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We consider negative moments of quadratic Dirichlet L–functions over function fields. Summing

over monic square-free polynomials of degree 2g + 1 in Fq[x], we obtain an asymptotic formula

for the kth shifted negative moment of L(1/2+β, χD), in certain ranges of β (e.g., when roughly

β � log g/g and k < 1). We also obtain non-trivial upper bounds for the kth shifted negative

moment when log(1/β) � log g. Previously, almost sharp upper bounds were obtained in [3]

in the range β � g− 1
2k +ε .

1 Introduction

Let Mk(T) denote the 2kth moment of the Riemann zeta-function. Namely, we let

Mk(T) =
∫ T

0

∣∣ζ(1
2 + it)

∣∣ 2kdt.

Hardy and Littlewood [17] showed that M1(T) ∼ T log T, and Ingham [20] showed that

M2(T) ∼ 1
2π2 T(log T)4. It is conjectured that

Mk(T) ∼ AkT(log T)k2
,
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2 A. Florea

for some constant Ak, whose precise value was predicted by Keating and Snaith [23],

using analogies with random matrix theory. No moment higher than 4 has been rigor-

ously computed so far. Soundararajan [32] obtained almost sharp upper bounds, condi-

tional on the Riemann hypothesis. More precisely, he showed that Mk(T) � T(log T)k2+ε ,

for any ε > 0. Refining Soundararajan’s method, Harper [18] obtained upper bounds of

the correct order of magnitude for moments of the Riemann zeta-function, by removing

the ε on the power of log T, again on the Riemann hypothesis.

Focusing on the family of quadratic Dirichlet L–functions, Jutila [21] obtained

asymptotics for the first and second moment of this family. He showed that

∑∗

0<d≤D

L
(

1
2 , χd

)
∼ C1D log D,

where the sum above is over fundamental discriminants, and that

∑∗

0<d≤D

L
(

1
2 , χd

)2 ∼ C2D(log D)3,

for some explicit constants C1 and C2. Soundararajan [31] obtained an asymptotic

formula for the second moment with a power savings error term, and also obtained

an asymptotic for the third moment. The cubic moment was independently computed

using multiple Dirichlet series in [8]. More recently, a lower order term of size D3/4 was

explicitly computed for the cubic moment by Diaconu and Whitehead [9] and by Diaconu

in the function field setting [7]. Conditional on the Generalized Riemann Hypothesis,

Shen [30] obtained an asymptotic with the leading order term for the fourth moment.

Generally, it is conjectured that

∑∗

0<d≤D

L
(

1
2 , χd

)k ∼ CkD(log D)
k(k+1)

2 , (1)

and the precise value of Ck follows from work of Keating and Snaith [22], again using

random matrix theory. Conrey, Farmer, Keating, Rubinstein, and Snaith [5] further

refined this conjecture, including lower order terms in the asymptotic formula (1). The

approach used by Soundararajan and Harper in obtaining upper bounds for moments

of ζ(s) yields upper bounds of the right order of magnitude for the family of quadratic

Dirichlet L–functions conditional on GRH, while work of Rudnick and Soundararajan

[29] provides unconditional lower bounds of the right order of magnitude for rational k.

In the case of the Riemann zeta-function, sharp unconditional bounds are obtained in
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Negative Moments of L–Functions 3

[27] and [19] for small values of k, and the methods used can be adapted to the case of

quadratic L–functions. Over function fields, the first moment was computed by Andrade

and Keating [1], and a lower order term was identified in [13]. Higher moments, up to the

fourth, were obtained in [11, 12], as well as almost sharp upper bounds on all the positive

moments.

While all the results mentioned above hold for positive moments in families of

L–functions, much less is known about negative moments, even at a conjectural level.

In the case of the Riemann zeta-function ζ(s), a conjecture due to Gonek [15] states the

following.

Conjecture 1.1 (Gonek). Let k > 0 be fixed. Uniformly for 1 ≤ δ ≤ log T,

1

T

∫ T

1

∣∣∣ζ(1

2
+ δ

log T
+ it

)∣∣∣−2k
dt �

( log T

δ

)k2

,

and uniformly for 0 < δ ≤ 1,

1

T

∫ T

1

∣∣∣ζ(1

2
+ δ

log T
+ it

)∣∣∣−2k
dt �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(log T)k2
if k < 1/2,

(log e
δ
)(log T)k2

if k = 1/2,

δ1−2k(log T)k2
if k > 1/2.

Random matrix theory inspired ideas (see [2, 14]) seem to suggest certain transi-

tion regimes in the formulas above when k = (2n + 1)/2, for n a positive integer. While

obtaining lower bounds for the negative moments is a more tractable problem (Gonek

[15] proved lower bounds of the conjectural correct order of magnitude for 1 ≤ δ ≤ log T

and all k > 0 and for 0 < δ ≤ 1 for k < 1/2 conditional on the Riemann Hypothesis),

obtaining upper bounds is a more difficult problem, and no progress has been made

so far on the problem in any family of L–functions (recent work in progress of the

author and H. Bui addresses the question of obtaining upper bounds in some ranges

of δ).

In the case of quadratic Dirichlet L–functions, when studying the kth negative

moment, random matrix theory computations due to Forrester and Keating [14] seem

to suggest certain transition regimes for small shifts (i.e., shifts smaller than 1/ log X,

where X is roughly the size of the family.) More precisely, the computations in [14]

suggest certain jumps in the asymptotic formulas when k = 2j + 1/2, and j a positive

integer.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad118/7198542 by U

niversity of C
alifornia, Irvine user on 08 Septem

ber 2023



4 A. Florea

Very recently, almost sharp upper bounds were obtained for negative moments of

quadratic Dirichlet L–functions over function fields [3] when the shift in the L–function is

big enough. Specifically, if H2g+1 denotes the ensemble of monic, square-free polynomials

of degree 2g + 1 over Fq[x], let L(s, χD) denote the L–function associated to the quadratic

character χD. Then it is shown in [3] that for β � g− 1
2k +ε , we have

1

|H2g+1|
∑

D∈H2g+1

1

|L(1/2 + β, χD)|k �
( 1

β

) k(k−1)
2

(log g)
k(k+1)

2 . (2)

Note that it is expected that the upper bound above is sharp, up to the logarithmic factor.

In this paper, we treat the range when β � g− 1
2k +ε , which is more difficult. The

closer we are to the critical line, the more difficult the problem becomes, due to the

closer proximity of zeros. Here, we obtain non-trivial upper bounds for small shifts β

with log(1/β) � log g. In certain ranges where β is big enough (i.e., β � g−1/k+ε ), we

prove a more precise analogue of Gonek’s conjecture, obtaining an asymptotic formula.

We remark that asymptotic formulas for negative moments of L(1, χd) were obtained

by Granville and Soundararajan [16] in the number field setting and by Lumley [25] in

the function field setting. The techniques used in those papers are different, as one

considers moments far from the critical point 1/2, and the L–functions in those cases

can be modeled by random Euler products. In our work, we obtain asymptotic formulas

or upper bounds when the shift goes to zero with the size of the family. More precisely,

we prove the following.

Theorem 1.2. Let k > 0, β > 0, and ε, δ > 0, such that log(1/β) � log g. Then

1

|H2g+1|
∑

D∈H2g+1

1∣∣∣L(
1
2 + β + it, χD

)∣∣∣k

Note that Theorem 1.2 above holds for any t (the L–function is periodic as a

function of t).
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Negative Moments of L–Functions 5

We also refine Theorem 1.2 to obtain an asymptotic formula in the following case.

Theorem 1.3. Let k > 0 and ε > 0. Then for 	β � max{g− 1
k +ε , log g/g}, we have

1

|H2g+1|
∑

D∈H2g+1

1

L
(

1
2 + β, χD

)k
= ζq(1 + 2β)(

k
2)A(1; β) + O

(
q−g	(β)(1−ε)g

1+k/2

(
1+max{k,3/2}

)

× (log g)k/2
)
,

with A(1; β) given in equation (59).

We note that the theorem above provides an asymptotic formula when k ≥ 1 and

	β � g− 1
k +ε . If k < 1, then one needs 	β ≥ ck log g/g, for ck a specific constant depending

on k. We record this in the following corollary.

Corollary 1.4. Let k, ε, C > 0. Then for 	β ≥ max
{
Cg− 1

k +ε , (1+ε)
( 7k

4 − k2
2 +1) logq g

g

}
, we have

1

|H2g+1|
∑

D∈H2g+1

1

L
(

1
2 + β, χD

)k
= ζq(1 + 2β)(

k
2)A(1; β)(1 + o(1)).

Note that Corollary 1.4 allows one to obtain an asymptotic formula for the

negative moments when β is as small as roughly log g/g, as long as k < 1. We note

that the term 1 + 7k/4 − k2/2 could be slightly improved in the corollary above, but we

have decided not to focus on that. It would be of interest to be able to obtain asymptotic

formulas in the range β � log g/g for all values of k.

The organization of the paper is as follows. In section 2, we provide some

background and the preliminary lemmas we will use throughout the paper. We prove

Theorem 1.2 in section 4 and Theorem 1.3 in section 5. The proof of Theorem 1.2 starts

in a similar way as the proof of Theorem 1.3 in [3], and uses sieve theoretic inspired

ideas. This circle of ideas has recently been used successfully in a variety of settings, as

in [18, 24, 26, 32].

The difference from [3] that allows one to extend the range of β (in Theorem 1.2,

one obtains almost sharp bounds for β � g−1/k+ε as opposed to β � g−1/(2k)+ε in [3])

is the use of the large sieve for quadratic characters rather than simple orthogonality

of characters. However, the quadratic large sieve introduces a factor of qεg in the upper
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6 A. Florea

bound, hence one needs to use more care to refine the initial bound of size qεg to a bound

of the form gO(1). When performing the first step of the argument, one has to use an a

priori bound for negative moments coming from a pointwise bound for the inverse L–

function. Once we obtain the upper bound of size qεg (and keep track on the dependence

on k in the bound), we do the second step of the argument, but use as an a priori bound

for the negative moments the bound obtained in the previous step. When the shift is

bigger than g−1/k+ε , the argument described above gives an almost sharp upper bound,

up to some logarithmic factors. This allows us to further refine the result and obtain the

asymptotic formula in Theorem 1.3 in that range.

2 Background in Function Fields

Here we gather some basic facts about L–functions in function fields. Many of the proofs

can be found in [28].

Let M denote the set of monic polynomials over Fq[x], Mn the set of monic

polynomials of degree n, M≤n the set of monic polynomials of degree at most n, and

M≥n the set of monic polynomials with degree at least n. Let Hn denote the set of

monic, square-free polynomials of degree n, and P the ensemble of monic, irreducible

polynomials. The symbol P will stand for a monic, irreducible polynomial. Note that

|Mn| = qn, and for n ≥ 1, |Hn| = qn−1(q − 1).

For a polynomial f in Fq[x], let |f | := qdeg(f ) denote the norm of f . For 	(s) > 1,

the zeta-function of Fq[x] is defined by

ζq(s) =
∑

f ∈M

1

|f |s =
∏
P

(1 − |P|−s)−1.

Since |Mn| = qn, we see that

ζq(s) = 1

1 − q1−s .

It is sometimes convenient to make the change of variable u = q−s, and then write

Z(u) = ζq(s), so that

Z(u) = 1

1 − qu
.

The Möbius function μ is defined as usual by μ(f ) = (−1)ω(f ) if f is a square-free

polynomial and where ω(f ) = ∑
P|f 1, and 0 otherwise.
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Negative Moments of L–Functions 7

The Prime Polynomial Theorem states that

∑
P∈P

deg(P)=n

1 = qn

n
+ O

(qn/2

n

)
. (6)

We will also use the Prime Polynomial Theorem in the less precise form

∑
P∈P

deg(P)=n

1 ≤ qn

n
. (7)

(See, e.g., formula 2.1 in [6].)

For P a monic irreducible polynomial, the quadratic residue symbol
( f

P

) ∈ {0, ±1}
is defined by

( f

P

)
≡ f (|P|−1)/2(mod P).

If Q = Pα1
1 Pα2

2 . . . Pαr
r , then the Jacobi symbol is defined by

( f

Q

)
=

r∏
j=1

( f

Pj

)αj
.

The Jacobi symbol satisfies the quadratic reciprocity law. Namely, if A, B ∈ Fq[x] are

relatively prime, monic polynomials, then

(A

B

)
= (−1)(q−1) deg(A) deg(B)/2

( B

A

)
.

For D monic, we define the character

χD(g) =
(D

g

)
,

and consider the L–function attached to χD,

L(s, χD) :=
∑

f ∈M

χD(f )

|f |s .
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8 A. Florea

With the change of variable u = q−s, we have

L(u, χD) := L(s, χD) =
∑

f ∈M
χD(f )ud(f ) =

∏
P∈P

(
1 − χD(P)ud(P)

)−1. (8)

For D ∈ H2g+1, L(u, χD) is a polynomial in u of degree 2g satisfying the functional

equation

L(u, χD) = (qu2)gL
( 1

qu
, χD

)
. (9)

The Riemann Hypothesis for curves over function fields was proven by Weil [33],

so all the zeros of L(u, χD) are on the circle |u| = q−1/2.

We will use the following pointwise upper bound for the inverse of the L–

function.

Lemma 2.1. For 0 < β � 1
log g , t ∈ R and any ε > 0, we have

1

|L(1/2 + β + it, χD)| ≤ exp
(

(1 + ε)g

logq g
log

( 1

β

))
.

Proof. See Lemma 5.3 and Remark 5.1 in [3]. �

We also need the following estimates.

Lemma 2.2. For f ∈ M, we have

∑
D∈H2g+1

χD(f 2) = |H2g+1|
∏
P|f

(
1 + 1

|P|
)−1

+ Oε(|f |ε).

Proof. See, for example, Lemma 3.4 in [4]. �

Lemma 2.3. For f not a square polynomial, we have

∣∣∣ ∑
D∈H2g+1

χD(f )

∣∣∣ � qg|f |ε .

Proof. See Lemma 3.5 in [4]. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad118/7198542 by U

niversity of C
alifornia, Irvine user on 08 Septem

ber 2023



Negative Moments of L–Functions 9

Throughout the paper, we will frequently use the following analogue of Perron’s

formula in function fields. If the power series
∑∞

n=0 a(n)un is absolutely convergent in

|u| ≤ r < 1, then

∑
n≤N

a(n) = 1

2π i

∮
|u|=r

( ∞∑
n=0

a(n)un
) du

(1 − u)uN+1 . (10)

Now let t ∈ R and � be an even integer. Let

E�(t) =
∑
s≤�

ts

s!
.

Note that we have E�(t) > 0 for any t since � is even. We will use the fact that for t ≤ �/e2,

we have

et ≤ (1 + e−�/2)E�(t). (11)

For a proof, see, for example, [26].

Let ν(f ) be the multiplicative function given by

ν(Pa) = 1

a!
.

Let 
(f ) denote the number of prime factors of f , counting multiplicity. We will use the

following result (see Lemma 3.2 in [6]).

Lemma 2.4. Let a(f ) be a completely multiplicative function. Then for any interval I

and any s ∈ N, we have that

( ∑
deg(P)∈I

a(P)

)s

= s!
∑

P|f ⇒deg(P)∈I

(f )=s

a(f )ν(f ).

We will also need the following form of the quadratic large sieve over function

fields [10].
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10 A. Florea

Lemma 2.5. Let a(f ) be arbitrary complex numbers supported on monic polynomials,

and let n = O(g). We have

∑
D∈H2g+1

∣∣∣ ∑
f ∈Mn

a(f )χD(f )

∣∣∣2 ≤ (q2g + qn)qAg/(log g)1/4 ∑
f1f2=�

|a(f1)a(f2)|,

for some absolute constant A > 0.

We note that the result in [10] could be improved to obtain a better bound than

qAg/(log g)1/4
, but for the purpose of this paper, Lemma 2.5 above is enough.

3 Setup of the Proof and Initial Lemmas

We will first introduce some of the ideas in the proof of Theorem 1.2, and will state some

key lemmas. We will return to the proof of Theorem 1.2 in section 4.

Let

I0 = (0, N0], I1 = (N0, N1], . . . , IK = (NK−1, NK ],

where Nj are parameters we will choose later. Also, let sj and �j be even integers that we

will choose later on. For now, we can think of sjNj � g and
∑K

h=0 �hNh � g.

Let

aβ(P; N) = − cos(t deg(P) log q)

∞∑
j=0

( (j + 1) deg(P)q−j(N+1)β

deg(P) + j(N + 1)

− (j + 1) deg(P)q−(j+2)(N+1)β |P|2β

(j + 2)(N + 1) − deg(P)

)
.

We extend aβ(P; N) to a completely multiplicative function in the first variable. As in [3],

for deg(P) ≤ N, we have

|aβ(P; N)| ≤ 1 + 1

q(N+1)β − 1
, (12)

if Nβ � 1, and

|aβ(P; N)| ≤
(1

2
+ ε

)(
log

1

Nβ

)
(13)
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Negative Moments of L–Functions 11

if Nβ = o(1). Note that in [3] the weaker bound |aβ(P; N)| � log
( 1

β

)
was used, which

was enough in that context, but the stronger bound above easily follows from [3]; see the

equation before (5.20).

We rewrite (12) and (13) into a single inequality as

|aβ(P; N)| ≤ B(N)
(

log
1

Nβ

)γ (N)

, (14)

where γ (N) = 1 if Nβ = o(1) and γ (N) = 0 if Nβ � 1, and where

B(N) =
⎧⎨
⎩

1
2 + ε if Nβ = o(1)

1 + 1
q(N+1)β−1

if Nβ � 1.
(15)

It then follows that

|aβ(f ; N)| ≤ B(N)
(f )
(

log
1

Nβ

)γ (N)
(f )

. (16)

For 0 ≤ j, h ≤ K, let

PIh(D; Nj) =
∑

deg(P)∈Ih

aβ(P; Nj)χD(P)

|P|1/2+β
.

Similarly as in [3], for h ≤ K, let

Th =
{
D ∈ H2g+1 | max

h≤u≤K

∣∣PIh
(D; Nu)

∣∣ ≤ �h

ke2

}
.

A minor modification of Lemma 5.4 in [3] gives the following lemma:

Lemma 3.1. We either have

max
0≤u≤K

∣∣∣PI0(D; Nu)

∣∣∣ >
�0

ke2 ,

or

1

|L(1/2 + β + it, χD)|k ≤ exp(O(k))(S1(D) + S2(D)), (17)
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12 A. Florea

where

S1(D) =
(
1 − q−(NK+1)β

)− 2gk
NK+1

(NK log g)k/2
K∏

h=0

(1 + e−�h/2)E�h

(
kPIh

(D; NK)
)
,

and

S2(D) = (log g)k/2
∑

0≤j≤K−1

∑
j<u≤K

(
1 − q−(Nj+1)β

)− 2gk
Nj+1

Nk/2
j

×
j∏

h=0

(1 + e−�h/2)E�h

(
kPIh(D; Nj)

)( ke2

�j+1
PIj+1

(D; Nu)
)sj+1

.

Proof. To obtain (17), note that if D ∈ T0, then either D ∈ Th for all h ≤ K or there exists

some 0 ≤ j ≤ K − 1 such that D ∈ Th for all h ≤ j, but D /∈ Tj+1. If D ∈ Th for all h ≤ K,

then following the proof of Lemma 5.4 in [3], we have

k log |L(1
2 + β + it, χD)| ≥ 2gk

NK + 1
log

(
1 − q−(NK+1)β

)

− k
∑

deg(P)≤NK

aβ(P; NK)χD(P)

|P|1/2+β
+ k

2

∑
deg(P)≤NK/2

P�D

cos(2t deg(P) log q)

|P|1+2β
+ O(1).

Now we use the fact that

∑
P|D

1

|P| ≤ log log g + O(1),

bound cos(2t deg(P) log q) ≥ −1 and use the Prime Polynomial Theorem (6) to get that

k log |L(1
2 + β + it, χD)| ≥ 2gk

NK + 1
log

(
1 − q−(NK+1)β

)
− k

∑
deg(P)≤NK

aβ(P; NK)χD(P)

|P|1/2+β

− k

2
log NK − k

2
log log g + O(k).

We exponentiate the expression above and use inequality (11). Since D ∈ Th for

all h ≤ K, we obtain the first term in (17). We similarly obtain the second term in (17), if

D ∈ Th for all h ≤ j, but D /∈ Tj+1 for some j ≤ K − 1. �

We will also need the following key lemmas.
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Negative Moments of L–Functions 13

Lemma 3.2. For N0s0 ≤ 4g and s0 even, we have

∑
D∈H2g+1

(PI0(D; Nu))s0 ≤ q2g+Ag/(log g)1/4
(s0/2)! 2s0(eB(N0))s0

(
log

1

N0β

)γ (N0)s0
(log N0)s0/2,

for A > 0 an absolute constant.

Proof. Using Lemma 2.4, we have

∑
D∈H2g+1

PI0(D; Nu)s0 = ((s0/2)! )2
∑

D∈H2g+1

( ∑
P|f ⇒deg(P)∈I0


(f )=s0/2

aβ(f ; Nu)ν(f )χD(f )

|f |1/2+β

)2
. (18)

Using the large sieve in Lemma 2.5, we have

∑
D∈H2g+1

( ∑
P|f ⇒deg(P)∈I0


(f )=s0/2

aβ(f ; Nu)ν(f )χD(f )

|f |1/2+β

)2 ≤ (q2g + q
N0s0

2 )qAg/(log g)1/4

×
∑

P|f1f2⇒deg(P)∈I0

(f1)=
(f2)=s0/2

f1f2=�

|aβ(f1; Nu)aβ(f2; Nu)|ν(f1)ν(f2)

|f1f2|1/2+β
. (19)

We rewrite the condition f1f2 = � as f1 = DA2 and f2 = DB2 with (A, B) = 1. Since we are
looking for an upper bound for (19), we remove the coprimality condition, and we use the
bound ν(DA2)ν(DB2) ≤ ν(D)ν(A)ν(B). Then

(19) ≤ (q2g + q
N0s0

2 )qAg/(log g)1/4 ∑
P|D⇒deg(P)∈I0


(D)≤s0/2

(D)≡s0/2 (mod 2)

|aβ(D; Nu)|2ν(D)

|D|1+2β

( ∑
P|A⇒P∈I0


(A)=(s0/2−
(D))/2

|aβ(A; Nu)|2ν(A)

|A|1+2β

)2

≤ (q2g + q
N0s0

2 )qAg/(log g)1/4 ∑
P|D⇒deg(P)∈I0


(D)≤s0/2

(D)≡s0/2 (mod 2)

|aβ(D; Nu)|2ν(D)

|D|1+2β

1

(((s0/2 − 
(D))/2)! )2

×
( ∑

P∈I0

|aβ(P; Nu)|2
|P|1+2β

) s0
2 −
(D)

.
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14 A. Florea

Arranging the polynomials D according to 
(D) and using Lemma 2.4, we further get

that

(19) ≤ (q2g + q
N0s0

2 )qAg/(log g)1/4
( ∑

P∈I0

|aβ(P; Nu)|2
|P|1+2β

)s0/2
s0/2∑
j=1

j≡s0/2 (mod 2)

1

j! (((s0/2 − j)/2)! )2 .

(20)

Suppose α = s0/2(mod 2) ∈ {0, 1}. In the sum over j above, write j = 2h+α. Then we have

that

s0/2∑
j=1

j≡s0/2 (mod 2)

1

j! (((s0/2 − j)/2)! )2 =
s0/2−α

2∑
h=0

(
(s0/2 − α)/2

h

)2
(h! )2

(2h + α)! ((s0/2 − α)/2)!2

� 1

((s0/2 − α)/2)!2

s0/2−α

2∑
h=0

(
(s0/2 − α)/2

h

)2

=
( s0/2−α
(s0/2−α)/2

)
((s0/2 − α)/2)!2

� 2s0

(s0/2)!
, (21)

where we have used Stirling’s inequality in the second line, and Striling’s approximation

in the third line. In the above, the implied constant is absolute and does not depend on

k.

Now in equation (20), we use the Prime Polynomial Theorem (7) for the sum over

P ∈ I0 and the bound (14), and we have

( ∑
P∈I0

|aβ(P; Nu)|2
|P|1+2β

)s0/2 ≤ B(Nu)s0
(

log
1

Nuβ

)γ (Nu)s0
( N0∑

n=1

1

n

)s0/2

≤ B(Nu)s0
(

log
1

Nuβ

)γ (Nu)s0
(log N0 + 2γ )s0/2 ≤ B(Nu)s0

(
log

1

Nuβ

)γ (Nu)s0
(log N0)s0/2es0 .

We further use the fact that

B(Nu)
(

log
1

Nuβ

)γ (Nu) ≤ B(N0)
(

log
1

N0β

)γ (N0)

.

Indeed, to prove the inequality above, note that if γ (Nu) = 1, then necessarily we also

have γ (N0) = 1, and Nu = N0 = 1
2 + ε in this case, so the inequality follows. If γ (Nu) = 0

and γ (N0) = 1, then notice that the left-hand side of the inequality above is bounded,
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Negative Moments of L–Functions 15

while the right-hand side goes to infinity. If γ (Nu) = γ (N0) = 0, then the inequality easily

follows using the fact that N0 ≤ Nu.

Now combining the equation above, (18), (20), we get (after a possible relabeling

of the absolute constant A):

∑
D∈H2g+1

PI0(D; Nu)s0 ≤(s0/2)! 2s0(q2g+q
N0s0

2 )qAg/(log g)1/4
(eB(N0))s0

(
log

1

N0β

)γ (N0)s0
(log N0)s0/2.

Since N0s0 ≤ 4g, the conclusion follows. �

We also have the following variant of the lemma above, which removes the

qAg/(log g)1/4
term introduced by the use of the large sieve inequality, at the expense of

having to choose a shorter Dirichlet polynomial.

Lemma 3.3. For N0s0 ≤ 2g and s0 even, we have

∑
D∈H2g+1

PI0(D; Nu)s0 ≤ q2g+1 s0!

(s0/2)! 2s0/2 (eB(N0))s0
(

log
1

N0β

)γ (N0)s0
(log N0)s0/2.

Proof. The proof is a simplification of the previous proof. Since PI0(D; Nu)s0 > 0, we

have

∑
D∈H2g+1

PI0(D; Nu)s0 ≤
∑

D∈M2g+1

PI0(D; Nu)s0 = s0!
∑

D∈M2g+1

∑
P|f ⇒deg(P)∈I0


(f )=s0

aβ(f ; Nu)ν(f )χD(f )

|f |1/2+β
.

We interchange the sums over D and f , and note that since 
(f ) = s0, we have deg(f ) ≤
N0s0 ≤ 2g. Hence, if f �= �, we have

∑
D∈M2g+1

χD(f ) = 0. Using the fact that ν(f 2) ≤
ν(f )/2
(f ), it follows that

∑
D∈H2g+1

PI0(D; Nu)s0 ≤
∑

D∈M2g+1

PI0(D; Nu)s0 ≤ q2g+1s0!
∑

P|f ⇒deg(P)∈I0

(f )=s0/2

|aβ(f ; Nu)|2ν(f )

2
(f )|f |1+2β

= q2g+1 s0!

(s0/2)! 2s0/2

( ∑
P∈I0

|aβ(P; Nu)|2
|P|1+2β

)s0/2
.

Now we treat the sum over P ∈ I0 similarly as in the proof of Lemma 3.2, and the

conclusion follows. �
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16 A. Florea

We also need the following two lemmas, the second of which is a variant of

the first. The first lemma uses the large sieve inequality; it has the advantage that it

allows one to choose a longer Dirichlet polynomial, but it introduces an extra term of

the form qAg/(log g)1/4
in the upper bound. The second lemma uses a simpler orthogonality

of characters argument and removes the qAg/(log g)1/4
term, but only allows for shorter

polynomials.

Lemma 3.4. For 0 ≤ j < K, let �j be even parameters, and let sj+1 be even such that

2
∑

h≤j �hNh + sj+1Nj+1 ≤ 4g. Let j < u ≤ K. Then we have

∑
D∈H2g+1

j∏
h=0

E�h

(
kPIh(D; Nj)

)(
PIj+1

(D; Nu)
)sj+1 ≤ q2g+Ag/(log g)1/4

(sj+1/2)!
(
2

√
log

Nj+1

Nj

)sj+1

× B(Nj+1)sj+1

(
log

1

Nj+1β

)γ (Nj+1)sj+1
N

3k2B(Nj)
2
(

log 1
Njβ

)2γ (Nj)

j

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k
(

log
1

Njβ

)γ (Nj)
)))

,

for some absolute constant A > 0.

Proof. Let J ⊂ {0, . . . , j} be the subset of indices h such that E�h
(kPIh(D; Nj)) > 1. Then

∑
D∈H2g+1

j∏
h=0

E�h

(
kPIh

(D; Nj)
)(

PIj+1
(D; Nu)

)sj+1
(22)

≤
∑

D∈H2g+1

∏
h∈J

E2
�h

(
kPIh

(D; Nj)
)(

PIj+1
(D; Nu)

)sj+1

= (sj+1/2)!2
∑

D∈H2g+1

( ∏
h∈J

( ∑
P|fh⇒P∈Ih

(fh)≤�h

k
(fh)aβ(fh; Nj)ν(fh)χD(fh)

|fh|1/2+β

)

×
∑

P|fj+1⇒P∈Ij+1

(fj+1)=sj+1/2

aβ(fj+1; Nu)ν(fj+1)χD(fj+1)

|fj+1|1/2+β

)2

= (sj+1/2)!2
∑

D∈H2g+1

( ∑
P|B⇒deg(P)≤Nj+1

deg(B)≤∑
h∈J �hNh+sj+1Nj+1/2

ν(B)c(B)χD(B)

|B|1/2+β

)2

,
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Negative Moments of L–Functions 17

where

c(B) =
∑

B=(
∏

h∈J fh)fj+1

(fh)≤�h


(fj+1)=sj+1/2
P|fh⇒P∈Ih,h∈J
P|fj+1⇒P∈Ij+1

k
∑

h∈J 
(fh)(
∏
h∈J

aβ(fh; Nj))aβ(fj+1; Nu).

Using the large sieve inequality in Lemma 2.5, we get that

(22) ≤ (sj+1/2)!2 (q2g + q
∑

h≤j �hNh+sj+1Nj+1/2
)qAg/(log g)1/4 ∑

B1B2=�

ν(B1)ν(B2)|c(B1)c(B2)|
|B1B2|1/2+β

.

We write B1 = (
∏

h∈J Ah)Aj+1 and B2 = (
∏

h∈J Ch)Cj+1. Note that the condition B1B2 = �
is equivalent to AhCh = � for h ≤ j and Aj+1Cj+1 = �, since the Ah and Aj+1 are pairwise

coprime (and the same holds for Ch and Cj+1). Using the condition that 2
∑

h≤j �hNh +
sj+1Nj+1 ≤ 4g, we get that

(22) ≤ (sj+1/2)!2 q2g+Ag/(log g)1/4 ∑
P|Aj+1Cj+1⇒P∈Ij+1

Aj+1Cj+1=�

(Aj+1)=
(Cj+1)=sj+1/2

|aβ(Aj+1Cj+1; Nu)|ν(Aj+1)ν(Cj+1)

|Aj+1Cj+1|1/2+β
(23)

×
∏
h∈J

∑
P|AhCh⇒P∈Ih

AhCh=�

(Ah),
(Ch)≤�h

k
(Ah)+
(Ch)|aβ(AhCh; Nj)|ν(Ah)ν(Ch)

|AhCh|1/2+β
.

The conditions AhCh = � and Aj+1Cj+1 = � can be rewritten as Ah �→ DhA2
h, Ch �→ DhC2

h,

with (Ah, Ch) = 1 and Aj+1 �→ Dj+1A2
j+1, Cj+1 �→ Dj+1C2

j+1 with (Aj+1, Cj+1) = 1. Removing

the coprimality conditions and using the bound ν(fh2) ≤ ν(f )ν(h) for any polynomials

f , h and ν(f ) ≤ 1 for any f , we get that

(22) ≤ (sj+1/2)!2 q2g+Ag/(log g)1/4 ∑
P|Aj+1Cj+1Dj+1⇒P∈Ij+1


(A2
j+1Dj+1)=
(C2

j+1Dj+1)=sj+1/2

|aβ(Aj+1Cj+1Dj+1; Nu)|2ν(Aj+1)ν(Cj+1)ν(Dj+1)

|Aj+1Cj+1Dj+1|1+2β

×
∏
h∈J

( ∑
P|AhChDh⇒P∈Ih


(DhA2
h),
(DhC2

h)≤�h

k2
(Ah)+2
(Ch)+2
(Dh)|aβ(AhChDh; Nj)|2ν(Ah)ν(Ch)ν(Dh)

|AhChDh|1+2β

)
.
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18 A. Florea

For the product over h ∈ J, we write J = J1 ∪ J2, where J1 is the subset of indices

such that all P ∈ Ih with h ∈ J1 satisfy deg(P) ≤ logq(k2B(Nj)
2(log 1

Njβ
)2γ (Nj)).

Let J2 = {j2, . . .} such that the interval Ij2 consists (possibly) of primes with

deg(P) ≤ logq(k2B(Nj)
2(log 1

Njβ
)2γ (Nj)) and primes with logq(k2B(Nj)

2(log 1
Njβ

)2γ (Nj)) <

deg(P) ≤ Nj2 . We further write Ij2 = Ij2,1 ∪ Ij2,2, where Ij2,1 consists only of

primes with deg(P) < logq(k2B(Nj)
2(log 1

Njβ
)2γ (Nj)) and Ij2,2 consists of primes with

logq(k2B(Nj)
2(log 1

Njβ
)2γ (Nj)) < deg(P) ≤ Nj2 . In the product over primes in Ih, with h ∈ J,

we then split the primes into primes in Ih, with h ∈ J1, primes in Ij2,1, primes in Ij2,2, and

primes in J2 \ {j2}. We trivially bound the contribution from primes in Ih, with h ∈ J1 or

from primes in Ij2,1 using the bound (16). For example, for h ∈ J1, we have

( ∑
P|AhChDh⇒P∈Ih


(DhA2
h),
(DhC2

h)≤�h

k2
(Ah)+2
(Ch)+2
(Dh)|aβ(AhChDh; Nj)|2ν(Ah)ν(Ch)ν(Dh)

|AhChDh|1+2β

)

≤
( ∑

P|Ah⇒P∈Ih

(Ah)≤�h

k2
(Ah)B(Nj)
2
(Ah)

(
log 1

Njβ

)2γ (Nj)
(Ah)

ν(Ah)

|Ah|1+2β

)3

=
( ∑

r≤�h

k2rB(Nj)
2r

(
log 1

Njβ

)2γ (Nj)r

r!

( ∑
P∈Ih

1

|P|1+2β

)r
)3

≤ exp
(

3k2B(Nj)
2
(

log
1

Njβ

)2γ (Nj)
( ∑

P∈Ih

1

|P|
))

.

Taking the product over all the h ∈ J1 and the primes P ∈ Ij2,1, we get that this

contribution is bounded by

exp
(

3k2B(Nj)
2
(

log
1

Njβ

)2γ (Nj)
( ∑

deg(P)≤logq(k2B(Nj)
2(log 1

Njβ
)
2γ (Nj))

1

|P|
))

= exp
(

O
(
k2

(
log

1

Njβ

)2γ (Nj)

log log(k2(log
1

Njβ
)2γ (Nj))

))
.
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Negative Moments of L–Functions 19

Now for the primes in Ij2,2 and the primes in Ih with h ∈ J2 \ {j2}, we proceed as before,

and get that

∑
P|AhChDh⇒P∈Ih


(DhA2
h),
(DhC2

h)≤�h

k2
(Ah)+2
(Ch)+2
(Dh)|aβ(AhChDh; Nj)|2ν(Ah)ν(Ch)ν(Dh)

|AhChDh|1+2β

≤
( ∑

P|Ah⇒P∈Ih

k2
(Ah)|aβ(Ah; Nj)|2ν(Ah)

|Ah|1+2β

)3

≤
( ∑

P|Ah⇒P∈Ih

k2
(Ah)B(Nj)
2
(Ah)

(
log 1

Njβ

)2γ (Nj)
(Ah)

|Ah|1+2β

)3

=
∏
P∈I

(
1 −

k2B(Nj)
2
(

log 1
Njβ

)2γ (Nj)

|P|1+2β

)−3

=
∏
P∈I

((
1 − 1

P|
)−3k2B(Nj)

2
(

log 1
Njβ

)2γ (Nj)

+ O
(k4B(Nj)

4
(

log 1
Njβ

)4γ (Nj)

|P|2
))

,

where we have used inequality (16) in the third line, and where I = Ij2,2 or I = Ih for

h ∈ J2 \ {j2}.
Using the last two bounds above, it follows that

∏
h∈J

( ∑
P|AhChDh⇒P∈Ih


(DhA2
h),
(DhC2

h)≤�h

k2
(Ah)+2
(Ch)+2
(Dh)|aβ(AhChDh; Nj)|2ν(Ah)ν(Ch)ν(Dh)

|AhChDh|1+2β

)
(24)

≤
∏

deg(P)≤Nj

(
1 − 1

|P|
)−3k2B(Nj)

2
(

log 1
Njβ

)2γ (Nj)

× exp
( ∑

deg(P)>logq(k2B(Nj)
2(log 1

Njβ
)
2γ (Nj))

k4B(Nj)
4
(

log 1
Njβ

)4γ (Nj)

|P|2
)

× exp
(

O
(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k2(log

1

Njβ
)2γ (Nj)

)))

= N
3k2B(Nj)

2
(

log 1
Njβ

)2γ (Nj)

j exp
(

O
(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k2(log

1

Njβ
)2γ (Nj)

)))
,
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20 A. Florea

where the implied constant in the exponential term does not depend on k, and where

we have used Mertens’ theorem over function fields (see Lemma 3.6 in [4]) and the Prime

Polynomial Theorem (7).

To deal with the sum over Aj+1, Cj+1, Dj+1 we proceed as in the proof of Lemma

3.2 (see equations (20) and (21)), and it follows that

∑
P|Aj+1Cj+1Dj+1⇒P∈Ij+1


(A2
j+1Dj+1)=
(C2

j+1Dj+1)=sj+1/2

aβ(Aj+1Cj+1Dj+1; Nu)2ν(Aj+1)ν(Cj+1)ν(Dj+1)

|Aj+1Cj+1Dj+1|1+2β
� 2sj+1

(sj+1/2)!

×
( ∑

P∈Ij+1

|aβ(P; Nu)|2
|P|1+2β

)sj+1/2
, (25)

For the sum over P ∈ Ij+1, we use the Prime Polynomial Theorem, and (14). Combining

(23), (24), and (25) and using the facts that

B(Nu)
(

log
1

Nuβ

)γ (Nu) ≤ B(Nj+1)
(

log
1

Nj+1β

)γ (Nj+1)

,

it follows that

(22) ≤ q2g+Ag/(log g)1/4
(sj+1/2)!

(
2

√
log Nj+1

Nj
B(Nj+1)

)sj+1
(

log
1

Nj+1β

)γ (Nj+1)sj+1

× N
3k2B(Nj)

2
(

log 1
Njβ

)2γ (Nj)

j exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k2

(
log

1

Njβ

)2γ (Nj)
)))

.

�

A simplification of the argument above yields the following lemma.
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Negative Moments of L–Functions 21

Lemma 3.5. For 0 ≤ j < K, let �j be even parameters, and let sj+1 be even such that∑
h≤j �hNh + sj+1Nj+1 ≤ 2g. Let j < u ≤ K. Then we have

∑
D∈H2g+1

j∏
h=0

E�h

(
kPIh(D; Nj)

)(
PIj+1

(D; Nu)
)sj+1 ≤ q2g+1N

k2B(Nj)
2

2

(
log 1

Njβ

)2γ (Nj)

j

× (sj+1)!

(sj+1/2)! 2sj+1/2

(√
log

Nj+1

Nj
B(Nj+1)

)sj+1
(

log
1

Nj+1β

)γ (Nj+1)sj+1

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k
(

log
1

Njβ

)γ (Nj)
)))

.

Proof. Since the summands are positive (because �h and sj+1 are even, see the explana-

tion right before equation (11)), we have that

∑
D∈H2g+1

j∏
h=0

E�h

(
kPIh

(D; Nj)
)(

PIj+1
(D; Nu)

)sj+1 ≤
∑

D∈M2g+1

j∏
h=0

E�h

(
kPIh

(D; Nj)
)(

PIj+1
(D; Nu)

)sj+1
,

and

∑
D∈M2g+1

j∏
h=0

E�h

(
kPIh(D; Nj)

)(
PIj+1

(D; Nu)
)sj+1 = sj+1!

×
∑

D∈M2g+1

j∏
h=0

( ∑
P|fh⇒deg(P)∈Ih


(fh)≤�h

k
(fh)aβ(fh; Nj)ν(fh)χD(fh)

|fh|1/2+β

)

×
( ∑

P|fj+1⇒deg(P)∈Ij+1

(fj+1)=sj+1

aβ(fj+1; Nu)ν(fj+1)χD(fj+1)

|fj+1|1/2+β

)
. (26)

Interchanging the sums over D and fh and fj+1, note that if f0 . . . fj+1 �= �, then

∑
D∈M2g+1

χD(f0 . . . fj+1) = 0,

since deg(f0 . . . fj+1) ≤ ∑j
h=0 �hNh + sj+1Nj+1 ≤ 2g. It follows that in (26), we need

f0 . . . fj+1 = �, and since the fi are pairwise coprime, this happens if and only if each
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22 A. Florea

fh = �, for h ≤ j + 1. Bounding ν(f 2
h ) ≤ ν(fh)/2
(fh) and using the bound (16), we get that

∑
D∈M2g+1

j∏
h=0

E�h

(
kPIh(D; Nj)

)(
PIj+1

(D; Nu)
)sj+1 ≤ q2g+1sj+1!

×
j∏

h=0

( ∑
P|fh⇒deg(P)∈Ih


(fh)≤�h/2

ν(fh)k2
(fh)B(Nj)
2
(fh)

(
log 1

Njβ

)2γ (Nj)
(fh)

2
(fh)|fh|1+2β

)

×
( ∑

P|fj+1⇒P∈Ij+1

(fj+1)=sj+1/2

B(Nu)2
(fj+1)
(

log 1
Nuβ

)2γ (Nu)
(fj+1)

ν(fj+1)

2
(fj+1)|fj+1|1+2β

)

≤ q2g+1
sj+1!

(sj+1/2)! 2sj+1/2 B(Nj+1)sj+1

(
log

1

Nj+1β

)γ (Nj+1)sj+1
( ∑

P∈Ij+1

1

|P|1+2β

)sj+1/2

×
j∏

h=0

( ∑
P|fh⇒deg(P)∈Ih


(fh)≤�h/2

ν(fh)k2
(fh)B(Nj)
2
(fh)

(
log 1

Njβ

)2γ (Nj)
(fh)

2
(fh)|fh|1+2β

)
.

For the sum over P ∈ Ij+1, we use the Prime Polynomial Theorem (6), and for the sum over

h ∈ J, we proceed exactly as in the proof of the previous lemma. We then have

∑
D∈M2g+1

j∏
h=0

E�h

(
kPIh

(D; Nj)
)(

PIj+1
(D; Nu)

)sj+1 ≤ q2g+1N

k2B(Nj)
2

2

(
log 1

Njβ

)2γ (Nj)

j

×
(sj+1)!

(√
log

Nj+1
Nj

B(Nj+1)
)sj+1

(
log 1

Nj+1β

)γ (Nj+1)sj+1

(sj+1/2)! 2sj+1/2

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k2

(
log

1

Njβ

)2γ (Nj)
)))

.

�

A simplification of the argument above (when there is no contribution from the

j + 1 interval) yields the following lemma whose proof we omit because it follows from

the previous lemma.
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Negative Moments of L–Functions 23

Lemma 3.6. For 0 ≤ j ≤ K, let �j be even parameters such that
∑

h≤K �hNh ≤ 2g. Then

we have

∑
D∈H2g+1

K∏
h=0

E�h

(
kPIh(D; NK)

)
≤ q2g+1N

k2B(NK )2

2

(
log 1

NKβ

)2γ (NK )

K

× exp
(
O

(
k2

(
log

1

NKβ

)2γ (NK)

log log
(
k
(

log
1

NKβ

)γ (NK))))
.

4 Proof of Theorem 1.2

Here, we begin the proof of Theorem 1.2 and consider different ranges for β.

4.1 The range β � g− 1
k +ε , first step

Note that a sharp upper bound was obtained in the range β � g− 1
2k +ε in [3]. We then

assume that g− 1
k +ε � β � g− 1

2k +ε .

In what follows, the absolute constant A might change from line to line.

We first assume that k ≥ 1. In this case, we choose the parameters as follows:

N0 =
[4 logq g(d − 1/2)

kα(1 + ε) + 2ε

]
, s0 = 2

[ 2g

N0

]
, �0 = 2�sd

0/2�, (27)

for some 1/2 < d < 1, where

α = log(1/β)

log g
.

For 1 ≤ j ≤ K, we also choose

Nj = [r(Nj−1 + 1)], sj = 2
[ ag

2Nj

]
, �j = 2�sd

j /2�, (28)

for some constants a < 4, r > 1. We choose a, d, r such that

a(d − 1/2)

r
= 2 − kε

2
. (29)

For example, we can choose

a = 4 −
(kε

4

)2
, d = 16 + kε

16 + 2kε
, r = 8 − kε

8 − 2kε
. (30)
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24 A. Florea

We choose K such that NK is the largest integer of the form given in (28) for which

NK ≤ [k(log g)
5
4 ] − 1, (31)

Note that the conditions in Lemmas 3.2, 3.4, and 3.6 are satisfied with the above choices

of parameters.

We now use Lemma 3.1. If D /∈ T0, then there exists some 0 ≤ u ≤ K such that

1 <
(ke2

�0
PI0(D; Nu)

)s0
,

and we then get that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤
∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|k
(ke2

�0
PI0(D; Nu)

)s0
.

We use the pointwise bound in Lemma 2.1 for the L–function, and then

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤ qgkα(1+ε)
(ke2

�0

)s0 ∑
D∈H2g+1

(
PI0(D; Nu)

)s0
.

Now using Lemma 3.2, we get that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤ q2g+gkα(1+ε)+Ag/(log g)1/4
(ke2

�0

)s0
(s0/2)! (2e)s0B(N0)s0

×
(

log
1

N0β

)γ (N0)s0
(log N0)s0/2.

Using Stirling’s formula and the expression for �0 (equation (27)), we get that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤ q2g+gkα(1+ε)+Ag/(log g)1/4
exp

(
− s0(d − 1/2) log s0

)

× exp
(
s0 log

(
21/2e5/2kB(N0)

(
log

1

N0β

)γ (N0)√
log N0

))
. (32)

With the choice of parameters (27), it follows that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k = o(q2g). (33)
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Negative Moments of L–Functions 25

Now we consider the contribution from D ∈ T0. Using Lemma 3.1, it follows that

∑
D∈T0

1

|L(1/2 + β + it, χD)|k ≤ exp(O(k))
( ∑

D∈T0

S1(D) +
∑

D∈T0

S2(D)
)
.

Now using Lemmas 3.1 and 3.6, and the fact that
∏K

h=0(1 + e−�h/2) = O(1) (we will use

this several times throughout the paper), we have that

∑
D∈T0

S1(D) ≤ q2g
(
1 − q−(NK+1)β

)− 2gk
NK+1

(log g)k/2N
k
2 + k2B(NK )2

2

(
log 1

NKβ

)2γ (NK )

K

× exp
(
O

(
k2

(
log

1

NKβ

)2γ (NK)

log log
(
k2

(
log

1

NKβ

)2γ (NK))))
.

Since β � g− 1
2k +ε , it follows that NKβ → 0, so γ (NK) = 1. Now we use the expression (15)

for B(NK) and the expression (31). Recall that β � g− 1
k +ε and k ≥ 1. Then log(1/β) ≤ log g,

and

(
1 − q−(NK+1)β

)− 2gk
NK+1 ≤ exp

( 2g

(log g)5/4 log
1

β(log g)5/4

)
≤ q2g/(log g)1/4

.

It follows that

∑
D∈T0

S1(D) ≤ q2g+2g/(log g)1/4
exp

(
O

(
k2(log g)2 log log(k log g)

))
exp

(
k2(log g)2 log log g

)
.

(34)

Now we consider the contribution from S2(D). Using Lemmas 3.1 and Lemma 3.4 and

since r < 2, we have that

∑
D∈T0

S2(D) ≤ q2g+Ag/(log g)1/4
(log g)k/2

K−1∑
j=0

(K − j)
(
1 − q−(Nj+1)β

)− 2gk
Nj+1

× N
k/2+3k2B(Nj)

2
(

log 1
Njβ

)2γ (Nj)

j

( ke2

�j+1

)sj+1
(sj+1/2)! 2sj+1B(Nj+1)sj+1

(
log

1

Nj+1β

)γ (Nj+1)sj+1

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k
(

log
1

Njβ

)γ (Nj)
)))

.
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26 A. Florea

Using Stirling’s formula, we get (similarly as in [3]):

∑
D∈T0

S2(D) ≤ q2g+Ag/(log g)1/4
(log g)k/2

K−1∑
j=0

(K − j)
√

sj+1 exp
(2gk

Nj
log(1/β) − 2gk

Nj
log(Nj)

− (d − 1/2)sj+1 log sj+1 + sj+1 log
(
21/2e3/2kB(Nj+1)

(
log

1

Nj+1β

)γ (Nj+1))

+ (log Nj)
(
3B(Nj)

2k2(log
1

Njβ
)2γ (Nj) + k/2

))

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k
(

log
1

Njβ

)γ (Nj)
)))

.

Now using formula (28), we have

sj+1 = ag

rNj
+ O

( g

N2
j

+ 1
)
,

and

log sj+1 = log
g

Nj
+ O(1).

Hence, it follows that

∑
D∈T0

S2(D) ≤ q2g+Ag/(log g)1/4
(log g)k/2

K−1∑
j=0

(K − j)
√

sj+1 exp
(g log g

Nj

(
2kα − a(d − 1/2)

r

)

(35)

+ g log Nj

Nj

(a(d − 1/2)

r
− 2k

)
+ ag

rNj
log

(
21/2e3/2ckB(Nj+1)

(
log

1

Nj+1β

)γ (Nj+1))

+ (log Nj)
(
3B(Nj)

2k2(log
1

Njβ
)2γ (Nj) + k/2

))

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k
(

log
1

Njβ

)γ (Nj)
)))

,

for some absolute constant c (not depending on k).

Since β � g− 1
k +ε , and given (29), we have 2kα − a(d−1/2)

r ≤ −kε. Since k ≥ 1,

we also have a(d−1/2)
r − 2k ≤ −kε/2, and hence the expression above is increasing as a
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Negative Moments of L–Functions 27

function of j. Then we have:

∑
D∈T0

S2(D) ≤ q2g+Ag/(log g)1/4
K(log g)k/2 exp

(g log g

NK−1

(
2kα − a(d − 1/2)

r

)

+ g log NK−1

NK−1

(a(d − 1/2)

r
− 2k

)
+ ag

rNK−1
log

(
21/2e3/2ckB(NK)

(
log

1

NKβ

)γ (NK))

+ (log NK−1)
(
3B(NK−1)2k2(log

1

NK−1β
)2γ (NK−1) + k/2

))

× exp
(
O

(
k2(log g)2 log log(k log g)

))
.

Given (27) and (31), we have that K � log log g. Note that the term involving NK−1 is

negative, so we can bound

∑
D∈T0

S2(D) ≤ q2g+Ag/(log g)1/4
exp

(
O

(
k2(log g)2 log log(k log g)

))
, (36)

where we used the fact that log(1/β) � log g. Combining the bounds (33), (34), (36) leads

to

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k ≤ q2g+Ag/(log g)1/4
exp

(
O

(
k2(log g)2(log log(k log g)

))
(37)

× exp
(
k2(log g)2 log log g

)
.

(Recall that A could change from line to line and does not depend on k).

Now using Hölder’s inequality, we have that

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k ≤
( ∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|km

) 1
m

( ∑
D∈H2g+1

1
)m−1

m
,

and using the bound (37), we get that

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k ≤ q
2g+ Ag

m(log g)1/4 exp
(
2mk2(log g)2 log log g

)
.
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28 A. Florea

We choose m =
√

g

k(log g)9/8
√

log log g
, and then it follows that

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k ≤ q2g+Ck
√

g(log g)7/8
√

log log g, (38)

for some C > 0, which does not depend on k.

4.2 The case β � g− 1
k +ε , the second step

We will now repeat the argument above to improve the bound (38). Throughout the

argument, rather than using the large sieve inequality (Lemmas 3.2 and 3.4), we will use

Lemmas 3.3 and 3.5. We again first assume that k ≥ 1.

We will make the following choice of parameters:

N0 =
[√

g(d − 1/2)(log g)1/8

4Ck(log q)
√

log log g

]
, s0 = 2

[ g

2N0

]
, �0 = 2�sd

0/2�, (39)

where C is the constant in (38). For 1 ≤ j ≤ K, we pick Nj, sj, �j as in (28). We choose a, d, r

such that

a(d − 1/2)

r
= 1 − 4kε. (40)

For example, we can pick

a = 2(1 − 3kε)

1 − 2kε
, d = 2 − 7kε

2 − 6kε
, r = 1

1 − 2kε
, (41)

and we choose K such that NK is the largest integer of the form (28) such that

NK ≤ c1g, (42)

where c1 > 0 is a small constant such that

c1−d
1 ad21−d

r1−d − 1
g + 4c1r

r − 1
g + gdN1−d

0 < (2 − a)g. (43)

Note that it is possible to choose such a constant c1 since the last term above is of size

o(g).
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Negative Moments of L–Functions 29

Also note that the condition (43) above ensures that

K∑
h=0

�hNh ≤ 2g,

and that

j∑
h=0

�hNh + sj+1Nj+1 ≤ 2g,

for j ≤ K − 1. Indeed, note that

K∑
h=0

�hNh + sj+1Nj+1 ≤ �0N0 +
K∑

h=1

�hNh + ag ≤ (sd
0 + 2)N0 +

K∑
h=1

(sd
h + 2)Nh + ag

≤ gdN1−d
0 + 2

K∑
h=0

N1−d
h +

K∑
h=0

adgdN1−d
h + ag.

In the above, we used the fact that �h ≤ sd
h + 2 for h ≤ K. Further using the fact that

Nh ≤ 2rhN0, and computing the geometric series above shows that with the choice (43),

indeed the two conditions in Lemmas 3.5 and 3.6 are satisfied.

Now we proceed as in the previous step. If D /∈ T0, then there exists some

0 ≤ u ≤ K such that

1 <
(ke2

�0
PI0(D; Nu)

)s0
,

and we then get that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤
∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|k
(ke2

�0
PI0(D; Nu)

)s0
.

Rather than using the pointwise bound for the L–function, we use the Cauchy–Schwarz

inequality and we then have

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤
(ke2

�0

)s0
( ∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|2k

)1/2

×
( ∑

D∈H2g+1

PI0(D; Nu)2s0
)1/2

.
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30 A. Florea

For the first term above, we can use the bound (38), while for the second we use

Lemma 3.3 and Stirling’s formula, and we get that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤ q2g+1+Ck
√

g(log g)7/8
√

log log g exp(−s0(d − 1/2) log s0)

× exp
(
s0 log

(
21/2e5/2kB(N0)

(
log

1

N0β

)γ (N0)√
log N0

))
.

With the choice of parameters (39), we have

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k = o(q2g). (44)

Now we proceed as before and we have that

∑
D∈T0

1

|L(1/2 + β + it, χD)|k ≤
∑

D∈T0

S1(D) +
∑

D∈T0

S2(D).

Using Lemmas 3.1 and 3.6, we have that

∑
D∈T0

S1(D) ≤ q2g+1 exp
( 2gk

NK + 1
log

1

1 − q−(NK+1)β

)
(log g)k/2N

k
2 + k2B(NK )2

2

(
log 1

NKβ

)2γ (NK )

K

× exp
(
O

(
k2

(
log

1

NKβ

)2γ (NK)

log log
(
k
(

log
1

NKβ

)γ (NK))))
.

With the choice (42) for NK , note that we have NKβ → ∞, so γ (NK) = 0. We have

exp
( 2gk

NK + 1
log

1

1 − q−(NK+1)β

)
= O(1),

and then

∑
D∈T0

S1(D) ≤ q2g+1 exp
(
O(k2 log log k)

)
(log g)k/2gk(k+1)/2. (45)
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Negative Moments of L–Functions 31

Now we proceed as before to deal with the term S2(D), but use Lemma 3.5 instead of

Lemma 3.4. Similarly to the bound (35), it follows that

∑
D∈T0

S2(D) ≤ q2g+1(log g)k/2
K−1∑
j=0

(K − j) exp
(g log g

Nj

(
2kα − a(d − 1/2)

r

)
(46)

+ g log Nj

Nj

(a(d − 1/2)

r
− 2k

)
+ ag

rNj
log

(
e3/2ckB(Nj+1)

(
log

1

Nj+1β

)γ (Nj+1))

+ (log Nj)
(
B(Nj)

2k2(log
1

Njβ
)2γ (Nj)/2 + k/2

))

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k
(

log
1

Njβ

)γ (Nj)
)))

.

for some constant c > 0. Because β � g− 1
2k +ε , we have 2kα − a(d−1/2)

r ≥ kε, in light of (40).

We also have that a(d−1/2)
r − 2k < 0, since k ≥ 1.

We now claim that the contribution of S2 above is small. Indeed, we first consider

Nj such that γ (Nj) = 1, that is, those Nj for which Nj = o(1/β). Note that the third

term inside the exponential is negligible with respect to the first, and the term inside

the second exponential is negligible with respect to the fourth term inside the first

exponential. Then these terms will not affect the monotonicity of the function of j above,

and we consider

f (x) = g log g

x

(
2kα − a(d − 1/2)

r

)
+ g log x

x

(a(d − 1/2)

r
− 2k

)

+ k2
(1

2
+ ε

)2
(log x)

(
log

1

xβ

)2
/2.

Taking the derivative, setting it equal to 0, and using the fact that x = o(1/β) = o(g1−ε),

it follows that the function f (x) attains its minimum at some point x0 for which

g log x0

(
2k − a(d − 1/2)

r

)
= g log g

(
2kα − a(d − 1/2)

r

)(
1 + o(1)

)
.

Hence for Nj = o(1/β), we have that the function in the sum over j is decreasing

as a function of Nj for Nj ≤ δg(2kα− a(d−1/2)
r )/(2k− a(d−1/2)

r ) and is increasing for Nj >

δg(2kα− a(d−1/2)
r )/(2k− a(d−1/2)

r ) for some δ > 0. If 2k(2α − 1) ≤ a(d−1/2)
r , then since N0 �

√
g(log g)1/8/

√
log log g, we have that Nj > δg(2kα− a(d−1/2)

r )/(2k− a(d−1/2)
r ) for all j ≤ K − 1,

and hence the function of Nj in (46) is increasing. Then note that in this case, we get that

the contribution to (46) from those Nj with Nj = o(1/β) is negligible.
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If in (46) we consider the contribution from those Nj such that γ (Nj) = 0, that is,

Nj � 1/β, then we consider the function

f (x) = g log g

x

(
2kα − a(d − 1/2)

r

)
+ g log x

x

(a(d − 1/2)

r
− 2k

)
,

and we note that f (x) is decreasing for x ≤ eg(2kα− a(d−1/2)
r )/(2k− a(d−1/2)

r ) and increasing for

x ≥ eg(2kα− a(d−1/2)
r )/(2k− a(d−1/2)

r ). Hence, f (x) can only attain its maximum either at x � 1/β

or x = NK (the former is possible only when 1/β � g(2kα− a(d−1/2)
r )/(2k− a(d−1/2)

r ).) We note

that the contribution from Nj � 1/β in (46) is negligible. Bounding the contribution from

NK , and using the fact that α − 1 < 0, we get that

∑
D∈T0

S2(D) � q2ggk/2. (47)

Now if k ≥ 3/2, then since β � g− 1
k +ε , it follows that 2k(2α − 1) ≤ a(d−1/2)

r , so the

bound (47) holds in this case.

Putting things together (equations (44), (45), (47)), it follows that for k ≥ 3/2 and

β � g− 1
k +ε , then

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k ≤ q2g+1 exp
(
O(k2 log log k)

)
(log g)k/2gk(k+1)/2. (48)

This proves the bound (3) in Theorem 1.2.

If k < 3/2, let m be such that mk ≥ 3/2. Using Hölder’s inequality, we have that

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k ≤
( ∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|mk

) 1
m

( ∑
D∈H2g+1

1
)m−1

m
.

Since mk ≥ 3/2, we use (48), and it follows that

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k � q2g(log g)k/2g
k
2 (mk+1).

Picking m = 3/(2k), we get that

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k � q2g(log g)k/2g5k/4.

This finishes the proof of the bound (4) in Theorem 1.2.
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4.3 The range β � g− 1
k +ε

Here, we choose the parameters as follows:

N0 =
[ logq g(4(d − 1/2) + 2kα − a(d−1/2)

r )

kα(1 + δ)

]
, s0 = 2[2g/N0], �0 = 2�sd

0/2�, (49)

where we choose

a = 4 − kε, d = 8 − 3kε

8 − 2kε
, r = 2 − kε

2 − 3kε
,

so that

a(d − 1/2)

r
= 2 − 3kε. (50)

For 1 ≤ j ≤ K, we choose Nj, sj and �j as in (28). We choose NK to be the greatest integer

of the form given in (28) such that

NK ≤ c2g, (51)

where c2 is a small constant such that

4c1−d
2 adr1−d

r1−d − 1
g + 8rc2

r − 1
g + 2(4dgd)N1−d

0 ≤ (4 − a)g.

The third term above is of size o(g), so it possible to pick such a c2. Note that the above

ensures that the conditions in Lemmas 3.2, 3.4, and 3.6 are satisfied (see the explanation

following the choice (43).) We now proceed similarly as in the previous case.

If D /∈ T0, then for some 0 ≤ u ≤ K, we have

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤
∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|k
(ke2

�0

)s0
(PI0(D; Nu))s0 . (52)
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Now using the pointwise bound in Lemma 2.1 for the L–function in (52) and Lemma 3.2,

similarly to equation (32), it follows that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k ≤ q2g+gkα(1+δ)+Ag/(log g)1/4
exp

(
− s0(d − 1/2) log s0

)

× exp
(
s0 log

(
21/2e5/2kB(N0)

(
log

1

N0β

)γ (N0)√
log N0

))
.

Note that with the choice (49), it follows that

∑
D/∈T0

1

|L(1/2 + β + it, χD)|k � q2g+g(1+δ)(kα−1+2kε). (53)

Now we consider the contribution from D ∈ T0. Using Lemma 3.1, it follows that

∑
D∈T0

1

|L(1/2 + β + it, χD)|k �
∑

D∈T0

S1(D) +
∑

D∈T0

S2(D).

Now using Lemma 3.6 and similarly to the previous case, we have that

∑
D∈T0

S1(D) � q2g(log g)k/2N
k
2 + k2B(NK )2

2

(
log 1

NKβ

)2γ (NK )

K

× exp
(
O

(
k2

(
log

1

NKβ

)2γ (NK)

log log
(
k
(

log
1

NKβ

)γ (NK))))
,

and hence

∑
D∈T0

S1(D) � q2g(log g)k/2 exp
(
k2

(
log

1

gβ

)2
log g

)
. (54)
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We now evaluate the contribution from S2(D). Using Lemma 3.4, and similarly to equation

(35), we get that

∑
D∈T0

S2(D) ≤ q2g+Ag/(log g)1/4
(log g)k/2

K−1∑
j=0

(K − j)
√

sj+1 exp
(g log g

Nj

(
2kα − a(d − 1/2)

r

)

+ g log Nj

Nj

(a(d − 1/2)

r
− 2k

)
+ ag

rNj
log

(
21/2e3/2ckB(Nj+1)

(
log

1

Nj+1β

)γ (Nj+1))

+ (log Nj)
(
3B(Nj)

2k2(log
1

Njβ
)2γ (Nj) + k/2

))

× exp
(
O

(
k2

(
log

1

Njβ

)2γ (Nj)

log log
(
k
(

log
1

Njβ

)γ (Nj)
)))

,

for some c > 0. Since β � g− 1
k +ε and in light of (50), we have that 2kα − a(d−1/2)

r ≥ kε. We

rewrite the above as

∑
D∈T0

S2(D) ≤ q2g+Ag/(log g)1/4
(log g)O(1)

K−1∑
j=0

exp
(

g log g

Nj

(
2kα − a(d − 1/2)

r

)

+ g log Nj

Nj

(a(d − 1/2)

r
− 2k

)
+ O

( g

Nj
log log g

)
+ O

(
(log g)3

))
.

It follows that the maximum of the sum over j above can be attained either when

j = 0 or for j = K − 1 (the latter is possible only if a(d−1/2)
r − 2k < 0). Plugging in the

values of N0 and NK−1, it follows that the maximum is attained at j = 0, and keeping in

mind the expression (49) for N0, we obtain that

∑
D∈H2g+1

S2(D) � q2g+g(1+δ)(kα−1+2kε).

Combining the equation above, (54) and (53) finishes the proof of Theorem 1.2.

5 The Asymptotic Formula

Here, we will prove Theorem 1.3.

Proof. We write

∑
D∈H2g+1

1

L
(

1
2 + β, χD

)k
=

∑
D∈H2g+1

∑
h∈M

χD(h)τ−k(h)

|h|1/2+β
, (55)
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where τ−k is the generalized divisor function (i.e., the multiplicative function that is

given by

τ−k(Pr) = (−1)r
(

k

r

)
,

for P a prime and r a positive integer, and where
(
kr

)
is the generalized binomial

coefficient.) In equation (55), we truncate the sum over h and we write

∑
D∈H2g+1

1

L
(

1
2 + β, χD

)k
=

∑
D∈H2g+1

∑
h∈M<X

χD(h)τ−k(h)

|h|1/2+β
+

∑
D∈H2g+1

∑
h∈M≥X

χD(h)τ−k(h)

|h|1/2+β
,

for some parameter X that we will choose later. For now, we can think of X � g. Let M1

denote the first term above, and M2 the second. For M2, we use Perron’s formula (10) for

the sum over h and we have

M2 = 1

2π i

∮ ∑
D∈H2g+1

1

L
(

z
q1/2+β , χD

)k
zX(z − 1)

dz,

where we are integrating over a circle of radius 1 < |z| < q	β . We can pick for example

|z| = q	β/2, and then using Theorem 1.2 it follows that

M2 � q2g−X	β/2
( 1

	β

)
g

k
2

(
1+max{k,3/2}

)
(log g)k/2.

Since 	β � max{g−1/k+ε , log g/g}, we have that 1/	β � g, so

M2 � q2g−X	β/2g
1+k/2

(
1+max{k,3/2}

)
(log g)k/2. (56)

We now focus on M1. We write M1 = M(�) + M( �= �), corresponding to whether h is a

square or not in the expression for M1. When h �= �, we use Lemma 2.3, and we get that

M( �= �) � qg
∑

h∈M<X
h�=�

|τ−k(h)|
|h|1/2+	(β)

|h|ε .

Trivially bounding the sum over h yields

M( �= �) � q
X
2 +g+εg. (57)
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Now for the term M(�), we use Lemma 2.2 and we rewrite

M(�) = q2g+1

ζq(2)

∑
h∈M<X/2

τ−k(h2)

|h|1+2β

∏
P|h

(
1 + 1

|P|
)−1 + O(qεg). (58)

We look at the generating series of the sum over h, and we have

∑
h∈M

τ−k(h2)

|h|1+2β

∏
P|h

(
1 + 1

|P|
)−1

udeg(h) =
∏
P

(
1 +

∞∑
j=1

( k
2j

)
uj deg(P)

|P|j(1+2β)

(
1 + 1

|P|
)−1)

= Z
( u

q1+2β

)(k
2)A(u; β), (59)

where A(u; β) is given by a Euler product, which converges in a wider region (e.g., for

|u| <
√

q.) Using Perron’s formula (10) in (58), we get that

M(�) = q2g+1

ζq(2)

1

2π i

∮ Z
(

u
q1+2β

)(k
2)A(u; β)

(1 − u)u[X/2]+1
du,

where we are integrating along a small circle around the origin. We can shift the contour

of integration to |u| = q2	β(1−ε), and encounter the pole at u = 1. We evaluate the residue

of the pole at u = 1 and bound the contribution from the contour |u| = q2	β(1−ε). We get

that

M(�) = q2g+1

ζq(2)
ζq(1 + 2β)(

k
2)A(1; β) + O

(
q2g−X	β(1−ε)

( 1

	β

)(k
2)+1)

.

Since X � g and 1/	β � g, we have that

M(�) = q2g+1

ζq(2)
ζq(1 + 2β)(

k
2)A(1; β) + O

(
q2g−X	β(1−ε)gk(k−1)/2+1

)
. (60)

Now we combine the bounds (56), (57), and (60), and pick X = 2g(1 − 2ε). Then it follows

that

1

|H2g+1|
∑

D∈H2g+1

1

L
(

1
2 + β, χD

)k
= ζq(1 + 2β)(

k
2)A(1; β) + O

(
q−g	β(1−2ε)g

1+k/2

(
1+max{k,3/2}

)

× (log g)k/2
)
.
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The conclusion now follows after a relabeling of the ε. �

Proof of Corollary 1.4. This easily follows from Theorem 1.3. Indeed, if k ≥ 1 and

	(β) � g− 1
k +ε , then Theorem 1.3 provides an asymptotic formula. If k < 1, then we

rewrite Theorem 1.3 as

1

|H2g+1|
∑

D∈H2g+1

1

L
(

1
2 + β, χD

)k
= ζq(1 + 2β)(

k
2)A(1; β) + O

(
q−g	β(1−ε)g1+5k/4(log g)k/2

)
.

Note that the main term above is of size (1/β)k(k−1)/2. If g	β(1 − ε) log q > (1 + 5k/4 +
k(1 − k)/2 + ε) log g, then indeed the expression above indeed provides an asymptotic

formula. Corollary (1.4) follows after a relabeling of ε. �
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