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ABSTRACT: Despite the increased use of computational tools to
supplement medicinal chemists’ expertise and intuition in drug
design, predicting synthetic yields in medicinal chemistry endeavors
remains an unsolved challenge. Existing design workflows could
profoundly benefit from reaction yield prediction, as precious
material waste could be reduced, and a greater number of relevant
compounds could be delivered to advance the design, make, test,
analyze (DMTA) cycle. In this work, we detail the evaluation of
AbbVie’s medicinal chemistry library data set to build machine
learning models for the prediction of Suzuki coupling reaction
yields. The combination of density functional theory (DFT)-
derived features and Morgan fingerprints was identified to perform
better than one-hot encoded baseline modeling, furnishing
encouraging results. Overall, we observe modest generalization to unseen reactant structures within the 15-year retrospective
library data set. Additionally, we compare predictions made by the model to those made by expert medicinal chemists, finding that
the model can often predict both reaction success and reaction yields with greater accuracy. Finally, we demonstrate the application
of this approach to suggest structurally and electronically similar building blocks to replace those predicted or observed to be
unsuccessful prior to or after synthesis, respectively. The yield prediction model was used to select similar monomers predicted to
have higher yields, resulting in greater synthesis efficiency of relevant drug-like molecules.

■ INTRODUCTION
Hundreds to thousands of molecules need to be designed,
made, tested, and analyzed (DMTA) in small-molecule drug
discovery programs before one compound is chosen as the
clinical candidate molecule.1 Often, the synthesis of target
compounds is the bottleneck of this process, most significantly
contributing to overall DMTA cycle times.2 In this context, the
translation of designed molecules from paper to experimentally
accessible molecules is of critical importance to the efficiency
of the DMTA cycles. The design phase in the cycle generally
involves careful triaging of potential synthetic targets of interest
through a combination of techniques. These often include
calculation of physiochemical properties,3 prediction of
activity4 and/or ADME properties,5 molecular diversity
analysis,6 or using protein−ligand docking scores7 to estimate
how well the compounds might bind to the target of interest.
The extent to which these tools are used varies from program-
to-program, but ultimately these techniques guide synthetic
efforts toward the next best molecules for projects.
Chemical libraries synthesized in parallel are particularly

useful for enabling efficient and rapid exploration of structure−
activity relationships (SAR) in medicinal chemistry programs.

Unlike singleton synthesis, the synthesis of many compound
analogues in parallel is often accomplished using a robust
transformation that enables the simultaneous evaluation of
multiple SAR hypotheses and can therefore help reduce the
bottleneck that synthesis can impose on the DMTA cycle.
While libraries have become routine practices in most modern
medicinal chemistry programs, the selection of library
analogues does not explicitly consider the likelihood of a
successful synthesis. The need for improving such consid-
erations has been demonstrated with the analysis of AbbVie’s
internal library synthesis data set. The study highlighted that
synthesis success rates8 of the most prevalent synthetic
transformations used by medicinal chemists in pursuing drug
candidates hovered only around 60−70% in most cases, even
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for the robust, well-established Suzuki−Miyaura cross-
coupling.9 As such, predictive models that would allow
medicinal chemists to gauge the proposed synthesis efficiency
of the transformation (e.g., reaction yields) will significantly
improve the overall DMTA cycle time, in addition to reducing
the amounts of precious advanced intermediates lost due to
unsuccessful reactions.
To enable the development of such a tool, it is important to

curate a relevant data set for model development and, equally
important, to identify and attempt to control factors that
complicate yield prediction. A myriad of data sets of different
sources and sizes, reaction scales, and structural diversity have
been reported in the literature to investigate yield prediction
(Figure 1). These data sets include those derived from high-
throughput experimentation (HTE),10 literature-derived re-
action databases,11 and proprietary internal data sets.12 While
HTE-derived data sets have successfully been used for the
accurate prediction of reaction yields for Buchwald−Hartwig
amination10a,12a and Suzuki cross-coupling reactions,12a these
represent highly exhaustive exploration of very narrow,
combinatorial reaction spaces and thus would not be expected
to enable generalization beyond their scopes. Although HTE is
an effective technology for generating large reaction data sets
quickly and efficiently,13 the outputs are not isolated yields in
most cases, regardless of whether the data is used for ML.
Instead, assay yields are often reported, such as UV area
percents, percent conversions, or product/internal standard
ratios.10,14 This may pose questions regarding the relevance of
using HTE readouts to predict synthetic yields at larger scales
due to the confounding factors that isolation may introduce,
and as a result, the prediction from a model trained exclusively
on HTE data may not necessarily translate into material
delivery to assays. Public data sets of varying sizes, sourced
from the USPTO,11 scientific literature,15 and beyond16 have
also been used to build models for yield prediction and other
tasks such as condition recommendation.17 These data sets,
while large, exhibit significant procedural variation among
different data sources, causing yield prediction models to
exhibit low performance.11 The underrepresentation of
negative results in literature data further contributes to this

low performance,18 although Glorius and co-workers have
found that enriching literature data sets with negative data can
lead to improved model performance.19

For these reasons, several pharmaceutical companies have
turned to their internal chemistry electronic laboratory
notebook (ChemELN) data or other proprietary data sets,
which in principle cover large chemical spaces with
pharmaceutically relevant structures and transformations.
Unfortunately, ChemELN data cleanup and processing can
be a very daunting task, which generally entails sizable human
and capital investments.20 These data sets also exhibit
variations in reaction conditions, scale, and reactant properties
(among other factors that may or may not be recorded), all of
which increase the challenge of building ML models.12a

Meanwhile, other studies have built classification models
using targeted reactions to generate data sets for ML to address
these limitations,21 although this approach could potentially
struggle to reach the chemical space desired for broader
deployment in compound design workflows for drug discovery.
We hypothesized that a data set composed exclusively of
medicinal chemistry synthesis efforts might be the most
relevant data set to use to build a yield prediction model for
practical use in drug discovery.
At AbbVie, our centralized chemistry technology group was

established in the early 2000s to enable the rapid generation of
chemical libraries in parallel to facilitate medicinal chemistry
SAR studies. The libraries are experimentally conducted by
reacting a common intermediate (core) with a collection of
monomers chosen by a medicinal chemist under the same
reaction conditions for each to achieve the synthesis of a
collection of similar but differentiated products. Nearly 9,000
libraries, spanning over 100 small-molecule drug discovery
programs, were completed by our group, resulting in the
synthesis and registration of ∼160,000 compound lots.
Historically, compounds registered via library synthesis
accounted for up to 50% of all of the compounds registered
by AbbVie medicinal chemists annually. The data associated
with the synthesis of this vast compound collection has been
captured in our laboratory information management system
(LIMS) database, which is maintained separately from

Figure 1. Prior endeavors into reaction yield prediction: (a) HTE data modeling (Doyle 2018, Zheng 2021), (b) literature database modeling
(Schwaller 2021, Vuilleumier 2022, Neves 2023), (c) ELN data set modeling (Wiest 2023), and this work: incorporating yield prediction in the
synthetic chemists’ design toolbox using AbbVie’s parallel library data set.
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AbbVie’s ChemELN data. Recorded details include library
submission information, parallel library experimental planning,
reagent calculations, final synthesis results, and product
characterization data. The main workflow for library synthesis
has remained consistent over the years, where crude reactions
are analyzed by UPLC-MS and then purified via reverse-phase
mass-directed preparative HPLC. Moreover, automation has
been introduced at several points over the years, including the
processing of crude reactions for purification, mass-directed
purification, transferring of purified compounds into vials, and
final weighing of the compounds, all of which decreased the
likelihood of variation in results introduced due to
experimental error. Additionally, this data was generated
exclusively in support of AbbVie’s global medicinal chemistry
efforts across a diverse array of therapeutic areas and functions
over the last two decades. These factors have enabled us to be
intimately familiar with both how the data was generated and
how the data sets are formatted. AbbVie’s chemical library data
set contains a large amount of negative data, as well. This
addresses one limitation of using data sets sourced from
scientific literature and patents for reaction yield modeling.
The data also exhibits a much greater number of reactions,
unique reactant structures, and molecular diversity than
previously reported HTE data sets while containing a smaller
number of unique conditions compared to other HTE and
literature data sets of a single reaction type (see the Supporting
Information, Figure S15). Due to these factors, we
hypothesized that a model trained using this data might
generalize better to more diverse unseen reactant structures
than models trained on dense combinatorial data10a,11 Unlike
many other data sets evaluated for ML yield prediction, this
data set solely reports the isolated yields of compounds, as
opposed to assay yields (e.g., NMR yields or LCMS area
percent values), which is an important consideration for
differentiating whether compounds could be obtained in pure
form. While purification itself can introduce variation that the
model is not explicitly privy to into the final measured yields,
our reaction workflow aimed to be as consistent as possible by
using mass-directed reverse-phase preparative HPLC for all
compound purification. Using crude LCMS end points for
model training may alleviate this variation when the data is
calibrated using internal standards, or when there is a small
number of the substrate pairs, and can therefore be useful for
tasks involving reactivity-only end points (e.g., reaction
condition prediction21b). However, a model trained using
isolated yields would directly inform on a critical metric for
medicinal chemistry�the ability to deliver the reaction
products into biological assays with sufficient purity. Therefore,
the accumulation of this past library reaction data presented an
exciting opportunity to build reaction yield prediction models
(Figure 1).
In this work, we detail our efforts to build and evaluate such

models for Suzuki cross-couplings using AbbVie’s extensive
chemical library data set and demonstrate the utility of the
model for pharmaceutical compound design. We illustrate the
idea of using such models as aides to chemists in library design
by showcasing a comparison of the model’s predictions to
those made by expert medicinal chemists, as well as case
studies demonstrating model deployment.

■ RESULTS AND DISCUSSION
Data Set Selection and Preparation. We limited our

study to a single library transformation. Consistent with

literature reports on the prevalence of reactions used in
medicinal chemistry,22 Suzuki cross-couplings represent the
second most-conducted library transformation in AbbVie’s
library data set, with an overall success rate of ∼68% for
reaction product registration (i.e., desired compounds were
isolated with sufficient purity for assays). Suzuki reactions are
also well known to have more general/robust reaction
conditions than other cross-coupling transformations21,23 and
are ubiquitous in medicinal chemistry.24 Therefore, we
anticipated the impact of reaction condition variation on the
results of the library reactions to be reduced (i.e., that yields
are more influenced by cross-coupling partners than reaction
conditions). Additionally, more than 85% of the Suzuki library
reactions were completed by just three AbbVie chemists.
Therefore, we chose to evaluate this subdata set as an
exemplary parallel library data set for using historic library data
to build yield prediction models.
As stated previously, intimate knowledge of the data itself is

essential to prepare a data set suitable for machine learning.
Using this knowledge, we were able to manually correct
mislabeled reactants, erroneously entered data, and artifacts of
data storage. The initial Suzuki library reaction data set
contained >40,000 individual data points; due to the nature of
how the data was stored, not every data point corresponded to
an individual valid reaction. Therefore, an extensive data set
processing workflow was developed to furnish a data set
suitable for ML. First, the names of several catalysts, bases, and
solvents were found to vary throughout the data set, as these
were often entered as free text by the chemists conducting the
libraries. For instance, a single palladium catalyst contained
two dozen unique labels in the data set (Figure 2a). Such
entities were identified and assigned to a common name using
the molecular weight entered by the chemist during
experimental design to assist manual review. Next, reactions
that were separated into multiple product lots during
purification were combined into one data point, as these
were often left separate when registering the reaction products
(Figure 2b). However, reactions were also removed from the
data set in their entirety under some circumstances. For
instance, reactions that exhibited transformations beyond a
typical Suzuki reaction were identified and removed from the
data set (e.g., a subsequent deprotection or ester hydrolysis
after the cross-coupling; Figure 2c), as were compounds that
underwent two or more rounds of purification. These
additional reactions and purification measures can introduce
unpredictable amounts of variation into the final measured
isolated yield due to the efficiency of the subsequent synthetic
transformation(s) and the potential challenge of repurifying
the compounds, respectively. Furthermore, reactions that did
not have any reaction conditions associated with them were
removed in their entirety. Combined, these efforts furnished a
cleaned data set of just over 24,000 individual Suzuki reactions
(Figure 2d).25

Processed Suzuki Library Reaction Data Set. The
processed data set contains 23,236 unique Suzuki reaction
products from 24,203 individual reactions,26 which were
synthesized across 629 libraries. Each library consists of a
series of reactions that share common reaction conditions and
a common core structure with a set of differentiated monomer
structures. Typically, the common core is an aryl halide, and
the monomer structures are organoboranes (both acids and
esters) in this data set; the reverse is true for a small subset of
the data set. Each reaction in the data set is labeled by the
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isolated percent yield of the reaction (Figure 3a). Visualizing
the chemical space of the core and monomer structures with t-
SNE27 confirms this, as the majority of the core structures
cluster around each other with the aryl halide monomers. This
analysis also revealed that the diversity present in the boronic
acid/ester monomers was greater than that which was present
in the MIDA boronate monomers (Figure 3b). Analysis of the
functional handles used for core and monomer compounds
reveals that this Suzuki data set reaches ∼3% of the possible
core/monomer pairings.28 Overall, the data set exhibits a large
range of diversity across several drug-relevant physiochemical
properties (see the Supporting Information, Figure S14).
Furthermore, the reaction conditions chosen by the chemist
conducting the library are often highly general and robust.9

While 118 unique reaction condition combinations are present
in the data set, >80% of the reactions were conducted with one
of five palladium catalysts; similarly, all but a small number of
reactions were conducted with four inorganic bases commonly
employed in Suzuki couplings (Figure 3c). This rather low
diversity in reaction condition components speaks to the
convenience of Suzuki cross-coupling reactions, where a small
number of unique reagents can facilitate the synthesis of
diverse compound libraries. This is in stark contrast to, for
instance, C−N couplings, where the nature of the amine
coupling partner can dramatically influence the catalyst choice
for a reaction.29 It also indicates that the data set diversity
primarily stems from the combination of core and monomer
structures. Furthermore, the distribution of isolated yields in
the data set shows that most successful library reactions
furnished the desired products in 10−40% yield (Figure 3d).
Therefore, the yields can be differentiated into four classes:
unsuccessful (0%), low (>0−10% yield), medium (>10−30%
yield), and high (>30% yield). In this data set, the unsuccessful
reactions include those where the reaction simply did not
work, in addition to those where the compound could not be

Figure 2. Scenarios encountered and addressed during data set
processing, including (A) multiple names for the same reagent, (B)
combining of multiple product lots postpurification, (C) removal of
transformations beyond a typical Suzuki coupling, and (D) the overall
summary of these processing efforts. Generic example structures are
shown for panels (B) and (C).

Figure 3. Processed Suzuki library data set, showing (A) the general format of the Suzuki medicinal chemistry library data set, (B) the types and
distribution of core and monomer structures present in the data set (via t-SNE clustering of the PCA decomposition of structural fingerprints), (C)
commonly used catalysts, bases, and solvents used throughout the data set, and (D) the distribution of isolated yields in the data set.
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successfully purified or otherwise isolated; any result where the
desired product was registered (i.e., the compound exhibited
sufficient purity for evaluation in biological assays) was
considered successful, regardless of the final yield. Further-
more, we estimated inherent data set noise due to uncaptured
reaction factors by analyzing sets of repeated reactions within
the data set, finding that over half of these 201 reaction sets
exhibited a standard deviation in the isolated yield of <5% (see
the Supporting Information, Figure S19).
In full, the data set consists of 393 unique core and 3,113

unique monomers. About 2/3 of the unique cores present in
the data set were used in a single library, typically making them
present in 20−70 reactions. For comparison, roughly half of
the unique monomer structures were used in a single library,
indicating that these monomers appear just once throughout
the data set (Figure 4a). Many of the remaining monomers

were requested multiple times, with some being included in
>100 libraries. As described in our group’s prior analysis,
highly requested monomers are not always highly successful
monomers.9,30 For example, pyrazoles and anisoles are highly
requested functional motifs that are often successfully cross-
coupled in Suzuki libraries, while 2-thiazoles are highly
requested/desirable motifs in medicinal chemistry, but poor
substrates for the transformation (Figure 4b).
Retrospective Modeling. We focused our evaluation of

the processed 15-year data set on 3 molecular featurization
approaches (Figure 5a). As a baseline, one-hot encoded
(OHE) features were assigned depending on the identity of the
core and monomer in each reaction, since this featurization
approach has exhibited good performance in interpolative
prediction tasks21,31 and can be used to tell whether the
feature-based models are learning beyond data set statistics.
Morgan fingerprints (FP) generated using RDKit were
selected, as they are widely used, fast to obtain, and
computationally inexpensive to generate. Furthermore, they
have demonstrated good performance on chemistry-related
prediction tasks.32 Alongside these, ab initio quantum chemical

features obtained with density functional theory (DFT) for the
reactive site atoms and molecules were calculated, although
these features are more computationally intensive compared to
FPs. DFT featurization was accomplished using an automated
pipeline (built with modifications to Auto-QChem33) involv-
ing Gaussian 16 (G16)34 calculations to obtain features for
each atom in the core/monomer molecules, in addition to
whole molecule features (see the Supporting Information,
Figure S1). All reactions in the data set were first atom-
mapped, and the 3,473 unique aryl halides and organoboranes
were extracted. For each molecule, 1−20 conformers were
generated using RDKit;35 then, to reduce computational
overhead, the lowest-energy conformer was selected using
semiempirical (GFN2-xTB)36 energy calculations. The se-
lected lowest-energy conformer was then used to conduct
geometry optimization and frequency calculations (APFD/6-
31G*) using G16.34 This generated 25 molecule-level
descriptors per molecule, and 19 atom-level descriptors per
atom per molecule. For each reaction, atom-level features were
extracted for the four atoms corresponding to the reactive site
(C−B bond on the organoborane, C-X bond on the aryl
halide). Computed descriptors that exhibited varied distribu-
tions across the data set were selected for modeling (see the
Supporting Information, Figures S2 and S3). This resulted in a
final DFT feature vector of length 48 for each reaction,
composed of 8 molecule features per molecule and 8 atom-
level features per reactive site atom for the 4 reactive site atoms
(see the Supporting Information, Section 2d for details
regarding the DFT featurization pipeline).
Beyond feature selection, 2 “axes” of modeling were chosen

for this study, namely, the data set splitting method and the
prediction tasks (Figure 5b). The splits and prediction tasks
were chosen to be in alignment with those that would be
conducive for developing useful prospective tools for the
parallel library design workflow. For the splits, random,
monomer-based, and core-based splits were used to evaluate
the model’s performance. The random split provides no user
bias in the distribution of structures into the train/test sets, and
therefore it is likely that identical or very similar structures will
appear in both train and test. Meanwhile, monomer- and core-
based splits ensure that the model is evaluated on unseen
monomer and core structures, respectively. These splits are
more challenging and allow for analysis of how well the models
extrapolate in terms of potential use cases for the prediction of
new library reaction yields (core split), or the prediction of
follow-up library yields on a core that has previously
undergone library submission with unseen monomers
(monomer split). For the core-based split, in particular, the
test reactions may also contain unseen monomer structures
due to the nature of how parallel libraries are conducted,
meaning the model is predicting yields for both unseen and
seen monomers and therefore represents the evaluation of the
greatest challenge−extrapolation to entirely unseen reactions.
In practice, follow-up libraries may employ cores or monomers
that were already seen by the model. Indeed, due to the nature
of libraries, there are 33 structures that are used as both a core
and a monomer in different libraries. Regarding the task axis of
modeling, binary classification, multiclass classification, and
regression tasks were chosen, as they are each relevant to tasks
in medicinal chemistry. In this data set, a 0% isolated yield
indicates an inability to obtain enough product postpurification
(or insufficient purity, potentially without enough material for
repurification) for downstream assays and testing, so even

Figure 4. Suzuki data set reactant statistics showing (A) the number
of library occurrences of core and monomer structures and (B)
selected examples of highly requested monomers in the retrospective
data set and their success rates.
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good model performance on a binary classification (0 or non-0
yield) task is useful to medicinal chemistry programs. For
multiclass yield classification, four yield bins of 0%, >0−10%,
>10%−30%, and >30%−100% yield provide additional nuance
for the prediction of successful reactions and would allow a
medicinal chemist to prioritize compounds predicted to be in
higher yield bins. Finally, regression, as the most challenging
prediction task, was investigated to determine whether it would
be possible to rank-order the monomers for a given library with
more discrimination than a classification model. Although past
yield prediction efforts have largely focused on regression, a
trustworthy classification model is still incredibly valuable for

design in medicinal chemistry, as these models would directly
evaluate whether a product could be synthesized with sufficient
purity for evaluation in biological assays.
For the model types, we selected random forest (RF),

extreme gradient boosting (xGB), and feed-forward neural
network (NN) machine learning models (Figure 5b).37 We
limited our analysis to relatively “simple” model types, as past
yield prediction efforts have consistently seen little to no
improvement, or even detriment, from using more complex
deep learning architectures on real-world data.11,12 Despite
this, we also evaluated using a graph neural network and
features from a language-based transformer model, finding that

Figure 5. (A) Data set featurization approaches, (B) workflow for reaction yield prediction, (C) results for the 108 models built for retrospective
predictions of Suzuki library yields using random forest (RF), extreme gradient boost (xGB), or feed-forward neural network (NN) models with
fingerprint (fp), quantum chemical (DFT), or one-hot encoded (OHE) features. The naiv̈e baseline is shown as a horizontal dashed line, and
results from the 108 yield prediction models are depicted as box plots of aggregate results from 15 data shuffles. The best result from the feature-
based models is written in each plot, colored by the featurization type that yielded this result. The RF OHE-based regression models for the
monomer- and core-based splits exhibited average R2 values that were less than −0.1 and therefore do not appear in the plots. Outliers within the
box plots represented those past 1.5 times the interquartile range.
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neither could provide a significant advantage over the best
results obtained from these three models (see the Supporting
Information, Tables S6 and S7). Given the 3 choices of data set
splits, prediction tasks, and models, we trained and evaluated
108 models in total using OHE, FP, DFT, and a combination
of FP and DFT features. In all cases, the aforementioned
features derived from the aryl halide and boronic acid were
used. The reaction conditions were represented in all models
using OHE for the catalyst + ligand system and base, and
multihot encoding (MHE) for the solvent(s). This representa-
tion was then concatenated to the molecule feature vectors to
obtain the final input vectors for model training. In each of the
108 modeling scenarios evaluated, 15 data shuffles were
modeled to obtain the final results.
The combination of FPs and DFT features generally

afforded the highest performance observed across all
prediction tasks and data set splits (Figure 5c). A potential
explanation for this observation lies in the overall complexity of
modeling chemical reactivity, where structural and quantum
chemical features can both provide useful information
regarding a structure’s reactivity that the other cannot. For
example, the presence of proximal functional groups in the
molecules can be informed with FPs, while electronic features
of the reactive site can be informed with DFT features.
Furthermore, the OHE-based models generally exhibited
poorer accuracies and larger variances compared to the
feature-based models, suggesting that the models are indeed
extrapolating to unseen structures to some degree. Only minor
differences between the ML models can be seen, with the RF
model generally slightly outperforming the xGB and NN
models for feature-based modeling. As expected, random splits
afford the most optimistic predictions across all prediction
tasks evaluated. The monomer-based split exhibited a slight
performance drop in comparison; however, considering the
model is being evaluated on new monomer structures, we were
pleased to observe similar performance. Meanwhile, the core-
based split exhibited a larger drop in performance and is clearly
the most challenging way to split the data set for the evaluation
of unseen chemical matter. This performance drop is likely
observed due to the lower number of cores present in the data
set (393) as compared to monomers (3113), along with the
potential for unseen monomer structures to also appear in the
test split. Furthermore, the core molecules are usually more
structurally complex than the monomer structures and
therefore pose a greater generalization challenge. The core-
and monomer-based splits thus exhibited higher standard
deviations than the random split models, indicating that
performance is more sensitive to the distribution of reactions
between train/test for these more complex splitting methods.
We reiterate that the different split types mimic different
scenarios of how these models would be used prospectively
and should not be seen as a design choice for the model itself.
A direct comparison of the prediction tasks should be

avoided, as modeling naturally becomes more challenging
when more specific reaction outcomes are being predicted. As
such, a better comparison would be of each task/split
combination to that of the naıv̈e baseline (the accuracy that
would be achieved if the classification models predicted only
the highest-occupied class in the data set, or predicting the
mean yield for regression) and to the OHE baseline models.
While modest generalizability is observed across the board, it is
particularly apparent for the monomer-based split, where all
three of the feature-based approaches could afford significantly

higher accuracies and R2 values for the classification and
regression tasks, respectively, as compared to the naiv̈e and
OHE baselines. Meanwhile, comparing the results from the
core-based split shows that it is more challenging for the model
to extrapolate to unseen core structures (see the Supporting
Information, Sections 2e−2h for selected results, confusion
matrices, and parity plots).
In summary, the combination of the RF model with

combined FP + DFT featurization consistently furnished the
highest performance across all 9 data set splits and prediction
tasks evaluated. Binary accuracies ranging from ∼72 to 78%
and multiclass accuracies ranging from ∼45 to 55% were
achieved with the classification models depending on the data
set splitting strategy chosen. For the regression models, R2

values of ∼0.35−0.39 were achieved for the random and
monomer-based splits, while R2 values of ∼0.13 for the more
challenging core split were obtained. As the OHE-based
models perform consistently worse than the feature-based
models, this suggests that the feature-based models are indeed
generalizing to unseen structures in this retrospective study to
some extent. These results suggest that the classification
models might be sufficient for prospective use, while regression
modeling could be beneficial for the prediction of new
monomer yields. Given the results of this study, we chose to
use combined FP + DFT features for all studies that follow.

Comparing the Retrospective Model to Expert
Medicinal Chemist Predictions. In the overall workflow
of library design, the de facto baseline is the human expert. We
therefore decided to compare the model’s predictions to those
made by 11 expert medicinal chemists at AbbVie. The
chemists we surveyed support a wide array of therapeutic
areas across different AbbVie sites, exhibit a variety of synthetic
chemistry backgrounds, and have varying amounts of
experience. Some of the chemists surveyed had been medicinal
chemists for as few as 6 months or as tenured for over 15 years
in the field. Two scenarios were evaluated: (1) whole-library
predictions and (2) partial library predictions. In the latter, the
monomers used in the training split were provided to the
chemists, along with their corresponding isolated yields. Three
libraries were selected for each scenario with varying numbers
of reactions and model performance. Chemists were provided
with a brief background of this project, along with the
distribution of reaction yields found in the entire retrospective
data set, and the chemists were asked to evaluate whether they
thought each reaction would give zero/low/medium/high
yields (as defined by the yield bins for the multiclass
classification models). In total, each chemist provided 117
predicted categorical yield values, which were used to compare
their predictions of reaction success and reaction yield bins
against the binary and multiclass classification models’
predictions, respectively.38,39

Gratifyingly, the model could predict both library reaction
success (binary classification) and binned yields (multiclass
classification) with greater accuracy than the median achieved
by the medicinal chemists for most of the libraries evaluated
(Figure 6a). The model performs particularly poorly for
libraries 2 and 6, for both classification prediction tasks,
although its performance is still within the range of AbbVie
expert medicinal chemists’ accuracies. The range of prediction
accuracies achieved by the chemists was also much wider for
binned yield predictions than it was for reaction success
predictions, with no single medicinal chemist achieving the
highest accuracy for every library evaluated. Furthermore, we
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did not notice increased chemist performance with a larger
number of reaction yields provided for the partial-library
predictions, and the chemist predictions were thus found,
overall, to be more subjective than the models’ (see the
Supporting Information, Section 4). Overall, the model can
furnish reaction success and yield predictions with 10−25%
greater accuracy than the average of the medicinal chemists
surveyed. The results obtained from this comparison are in
alignment with those obtained when comparing other ML
models to chemists’ intuition.40 As is often discussed,
predictive tools should augment expert chemists and their
intuition and need not be seen as replacements. This study
showcases the potential of this model to serve as a more
reliable tool to enhance existing library design tools by assisting
chemists in the prioritization of desirable monomers that are
more likely to be successful in synthesis.

Pseudo-Prospective Evaluation. Having conducted
extensive retrospective modeling on historic library reaction
data and demonstrating that the models can often outperform
expert medicinal chemists’ predictions, we now sought to
evaluate how well our models could perform when faced with
newer data and potentially more novel structures. For this
analysis, we used a held-out data set of 574 library reactions
(18 libraries) from 16 cores and 475 monomers conducted by
our group more recently than the data set used for
retrospective analysis (post-mid-2021, the cutoff date of the
retrospective data set).41 This task represents an extreme time-
based split, as 90% of the training data set was acquired before
2019 (Figure 7a). There are 11 new cores and 207 new
monomers in this data; therefore, 44% of the unique reactant
molecules were unseen by the models, in addition to new
combinations of previously seen molecules. Applying the
previously trained models (all using FP + DFT features and
trained on the full retrospective data set) to this data, we found
that overall performance metrics dropped for all 3 prediction
tasks (see the Supporting Information, Section 2j). To
investigate this decrease in performance, we divided this
held-out data set into 4 subdata sets: (1) reactions involving
cores and monomers both seen in the retrospective data set
(110 reactions), (2) reactions involving seen cores but unseen
monomers (140 reactions), (3) reactions involving unseen
cores but seen monomers (237 reactions), and (4) reactions
involving unseen cores and monomers (87 reactions).
The models generally outperformed the naiv̈e baselines for

multiclass classification for each data subset but performed
similarly for binary classification (Figure 7b). It is important to
note that the distribution of yields has shifted relative to the
retrospective data, with a higher reaction success rate and
higher yields observed on average (Figure 7c). For example, in
a multiclassification sense, the most populous class in the
retrospective data is the unsuccessful reaction class (0
yielding); however, in the held-out data, it is the highest
yield class (>30% yielding). As such, the naiv̈e baseline is still
considered to be class 0 for the multiclass predictions, as this
was the highest-occupied binned yield in the retrospective data
set, and the model is not aware of this distributional yield shift.
Aligning with expectations, the subdata set exhibiting the

highest overall improvement compared to the naiv̈e baseline
was composed of the reactions with seen cores and seen
monomers. Confounding variables and the drift in exper-
imental procedures over time (e.g., new chemists, the
introduction of improvements into the workflow, etc.) can
explain the decrease in interpolative performance from the

Figure 6. Comparison of the model’s predictions to those made by 11
expert medicinal chemists. (A) Performance of the chemists (depicted
as box plots) vs the model. The results from predicting reaction
success (binary classification) are depicted in the top plot, while the
results obtained from predicting binned reaction yields (multiclass
classification) are shown in the bottom plot. (B) Core structures and
number of reactions in the libraries selected to evaluate the models’
performance against medicinal chemists. The whole-library predic-
tions were compared to the core-split models’ predictions, while the
partial-library predictions were compared to the monomer-split
models’ predictions.
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retrospective evaluation to this prospective evaluation. For
example, there has been a shift of chemists in recent years
ensuring that Suzuki reactions are conducted under inert
atmosphere, which will generally increase yields. These results
underscore the importance of controlling for confounding
variables that can affect yield prediction tasks, such as reaction
environment, temperature, concentration, etc. The post-mid-
2021 core structures also exhibited, on average, higher
molecular weights, more heteroatoms, more rotatable bonds,
and lower QED (see the Supporting Information, Figure S20).
This suggests increased complexity of the post-mid-2021 cores
as compared to the retrospective data set’s cores, and can help
explain the observed performance drop. Therefore, it would be
prudent to frequently retrain the models as new data is
collected for long-term deployment, as this could increase the
models’ robustness to better handle experimental changes and
better adjust to drifts in the reaction yields and molecular
complexities.
Prospective Application toward Library Design. The

most fundamental application of yield prediction to compound
design is the selection (or replacement) of monomers in the
library design workflow. Having fewer library members fail
synthesis would decrease precious material waste, save
personnel time, and deliver a greater number of design-
relevant compounds to the DMTA iterative cycle. We
identified and explored two specific opportunities for model
incorporation in this context (Figure 8). The first setting is
monomer prioritization, where replacement monomers can be
proposed for those that are predicted to be unsuccessful by the
binary classification model. This scenario is analogous to using
the model for compound design prior to conducting a library,
and as such, the model used to make predictions for this
application has not yet seen the target library’s core.42 The
second setting is monomer rescue, where replacement
monomers are proposed for those that were observed to be
unsuccessful during synthesis, using knowledge of the initial
experimental results during model training to better inform
selection of the replacement monomers. In this scenario, the

library is being “rescued” by replacing the unsuccessful
monomers with similar monomers that were predicted to be
successful. For both scenarios, to preserve the query
monomers’ design goals in terms of structural and electronic
likeness, an open-source package, espsim, was used to
determine molecular similarity.43 Similarity scores for 3D
shape and electrostatic potentials were calculated using this

Figure 7. Pseudo-prospective evaluation on a held-out data set, showing the (A) distribution of the reactions over time compared to the
retrospective data set’s, (B) accuracies obtained from the binary (top) and multiclass (bottom) predictions of the held-out data set, which was
separated into subdata sets depending on the extrapolative difficulty of the predictions, and (C) distribution of the held-out data set’s yields
compared to the retrospective data set’s relative to the overall percentage of each data set (gray represents the retrospective data, while color
represents the post-2021 data). In panel (b), the naiv̈e baselines are defined as the accuracy achieved if the model predicted the highest-occupied
class from the retrospective data for each subset of the held-out data set. The pseudo-prospective data set contains reactions that were
experimentally conducted between May 2021 and February 2022.

Figure 8. Supplementing the drug design workflow using reaction
outcome prediction via Monomer Prioritization (i.e., prior to
conducting any syntheses) and Monomer Rescue (i.e., after the
library has been synthesized). Similar monomers were suggested using
3D shape and electrostatic potentials to calculate and quantify
similarity.
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package and multiplied by each other to obtain the final
similarity score between the query monomer and its potential
replacements. The 10 most similar monomers were deter-
mined for each query monomer using this approach, and the
similar monomer with the highest predicted regression yield
was selected as the replacement for synthesis (see the
Supporting Information, Figure S30, for an example). For
the studies presented in this manuscript, we limited the
available pool of replacement monomers to the 1,934 unique
boronic acid/ester monomers present in the retrospective data
set, although the list of potential replacement monomers could

be expanded if needed (see the Supporting Information,
Section 6). In accordance with our findings from the
retrospective modeling, the RF models with FP + DFT
features were used for all predictions in this study.44

The specific evaluation of both monomer replacement
scenarios used a 46-compound library sourced from the
retrospective data set that used an aza-oxindole core (Figure
9), in which 19 of the chosen monomers were successful and
27 were unsuccessful. In the monomer prioritization scenario
for this library, 9 of the originally designed 46 monomers were
predicted by the binary model to be unsuccessful.45 Using the

Figure 9. Using the yield prediction model in drug design via (A) replacing monomers predicted to be unsuccessful when the library has not been
seen by the model and (B) replacing monomers that were unsuccessful during the prior library synthesis when the model has seen the library. The
query monomers are shown with their suggested replacement monomers, along with the similarity scores, predicted yields, and isolated yields.
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workflow described previously, 6 of these were successfully
replaced with design-relevant compounds (Figure 9a). There-
fore, the prospective model-guided design led to the successful
synthesis of 24 total compounds if the model was used at the
time of the original synthesis.46 Meanwhile, in the monomer
rescue scenario, the model is better informed on the
performance of monomers with the core of interest. Carrying
out the rescue approach on the same library enabled the
successful replacement of 23 of the 27 previously unsuccessful
monomers (Figure 9b). This amounts to the successful
synthesis of 42 total compounds using this core when
combined with the successful reactions from the original
library synthesis. As a particular example, the model
anticipated that monomers bearing tertiary aniline groups
would not lead to the highest yields of the potential
replacement monomers (see the Supporting Information,
Figure S30). We repeated this monomer rescue workflow for
a second library using a different core with a different set of
reaction conditions and again confirmed its viability (see the
Supporting Information, Figure S23 for selected examples).
This further demonstrates the broad potential of the model to
suggest the successful replacement of monomers with new
reactants that adhere to the original design as closely as
possible (see the Supporting Information, Tables S14 and S15
for the full list of query monomers, replacement monomers,
similarity scores, predicted yields, and isolated yields). It
should also be emphasized that the monomer replacement
approach can be flexible. While the replacement monomer
with the highest predicted yield was chosen for this study, in
practical use, a medicinal chemist can choose to prioritize
monomer similarity score over the predicted reaction yield
depending on the specific needs of the medicinal chemistry
program they support.
The results of this study clearly demonstrate how the yield

prediction models could be incorporated into the DMTA cycle
for medicinal chemistry campaigns to achieve increased design
and synthesis efficiency. When included in the design phase,
medicinal chemists will be able to assess the synthesis outcome
via predicted yields, which represents a large void in the
current design process. The implications could be significant,
as the complex core is the limiting reactant and often requires
lengthy and tedious synthesis that may sometimes occupy a
chemist’s efforts for more than one month. Thus, judicious use
of the advanced material to yield the maximum number of
library analogues becomes critically important in shortening
the DMTA cycle. Our results give us confidence that, by
including synthetic yield prediction into the design funnel as
showcased by the example given (monomer prioritization,
Figure 9a), higher synthesis efficiency could be achieved.
Additionally, by combining the yield prediction model with
molecular similarity search for key analogues that were
unsuccessful in synthesis, one could quickly identify similar
monomers that are predicted to exhibit higher synthetic yields.
These alternative analogues can be efficiently synthesized with
speed to funnel more relevant compounds through the DMTA
cycle (monomer rescue, Figure 9b), in parallel to identifying
workable synthesis methods/conditions for the specific
analogues that were unsuccessful in synthesis, if deemed
necessary.

■ CONCLUSIONS
Among the various applications of ML in chemistry, reaction
yield prediction remains to be a very challenging task. This is

primarily due to the intrinsic complexity of the parameters that
may influence the reaction yields, the lack of high-fidelity data
sets that are suitable for ML, and our currently limited
experience and knowledge on general representations well
suited for reactivity prediction tasks. In theory, our 15-year
parallel library data set offers the ideal real-world data set for
reaction yield prediction in the context of medicinal chemistry
research. Compared to data sets extracted from corporate
ChemELNs, data sets extracted from libraries bear unique
advantages, including semiautomated reaction processes, high
consistency of the data points due to the nature of the parallel
synthesis format, and the minimal variation in parameters that
may influence yields, such as operators and reaction scales.
Using isolated library yields as the end point is also much more
pertinent for reaction yield prediction, contrary to most HTE
outputs. The balance of positive and negative data points in
our data set is another advantage over existing public data sets,
let alone the high relevance of the chemical structures in our
data set for pharmaceutically relevant reaction yield prediction.
Furthermore, parallel library synthesis is executed and
managed by a centralized lab within AbbVie using our highly
customized LIMS. This ensured the consistency and
comprehensiveness of the data capture, curation, and storage,
which is generally not the case for most large and diverse
reaction data sets. Nevertheless, significant efforts were spent
on our data set cleanup to make the data set suitable for ML.
For example, as mentioned previously, the variation in reagent
nomenclature required manual efforts to consolidate and
standardize the catalysts, ligands, bases, and solvents used. In
addition, there were variations in the ways different operators
handled certain library synthesis scenarios. These cases were
identified, consulted with the original operators, and dealt with
individually. The extent of this effort is reflected by the final
24,203 reactions used for this study versus the original >40,000
Suzuki coupling data points in our library database, as a
significant portion of the data points were eliminated to
achieve high data quality and integrity. Taken together, our
experience highlights the critical need to involve data scientists
much earlier in the data set generation and storage discussions.
Internally, we have strategically decided to involve data
scientists at the very beginning of the discussion of our next-
generation LIMS to ensure the data is captured in more ML-
friendly ways, foreseeing the desire to utilize the data set
downstream for modeling purposes without the need for data
set processing. One can deduce that such a strategy could also
benefit corporate ChemELN or other chemistry-related
software development, an aspect that was often overlooked
in the past.
The 24,203 Suzuki reactions curated over the course of 15

years only represented 3% of all of the possible combinations
of cores and monomers, even without including other factors
such as reaction conditions. Some condition information was
not represented in this data set (e.g., concentrations and
temperatures), as they were not captured by our LIMS. For
example, information related to purification and product
stability was also not captured, which represents factors that
are challenging to account for when modeling data sets derived
from isolated yields. Even though we expect that Suzuki
reactions should be less sensitive to reaction conditions than
other reaction types, as detailed earlier, these factors exemplify
a huge challenge in the field of reaction yield prediction, even
for our high-quality library synthesis data set. The potential
parameters that may influence the reaction yields are vast and
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may not be easily identified or quantified. As such, questions
may be raised regarding how many and which reaction data
points one would need to predict yields on even one
transformation with confidence. Furthermore, obtaining
isolated yields is also much more labor-intensive and time-
consuming than, for instance, reaction assessment via UV
analysis of crude reaction mixtures against an internal standard.
The necessary time and financial investments of building such
data sets can be considerable, even though many companies
have initiated efforts to build and centralize their internal
reaction data sets.16a,47 Taken together, if we as a community
are to make strides in this field, two important factors to
consider would be (1) how to harmonize the data into an ML-
ready format from the start47,48 and (2) how to obtain a critical
mass of data points to make sufficiently accurate predictions.
Despite these existing challenges, our evaluation of AbbVie’s

15-year parallel library data set to build yield prediction models
has demonstrated promising results for prospective use of
reaction yield prediction in the design stage of the DMTA
cycle. The upkeep of a persistent database since 2006 was
essential to furnish a data set suitable for machine learning in
this study. Retrospective model performance exceeds naiv̈e
baselines by a substantial margin, and FP and/or DFT
representations enable at least partial generalization to unseen
structures, as evidenced by superiority over OHE-based
models. Various featurization methods and ML models were
investigated in this study. Although DFT featurization
improved the overall model performance, for incorporating
synthetic yield prediction effectively in the routine drug design
for SAR studies, computationally inexpensive FP representa-
tions alone may be sufficient. Although there is room for
improvement in model performance in this study, gratifyingly,
we have demonstrated that the best RF model, using a
combination of FP and DFT features, could often outcompete
the prediction accuracy of expert medicinal chemists. This
comparison provided strong evidence that this model could
increase reaction success rates if deployed in the medicinal
chemistry design workflow. Taken one step further, we showed
a practical, prospective application of the models toward
increasing parallel library reaction success, both prior to and
after conducting a library, by suggesting structurally and
electronically similar monomers predicted to achieve higher
synthetic yields. To our knowledge, this signifies for the first
time that a synthesis outcome prediction tool could be
incorporated into the design cycle along with other design
tools used routinely by medicinal chemists, with the great
potential to shorten DMTA cycle time and improve overall
synthesis efficiency for SAR endeavors. We envision that this
model will be used broadly internally in AbbVie as one of the
essential design tools in directing SAR studies, and we are
internally conducting case studies of the models’ use in the
DMTA cycle.
Our current efforts are directed toward designing experi-

ments to supplement our existing models to better generalize
to unseen reactant structures, along with investigating other
parallel library data sets for reaction yield prediction using the
comprehensive approach detailed in this manuscript. We hope
this work inspires others to investigate and work together to
accelerate the field of reaction yield prediction, whether from
the aspects of reaction data set curation/design, molecular
featurization, or the development of new ML architectures.
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