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ABSTRACT

Objectives As highlighted by the COVID-19 pandemic,
researchers are eager to make use of a wide variety of
data sources, both government-sponsored and alternative,
to characterise the epidemiology of infectious diseases.
The objective of this study is to investigate the strengths
and limitations of sources currently being used for
research.

Design Retrospective descriptive analysis.

Primary and secondary outcome measures Yearly
number of national-level and state-level disease-specific
case counts and disease clusters for three diseases
(measles, mumps and varicella) during a 5-year study
period (2013-2017) across four different data sources:
Optum (health insurance billing claims data), HealthMap
(online news surveillance data), Morbidity and Mortality
Weekly Reports (official government reports) and National
Notifiable Disease Surveillance System (government case
surveillance data).

Results Our study demonstrated drastic differences in
reported infectious disease incidence across data sources.
When compared with the other three sources of interest,
Optum data showed substantially higher, implausible
standardised case counts for all three diseases. Although
there was some concordance in identified state-level case
counts and disease clusters, all four sources identified
variations in state-level reporting.

Conclusions Researchers should consider data

source limitations when attempting to characterise the
epidemiology of infectious diseases. Some data sources,
such as billing claims data, may be unsuitable for
epidemiological research within the infectious disease
context.

INTRODUCTION

The COVID-19 pandemic has exposed founda-
tional gaps in government-sponsored public
health surveillance across the USA." Most
notably, for the first year of the pandemic,
the Centers for Disease Control and Preven-
tion (CDC)—which has historically been
responsible for reporting population-level
situational statistics (eg, cases, hospitalisa-
tions and deaths over time during infectious
disease outbreaks)—did not efficiently report
COVID-19-related statistics. This was due, in
part, to lack of prioritisation and underin-
vestment in local public health surveillance

.12 Marika Cusick
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STRENGTHS AND LIMITATIONS OF THIS STUDY

= Direct comparison of infectious disease reporting
across publicly available data sources provides in-
sight into their robustness.

= Methods allow for the benchmarking of health in-
surance claims data reliability for research, which
has been challenging to quantify in other contexts.

= While our analysis focused on three infectious
diseases (measles, mumps and varicella), our ap-
proach may not be generalisable for other diseases.

= We relied on numerous assumptions to identify in-
fectious disease clusters (eg, geographical and tem-
poral constraints).

= Infectious disease research and reporting is not
limited to the data sources studied here; it may be
worthwhile to investigate other sources.

systems.” News media organisations such

as The Atlantic’s COVID Tracking Project
partially filled this gap,” highlighting the
critical role that alternative data sources can
play during public health emergencies. Situ-
ational statistics are also useful more broadly
in infectious disease epidemiology research.

Gaps in governmentsponsored public
health surveillance have long preceded the
pandemic, as has the practice of leveraging
alternative data sources. For infectious
disease research specifically, case count data
obtained from news coverage of outbreaks
led to studies that examined the 2014-2015
Disneyland measles outbreak® and the 2016
Arkansas mumps outbreak,” as well as a broad
range of international studies, including
Zika®” and dengue® in Latin America, H7N9
in China” and Ebola in West Africa,'” among
others. News media data have repeatedly
demonstrated that usefulness in aggre-
gating case counts, and in each of the afore-
mentioned instances, was implemented to
augment otherwise insufficient data from
government-sponsored agencies.

In high-income settings such as the USA,
insufficiency  of  government-sponsored
public health data is often characterised by
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delays in reporting."" Although the data may exist and
are frequently treated as ‘ground truth’ statistics, they are
reported at a pace that disallows real-time evaluation of
emergent crises. For example, even nationally notifiable
infectious diseases are only reported once a week by the
CDC’s National Notifiable Diseases Surveillance System
(NNDSS)"*—a pace that is too infrequent for real-time
monitoring and mitigation of highly contagious infectious
disease outbreaks. Moreover, NNDSS data—unlike news
media data—are only reported at the state level, which is
an inadequate geographic resolution in the event of local-
ised (ie, county level or zip level) outbreaks. The CDC
also prepares Morbidity and Mortality Weekly Reports
(MMWR), which include detailed government reports
on notable infectious disease outbreaks.' However, these
reports are challenging to rely on for emergent crises, as
there are no clear inclusion criteria for an MMWR report-
able outbreak, inconsistencies exist in the reported level
of geographic resolution, and they are often published
well after the outbreak.

Beyond news media data, insurance billing claims data
are also a potential alternative data source for character-
ising infectious disease epidemiology in the USA. These
data experience more considerable delays in reporting,
with data released after months or more.'* 1° However,
unlike the population-level situational statistics that
are obtainable from news media data and government-
sponsored public health surveillance systems, insurance
claims provide patient-level data. Historically, these
patient-level data have enabled important advances in
monitoring chronic illness in both individuals and popu-
lations, but their utility within the context of acute infec-
tious disease surveillance remains largely untested. Given
recent interest in using insurance claims data to study
COVID-19," validating the quality of these data for other
infectious diseases—those that predate the pandemic—is
urgently needed.

In this retrospective study, we evaluate case count data
for the years 2013 through 2017 from the news media
platform HealthMap and the Optum insurance claims
database against two government-sponsored data sources
(NNDSS and MMWR) for three infectious diseases:
measles, mumps and varicella (chickenpox). Because
these three diseases are nationally notifiable, healthcare
providers are obligated to report cases of them to state
health agencies and state health agencies are obligated to
report them to the CDC—thus ensuring a high degree of
completeness for government-sponsored data.

METHODS

We compared infectious disease case counts for each
disease across all four sources during the period 2013—
2017 (online supplemental table 1). Our main outcomes
of interest were yearly counts of cases and Micropolitan
and Metropolitan Statistical Area (MSAs) clusters at both
the national and state level. Clusters are defined as a

group of cases interrelated according to both time and
geography.

Patient and public involvement statement

Patients and public were not involved in the development
of the research questions or design of the analysis in this
study.

Data sources

Health insurance claims data

Optum Clinformatics Data Mart Database is a deiden-
tified database derived from a large claims data ware-
house." The claims submitted have been adjudicated to
the appropriate enrollee, adjusted and deidentified prior
to inclusion in the database. Claims are subject to adjust-
ment after initial adjudication due to delays in reporting
and additional visit information.

The database includes approximately 15-20million
annual covered enrollees for a total of roughly 83 million
unique enrollees from 2006 to 2018. During the 2013-
2017 period of our study, there were approximately
39million unique enrollees in commercial and medi-
care plans. The Optum Clinformatics Data Mart contains
enrollee-level information on demographics (age and
documented sex) and geography at the ZIP code level.
Individual enrollee medical claims include data on the
date of service, as well as associated diagnoses, proce-
dures, laboratory tests, prescriptions and providers.

Using a set of International Classification of Diseases
(ICD-9 and ICD-10) codes, we identified enrollees with
diagnoses for measles, mumps and varicella (see online
supplemental table 2 for ICD codes). Given the nature of
these infectious diseases, we assumed that enrollees could
only have each disease once during the 5-year period. We
identified service dates and ZIP codes associated with the
enrollee’s first diagnosis.

US Department of Housing and Urban Development
United States Postal Service CrossWalk files were used to
map patient ZIP codes to the core-based statistical areas
(CBSAs) for MSAs as defined by the Office of Manage-
ment and Budget in February 2018."® The Optum Clin-
formatics Data Mart protects against reidentification by
associating enrollee with multiple different ZIP codes if
they live in a ZIP code with a small number of people.
In this case, we used the first identified ZIP code-MSA
pairing. Further details on cleaning and processing data
from the Optum Clinformatics Data Mart are provided in
the online supplemental appendix.

Enrollees without CBSA and state-level information
were not included in the cluster and state-level portion
of the analysis. However, enrollees without this granular
location information were included in overall national
case counts. Descriptive statistics of the enrollees for each
disease cohort are in online supplemental table 3.

Online news surveillance data
HealthMap surveillance data aggregates online informal
news sources for disease outbreak monitoring and public
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health surveillance. Since September 2006, HealthMap
has offered free access to their automated database,
and many national and international organisations have
used these data for surveillance activities.'” For each
HealthMap alert (eg, news article), the database contains
the disease of interest, article date, associated latitude
and longitude coordinates of the location (which can be
used to assign MSA or state), number of confirmed cases
and number of confirmed deaths.

We used QGIS—a software application for geographic
information systems, to conduct spatial joins between the
latitude and longitude coordinates associated with each
HealthMap alert to MSAs and states.'"® All HealthMap
alerts without granular location information (eg, only at
the state level or country level) were removed from the
analysis.

Many HealthMap alerts are duplicate entries of the
same disease cluster. To avoid overestimating the number
of cases reported from this source, we identified clusters
within this database according to time (serial intervals)
and spatial (MSA) constraints. The start and end of an
MSA-level cluster was determined by two consecutive
serial intervals, the time between successive cases in trans-
mission, of zero new cases. We assumed the total number
of cases associated with each MSA-level cluster was the
highest number of confirmed cases reported among all
associated HealthMap alerts.

Official government reports

MMWR contain scientific records of public health infor-
mation and recommendations.”” For major disease
outbreaks, the CDC will publish a conclusive MMWR,
describing key information such as the date of identifi-
cation, locations affected and total number of cases. We
manually reviewed all MMWR that related to measles
mumps, and varicella and extracted cluster identifica-
tion dates, confirmed case counts and corresponding
MSA locations to allow comparison against the other data
sources considered in our analysis. The online supple-
mental appendix contains detailed information on all
MMWR.

Government case surveillance data

The CDC conducts mandatory disease reporting and
surveillance for our three diseases of interest. We used
data from NNDSS, which provides weekly tables of disease
counts.'” The data contain the number of cases reported
during the current week, as well as the number of cumu-
lative cases reported over a given year. If there is a delay
in reporting, the case will only appear as a part of the
cumulative count. NNDSS only provides case counts at
the state level; a more granular geographic resolution is
unavailable for public use.

Analyses

Standardised national yearly case counts

For each disease, we reported source-specific national
yearly case counts standardised to 100 000 persons. Optum

data was standardised to the total number of eligible
Optum enrollees during the years 2013-2017. Data from
NNDSS, HealthMap and MMWR were standardised to
the US population as per census bureau national popula-
tion estimates.'? While Optum and MMWR are not meant
to capture case counts in ways that are nationally repre-
sentative, values are standardised to this population for
comparability across data sources.

National cumulative case counts

For each disease and each data source, we reported cumu-
lative incidence of cases over the entire study period.
Due to Optum data privacy requirements, we display the
cumulative case count once the national case counts are
at least 16 cases for this data source.

State-level cases

For each disease, we reported yearly state-level case counts
for Optum, NNDSS, HealthMap and MMWR. State infor-
mation was ascertained from each data source. In Optum,
we translated patient ZIP code information to state-level
information using the pyzipcode python module.”” We
used available NNDSS state-level information directly.
Confirmed cases from each HealthMap MSA-level cluster
were allocated to corresponding states. In the case of
multistate MSAs, we allocated cases to states according
to the relative proportion of HealthMap alert-associated
states within the cluster. Finally, based on the identified
MSA location from the MMWR, we allocated cases to each
state. As per Optum privacy constraints, we do not report
any state-level cases counts smaller than 16 cases.

State-level clusters

For each disease, we reported the yearly number of
MSA-level clusters in a given state according to Optum,
HealthMap and MMWR. The start and end of an MSA-
level cluster was determined by two consecutive serial
intervals of zero new (ie, incident) cases. Serial interval
periods differ based on the disease of interest: measles
(12 days), mumps (18 days) and varicella (14 days).”'
We report MSA-level clusters with at least 16 cases due to
Optum privacy constraints and then comparability across
all data sources. Further details regarding cluster identifi-
cation are provided in the online supplemental appendix.
Because NNDSS does not provide granular geographical
data beyond the state-level, we did not use this source to
identify MSA-level clusters.

In the event of multistate MSAs, we assigned the MSA-
level cluster to a single state for each of the sources. In
Optum, we assigned the MSA-level cluster according to
the most frequent patient-reported state. In HealthMap,
we assigned the MSA-level cluster to the most commonly
reported state among the associated HealthMap alerts.
Finally, for MMWR, we assigned the MSA-level cluster to
states by extracting the state from the available text infor-
mation, as further specified in the online supplemental
appendix.
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Figure 1 Standardised yearly national case counts. MMWR and Optum are not designed to capture the entire US population;
values are standardised to this population for comparability across data sources. MMWR, Morbidity and Mortality Weekly
Reports; NNDSS, National Notifiable Diseases Surveillance System.

RESULTS

National standardised incidence for all three diseases is
substantially higher for Optum data in comparison to other
sources (figure 1) and implausibly large in magnitude. Case
counts from MMWR are the lowest, although this is expected
as MMWR are only generated for key clusters across the
USA. While HealthMap reports slightly higher case counts in
comparison to NNDSS for measles and mumps, there were
fewer cases reported in varicella, suggesting that varicella
is less ‘newsworthy’. Unstandardised yearly case counts are
provided in online supplemental figures 1—4.

Examining state-level geographic trends, Ohio had the
highest number of measles cases during the study period
according to HealthMap and NNDSS (figure 2). In compar-
ison, Optum reported the highest number of cases in New
York and New Jersey. California had the highest case counts
according to MMWR. All states with MMWR were also
captured as having measles cases in both HealthMap and
NNDSS.

For mumps, there were few MMWR on outbreaks during
the study period (figure 3). Of the states with clusters iden-
tified by MMWR, all other sources reported cases for these
states as well. There was a high concentration of mumps cases
in the Midwestern region (Iowa, Illinois, Missouri, Indiana
and Ohio) according to HealthMap, yet this concentration
was not reflected as clearly in NNDSS and Optum data.
NNDSS reported a substantial number of mumps cases in
Arkansas, yet there was no MMWR on these cases.

Nearly all states reported varicella cases in the Optum
data (figure 4). According to NNDSS, Texas and Florida
reported the highest numbers of varicella cases, which was
also reflected in the Optum data, as these states also had
higher numbers during the study period. Very few varicella
cases were reported in HealthMap and MMWR.

Cumulative incidence of measles and mumps cases
over the study period follows similar general patterns in
HealthMap and NNDSS (figure 5). Disease clusters are
evident as case counts rise rapidly and then are stagnant. In
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HealthMap NNDSS

MMWR Optum

Figure 2 State-level measles cases (2013-2017). Optum data are presented for states with at least 16 cases during the study
period. MMWR, Morbidity and Mortality Weekly Reports; NNDSS, National Notifiable Diseases Surveillance System.

comparison, in the Optum data, measles and mumps case ~ wide variation in the number of reported cases for measles,
counts rose constantly over time. Incidence of varicella cases mumps and varicella across these data sources, with
were constant over time in all data sources. implausibly high volumes of standardised cases reported

by Optum that far exceed the other sources considered.
DISCUSSION Because these three highly infectious diseases are nation-

To our knowledge, this is the first study to examine the ally notifiable and thus must be reported both to state

concordance of infectious disease case counts across  health agencies and to the CDC, itis highly unlikely that
multiple disparate sources, including news media, insur- Optum would capture cases that were not reported by
ance claims and government-sponsored data. We found NNDSS.
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Figure 3 State-level mumps cases (2013-2017). Optum data are presented for states with at least 16 cases during the study
period. MMWR, Morbidity and Mortality Weekly Reports; NNDSS, National Notifiable Diseases Surveillance System.
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Figure 4 State-level varicella cases (2013-2017). Optum data are presented for states with at least 16 cases during the study
period. MMWR, Morbidity and Mortality Weekly Reports; NNDSS, National Notifiable Diseases Surveillance System.

Overcounting may be due to the coding of likely cases, as
perceived by providers, rather than laboratory confirmed
diagnoses. However, laboratory results in claims data are
typically incomplete as many test results are not recorded®;
thus, analyses that include only laboratory confirms cases
produce severe undercounts (as presented in the online
supplemental appendix)

Notably, evidence of overbilling for conditions such as
measles and mumps may contribute to the rise in medical
expenditures and patient healthcare spending. Using
Optum data on reported total paid charges, we estimated
wasted expenditures from suspected overbilling of measles
and mumps cases to be roughly US$ 396 000 for the 5-year
period among Optum enrollees alone (online supplemental
appendix, online supplemental table 4). While the use of
insurance claims data to characterise infectious disease
epidemiology might appear appealing due to the availability
of additional individualHevel information, these analyses
may lack credibility given the erroneous coding issues we
identified here.

While there are well-known gaps in government-sponsored
data sources, NNDSS compared favourably to other sources,

Measles Mumps

10000 1

o
s
S

5000 1

Cumulative Cases
o
S

capturing a larger scope of the mumps outbreak in 2016—
2017 as well as more varicella than HealthMap or MMWR.
We also saw that HealthMap may produce similar case counts
to NNDSS in non-outbreak years for measles and mumps.
This is advantageous as HealthMap does not have the same
delays in reporting as NNDSS and is also available at a more
granular geographic resolution. However, HealthMap is not
likely to be a reliable source for case counts of less ‘news-
worthy’ diseases such as varicella.

Our study focused on three unique sources of data.
However, infectious disease research and reporting is not
limited to these sources, and it is critical to investigate the
reliability of other data in the future, including electronic
health records, social media and wastewater data.

Before using a particular data source to characterise the
epidemiology of a given infectious disease, researchers
should consider conducting qualitative interviews to
understand the underlying data generation processes that
led to the creation of the data and how these processes
may impact reliability. Our study illustrated that health
insurance billing claims data may not have reliable esti-
mates of measles and mumps in the USA. These issues

Varicella
40000
/ 30000 Source
P — HealthMap

| 20000 S/ NNDSS

) J ’ Optum
10000
0

200 0 100 200

Weeks
Figure 5 Cumulative incidence during study period. NNDSS, National Notifiable Diseases Surveillance System.
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likely arise due to disease under-coding and misclassifi-
cation, lack of population representativeness and lagged
reporting, as previously shown in other infectious disease
and chronic disease settings.'***** Data sources with iden-
tified reliability issues may not be suitable for research
questions that are contingent on reliable reporting of
situational statistics—including those that pertain to the
epidemiological properties of COVID-19 and other infec-
tious diseases.
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