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INTRODUCTION

Milind Tambe!

| Aparna Taneja'

Abstract

Underserved communities face critical health challenges due to lack of access
to timely and reliable information. Nongovernmental organizations are lever-
aging the widespread use of cellphones to combat these healthcare challenges
and spread preventative awareness. The health workers at these organizations
reach out individually to beneficiaries; however, such programs still suffer from
declining engagement. We have deployed SAHELI, a system to efficiently uti-
lize the limited availability of health workers for improving maternal and child
health in India. SAHELI uses the Restless Multi-armed Bandit (RMAB) frame-
work to identify beneficiaries for outreach. It is the first deployed application for
RMAB: in public health, and is already in continuous use by our partner NGO,
ARMMAN. We have already reached ~ 130K beneficiaries with SAHELL, and are
on track to serve one million beneficiaries by the end of 2023. This scale and
impact has been achieved through multiple innovations in the RMAB model
and its development, in preparation of real world data, and in deployment prac-
tices; and through careful consideration of responsible Al practices. Specifically,
in this paper, we describe our approach to learn from past data to improve the
performance of SAHELI's RMAB model, the real-world challenges faced during
deployment and adoption of SAHELI, and the end-to-end pipeline.

Many nongovernmental organizations (NGOs) periodi-
cally send automated voice messages to improve health

Mobile health (mHealth) programs, that leverage the
widespread use of cellphones, are a crucial resource
for bridging information inequities for underserved and
marginalized communities in the global south (Tshiko-
mana and Ramukumba 2022; Gupta et al. 2022), especially
in areas such as public health and social services where
access to authoritative information is unevenly distributed.

outcomes of beneficiaries. However, in spite of high adop-
tion, adherence is a key challenge in public health infor-
mation programs ARMMAN (2019), Jakob et al. (2022),
Eysenbach (2005), Meyerowitz-Katz et al. (2020). NGOs
often employ live service calls made by health workers
to boost engagement via encouragement or through logis-
tic changes requested by beneficiaries. However, given the
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FIGURE 1
information.

A beneficiary receiving preventive health

comparatively large number of potential beneficiaries, it is
important to maximally utilize the limited availability of
health workers, and thus it is crucial to identify the best
recipients for such service calls (see Figure 1).

While AI models can help health workers in optimizing
their service calls, deploying these models in the con-
text of mHealth programs for underserved communities
presents unique challenges. First, available data are sparse
and skewed due to small numbers of service calls. Sec-
ond, NGOs are constrained by a very limited compute
budget. Third, responsible deployment of the AT models is
particularly important in such settings.

In this paper, we show how we address these research
challenges in our deployed AI model—a deployed Restless
Multi-Armed Bandits (RMAB) model for public health—
together with our NGO partner ARMMAN (2008) to help
improve the quality of service of their mHealth program
focusing on maternal and child care. India suffers from
high maternal and neonatal mortality rates Meh et al.
(2022), World Health Organization (WHO) (2020), and
ARMMAN (2008) runs one of the largest mHealth pro-
grams in this domain in India. Our system, SAHELI (Sys-
tem for Allocating Healthcare-resources Efficiently given
Limited Interventions), is the result of deep partnership of
an interdisciplinary team of researchers. SAHELI (meaning
“female friend” in Hindi) is designed to assist, rather than
substitute, health workers in their normal workflow. The
following are the key contributions of deployed SAHELI:
SAHELI includes the first deployed application of RMABs
for public health, and it is continuously in use by our
partner NGO ARMMAN; a key novelty of the deploy-
ment is that it both predicts RMAB model parameters
and computes optimal policies; in contrast with most past
research that has focused on computing optimal policies.
To that end, we provide an improved and robust machine
learning prediction framework by performing model selec-
tion and evaluation of real-world RMAB systems; we
deployed SAHELI on cloud infrastructure with an empha-
sis on frugality throughout the end-to-end pipeline given
the resource constraints of the NGO partner; we present

responsible Al practices to address ethical considerations
for deploying an AI system for impact in underserved
communities, particularly in this nonwestern context.

SAHELI has been developed as a platform, with the
ability to be scaled to more NGOs in more domains.
Our source code and data dictionary are available on
Github'.

RELATED WORK

While several works in the healthcare domain have studied
patient adherence for diseases like HIV Tuldra et al. (1999),
cardiac problems Son et al. (2010), Corotto et al. (2013), and
tuberculosis Killian et al. (2019), Pilote et al. (1996), these
largely focus on building machine learning classifiers to
predict future adherence to prescribed medication. With
such models, the pool of beneficiaries flagged as “high-
risk” can itself be very large. Furthermore, the one-shot
predictions of these models fail to capture the sequential
decision making aspect of the problem. Other approaches
that consider sequential decision making challenges, such
as Pollack et al. (2002), Liao et al. (2020), Brisimi et al.
(2018) adopt reinforcement learning techniques to build
personalized health monitors that can send timely noti-
fications or activity suggestions to users. However, these
models assume that notifications can be sent at will, and
as such, do not address the challenge of limited service
call resources.

Alternatively, RMABs have seen significant theoretical
investigation, motivated by resource allocation challenges,
such as in antipoaching patrols Qian et al. (2016), mul-
tichannel communication Liu and Zhao (2010), sensor
monitoring and machine maintenance tasks Glazebrook,
Ruiz-Hernandex, and Kirkbride (2006). While they pro-
vide important contributions, none of these works have
seen a real-world deployment, and most have not been
field tested.

Key reasons for the lack of RMAB deployment are
their significant computational and data requirements.
For example, just the optimization problem of comput-
ing the optimal allocation 7, while assuming that the
transition parameters P are available is already known
to be PSPACE-hard Papadimitriou and Tsitsiklis (1999).
Furthermore, in the real world, these transition parame-
ters are not just unknown but also hard to infer for real
beneficiaries enrolling with ARMMAN and other sim-
ilar health programs, as they come with no historical
transition data. Despite such difficulties, our work is the
first to deploy RMABs in tackling a real-world mater-
nal healthcare task via frugal design choices discussed
below.
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PROBLEM INTRODUCTION

ARMMAN is a nongovernmental nonprofit organization
based in India, focused on improving maternal and child
health outcomes among underserved and underprivileged
communities ARMMAN (2008). Their flagship program,
“mMitra,” is a mHealth service that aims to leverage the
extensive cellphone penetration in India to send out crit-
ical preventive health information to expectant or new
mothers via automated voice messages. A large fraction
(~90%) of mothers in the mMitra program are below the
World Bank international poverty line World Bank (2020).
Despite the acute economic disadvantages faced by these
mothers, such automated voice messages prove to be a fea-
sible mode of information dissemination at scale, thanks
to the wide accessibility of low-cost phones.

After enrollment into the mMitra mHealth program,
beneficiaries receive 1-2-min voice messages with health
information according to beneficiary’s gestational age
or age of the infant. Unfortunately, despite the proven
effectiveness of this information program in improving
maternal health outcomes, ARMMAN often sees dwin-
dling engagement rates among beneficiaries, including
frequent dropouts. Around 22% of beneficiaries dropout
of the program after just 3 months. To counter this issue,
ARMMAN leverages health workers that place live ser-
vice calls (phone calls) to a limited number beneficiaries
on a weekly basis to encourage beneficiaries’ participa-
tion, address requests/complaints, and attempt to prevent
engagement drops. This limitation in number of service
calls raises the key question of deciding which benefi-
ciaries to pick for live service call in order to improve
engagement rates among the beneficiaries.

RESTLESS MULTI-ARMED BANDITS
(RMAB)

The RMABs model was first introduced by Whittle (1988)
to address limited resource allocation problems, but has
not received much attention in terms of real-world deploy-
ments. An RMAB consists of a set of N arms, where each
arm is associated with a two-action MDP Puterman (2014).
An MDP {S, A, r, P} consists of a set of states S, a set of
actions A, a reward function r : SXA XS~ R, and a
transition function P, where Pgs, is the probability of tran-
sitioning from state s to s’ when action « is chosen. The
reward function in our setup is given as r(s,a,s’) = 5.
An MDP policy 7 : S — A maps to the choice of action
to take at each state. The long-term discounted reward
for a policy 7, starting from state s, = s is defined as

R7(s) = B[, 7' r(sc41)lso = 5] where .1 ~ P{y/) and

y €10,1) is the discount factor. The total reward in the
RMAB is defined as the sum of the total rewards accrued
by individual arms of the RMAB.

In the setup we consider, each arm of the RMAB mod-
els a beneficiary enrolled with ARMMAN, who can be in
one of two states S = {0, 1}, corresponding to “Not Engag-
ing (NE)” and “Engaging (E),” respectively. Engagement
in our setup was defined in consultation with the subject
matter experts at ARMMAN: we define a beneficiary as
engaged when she listens to at least one call in a week
for more than 30 s. The action space for each arm con-
sists of two actions, A = {0, 1}, where 1(0), typically called
the active (passive) action, refers to selecting (not select-
ing) the beneficiary for the live service call. Beneficiaries
may transition from say their E state to NE state from 1
week to the next week based on their transition probabili-
ties defined on passive or active actions. The planner’s goal
is to select actions on arms, that is, deliver live service calls,
SO as to maximize the total reward, which is the number of
beneficiaries in the engaged state, accrued by the RMAB.
However, the budget constraint demands that the planner
can choose no more than k arms (k << N) for the active
action at any given timestep, that is, no more than k live
service calls per week.

The dominant technique for solving RMABs uses the
Whittle Index heuristic Whittle (1988), which is shown to
have asymptotic optimality under some conditions Weber
and Weiss (1990), and to provide excellent performance in
practice Qian et al. (2016). Whittle indexes are formulated
using the idea of passive subsidy, and informally rank arms
so as to choose the top k, based on how attractive it is for a
planner to activate each arm. For computing Whittle index,
we use binary search algorithm from Qian et al. (2016)

Previous study

Our previous study conducted in April 2021 Mate et al.
(2022) is the first to present real-world service quality
improvement using RMABs in the context of mMitra pro-
gram. This study tested an RMAB-based policy against two
baselines of interest, and showed RMAB outperforming
its competitors. The study spanned 7 weeks and included
23,003 real-world beneficiaries who were distributed in
three groups corresponding to the RMAB policy, round
robin (RR), and current standard of care (CSOC). Whereas
RR corresponds to a non-Al heuristic for systematically
calling beneficiaries, CSOC did not call any individuals.
The results from this pilot study are shown in Table 1.
The pilot results demonstrated that the RMAB method
cuts ~ 30% of the beneficiary engagement drops experi-
enced by the other groups. Furthermore, whereas RMAB
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TABLE 1 RMABs demonstrate statistically significant superior performance when compared against other non-AI approaches, namely
current standard of care (CSOC) and round robin (RR), as showed by Mate et al. (2022).
Improvements RMAB over CSOC RMAB over RR RR over CSOC
% Reduction in total beneficiary engagement drops 32.0% 28.3% 5.2%
p-value estimate 0.044 0.098 0.740

SAHELI

GCP Cloud DB

i | Voice Call
Database

g y
Database

Service Call Database

Beneficiaries
Registered
into mMitra

Fetch Latest Fetch Latest Call
Beneficiries Data @
1-1:
CLOUDRUN t:: ®
Scheduler on GCP Weekly Trigger ELASK ApnioniDogker
g Compute Engagement State
using Automated Call Data
Map beneficiaries to Whittle
Index

Generate Top-K
beneficiaries by Whittle Index

FIGURE 2

achieves statistically significant improvement against
CSOC (p < 0.05) and RR (p < 0.1), RR fails to achieve
any statistically significant improvement over CSOC (see
Mate et al. 2022 for more details). This key result forms
the basis of relying on RMAB-based strategy over other
non-Al strategies as a basis of SAHELLI. In this paper, we
describe the journey from this initial study to the final
deployment. Whereas we use the same overall RMAB
learning and optimization approach, we made multiple
changes to provide significant enhancements that reduce
data anomalies and improve computational performance
of this RMAB-based strategy. Additionally, our deployed
cloud application now automates the data exchange pro-
cess with the NGO’s systems while requiring minimal
compute resources to be feasibly handled by the NGO. We
now describe the end-to-end SAHELI system.

DEPLOYING SAHELI

We now introduce SAHELI and its architecture. We begin
by discussing the different components, and follow that
up with the description of the AI pipeline. We then dis-
cuss the frugal design choices—both in modeling and
infrastructure—that were required to finalize the deploy-
ment.

System architecture

We first describe all the interactions within SAHELI’S
ecosystem (refer Figure 2). The health workers in the field

Push list of Top-
K Beneficiarie:

lllustrative Screenshot of App Ul

€ Intervention List

Live Service Calls

Calls are distributed are delivered to

to Health-Workers beneficiaries  JF,

— > ( Y
b T

Total Women to be called

0

[ Beneficiary : A XXXXXXXXX
Phone Owner : Women

I (I
Py

:ef(‘ 7

e &
ah

)

Beneficiary : B | BXXXXXXXXX
e Nomen

Phone Owner : W.

Pipeline of deployed system. Beneficiary information on app Ul is available only to the health worker in charge.

periodically register beneficiaries through door-to-door
visits or at the hospitals (step 1). The socio-demographic
data such as age, language, income range, as well as infor-
mation on gestational age is then entered into the database
maintained by ARMMAN (step 3). Automated voice mes-
sages tailored to the beneficiaries’ gestation age are sent
with the help of a telecommunication provider (step 4).
The meta-data of the outcome such as duration of the call,
failure reason, and so forth, is also pushed to ARMMAN’s
database . As beneficiaries’ engagement with the voice
messages diminishes over time, live service calls are made
by ARMMAN to encourage beneficiaries to engage with
the program (step 10). However, due to limited resources
on the NGO’s side, only a limited number of live service
calls can be made each week. The AI pipeline predicts
which beneficiaries would benefit most from receiving a
service call in any given week. This list of beneficiaries is
then generated at the start of each week and distributed
across health workers in an automated fashion as shown
on Figure 2 in steps through 2-9.

The AI pipeline (described in the next section) for a
dynamically growing population is deployed on infras-
tructure hosted on Google Cloud Platform (GCP). The Al
pipeline is wrapped as an application using Flask, which is
containerized using Docker. The docker image is created to
contain the requisite code scripts for the Al pipeline with
apt environment requirements. Our default GCP container
settings are to use 6 vCPUs and 16GiB memory. A weekly
scheduler job on GCP triggers the Flask application, which
then generates the list of beneficiaries.

Step 8 in Figure 2 shows the generation of the list of
beneficiaries that should be intervened in the given week
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using the Al pipeline. This list is ingested in ARMMAN’s
cloud databases, which serve as the back-end of a client
mobile application (screenshot provided in Figure 2) used
by the health workers. This client application randomly
distributes the list of scheduled service calls among health
workers based on their weekly availability. An illustrative
screenshot (not real beneficiary) is also shown in Figure 2.
The health worker sees a list of beneficiaries that he/she
can call, along with certain features like number of call
attempts. They can also click on a particular beneficiary
and see more information about the beneficiary and past
calls with them (not shown). The calls are made through
the week with a maximum of three call attempts to the
same beneficiary. All the beneficiaries in the generated list
receive the aforesaid service calls. The model is currently
providing services to beneficiaries enrolling at an average
rate of 20K beneficiaries per month with a budget of 1000
calls per week.

SAHELI streamlines the entire deployment workflow in
a singular pipeline, and automates its orchestration and
execution, making this process computationally efficient,
cost-effective, and easy to debug. As more beneficiaries
get enrolled periodically, the beneficiary cohort in the
application can now be updated automatically.

Health workers can then make the calls (step 10 in
Figure 2) to these beneficiaries motivating them to listen
to the voice messages and address any logistic issues (e.g.,
time slots, language of communication, and others) that
might be affecting their engagement. As we show later in
the paper, motivating the beneficiaries is a key to driving
adherence. However, it bears repeating that given the lim-
ited availability of the health workers, they can only make
a limited number of calls. In our Al pipeline, we focused
on identifying the right set of beneficiaries to call, and
not on automating the contents of the service call. This is
a key design choice in SAHELI: we, thus, complement the
human-to-human engagement between the health worker
and the beneficiary, and together they contribute towards
aiding a particular beneficiary and driving higher engage-
ment with the mHealth program. This model of working
together with the health workers embodies ARMMAN’s
core “tech plus touch” philosophy ARMMAN (2008) and
is essential to our successful outcomes.

Pipeline description

This section describes the modules in the AI pipeline
for both the offline model training and the online
model execution. The offline model creation begins with
the processing of the training data (i.e., historic data
from past mHealth studies), clustering of processed data,
and the RMAB modeling per cluster. The transition

c 1.0 c 1.0
.‘EE 0.8 Sos /\’-\/——
0.6 06
Qo4 S04
Qo2 Qo2
[-up A 0.0
WkO Wk4 Wk8 Wk12 WkO Wk4 Wk8 Wk12
(A) (B)
c 1.0 /_‘-’_/_/—’—— c 1.0
.‘é 08 Sos
0.6 So6) —~— — —
S04 Soa
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Q o0 )
WkO Wk4 Wk8 Wk12 WKO Wk4 Wk8 Wk12
(€) (D)
FIGURE 3 Figures (A) and (B) show anomalous engagement

behavior while figures (C) and (D) are genuine behaviors. The y-axis
shows the proportion of cluster-population in engaging state.

probabilities and the Whittle indexes are then learned per
cluster. Additionally, a mapping from socio-demographic
features of a beneficiary to a cluster is also learned offline.
This mapping is used to treat a new beneficiary dur-
ing model execution—transition probabilities and Whittle
index values for the new beneficiary are given by the
corresponding values of the beneficiary’s mapped cluster.
These individual modules are now described. For data pri-
vacy reasons, the data pipeline only uses anonymized data
and no personally identifiable information (PII) is made
available to the AI models.

Data processing

We train the model on a dataset obtained from historic data
collected by ARMMAN, consisting of demographic fea-
tures and listenership patterns. However, during the pre-
deployment trials, we observed some anomalous engage-
ment behaviors—the engagement behavior for some bene-
ficiaries was extremely spiky and unexpected. Figure 3A,B
shows two such anomalous groups with a clear peak and
dip contrasted with groups having genuine engagement
behavior. Upon investigation, we found that this spiky
behavior resulted from unanticipated real-world events
like network outages.

We detect and exclude such anomalies from SAHELI’S
data training pipeline. We first group beneficiaries based
on their passive transition probabilities. For grouped
beneficiaries, we then obtain a running mean of their
engagement over time where the mean is calculated over
a window of 3 weeks. We filter out all groups with
more than 20% change in running mean engagement
within a week. Figure 3C,D shows two groups that do
not exhibit anomalous behavior and is maintained in the
data pipeline.

Additionally, further discussions with ARMMAN
pointed out long-term engagement issues in some
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FIGURE 4 Figure (A) shows elbow plot with distortion for
varying number of clusters. Figures (B)-(D) show the distribution of
predicted clusters using the Feature Only (FO), Feature and
Warm-up (FW), and Warm-up Only (WO) mapping functions.

beneficiaries, such as the registration of a wrong or
out-of-service phone number, or the beneficiary not being
pregnant. Live service calls in these cases are not produc-
tive. Thus, as a preprocessing step, we do not consider
beneficiaries who have not listened to any automated
voice calls in the past 6 weeks.

Clustering

We face a data scarcity and skew challenge in our domain.
Specifically, our training dataset comprises of beneficia-
ries from our own past studies where intervention data
are available for only a limited set of these beneficiaries.
Thus, to define the parameters of the RMAB model, we
cluster beneficiaries as an effective way of addressing data
scarcity. We cluster the beneficiaries per their transition
behaviors for passive actions using k-means clustering. We
obtain transition probabilities for each of these clusters by
aggregating their transitions as a whole.

However, the optimal number of clusters is a design
choice not readily addressed by k-means. We experimented
with the number of clusters ranging from 1 to 100, and
looked at the distortion metric. Distortion is the sum of
squared distances of each point from its corresponding
centroid, where smaller distortion implies better cluster-
ing. We plot the distortion values for multiple number of
clusters and find 20 to be the ideal choice using elbow-
method. The results are shown in Figure 4A where the
x-axis is the number of clusters and the y-axis is the
distortion value. This clustering approach has the added
advantage of offering computational frugality.

Mapping features to clusters

When a new beneficiary enrolls into the system, the
system only knows about their demographic data. We,

therefore, need to learn a mapping of a beneficiary’s
socio-demographic features to clusters, to enable infer-
ring transition probabilities and Whittle indexes for newly
enrolled beneficiaries (step 6 in Figure 2). We experi-
mented with different mapping functions to identify the
best one: Features Only (FO) mapping—beneficiaries’
socio-demographic features only; Warm-up Only (WO)
mapping—transition probabilities computed from warm-
up period (first 6 weeks post enrollment); and lastly Fea-
ture and Warm-up (FW) mapping—using a combination
of the above two.

We compute mean absolute error between predicted
and ground truth passive transition probabilities as a per-
formance metric and found them as [0.40, 0.37,0.38] for
FO, FW, and WO strategies, respectively. In addition to
MAE, we plot the distribution of beneficiaries predicted in
different clusters (refer Figure 4B-D). Having a sparse clus-
ter distribution is undesirable since large clusters lowers
the granularity of Whittle index planning. As an extreme
example, if all beneficiaries are mapped to a single clus-
ter, they would all have the same transition probability and
thus the same Whittle indexes. Since the cluster size is
now much larger than the number of arms to be pulled,
the beneficiaries within that cluster would be chosen ran-
domly for receiving service calls, which would degrade
the performance.

Thus, to ensure equitable cluster distribution, we
computed Entropy and Gini index values for the pre-
dicted distribution of number of beneficiaries per clus-
ter. Entropy values came out to be [2.81,2.56,2.04] for
FO, FW, and WO, respectively, and Gini indexes were
[0.29,0.48,0.57]. Given the error similarities for the
three strategies, and higher entropy/lower Gini index
implies more equitable clusters, we chose FO as our
strategy.

RMAB modeling and Whittle index
computation

These transition probabilities per cluster are used to com-
pute Whittle indexes for all beneficiaries, similar to Mate
et al. (2022), that is, computing 2 X k unique indexes
where k is the number of clusters. There are two Whittle
indexes per cluster as beneficiaries may be in the engag-
ing or nonengaging states. Whittle index indicates the
benefit of performing an active action on a beneficiary:
higher Whittle indexes are chosen to receive service calls
(step 7 in Figure 2). By mapping beneficiaries to clusters,
the Whittle indexes can be precomputed per cluster at
the beginning of the deployment, thus providing a frugal
solution ideal for large scale deployment with minimal
resources.
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Frequency of repeated live service calls

We initially enforced a frequency restriction that required
ensuring no beneficiary be called more than once in 7
+ 1 weeks (we set 7 = 3). Algorithmically, we implement
this by appending 7 sets of dummy “sleeping states” to
the state space that we force the beneficiaries to transi-
tion through each time they are called. This augmentation
yields a state space of size 27) + 2 and a transition matrix of
size (2n + 2) X (25 + 2). However, our pilot tests reveal that
repeat calls made within just 7 = 3 weeks are less effec-
tive. For instance, we observed that 30% of “Nonengaging”
beneficiaries converted to “Engaging” due to the first ser-
vice call; however, this number drops to 20% for repeat calls
made just 3 weeks later. To address this issue, along with
the subject matter experts at ARMMAN, we increased the
sleeping period, 7, to 12 weeks.

Frugality of system design

Successful deployments of Al systems like SAHELI in social
good settings require conscious focus on frugality across
the system design. This frugality means reducing both the
direct costs (e.g., number of calls) and indirect costs (e.g.,
computational requirements) on our NGO partners. Here
are some design choices in SAHELI that have led to frugality
in its operations:

1. Clustering of beneficiaries allows us to compute transi-
tion probabilities and Whittle indexes at a cluster level
as opposed at the beneficiary level. Since we use 20
clusters for thousands of beneficiaries, it provides a
significant scale-up in performance, while simultane-
ously reducing data demands for learning RMAB model
parameters.

2. As described above, we updated the “sleeping states”
parameter 7 to 12. However, this increases the Whit-
tle index computation time sharply, owing to a bulky
transition matrix of size 26 X 26. With frugality in mind,
we use the insight that a sleeping constraint with large
7 can be approximated as a permanent sleeping con-
straint, akin to setting z to +oo0, for the purposes of
index computation. This is because in index computa-
tion, the contribution of reward terms appearing after
7 timesteps is discounted by a factor of y”7 (y < 1),
which precipitously diminishes to zero. This simplifi-
cation compresses the transition matrix to 4 X 4, and
unlocks a 25x speedup in index computation, as shown
in Figure 5.

3. Lastly, multiple frugal design choices were made in
the orchestration of cloud infrastructure. Specifically,
we run our services on-demand using a task sched-

® 12-week sleeping @ infinite sleeping
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FIGURE 5 Index computation is significantly faster with the

infinite sleeping approximation.

uler on default container settings of 6 vCPUs and 16GiB
memory.

APPLICATION USE AND PAYOFF

We now discuss the impact of SAHELI on both the benefi-
ciaries as well as the Al community in more detail. SAHELI
is deployed and in continuous use at ARMMAN. It has
already reached 130K beneficiaries, and is on track to reach
one million beneficiaries by the end of 2023. We provide a
summary of impact from SAHELI in Table 2.

Engagement results

In order to evaluate the impact of live service calls through
SAHELLI, we study the engagement behavior of a cohort of
5000 beneficiaries for 12 weeks, registered between Febru-
ary 2022 and April 2022. Additionally, we create a holdout
set of beneficiaries registered in the same time period but
are not given any live service calls (we obtained ethical
approvals before our studies; see section Responsible Al
practices for further discussion). We make sure that both
the SAHELI and holdout groups have equal number of ben-
eficiaries, equal number engaging beneficiaries at the start
of experiment, and similar socio-demographic features.
Figure 6A shows how many engagements did not occur
in the holdout group that occurred in the SAHELI group,
aggregated cumulatively across months. It demonstrates
that the SAHELI group received significant benefit with an
additional 328 engagements over the holdout group cumu-
latively at the end of three months. We also measured the
difference in terms of time spent listening to mMitra voice
calls. More time spent implies more content exposure, as
well as better adherence with the mHealth program. In
particular, by the end of month 3, the SAHELI group had
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TABLE 2 A summary of impact from SAHELL
Impact from SAHELI
Beneficiairies served 130K
In continous use since April 2022
Relative engagement drops prevented over holdout group® 30.5%
Additional average per beneficiary content exposure over holdout group* 12s
Relative increase in content exposure over holdout group* 46.4%
For bottom 25 percentile of listeners, additional average per beneficiary content exposure over holdout group* 39s
For bottom 25 percentile of listeners, relative increase in content exposure over holdout group® 130%

2Results from a sample of 5000 beneficiaries.
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listened to 59,336 s (~ 12 s per beneficiary, but please see
analysis below) more of content than the holdout group
(Figure 6B). Similar to Mate et al. (2022), we define the rel-
ative improvement in listenership metric over the holdout
group as

A listenership (SAHELI, holdout)
listenershipinholdout

@

% improvement =

As the holdout group has 1075 drops in engagements
and 127,711 s drop in duration of calls listened to over
3 months, SAHELIprevented drop in engagements by
30.5% with an additional content exposure of 46.4% in
comparison to the holdout group. This analysis demon-
strates SAHELI’s success in achieving our core objectives
of improving information dissemination.

Who is benefitted from SAHELI?

In order to determine the characteristics of beneficiary
who gain the most from SAHELI, we divide the 5000
beneficiaries in our cohort based on two criterion

(1) Listenership prior to the start of study
(2) Gestational age at the time of enrollment

First, we consider the listenership of beneficiaries 1
month prior to start of live service calls delivered through

40
---- Population average
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FIGURE 7 Increased time spent listening to calls (over 3

months). The metric is shown for beneficiaries belonging to very
low, low, medium, and high quartiles of listenership before the start
of study.

SAHELI. In this time period, we calculate the mean
duration of calls listened to every week. Based on this
metric, we divide the 5000 strong cohort into quartiles of
listenership—uvery low, low, medium, and high. These quar-
tiles thus characterize the initial behavior of beneficiaries.
Next, we repeat the same steps for the holdout popula-
tion which does not receive any service calls. Finally, we
plot how many more seconds of mMitra content is listened
by every beneficiary in the quartiles in SAHELI group
as compared to the same quartiles in the holdout group
(Figure 7).

While the population average increase in content listen-
ership is ~ 12 s, beneficiaries with different listenership
profiles before being exposed to SAHELI show very dis-
tinctive behaviors. Specifically, the very low quartile of
beneficiaries gains the most in SAHELI, with 39-s addi-
tional content listenership over the holdout group. In
absolute terms, the very low quartile in holdout group has
per beneficiary 30 s of increase in duration of calls listened
to over 3 months while the SAHELI group has per bene-
ficiary 69 s of increase in duration of calls listened in the
same time period for the same quartile. Thus, using Equa-
tion (1), we note that in relative terms, the very low quartile
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months). The metric is shown for pregnant mothers in their 1st,
2nd, and 3rd trimesters of pregnancy and for beneficiaries who have
already delivered.

has 130% additional content exposure in comparison to the
holdout group (see Figure 7).

For the second criterion, we consider the gestational age
of beneficiaries and their delivery status at the time of
enrollment. For pregnant women, we use the gestational
age at the time of enrollment to calculate their pregnancy
trimester. Similar to Figure 7, in Figure 8, we plot for every
gestational age bucket, how many additional seconds of
mMmitra calls are listened by every beneficiaries in the
SAHELI group as compared to the holdout group. Specif-
ically, we observe that beneficiaries close to the delivery
date (higher trimester) have greater benefit from being in
the SAHELI group.

Impact of live service calls

We performed a qualitative study to understand human-
Al collaboration due to the AI system. We conducted a
total of 24 interviews, two focus group discussions, and
approximately 90 h of observation. We found that health-
care workers engaged positively with targeted predictions
through the AI system that integrated into their day-
day workflows seamlessly. It helped them improve the
engagement of beneficiaries, provided an opportunity to
support them in their care journeys and understand their
needs.

We also investigated the reasons for why live service calls
helped improve engagement with ARMMAN’s mMitra
mHealthprogram from the perspective of the beneficiary.
Specifically, we conducted a follow-up study with a sam-
ple of beneficiaries who were given live service calls 1 year
ago. We could successfully reach out to 306 beneficiaries,
out of which 134 recalled the details of the service call from
a year ago. Table 3 shows the responses to our follow-up

o

0-5K  5K-10K 10K-15K 15K-20K 20K-25K 25K-30K  >30K
Income

(B)

FIGURE 9
received) and (B) income (monthly family income in Indian Rupees)

Distribution of (A) education (highest education

across cohort that received service call and the whole population.

study by these 134 beneficiaries. Particularly, 50.75% ben-
eficiaries engaged more with mMitra calls after getting
more information about the program. The service calls also
helped improve listenership by making logistical updates
such as updating delivery date (9.7%), changing time slot
of receiving the call (8.21%), or updating the phone number
(2.99%).

Fairness of the RMAB model

Model fairness in nonwestern contexts has not received
much attention in the literature Sambasivan et al.
(2021). Responsible AI principles of the Government of
India’s NITI AAYOG (2021) for example, requires nondis-
crimination based on sensitive markers like caste and
religion. These sensitive data are specifically not collected
by ARMMAN for mMitra, thereby, making it inaccessible
to SAHELI'Ss Al models. We worked with public health and
field experts to evaluate other indicators such as education,
and income levels that signify markers of socio-economic
marginalization. ARMMAN’s goals for SAHELI are to
favor beneficiaries of lower income and lower education
levels for service calls. We conducted a post hoc analy-
sis of the deployment to evaluate if SAHELI indeed met
such preferences.

Figure 9A shows the distribution of beneficiaries aggre-
gated across SAHELI'S enrollments split into different
education levels in India. We compare those who were cho-
sen for live service calls by SAHELI versus the enrolled
population. The x-axis portrays the education levels; for
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TABLE 3 Follow-up study responses.

Did the call help you to listen to the mMitra calls more regularly?

# of Beneficiaries % of Beneficiaries

Yes, after getting more information about mMitra, I am listening to the calls more regularly 68 (in 134) 50.75%
Not really 30 22.39%
Yes, after updating my delivery date, I was able to get the right information 13 9.7%

Yes, after changing time slot, I am able to listen to the calls more regularly 1 8.21%
Have not asked my wife 2.99%
Yes, after changing the number, I am able to listen to the calls more regularly 4 2.99%
Any other 2.99%

instance grade 1-5 represents primary school, grade 6-
9 middle school, 10th pass junior high, and 12th pass
represents senior high school. The y-axis is the percent-
age of beneficiaries per education category. For instance,
SAHELIcalls 5.5% of beneficiaries who had very little for-
mal education or were illiterate, whereas this group was
2.8% of the overall enrolled population.

We did a similar analysis split by income as depicted in
Figure 9B. The x-axis contains buckets of average monthly
income of the beneficiary household in Indian Rupees,
and the y-axis denotes the percentage of beneficiaries in
that income category. As an example, the category “5-10K”
contains around 30% of the beneficiaries in the popula-
tion, and almost 40% of the beneficiaries who received a
service call.

Both these figures show that SAHELI favors the bene-
ficiaries in the “illiterate” education category and in the
“5-10K” income category. This distribution is in line with
ARMMAN’s goals—SAHELI favors beneficiaries of lower
income and lower education levels for service calls.

Enabling new research

From identifying the right problem to solve, to creating
an Al solution, testing it in pilot, iterating on learn-
ings and finally, establishing an end-to-end integrated
system, we made our journey to this deployment. With
this work, we provide other AI researchers an impor-
tant case study to take an AI model from the lab out
on the field. In our pursuit of deployment of SAHELI,
we uncover several research challenges, for example,
we overcame the challenges of data scarcity and frugal
design. Our work hopefully inspires additional research
in robust and computationally efficient approaches for
RMABs and other AI applications for mHealth. Fur-
ther, we are improving SAHELI by incorporating recent
advances in Decision Focused Learning for RMAB prob-
lems Wang et al. (2023), which opens up new direction
of real-world large-scale applications of Decision Focused
Learning.

RESPONSIBLE AI PRACTICES

We recognize the responsibility associated with deploying
real-world AI systems that impacts underserved com-
munities. In our approach, we have iteratively designed,
developed, and deployed the system in constant coor-
dination with an interdisciplinary team comprised of
ARMMAN's field staff, social work researchers, public
health researchers, and ethical experts. Along with seek-
ing ethical approvals through review boards at Google and
ARMMAN, we have taken additional steps to constantly
monitor and mitigate the risks associated with SAHELI by
abiding with AI principles at Google (2018) as well as key
policy making bodies in India such as the NITI AAYOG
(2021). Our success draws attention to the practices around
responsible Al including ethics, fairness, and accountabil-
ity in the nonwestern context Sambasivan et al. (2021)
where SAHELI is deployed. We now discuss three of the
core Responsible Al principles that impacted the design of
SAHELL

Socially beneficial: The intent of this work is to bring
the power of Al in service to some of the most marginal-
ized communities in the global south. The challenges faced
by our team were limited resources in every dimension—
limited data on the beneficiaries, limited compute avail-
able to the NGO, and limited health workers to make the
outreach calls. Thus, we had to develop new algorithms
that were not data hungry, and were bounded in their com-
putational requirements. To that affect, SAHELIis the first
large-scale deployment of RMABSs for public health.

Avoid reinforcing unfair bias: As discussed in the pre-
vious section, we have undertaken extensive analysis to
study model’s fair treatment of beneficiaries.

Incorporate privacy design principles: We take sig-
nificant measures to ensure that participant consent is
understood and recorded in a language of the community’s
choice at each stage of the program. Data stewardship
resides in the hands of the NGO, and only the NGO is
allowed to share data. This dataset will never be used by
Google for any commercial purposes. In this dataset, sen-
sitive features such as caste and religion are never collected
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and stored. SAHELI’s data pipeline only uses anonymized
data and no PII is made available to the AI models. Lastly,
domain experts at ARMMAN have been deeply involved in
the development and testing of SAHELI and have provided
continuous input and oversight in data interpretation, data
consumption and model design.

LESSONS LEARNED

Over the course of 1 year of our experiments moving from
Pilot study to Deployment, we learned several lessons
along the way. Most importantly, we learned that even a
successful pilot study cannot be translated as-is in to a
full-scale deployment, and that several considerations are
critical for wide-scale adoption of Al tools and scaling up
of impact.

Selecting the right problem: There are multitude
of problems that require to be solved to address the
needs of the underserved communities. In our interac-
tions with ARMMAN, we realized that we could create the
most impact with our techniques by improving the selec-
tion of the right beneficiaries for manual intervention, as
opposed to automating the communication with the bene-
ficiary. Our choice of problem is consistent with the “tech
plus touch” philosophy of ARMMAN (2008), and ensures
that we complement the human expertise of the health
worker. This way, each chosen beneficiary continued to
have a one-on-one interaction with a health worker, while
simultaneously improving the overall engagement with
the mHealth program.

Immersion into the real-world problem: We learned
that immersing in the working of a NGO and public health
infrastructure is critical in understanding the context of
the problem. The authors went on multiple field visits
to understand the stakeholders involved in the mMitra’s
workflow. The health workers interact with the benefi-
ciaries across multiple mHealth programs, and thus can
speak to the needs and behaviors of the beneficiaries. For
instance, upon interacting with these health workers, we
understood how telecom outages lead to more anomalous
and incomplete data than we had anticipated. We also
understood the decreased value in utility of calling the
same beneficiary again shortly after a previous call. These
field visits forced us to re-evaluate our assumptions, and led
to better data processing and modeling choices, as discussed
in the earlier sections. For instance, after these discussions,
we incorporated a new anomaly detection mechanism in
our data pipeline, and impacted our choice of horizon (n)
in our RMAB model.

Fairness of Al models: Al algorithms and datasets can
reflect, reinforce, or reduce unfair biases. It is imperative
on Al designers to seek to avoid unfair impacts on people,

particularly on underserved and marginalized commu-
nities. As discussed in the section on Responsible Al
practices, we worked with public health and field experts
to demonstrate fairness of our approach. As we men-
tioned before, 94% of our potential beneficiary population
are below WHO’s poverty index. Studying multiple socio-
demographic attributes was essential to evaluate fairness of
our approach. We worked closely with ethics experts, the
ARMMAN’s ethics team, and Google’s ethics teams and
extensively validated the fairness of our models.

End-to-end integration testing: In addition to the
lessons learned on problem selection and model develop-
ment, we also ran into several issues in our end-to-end
integrated pipeline. On one occasion, we saw poor results
because the data schema had evolved in the data storage
pipeline at ARMMAN. Testing of our application required
our NGO partner to be equally involved in the validation
of SAHELI'’s outputs —as domain experts, they are better
equipped to identify counter-intuitive behaviors. Our expe-
riences uncovering issues in the end-to-end pipeline led
to improved communication practices, better documenta-
tion, and tighter test goals. Social good applications like
SAHELI has real-world consequences for beneficiaries in
underserved communities, and it is critical that there be
a real partnership for testing and integration.

CONCLUSION

In this paper, we presented SAHELL, the first ever deploy-
ment of RMABSs in the public health domain for allocation
of limited resources. SAHELI is built on an improved and
robust framework that both predicts RMAB parameters
and computes optimal policies for it, in contrast with most
past research that has only focused on computing opti-
mal policies. It has been built with careful design choices
inspired by close interactions with all stakeholders. It
incorporates numerous lessons learned by embedding our-
selves in the real-world domain. SAHELI has been deployed
on cloud infrastructure with an emphasis on frugality, and
has reached out to 130K beneficiaries so far and aims to
reach one million by 2023. Furthermore, in this paper, we
also discuss the importance of responsible Al practices
in deploying Al systems at scale, especially in the social
domain. This work serves as an important case study for
Al researchers and NGO communities alike to take ML
models from the lab and deploy them in the field.
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