discerning
intricate patterns directly from data, without the need for
predefined templates. This capability enables them to general-
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Figure 7. Top-1 accuracies of TSChem, Chemformer, and NERF for predicting the regio- and site-selectivity of Diels—Alder reactions across data
set splits of decreasing training set size. Error bars represent the standard deviation over 10 replicates.
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Figure 8. Accuracies of TSChem, Chemformer, and NERF for predicting the regio- and site-selectivity of Diels—Alder reactions across data set
splits of decreasing training set size. The accuracies for the overall (A), intermolecular (B), intramolecular (C), transannular (D), aromatic (E),
heteroatomic (F), NED and IED (G), and IED (H) substrate subclasses are shown. Values are shown as average performance across 10 replicates

+ the standard deviation.

ize to new, unseen data and to accurately predict reactions
across a broader range of conditions.

We examined two types of generative models: transformers
and graph-based models. One potential advantage of trans-
formers is their ease of application due to the minimal input
data needed. Here, we investigated two popular transformers,
Chemformer'' and TSChem.'” In contrast, graph-based
models potentially offer advantages associated with their
ability to encode connectivity and atomic features. Here, we
examined the graph-based model NERF which predicts
simultaneous edge changes that occur on going from reactants
to products.

We investigated how the predictive accuracies of the
generative models are affected by the size of the training
data set. Models were built using splits of 5:47.5:47.5 to
92.5:2.5:5 (training:validation:testing) from the full data set.
We first considered the accuracy of predictions of regio- and
site-selectivity, ignoring any stereochemical features of the
reaction. The performance of the generative models across the
range of data regimes is shown in Figure 7, with Top-1
accuracy referring to when the most confident prediction is
correct and Top-S accuracy (Table S2) referring to when one
of the top S most confident predictions is correct.

With a typical split of 80% training data, TSChem does not
exceed 90% accuracy while Chemformer and NERF do with
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respective Top-1 accuracies of 78.0, 92.1, and 94.7%,
respectively. Using a larger split of 85% training data, the
Top-1 accuracies increase to 79.0, 92.6, and 96.1%. NERF can
even achieve >95% accuracy while TSChem was unable to
achieve >90% accuracy using any of our splits. At the highest
split (92.5% training data), the performance of Chemformer
and NERF decreases slightly but not significantly, a
consequence of the random composition of the testing set in
each experiment.

We then stepwise reduced the amount of training data to
40% of the data set to test the robustness of the models as
shown in Figure 7. The respective accuracies for TSChem,
Chemformer, and NERF of 65.9, 88.3, and 91.4%. NERF
exceeded the 90% threshold when as little as 40% of the data
set was used for training. Similarly, Chemformer required
>45% to achieve comparable accuracy but TSChem never
reaches it. While NERF performs slightly better than
Chemformer for predicting Top-1 accuracy at the 40% split,
the two methods have comparable performance when judged
according to Top-S accuracy (92.3 vs 92.6% for Chemformer
and NERF respectively). In the lowest training data regime,
where 5% of the data set was used for training, the Top-1
accuracies provided by TSChem, Chemformer, and NERF
were 22.3, 65.8, and 44.2% (Figure 7). Chemformer has a clear
advantage here and with the other low-data set split of 10%
training data.

We sought to understand the impact of pretraining for the
best-performing model in this low-data regime, Chemformer.
The starting checkpoint for Chemformer as used in Figure 7
was pretrained'’ on the task of reaction product prediction
using the USPTO-MIT data set with roughly 400,000 training
reactions that do not contain stereochemical information and
according to previous examination,” seven Diels—Alder
reactions. If no fine-tuning is performed, the Top-1 prediction
accuracy (on the testing set of the 5:47.5:47.5 split) decreases
to 3.3%. We then built models without a checkpoint (i.e., not
pretrained) and trained them on Diels—Alder reactions. The
data set splits tested ranged from 40% - 92.5% of the data set as
training and the corresponding accuracies ranged from 11.2%
to 65.1%. We conclude that while the pretrained checkpoint
offers no direct benefit to predicting Diels—Alder chemistry, it
does provide an understanding that is necessary to achieve a
Top-1 accuracy of >90%. Understanding the syntax of SMILES
and the preservation of structure through a reaction are key
aspects that could be learned from pretraining.

We next explored the ability of the models to predict
diastereoselectivity (where present) in addition to regio- and
site-selectivity. These kinds of predictions are possible with the
transformer models but not with the current version of NERF,
which encodes connectivity but not stereochemistry. Even in
the highest training regime of 92.5% training data, the Top-1
accuracies of TSChem and Chemformer were 47.0 and 43.2%,
respectively, far from the target threshold of 90% (see SI).
Prediction of stereoselectivity is nontrivial and would likely
require knowledge of steric interactions that are not directly
encoded in SMILES strings.

To probe the general applicability of the three generative
models across different Diels—Alder reaction subclasses, we
examined their respective performance in predictions of
intramolecular, hetero-, aromatic, and inverse electron demand
(IED) Diels—Alder reactions. This was done by filtering the
predictions obtained on the complete data set and shown in
Figure 7 to these respective categories. The results shown in

Figure 8 indicate that intramolecular reactions (16.7% of the
data set) present an especially challenging test for the models
as they entail steric and geometric constraints associated with
forming viable cyclic structures and were consequently
excluded in the study of Beker et al.'” When an 80:10:10
split is used, the Top-1 accuracies are 81.0%, 92.2%, and 95.7%
for intermolecular reactions while those for intramolecular
reactions are 0.8—11.3% lower at 69.7%, 91.4%, and 90.0%.
This is the first time that machine learning models achieved
>90% Top-1 accuracies for intramolecular Diels—Alder
reactions. For transannular reactions (0.4% of the data set),
TS5Chem and Chemformer perform best with a 92.5:2.5:5 split,
resulting in corresponding accuracies of 55.2 and 75.9%, while
NERF’s best result of 87.3% is with a more balanced 60:20:20
split; none however exceed the 90% threshold. The decrease in
performance for NERF at higher data set splits is likely
statistical errors, resulting from limited testing examples (a 5%
testing set has 2 testing examples on average). The token
positioning in SMILES strings or connectivity of the reactant
graphs may suffice for understanding the steric environment of
simple intramolecular reactions but presumably not for
complex transannular cases.

Aromatic reaction centers also present a challenge as the
model must differentiate between multiple reactive sites that
have different impacts on conjugation and molecular stability.
Within the data set, 63.4% (6047) of the reactions involve
substrates that contain aromatic rings, but only 13.4% of the
data set involve direct participation of the aromatic ring as the
diene or dienophile. When compared against the overall
accuracies for the three methods (78.0, 92.1, and 94.7% using
an 80:10:10 split), the corresponding accuracies for reactions
involving aromatic reaction centers were 2.7—9.6% lower, at
722, 89.4, and 85.1%. If the slightly higher split of 85:5:10 is
used, Chemformer can achieve >90% accuracy (91.1%) on
these same reaction centers while NERF comes close at 89.6%.
Analysis of the failed NERF predictions showed that reactions
involving aromatic reaction centers had significantly higher
rates of invalid double bond placement, ring formation at the
wrong sites, partial reaction of the diene, or no reaction at all
compared to nonaromatic substrates. However, the failed
predictions, aromatic or not, were unlikely (1-5.5%
probability) to produce a valid Diels—Alder product. None-
theless, the failed predictions mirror the problems many
human chemists would encounter in predicting the correct
regioselectivity of this type of reaction.

Hetero-Diels—Alder reactions (e.g, those involving oxygen,
nitrogen, phosphorus, or sulfur atoms as part of the reaction
center) proved difficult for all models. Using an 80:10:10 split,
the TSChem, Chemformer, and NERF models had respective
overall Top-1 accuracies of 78.0, 92.1, and 94.7%, while the
values for hetero-Diels—Alder reactions were 2.8—9.9% lower,
at 68.9, 89.3, and 84.8%, respectively. This drop in perform-
ance is comparable to that observed for aromatic reaction
centers but on account of their lower representation in the data
set (6.2% hetero- as compared to 13.4% aromatic), hetero-
Diels—Alder reactions perhaps do not represent as fundamen-
tal a shift in reactivity. This reemphasizes again the need for a
sufficient number of training examples for accurate predictions.

Finally, we examined the performance of the models for
predicting the products of normal versus inverse electron
demand Diels—Alder (IED) reactions using the subset of 5576
intermolecular reactions (vide supra). For NED and IED
reactions considered together, the Top-1 accuracies for the
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80:10:10 split were 78.1, 92.0, and 94.4% for TSChem,
Chemformer, and NERF respectively. In comparison for IED
reactions, the Top-1 accuracies were only 0.3—2.4% lower at
77.3, 92.3, and 92.0%. Although NED and IED reactions
represent distinctly different reaction subclasses from a
chemical perspective in that the molecular orbitals involved
are reversed, most models are capable of accurate predictions
of both since they do not make explicit use of HOMO and
LUMO. We also considered whether reactions with major and
minor products with similar reactivity, as determined by yield
differences, were more difficult. However, the composition of
these reactions and their small data subset size made a
conclusive determination difficult (see Supporting Informa-
tion).

To further probe the accuracy of NERF for predictions of
the most challenging reaction motifs, we examined the
accuracies achieved when isolating all intramolecular, aromatic,
and hetero-Diels—Alder reactions to the test set (see SI). The
Top-1 performances for testing on intramolecular, aromatic,
and hetero-Diels—Alder reactions were 9.6, 0, and 29.8%
respectively. The significant drop in performance seen in this
challenge highlights the difficulties associated with generalizing
from one subclass of Diels—Alder reaction to another and the
importance of data set diversity and breadth. The 0% accuracy
for aromatic reactions is particularly noteworthy: if never
exposed to aromatic reaction centers during training, the
model does not learn the fundamental electronic reasons why
an aromatic ring would undergo a Diels—Alder reaction.

It is noteworthy that high accuracy can be achieved by
NERF without pretraining whereas Chemformer had to be
extensively pretrained. Furthermore, NERF can achieve this
accuracy for Diels—Alder reactions at lower training splits.
Although Chemformer provides predictions of diastereoselec-
tivity, which NERF does not consider, the Top-1 accuracy is
below 50% and thus not practically useful. When examining
the regio- and site-selective performance across substrate
classes, Chemformer was the most consistent (overall vs
substrate class accuracy) but NERF was able to achieve higher
accuracies in most cases. We hypothesize that the chemistry-
aware aspects of the NERF model, namely the cyclic change in
edges calculated that is common to all Diels—Alder reactions,
allow the model to transfer learning between different reaction
subclasses and correctly predict the products using small
training samples. Future work will have to elucidate if this also
holds true for other, similar pericyclic reactions.

Features. We investigated the hypothesis of chemistry-
aware learning of NERF further by testing if the predictive
accuracy could be improved by incorporating features related
to the Woodward—Hoffmann rules and orbital aspects of the
Diels—Alder reaction.”’ ~>* The NERF model is based on the
likelihood of interactions between atom pairs. We introduced
electronic features, such as charge, nucleophilicity/electro-
philicity, and atomic contributions to molecular orbitals
describing the node properties of HOMO and LUMO, to
mimic a chemist’s understanding of atoms and possible
reaction centers. However, we found for the DFT-featurized
subset of 7171 reactions, with a 60:20:20 and 10:45:45 split,
that all features led to accuracies that were lower and/or within
one standard deviation of the default NERF model perform-
ance (see Supporting Information). Simplifications, either one-
hot encoding (1/0 values) or “phase” encoding (—1/0/1
values) of MO contributions and electronic charges slightly
improve performance over the original continuous value. This

suggests that the NERF model does not prioritize curated
features over learned features in its architecture, perhaps
because the curated features may be too noisy, inferior, or
already present in the model’s latent understanding.

Extrapolation. Finally, we examined the ability of the
models to predict reactions from outside the data set. As an
initial test case, we investigated the Diels—Alder reactions of
1 ,2,4-triazenes.54 Reactions of triazenes were not present in our
original data set because their cycloadditions are followed by
spontaneous extrusion of N, and are thus filtered out during
the atom-economy filtering step. Chemformer and NERF
models were tested on a set of 17 Diels—Alder reactions
involving 1,2,4-triazenes using models trained on 80:10:10
splits (Figure 9a, see SI for other splits).

A) Chemformer I
100 4 [NERF 62.8
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Figure 9. (A) Top-1 accuracies for Chemformer and NERF models
trained on an 80:10:10 split and tested on 17 1,2,4-triazenes and 32
oxazoles. (B) Top-1 accuracies for Chemformer and NERF models
trained on an 80:10:10 split with and without 17 1,2,4-triazenes and
32 oxazoles as additional training data. Testing is performed on 10
1,2,4-triazines and 12 1,2,4,5 tetrazines.

Opverall, the predictive accuracies for the triazene Diels—
Alder reactions were low. NERF often failed to identify the
correct reaction center, while Chemformer led to incorrect
bonding, involved another reaction, or simply had no Top-1
prediction (see Supporting Information). Given that these
reactions involve simultaneously aromatic, IED, and hetero-
Diels—Alder reaction centers, systems that are present in the
training data set, the low predictive accuracy is perhaps not
surprising.

Another set of 32 reactions was used as a challenge for the
models, this time involving intermolecular reactions of
oxazoles and the elimination of the bridging oxygen as water
proceeding the Diels—Alder reaction.”* Oxazole motifs appear
in 22 reactions within our data set and are directly involved in
the reaction center in 15 of these, but in each case reacting in
an intramolecular manner. The 32 test reactions therefore
provide a molecularity-based extrapolation challenge. While
the Top-1 accuracies for Chemformer and NERF of 30.0 and
62.8% respectively (Figure 9a) are far from the threshold of
90%, NERF appears to better utilize these limited training
examples and extrapolate.
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Having demonstrated the limitations associated with
extrapolation to unseen reactions, we retrained NERF with
these 49 triazene and oxazole reactions included in the training
set. The revised model’s performance was then evaluated on a
set of 22 additional reactions®**® between alkenes or alkynes
and 1,2,4-triazenes (10 examples) or 1,2,4,5-tetrazines (12
examples). As opposed to the previous 49 examples, the
triazine reactions differ by having alkyne dienophiles. The Top-
1 accuracy of NERF improved from 6.0 to 47.0% for triazines
and from 12.5 to 46.7% for tetrazines, corresponding to
respective improvements of 41.0 and 34.2% (Figure 9b). In
contrast, Chemformer shows no improvement for 1,2,4-
triazenes (0—0%) and negligible improvement for 1,2,4,5-
tetrazines (0.8—1.7%). This shows that in agreement with the
hypothesis above, NERF can effectively leverage small amounts
of training data to get significant improvements in accuracy on
related systems (triazines with alkynes) and even unseen
reaction centers (tetrazines). The NERF model’s performance
also increased on the original test set from 94.7 to 95.9%,
because of improved recognition of aromatic (85.1—89.6%),
heteroatomic (84.8—88.5%), IED (92.0—93.5%), and intra-
molecular (89.7—92.8%) reaction centers. The improvement in
the latter is likely a byproduct of the improvement in the other
areas. Strategies including more data mining, data augmenta-
tion, and/or transfer learning, will be needed to reach the
performance target of 90% for triazines and tetrazines but the
data efficiency of NERF suggests this is achievable in the small-
data regime commonly encountered in chemistry.

B CONCLUSIONS

By using a chemistry-aware model, NERF, it is possible to
accurately predict the site- and regio-outcomes of Diels—Alder
reactions across a variety of subclasses, including hetero-,
aromatic, and intramolecular reactions, in a data-efficient
manner and with greater performance over state-of-the-art
pretrained models. The changes in edges/bonds predicted by
NERF are analogous to the cyclic reorganization of electrons
within a Diels—Alder transition state and can be learned simply
from the connectivity implied in SMILES strings. Neither
simple features from RDKit nor complex DFT features
representing key chemical aspects of the reaction are needed.

Using only 40% of the data set, NERF achieved a Top-1
accuracy of 91.4% while the next best model, the pretrained
Chemformer, scored 88.3%. It is also possible to further
increase the accuracy of NERF to 96.1% accuracy by using a
larger training:validation:testing split of 85:5:10. NERF is data-
efficient by needing smaller training sets, no pretraining, and
no additional features, aspects that make it exceptionally
adaptable and deployable to new reactions.

This work also represents the first successful development of
highly accurate models for intramolecular Diels—Alder
reactions, an inherently more difficult task because of the
geometric and distortion effects of intramolecular reactions.
Chemformer and NERF both achieved >90% Top-1 accuracy
for intramolecular reactions when allocating at least 80% of the
data to training. Similarly, hetero- and aromatic Diels—Alder
reactions were also predicted with accuracies close to or
exceeding 90%.

NERF was also able to effectively learn from small additions
of data (49 1,2,4-triazines and oxazoles) to increase perform-
ance on the original testing set as well as extrapolate to related
reactions. In comparison, Chemformer was not able to
effectively learn from this additional data using our fine-tuning

strategy. The effectiveness and data efficiency of NERF make it
highly suited for both high-data high-throughput screening and
low-data synthetic lab environments, whereby new exper-
imental results can be rapidly incorporated. Chemical
principles should be considered in the design of future
machine-learning model architectures.
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