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We consider negative moments of quadratic Dirichlet L-functions over function fields. Summing
over monic square-free polynomials of degree 2g+ 1 in ]Fq[X], we obtain an asymptotic formula
for the k*™® shifted negative moment of L(1/2+ 8, Xp), in certain ranges of 8 (e.g., when roughly
B > logg/g and k < 1). We also obtain non-trivial upper bounds for the k" shifted negative
moment when log(1/8) <« logg. Previously, almost sharp upper bounds were obtained in [3]
in the range g > g_%k+€.

1 Introduction

Let M (T) denote the 2k'™ moment of the Riemann zeta-function. Namely, we let

T
Mk(T)z/ |t (& +it)| #dt.
0

Hardy and Littlewood [17] showed that M;(T) ~ TlogT, and Ingham [20] showed that
M, (T) ~ #T(log T)*. It is conjectured that

kz
M, (T) ~ A, T(log T)¥",
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2 A.Florea

for some constant A;, whose precise value was predicted by Keating and Snaith [23],
using analogies with random matrix theory. No moment higher than 4 has been rigor-
ously computed so far. Soundararajan [32] obtained almost sharp upper bounds, condi-
tional on the Riemann hypothesis. More precisely, he showed that M (T) < T(log Tk +e,
for any € > 0. Refining Soundararajan’s method, Harper [18] obtained upper bounds of
the correct order of magnitude for moments of the Riemann zeta-function, by removing
the € on the power of log T, again on the Riemann hypothesis.

Focusing on the family of quadratic Dirichlet L-functions, Jutila [21] obtained

asymptotics for the first and second moment of this family. He showed that

S L(%,xd) ~ ¢,DlogD,
0<d<D

where the sum above is over fundamental discriminants, and that

* (1 2 3
> L(E,Xd) ~ C,D(log D)%,
0<d<D

for some explicit constants C; and C,. Soundararajan [31] obtained an asymptotic
formula for the second moment with a power savings error term, and also obtained
an asymptotic for the third moment. The cubic moment was independently computed
using multiple Dirichlet series in [8]. More recently, a lower order term of size D34 was
explicitly computed for the cubic moment by Diaconu and Whitehead [9] and by Diaconu
in the function field setting [7]. Conditional on the Generalized Riemann Hypothesis,
Shen [30] obtained an asymptotic with the leading order term for the fourth moment.

Generally, it is conjectured that

* 1 k k(k+1)
D L(E,Xd) ~ ¢, D(logD) "7,
0<d<D

(1)

and the precise value of C; follows from work of Keating and Snaith [22], again using
random matrix theory. Conrey, Farmer, Keating, Rubinstein, and Snaith [5] further
refined this conjecture, including lower order terms in the asymptotic formula (1). The
approach used by Soundararajan and Harper in obtaining upper bounds for moments
of ¢(s) yields upper bounds of the right order of magnitude for the family of quadratic
Dirichlet L-functions conditional on GRH, while work of Rudnick and Soundararajan
[29] provides unconditional lower bounds of the right order of magnitude for rational k.

In the case of the Riemann zeta-function, sharp unconditional bounds are obtained in
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Negative Moments of L-Functions 3

[27] and [19] for small values of k, and the methods used can be adapted to the case of
quadratic L-functions. Over function fields, the first moment was computed by Andrade
and Keating [1], and a lower order term was identified in [13]. Higher moments, up to the
fourth, were obtained in [11, 12], as well as almost sharp upper bounds on all the positive
moments.

While all the results mentioned above hold for positive moments in families of
L—functions, much less is known about negative moments, even at a conjectural level.
In the case of the Riemann zeta-function ¢(s), a conjecture due to Gonek [15] states the

following.

Conjecture 1.1 (Gonek). Let k > 0 be fixed. Uniformly for 1 < § <logT,

P oG g ) e (5T)

and uniformly for0 < § <1,

. . N (log T)¥* ifk <1/2,
1 1 N
7"/1 ’((5 + Tog T +lt)) dt =< 1 (log g)(logT)k2 ifk=1/2,

s1-%k(log T  ifk > 1/2.

Random matrix theory inspired ideas (see [2, 14]) seem to suggest certain transi-
tion regimes in the formulas above when k = (2n + 1)/2, for n a positive integer. While
obtaining lower bounds for the negative moments is a more tractable problem (Gonek
[15] proved lower bounds of the conjectural correct order of magnitude for 1 <§ <logT
and all kK > 0 and for 0 < § < 1 for k < 1/2 conditional on the Riemann Hypothesis),
obtaining upper bounds is a more difficult problem, and no progress has been made
so far on the problem in any family of L-functions (recent work in progress of the
author and H. Bui addresses the question of obtaining upper bounds in some ranges
of §).

In the case of quadratic Dirichlet L-functions, when studying the k"' negative
moment, random matrix theory computations due to Forrester and Keating [14] seem
to suggest certain transition regimes for small shifts (i.e., shifts smaller than 1/logX,
where X is roughly the size of the family.) More precisely, the computations in [14]
suggest certain jumps in the asymptotic formulas when k = 2j + 1/2, and j a positive

integer.
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4 A.Florea

Very recently, almost sharp upper bounds were obtained for negative moments of
quadratic Dirichlet L-functions over function fields [3] when the shift in the L-function is
big enough. Specifically, if Hog1 denotes the ensemble of monic, square-free polynomials

of degree 2g + 1 over ]Fq[x], let L(s, xp) denote the L-function associated to the quadratic

character xp. Then it is shown in [3] that for g > g_Tllc+€, we have
1 1 @ k(k+1)
Z < (—) (logg) 2z . (2)
k
[Hog i1l DeHagin IL(1/2 + B, xp)| B

Note that it is expected that the upper bound above is sharp, up to the logarithmic factor.

In this paper, we treat the range when 8 « g_zik“, which is more difficult. The
closer we are to the critical line, the more difficult the problem becomes, due to the
closer proximity of zeros. Here, we obtain non-trivial upper bounds for small shifts g
with log(1/8) <« logg. In certain ranges where 8 is big enough (i.e., 8 > g~ /**¢), we
prove a more precise analogue of Gonek’s conjecture, obtaining an asymptotic formula.
We remark that asymptotic formulas for negative moments of L(1, x;) were obtained
by Granville and Soundararajan [16] in the number field setting and by Lumley [25] in
the function field setting. The techniques used in those papers are different, as one
considers moments far from the critical point 1/2, and the L-functions in those cases
can be modeled by random Euler products. In our work, we obtain asymptotic formulas
or upper bounds when the shift goes to zero with the size of the family. More precisely,

we prove the following.

Theorem 1.2, Letk > 0,8 > 0,and ¢,8 > 0, such that log(1/8) « logg. Then

1 1

1 . k
L(g +B +lthD)’

|H2g+1 | DEH29+1

. _1
(log g)¥/2 gkk+1)/2 iff > g ¥, k> 3/2, (3)

< | (log g)¥/?2gok/ ifB>g ¥, k <3/2, @)

log(1/6)
qg(1+5)(k L 1+2ke) i 20(9_%4_5). (5)

Note that Theorem 1.2 above holds for any t (the L-function is periodic as a

function of t).
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Negative Moments of L-Functions 5

We also refine Theorem 1.2 to obtain an asymptotic formula in the following case.

Theorem 1.3. Let k > 0 and € > 0. Then for R > max{g*%“, logg/g}, we have

1 1

_ ) ‘ —gR(B)(1—e), 1TK/2 (1+max{k,3/2})
T : 7 =4 +2WA; ) +0(q g
g+ D€H2g+1 L(E =+ ,3, XD)

x (logg)™ 2),

with A(1; 8) given in equation (59).

We note that the theorem above provides an asymptotic formula when k > 1 and
RB > g_%“. Ifk < 1,then one needs % > c; log g/g, for c; a specific constant depending

on k. We record this in the following corollary.

2
% +1)log,g

Corollary 1.4. Letk,¢,C > 0. Then for R > max {Cg_%“, (1 +e)( 5 ],we have

1 1

k
=¢,(1+28)@A1; B + o(1)).
|Hzg+1| DeHag+1 L(% + B, XD)k ;

Note that Corollary 1.4 allows one to obtain an asymptotic formula for the
negative moments when g is as small as roughly logg/g, as long as k < 1. We note
that the term 1 + 7k/4 — k?/2 could be slightly improved in the corollary above, but we
have decided not to focus on that. It would be of interest to be able to obtain asymptotic
formulas in the range 8 > log g/g for all values of k.

The organization of the paper is as follows. In section 2, we provide some
background and the preliminary lemmas we will use throughout the paper. We prove
Theorem 1.2 in section 4 and Theorem 1.3 in section 5. The proof of Theorem 1.2 starts
in a similar way as the proof of Theorem 1.3 in [3], and uses sieve theoretic inspired
ideas. This circle of ideas has recently been used successfully in a variety of settings, as
in [18, 24, 26, 32].

The difference from [3] that allows one to extend the range of 8 (in Theorem 1.2,
one obtains almost sharp bounds for g > g~ 1/k¥*¢ as opposed to g > g~ 1/@R+< in [3])
is the use of the large sieve for quadratic characters rather than simple orthogonality

of characters. However, the quadratic large sieve introduces a factor of g¢9 in the upper
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6 A.Florea

bound, hence one needs to use more care to refine the initial bound of size g9 to a bound
of the form g®. When performing the first step of the argument, one has to use an a
priori bound for negative moments coming from a pointwise bound for the inverse L—
function. Once we obtain the upper bound of size g9 (and keep track on the dependence
on k in the bound), we do the second step of the argument, but use as an a priori bound
for the negative moments the bound obtained in the previous step. When the shift is

bigger than g—1/k+¢

, the argument described above gives an almost sharp upper bound,
up to some logarithmic factors. This allows us to further refine the result and obtain the

asymptotic formula in Theorem 1.3 in that range.

2 Background in Function Fields

Here we gather some basic facts about L-functions in function fields. Many of the proofs
can be found in [28].

Let M denote the set of monic polynomials over F,[x], M, the set of monic
polynomials of degree n, M_,, the set of monic polynomials of degree at most n, and
M., the set of monic polynomials with degree at least n. Let H,, denote the set of
monic, square-free polynomials of degree n, and P the ensemble of monic, irreducible
polynomials. The symbol P will stand for a monic, irreducible polynomial. Note that
IM,| =q" and forn > 1, |H,| = ¢" (g —1).

For a polynomial f in F [x], let |f] := q9e8) denote the norm of f. For fR(s) > 1,
the zeta-function of F[x] is defined by

o= U,i' =[Ja -1
P

feM

Since M, | = ", we see that
1
£(®) = T s

It is sometimes convenient to make the change of variable u = g~%, and then write
Z(u) = Zq(s), 80 that

Z(u) =

1—qu’

The Mobius function u is defined as usual by w(f) = (=1)*Y) if f is a square-free
polynomial and where o (f) = > pr 1, and 0 otherwise.

£20Z Jaquajdasg g uo Josn auIAl| ‘eluloljed Jo AusiaAlun Aq Z¢S86 1 2/8 1 | PRUL/UIWI/EE0 | 0 /10P/a[0I B-80uBApPE/UILWI/WOD dnoolWwapese//:sdjy Wwol) papeojumoq



Negative Moments of L-Functions

The Prime Polynomial Theorem states that

n n/2
> 1= Lot
PeP n n

deg(P)=n

We will also use the Prime Polynomial Theorem in the less precise form

qn

PeP
deg(P)=n

(See, e.g., formula 2.1 in [6].)

7

(6)

For P a monic irreducible polynomial, the quadratic residue symbol (ch,) € {0,£1)}

is defined by

(JI_Z) = FIPI=1/2(mod P).

If 0 = P{"P;* ... P{", then the Jacobi symbol is defined by

&-ne”

j=1 *J

The Jacobi symbol satisfies the quadratic reciprocity law. Namely, if A,B € F,lx] are

relatively prime, monic polynomials, then

(é) _ (_1)@-Ddeg@ deg(B)/Z(E).
B A

For D monic, we define the character

1@ = (7).

and consider the L-function attached to xp,

L(s, xp) := Z X;ﬁ{).
feM
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8 A.Florea

With the change of variable u = q—%, we have

L, xp) =L xp) = 2 xpHu® =[] (1 - xp@ud®)~". (8)
feM PeP

For D € Hyg,y, L(u, xp) is a polynomial in u of degree 2g satisfying the functional

equation

1
£ o) = @ L( o xp)- ©)

The Riemann Hypothesis for curves over function fields was proven by Weil [33],
so all the zeros of L(u, xp) are on the circle |u| = g~1/2.
We will use the following pointwise upper bound for the inverse of the L-

function.

Lemma 2.1. For0 < 8 K @, t € R and any ¢ > 0, we have
1 1 1
- < exp (ﬂ log (—))
IL(1/2 + B +1t, xp)| log, g B

Proof. See Lemma 5.3 and Remark 5.1 in [3]. [ |

We also need the following estimates.

Lemma 2.2. For f € M, we have

1 -1
> o =1Hygl ] (1 + ﬁ) + 0, (If1).

DeHzg+1 P|f

Proof. See, for example, Lemma 3.4 in [4]. [ |

Lemma 2.3. For f not a square polynomial, we have

> )| < @I

DeHagt1

Proof. See Lemma 3.5 in [4]. [ |
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Negative Moments of L-Functions 9

Throughout the paper, we will frequently use the following analogue of Perron's
formula in function fields. If the power series > ;” ;a(n)u” is absolutely convergent in

lu| <r <1, then

1 - n du
>am =g (X emut) g (10)

n<N lul=r "n—o

Now let t € R and ¢ be an even integer. Let

tS
s<t =

Note that we have E,(t) > 0 for any ¢ since ¢ is even. We will use the fact that for ¢ < E/ez,

we have

el <(1+e ?E,@). (11)

For a proof, see, for example, [26].

Let v(f) be the multiplicative function given by

2 1

Let Q(f) denote the number of prime factors of f, counting multiplicity. We will use the

following result (see Lemma 3.2 in [6]).

Lemma 2.4. Let a(f) be a completely multiplicative function. Then for any interval I

and any s € N, we have that

(Z a(P))st! > alhv).

deg(P)el P|f=deg(P)el
Q(f)=s

We will also need the following form of the quadratic large sieve over function
fields [10].
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10 A.Florea

Lemma 2.5. Let a(f) be arbitrary complex numbers supported on monic polynomials,
and let n = O(g). We have

> S ahn®)| <@+ I aal,

DeHzgr1 feMy fife=0
for some absolute constant A > 0.

We note that the result in [10] could be improved to obtain a better bound than

A,

q g/(logg)1/4, but for the purpose of this paper, Lemma 2.5 above is enough.

3 Setup of the Proof and Initial Lemmas

We will first introduce some of the ideas in the proof of Theorem 1.2, and will state some
key lemmas. We will return to the proof of Theorem 1.2 in section 4.
Let

IO = (O!NO]III = (NO!NI]I v !IK = (NK—IINK]I

where N; are parameters we will choose later. Also, let s; and ¢; be even integers that we
will choose later on. For now, we can think of s;N; < g and Sk ot < g
Let

G+ 1) deg(P)g /N +DA
deg(P) +j(N + 1)

ag(P;N) = —cos(t deg(P)logq) Z (
j=0

_U+D deg(P)q*U'“)(N““HPFﬂ)
G+2)@+1) — deg(P)

We extend agz(P; N) to a completely multiplicative function in the first variable. As in [3],
for deg(P) < N, we have

lag(PiN)| <1+ (12)

q+DB 1’

if NB > 1, and

lag(P; )| < (% +¢) (108 Niﬂ) (13)
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Negative Moments of L-Functions 11

if N = o(1). Note that in [3] the weaker bound |a,(P; N)| < log (%) was used, which
was enough in that context, but the stronger bound above easily follows from [3]; see the
equation before (5.20).

We rewrite (12) and (13) into a single inequality as

la, (P; )| <B(N)(lo L)V(N) (14)
ﬂ r = g Nﬂ ’
where y(N) = 1if N = o(1) and y (W) = 0 if N8 > 1, and where
1 .
5 1€ if N =o(1
BWV) =12 p=o (15)
1+ gy IENA > 1.
It then follows that
1 \v@ne
. Q) _—
lag(f: N)| < BN) (logNﬂ) . (16)
For0<j,h <K,let
ag(P; N;) xp(P)
8 D
PLDiN) = >, o
|P|
deg(P)ely
Similarly as in [3], for h < K, let
T,={DeH }P(D'N)‘<E—h
h= € 29+1|h?5§XK LWV = a )
A minor modification of Lemma 5.4 in [3] gives the following lemma:
Lemma 3.1. We either have
max )P (D;N,)| > g_o
o<u<k | o' ke?’
or
1
< exp(0(k))(S; (D) + S,(D)), (17)

IL(1/2 + B +it, xp)|k
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12 A.Florea

where
ng
— Ng —
$,0) = (1— g e DF) T logg)k/ZH(1+e w2, (kP (D; Ny),
h=0
and
TH k)2
_ k/2 (N+1)ﬂ Nj+1
S,0) =(ogg¥? > > (1- )

0<j<K-1j<u<K

x ;Ho(l +e "AE, (kPIh(D N, )) ( ];2 P, (DN )) Eh

Proof. To obtain (17), note that if D € 7, then either D € T, for all h < K or there exists
some 0 <j<K-—1suchthatD e 7; forall h <j butD ¢ 7;+1.IfD € T, forall h <K,

then following the proof of Lemma 5.4 in [3], we have

klog|L(} + B +it, xp)| = ———log (1 — g~ ¥*¥)
K
ag(P;Ng)xp(P) k cos(2t deg(P) log q)
—k Z |P|L/2+5 ) Z |P|1+28 +0Q).
deg(P)<Ng deg(P)<Nk/2
PID

Now we use the fact that

1
2 iy =loglogg+0(D),
7 7|

bound cos(2t deg(P)log q) > —1 and use the Prime Polynomial Theorem (6) to get that

a4(P; Ng) xp(P)
|P| 1/24-8

2gk _
klog|L(3 + B +it, xp)| ZN +1log( —q (NK“)ﬂ)—k >
deg(P)<Ng

- glogNK - gloglogg + O(k).

We exponentiate the expression above and use inequality (11). Since D € 7;, for
all h < K, we obtain the first term in (17). We similarly obtain the second term in (17), if
Deﬁlforallhgj,buthéﬁﬂforsomeij—l. [ |

We will also need the following key lemmas.
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Negative Moments of L-Functions 13

Lemma 3.2. For Nys, < 4g and s, even, we have

1 (Vo)
Z (P, (D; )™ < ng+Ag/(logg)1/4(SO/2)! 250 (eB(NO))SO(log _)V 0)So

DeHog+
2g+1

for A > 0 an absolute constant.

Proof. Using Lemma 2.4, we have

ag(fi N V() xp(F)\2
. so _ 2 B u D
> P DiNY = ((s0/2)% > Fum ) 1
DeHagi1 DeHagy1  Plf=deg(P)ely
Q(f)=so/2
Using the large sieve in Lemma 2.5, we have
Z ( Z aﬂ(f;Nu)v(f)xD(f))z < (g% +q1\702i)qu/(logg)1/4
|f|1/2+/5 -
DeHagi1 Plf=deg(P)ely
Q(fH)=so/2
a N )a N )| v
Iflf2|1/2+ﬁ
Plfi1fo=deg(P)ely
Q(f1)=Q(f2)=s0/2
Af=0

We rewrite the condition f;f, = 0 as f; = DA% and f, = DB? with (4, B) = 1. Since we are
looking for an upper bound for (19), we remove the coprimality condition, and we use the
bound v(DA%)v(DB?) < v(D)v(A)v(B). Then

Noso 1/ lag (D; Ny)|?v(D)
(19) = (¢%9 +q 2 )g*9/0°89 > %
P|D=deg(P)ely
Q(D)<sg/2
Q(D)=sp/2 (mod 2)
( > |a,s(A;Nu)|2v<A))z
1+2
P|A=Pely A28
Q(A)=(s0/2—(D))/2
Noso 1/4 lag (D; Ny)|?v(D) 1
< (g% +q 7)o/ (o8? > - DI (Go/2 —a )3
PID=deg(P)ely 0 :
Q(D)<sp/2

Q(D)=s0/2 (mod 2)

. 2 so_
(s lag (P; Ny)| )2 20

1+28
Pely ||
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14 A.Florea

Arranging the polynomials D according to (D) and using Lemma 2.4, we further get
that

. /2
Ngsg 1/4 |aﬂ(P, Nu)|2 so/2 So 1
(19 < @9 +q 7 )qu/(logg) 2 : Z : : _
v (pezo w ) S (/2= D/

Jj=s0/2 (mod 2)
(20)

Suppose o = 5,/2(mod 2) € {0, 1}. In the sum over j above, write j = 2h + «. Then we have
that

sg/2—«a

So/2 1 & (52— @)/2\? (h!)2
JZI: N1 ((so/2 =D/2)H2 hZ::‘) ( h ) (2h 4+ a)! ((5p/2 — ) /2)!2
Jj=s0/2 (mod 2)
So/2-« ) S0/2—a
< 1 Z ((30/2 - Ol)/2> _ ((SO/Z—a)/Z)
((so/2 —)/2)1* =~ h ((59/2 — a)/2)!2
250
< m, (21)

where we have used Stirling’s inequality in the second line, and Striling’s approximation
in the third line. In the above, the implied constant is absolute and does not depend on
k.

Now in equation (20), we use the Prime Polynomial Theorem (7) for the sum over
P € I and the bound (14), and we have

(> |a,71(31|>1;i\2;>|2)so/2 < 507, 1o Niﬁ)yw”)so(f 1y

Pely n=1

1 )V(Nu)so

1 )V(Nu)SO
N, B

(log Ny + 2y)%/% < B(N,)® (1og

We further use the fact that

Nl ))/(Nu) < BV, ( log L)V(No)'

B(Nu)(log X NoB

Indeed, to prove the inequality above, note that if y(V,) = 1, then necessarily we also
have y (Ny) = 1, and N, = N = % + € in this case, so the inequality follows. If y (,,) = 0
and y(Ny) = 1, then notice that the left-hand side of the inequality above is bounded,

(log NO)SO/zeSO.
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Negative Moments of L-Functions 15

while the right-hand side goes to infinity. If y (V,,) = y (V) = 0, then the inequality easily
follows using the fact that Ny < N,.
Now combining the equation above, (18), (20), we get (after a possible relabeling

of the absolute constant A):

Nys, 1 y (No)s
> P (D) =(50/2)1 290G+ £)g 980" (@B (log ) (logNg)*™/2,
DEHngr] OIB
Since Njs, < 4g, the conclusion follows. [ |

We also have the following variant of the lemma above, which removes the

qA

having to choose a shorter Dirichlet polynomial.

9/1089)""* term introduced by the use of the large sieve inequality, at the expense of

Lemma 3.3. For Nys, < 2g and s, even, we have

) y (No)so (log NO)SO/Z '

> P (DN < q29“%(e3(1v0))50(10g NL
DEH29+1 (So/ ) 0/3

Proof. The proof is a simplification of the previous proof. Since P; (D; N,)® > 0, we

have

ag(f; Ny)v(H) xp ()
. s, . So — P - P
> PD;NYY < > P (DN =550 > 2 [f|1/2+P '
DeHagt1 DeMazgi1 DeMazgi1 PLfgS%g(P)EIo
=S0

IA

We interchange the sums over D and f, and note that since Q(f) = sy, we have deg(f)
Noso = 2g. Hence, if f # O, we have 3 pq,,,, Xp(f) = 0. Using the fact that v(f?)
v(f) /220, it follows that

A

|ag (F; N, 2 (f)
pIERLTAREND S RUT RSP D M el
DE’Hzg_H DEMzg_H P|f=deg(P)elp

Q(f)=s0/2

_ ng+13+l(z M)so/z‘

(s9/2)1 20/ \ £ |P[T+2P

Now we treat the sum over P € I similarly as in the proof of Lemma 3.2, and the

conclusion follows. |
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16 A.Florea

We also need the following two lemmas, the second of which is a variant of
the first. The first lemma uses the large sieve inequality; it has the advantage that it
allows one to choose a longer Dirichlet polynomial, but it introduces an extra term of
the form g49/ (log9'* in the upper bound. The second lemma uses a simpler orthogonality
of characters argument and removes the g49/1°89"* term, but only allows for shorter

polynomials.

Lemma 3.4. For 0 <j < K, let {; be even parameters, and let s;,; be even such that
22 h<jtpNp + 811Ny < 49.Letj < u < K. Then we have

J Sj+1 1/4 N; 1\Sj+1
> 1=, (kPIh(D;NJ-)) (PI],H(D;Nu)) I < qraraalloge) (s o)) (2 log ]’V—+) /
J

DeHagy1 h=0

2 2 . 2y ()
1 )V(Nj+1)5j+1N3k B(N;) (logw)
Nip. B J

X exp (O(kz(log NL_IB)ZY(Nj) loglog (k(log IvLﬂ)y(Nj)))),
J J

x BNy, )%+ (log

for some absolute constant A > 0.

Proof. LetJ C {0,...,j} be the subset of indices h such that E,, (kPIh (D;N;) > 1. Then

> ﬁ By, (kPy, @; ) ) (g, @; Nu))Sj - (22)

D€H25+1 h=0

< D HEezh(kPIh(D;l"j))(PIJ-H(D"Nu))SM

D€H2g+1 heJ

~ga2e 3 (T 2

kQ(fh)aﬂ (s lvj)v(fh)XD(fh))

|fp|1/2+F
DeHagr1 “hed Plfp=Pcly
Q(f) =<ty
. 2
« Y ag(fi1i N v () xp (1)
If; [1/2+B
Pl|fjr1=Peljy J*1
Q(fir1)=sj41/2
2
_ 2 v(B)c(B) xp(B)
= (8j41/2)! Z Z |B|1/2+P '

DeHagi1 P|B=deg(P)<Nj;;
deg(B)<> ey tnlNp+sjt1Njp1/2
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Negative Moments of L-Functions 17

where

cB = kX ap(fi Nag(fiiNy,).
B=([Tpes f)fj+1 heJ
Q(f)<tn

Q(fi+1)=8j+1/2
P|fp,=Pel} heJ
Plfj1=Pelj

Using the large sieve inequality in Lemma 2.5, we get that

v(B)v(By)|c(By)c(By)]
|BIBZ|1/2+;3

(22) < (5,,/2)12 (¢ + g>h= Wtsialin/2) gag/ (og ) /* >
B1By=0]

We write By = ([[pc; Ap)Aj1 and By = ([]4e; Cp)Cjyq- Note that the condition By B, = [
is equivalent to A;,C, =Ufor h <jand A;,C;, =LJ, since the A, and A;,, are pairwise
coprime (and the same holds for Cj, and C;,,). Using the condition that 2> ;,_; €, N} +
Sji1Njp1 < 49, we get that

2 2g44g/1 1/4 |a/3(Aj+1Cj+1}Nu)|V(Aj+1)V(Cj+1)
(22) < (sj41/2)'" ™9 g/(logg) Z et (23)
P|A]‘+1Cj+1=>PEIj+1 J+1Yj+1
Aj1Cia=U]

QAj+1)=22(Cj4+1)=8j+1/2

kAR a4 (A Chi N[ (Ap)V(Ch)
|AhCh|1/2+,B '

<[ 2

heJ P|ApChp=P<ly
ApCp=0
Q(Ap),Q(Ch) <ty

The conditions A;C;, =0 and A;,,C;,, = O can be rewritten as Ay, — DA%, Cj, — D, C2,
with (4, Cp) = 1 and A,y = Dj; A%, Cjyy = Dy CF,) With (A4, Cjyy) = 1. Removing
the coprimality conditions and using the bound v(fh?) < v(f)v(h) for any polynomials

f,h and v(f) < 1 for any f, we get that

1/4
(22) < (Sj+1/2)!2 q?9+49/(og9) Z
PlAj1Cj1 Djp1=Pelyy
SZ(AJ?JrleH):SZ(C]?HDJ»H):s]-“/Z

|25(Aj41Cii1Dj1i N PV (A1 )v(Ci ) )vDy )
|Aj1Cj1 Dy |12

(=
heJ P|AyCpDp=Pely,
Q(DpA2),Q(DRCH<Ly

kZQ(Ah)+2Q(Ch)+2Q(Dh) |aﬂ (AhChDh' IV]) |2V(Ah)U(Ch)U(Dh)
|AhChDh|l+2ﬁ ’
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18 A.Florea

For the product over h € J, we write J = J; U J,, where J; is the subset of indices
such that all P € I, with h e J; satisfy deg(P) < logq(sz(l\lj)z(logﬁ)Zy(Nj)).

Let J, = {j,,...} such that the interval I;, consists (possibly) of primes with
deg(P) < logq(sz(Nj)z(log ﬁ)ZV(NJ’)) and primes with logq(sz(Nj)z(log ﬁ)Zy(I\Ij)) <
deg(P) < N;,. We further write I, = I, UI,,, where I ; consists only of

primes with deg(P) < logq(sz(N]-)z(log ﬁ)zy(lvf)) and I, , consists of primes with
; .

logq(sz(Nj)z(log ﬁ)zy(ﬂij)) < deg(P) < N;,. In the product over primes in I, with h € J,

we then split the primes into primes in I, with h € J;, primes in I;, y, primes in I; ,, and

primes in J, \ {j,}. We trivially bound the contribution from primes in I, with h € J; or

from primes in Ijz,l using the bound (16). For example, for h € J;, we have

kZQ(Ah)+ZQ(Ch)+ZQ(Dh) |aﬂ (AhChDh; IVJ)|2V(Ah)U(Ch)U(Dh)
|AhChDh|1+2/3

( P|ApCpDp=Pel},
Q(DRA2),QDRCH<ty,

2y (N})Q(An)
K224 BN 22 An) ( log ﬁ)

V(AN 3
|Ah|1+2/3 )

2y (Npr
2 2 1 J
B ( K2 B(N;) r(log W)

rl ( Z |P|11+2ﬂ )r)

r<{p Pely

S (
P|Ap=Pely,
QAR =ty

3

< exp (BkZB(Nj)Z(IOgNL.'B)ZV(Nj)(Z%))'
J

PEIh

Taking the product over all the h € J; and the primes P € I;

i1, We get that this

contribution is bounded by

exp (3k2B(Nj)2(10g N%g)zywﬂ( > %))

! deg(P)<log, (K2B(N))2 log )™ ")

= exp (O(k (log W) loglog(k“(log W) J )) .
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Negative Moments of L-Functions 19

Now for the primes in I;, , and the primes in I;, with h € J, \ {j,}, we proceed as before,
and get that

K282 (AR)+2Q(Ch)+2R(Dp) |aﬂ (A,C,Dy; Nj) |2V(Ah)‘)(ch)‘)(Dh)
|AhChDh|1+2ﬂ

>

P|ApCpDp=Pelp,
QDpA2),Q(DRCE <ty

=

k2240 |a, (Ah;Nj)Fv(Ah))s

|Ah|1+2ﬁ
P|Ap=Pelj

km(Ah)B(Nj)m(Ah)(logﬁ

2y (N;j)S2(Ap)
) 3
|Ah|l+2,3 )

=<

P|Ap=>Pely,

2y (Nj)
2 2 1 J
KBy (log NTﬁ)

= H(l |P|1+28 )_3
e (log )"

2y (N;)
) 1 —3k2B(Nj)2(log ﬁ) " o
_H(( ~7) +0( e )>

where we have used inequality (16) in the third line, and where I = I; , or I = I for

J
h e Jy\ {2}
Using the last two bounds above, it follows that

kZQ(Ah)+2§2(Ch)+2§2(Dh) |a/3 (AhChDh; IVJ) |21)(Ah)U(Ch)l)(Dh) (24)
|AhChDh|1+2ﬂ

hEJ( P|ApCpDp=Pelp,
Q(DrA2),Q(DRC2) <ty

2 2 )7
1 \ —3k*B(V)) (log N—ﬁ)
I
del_[ , |P|
g(P)=<N;
4y ()
KBp* (log 15)

X exp ( Z |P|2Njﬂ )

deg(P)>log, (k2B(N;)?(log ﬁ)zywi)

X exp (O(kz(log Niﬂ)zwm log log (K (log Niﬂ)zﬂ"’f))))
J J

_ NSsz(Nf')Z(l"gNJIﬁ)MNj) 2 1 \2r@®p 2 1 Joyarp
=N, exp (O(k (log W) loglog (k (log W) J )))
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20 A.Florea

where the implied constant in the exponential term does not depend on k, and where
we have used Mertens’ theorem over function fields (see Lemma 3.6 in [4]) and the Prime
Polynomial Theorem (7).

To deal with the sum over Aj+1, Cj+1,
3.2 (see equations (20) and (21)), and it follows that

D;,, we proceed as in the proof of Lemma

5 ag(A;1Ci1D;y i Ny)2v(Aj )(Ciy V(D) 25i+1
. . L |1+28 . !
PlAj+1 Cj+1Dj+1 $P61j+1 |Aj+1 CJ+1D]+1 | (sj+1/2)'
QA% D1 1)=(C%, Dy 1)=5j11/2
|aﬁ(P}Nu)|2 Sj+1/2
X( Z |P|1—+2ﬁ) ' (25)

Peljn

For the sum over P € I] 11, we use the Prime Polynomial Theorem, and (14). Combining

(23), (24), and (25) and using the facts that

1 \v®w) 1 y NVj+1)
) =B (log =)

BW,)(1
( u)( OgNu,B Nj. B

’

it follows that

logV; s 1 \vWis;

1/4 1 +1 +1)Sj+1

(22) = q?9+49/0089 (5, o)1 (2, [ =T B ) (log )
i 118

3sz<Nj>2(log ﬁ)wﬂ 5 1 \2r@) ) 1 \2r@)
x N, exp (O(k (log W> loglog (k (log W) )))

A simplification of the argument above yields the following lemma.
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Negative Moments of L-Functions 21

Lemma 3.5. For 0 <j < K, let {; be even parameters, and let s;,; be even such that
2 h<i tnlNp +5j11N;yy < 2g. Letj < u < K. Then we have

k2B(V;)2 2y (Ny)
J log 1

j
Sj+1 2 N8
> T1E, (kPIh (D; Ny) (P,j+1 D; Nu)) < g9, i
DeHzgy1 h=0

S ! N s; 1 (Niy1)s;
« j+1 _ 2( log ]+1B(1Vj+1)) J+1(10g )V J+1)Sj+1
(sj11/2)1 25+1/2 1] N; N, B

X exp (O(kz(log 1\%/3)2)/(1\’;) loglog (k(log A%B)V(Nj)))).
J J

Proof. Since the summands are positive (because ¢;, and s;, are even, see the explana-

tion right before equation (11)), we have that
j , J .
> I, (kp,h (D; Nj)) (PIJ,+1 (D; Nu))s’+1 = 3 I]&, (kp,h (D; Nj)) (PI].+1 D; Nu))s’+1 ,

DE’Hzg_H h=0 DEM29+1 h=0

and

Z ﬁ Ey, (kPIh (D; NJ)) (PIj+1 (D; Nu))st =54,

DEM2g+1 h=0

J k2 a (s N (fi) xp ()

gYUns IV n) XpUhn
<X I T )
DeMoagi1 h=0 ° P|fy=>deg(P)ely, h

Q(fp) <ty

(26)

« Z aﬂ(fj+1?Nu)Vch+1)XD(fj+1))
[firq|1/2+B )
Plfj1=>deg(P)eljiy It
Q(fj+1)=sj+1

Interchanging the sums over D and fj, and f;;, note that if f, ... f;; # U, then

Z xp(fo - -fj+1) =0,

DeMagi1

since deg(fy...fi41) = Zﬂ:o epNy + 8;41N;; < 2g. It follows that in (26), we need

fo---fi+1 = 0, and since the f; are pairwise coprime, this happens if and only if each
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22 A.Florea

fn =0, for h < j + 1. Bounding v(f?) < v(f},)/2%"" and using the bound (16), we get that

j .
> T]E, (kP,h (D; Nj)) (P,j+1 (D; Nu))sf < g5,

DGMngrl h=0

J

A1
P|fp=deg(P)el}
Q(fn)<tn/2

(X

Plfj1=Peljyy
Q(fj+1)=5j+1/2

2y W)Q(fh)
V(fh)kzg(fh)B(Zvj)ZQ(fh)(logﬁ) Y (Nj)RUn

2920w |fy |1 +26 )

2y (N (fjr1)
B(Nu)ZQ(f}Jrl)(log Zﬁﬁ) J+1

zﬂ(fjﬂ)[fjﬂ |1+28

V(f}'ﬂ))

Si ! 1 Yy (Njy1)Sj11 1 Sj+1/2
2g+1 J+1 Sii1 TS+ I+
< g B W) (log ) (> )
(S;a/2 2572t Nji1B PZ [P1+2P

J V(fh)kZQ(fh)B(NJ,)ZQ(fh)(

I X
h=0 " P|f,=deg(P)el}
Q(fp)<tn/2

log 12 @20
o8 W)
292 (fh) |fh|1+2ﬂ )

For the sum over P ¢ Ij+1,

h € J, we proceed exactly as in the proof of the previous lemma. We then have

we use the Prime Polynomial Theorem (6), and for the sum over

j K2B(;)? (1 ) )ZVWJ')
Sj+1 —=z \'%8xgp
> TlE, (kPIh (D; NJ-)) (PI],+1 (D; Nu)) < @I, ;

D€M2g+1 h=0

Sjt1 Y (Njr1)Sj41
1 (o 300,0) 155
X

(st/z)! 25i+1/2

X exp (O(k2<log NLﬂ) loglog (kz(log Lﬂ)zy(Nj)))).

J

A simplification of the argument above (when there is no contribution from the
Jj + 1 interval) yields the following lemma whose proof we omit because it follows from

the previous lemma.
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Negative Moments of L-Functions 23

Lemma 3.6. For 0 <j < K, let ¢; be even parameters such that 2 h<k N < 2g. Then

we have

k2B(Ng)?

= 2g+1 2 (logﬁ
Z HEZh(kPIh(D;NK)) =q 9+ NK
DeHag+1 h=0

X exp (O(kz(log N:{ﬂ)zy(NK) loglog (k(log Nll{ﬁ)y(NK)))).

)ZV(NK)

4 Proof of Theorem 1.2

Here, we begin the proof of Theorem 1.2 and consider different ranges for §.

1
4.1 Therange 8> g k¢, first step

Note that a sharp upper bound was obtained in the range § > g*ZI*k+E in [3]. We then
assume that g_%“ LB <K g—leﬁf,
In what follows, the absolute constant A might change from line to line.

We first assume that k > 1. In this case, we choose the parameters as follows:

4log, g(d —1/2) 29 d
- L sg =222, ¢, = 27sd/2], 27
0 [ ka(l+€) + 2¢ ] So [No] 0 [50/21 (27)
for some 1/2 < d < 1, where
_ log1/p)
o= ——""
logg
For 1 <j < K, we also choose
— _ o[ 49 _ordd
Ny = [, + D), 5, = z[ﬁ] ¢ = 21s¢/21, (28)

J
for some constants a < 4,r > 1. We choose a, d, r such that

ad-1/2) _, ke
r o 2

For example, we can choose

4_(&)2 _ 16 + ke . 8 — ke
4/) "7 16+2ke’  8—2ke’
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24 A.Florea

We choose K such that Ny is the largest integer of the form given in (28) for which
Ny < [k(logg)i] — 1, (31)

Note that the conditions in Lemmas 3.2, 3.4, and 3.6 are satisfied with the above choices
of parameters.

We now use Lemma 3.1. If D ¢ 7, then there exists some 0 < u < K such that

ke?

S0
1< (ZPIO(D;Nu)) ,
and we then get that
1 1 ke? N
Z IL(1/2+ B +1it )|k = Z IL(1/2+ B +it )|k(TPIO(D;Nu)) 0-
D¢To ' XD DeHagi ' XD 0

We use the pointwise bound in Lemma 2.1 for the L-function, and then

1 (1l ( €%\ 50 ' s
> imarpragr =) X (o)

D¢7To DeHogi1

Now using Lemma 3.2, we get that

1 ke?\ s
> < qro okt A9 Qoe0) (2207 5, 121 (2€) 0B ()™
S L2+ B+ it, xp)| f

Using Stirling’s formula and the expression for ¢, (equation (27)), we get that

1 9 1/4
< g29+gka(1+e)+Ag/(logg)'/* oo (_S (d—1/2)logs )
2 LAz it g P Sl@ =1/ o8 s

X exp (So log (2” 2/ sz(No)(IOg 1\%3)?%), /logNO)). (32)
0

With the choice of parameters (27), it follows that

1 2
> . = 0(g™). (33)
77, L2+ B+ it xp)IF
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Negative Moments of L-Functions 25

Now we consider the contribution from D € 7. Using Lemma 3.1, it follows that

1
> i S PR ( X s+ Y s,0).

DeTy DeTy DeTy

Now using Lemmas 3.1 and 3.6, and the fact that Hl,fzo(l + e /2y = 0(1) (we will use

this several times throughout the paper), we have that

-2 4 E200" (log%
> 50) = (1 g~ M) T log )2

DeTy
X exp (O(kz(log @)ZY(NK) loglog (k2 ( log @)Zyw@))).

)ZV(NK)

Since 8 « g_zik“, it follows that Ny — 0, so y (V) = 1. Now we use the expression (15)
for B(Ny) and the expression (31). Recall that g >»> g_%“ and k > 1. Then log(1/8) < logg,

and

2gk

_ — N1 2g 1 1/4
_ g Wg+DB) PVr+l 2g/(logg)
(1 1 ) = &xp ((10gg)5/4 log ﬂ(logg)5/4) =49 '

It follows that

Z S;(D) < q?9129/ 108D gy (O(k2 (log g)? loglog(k logg))) exp (kz (log g)? log logg).
DeTy
(34)

Now we consider the contribution from S, (D). Using Lemmas 3.1 and Lemma 3.4 and

since r < 2, we have that

K—-1 _ 2gk
> S, < q29+49/1089)'* (106 /2 S - J-)(l _ q—uv,-+1>ﬁ) Ny
DG% j:()

<

2y (V)
k/2+3k23<1\’j>2(1°gﬁ) ke? \sj+1 , , 1 \7MjDsi
T () sz s (log 1)

Jj+1

b

X exp (O(kz(log NLﬂ)Zy(Nj) loglog (k(log NL.’B))/(Nj))))‘
J J
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Using Stirling’s formula, we get (similarly as in [3]):

K-1

1/4 k
> 5,(D) < q?9+49/1089) " log g)*2 ST(K —j) /551 exp ( 0g(1/8) — 9‘ log(V,)

DeTo j=0 J J

1 y (WNVjy1)
1/2 ,3/2 !
—d- 1/2)s;,, logs i1+ Sit log (2 /12¢3/ kB(Nj+1)(108 1vj+1/3) )

+(1ogN)(3B(N) k2(log ﬂ)ZVW) +k/2))
J

X exp (O(kz(log IVLﬂ)ZV(Nj) loglog (k(log %)V(Nj)))).

J

Now using formula (28), we have

ag g
Sj+1 = E‘f‘O(}\?%‘ 1),

and

logs;,; = log 1% +0Q).
J

Hence, it follows that

K-1

) lo a(d—-—1/2
Z S,(D) < q?9+49/1089'* (19g g)k/2 Z(K —J)/Sjy1 €XpP (9 Ngg (Zkoz - %)
DeTo j=0 J
(35)

glOgNJ a(d - 1/2) ag 1/2 ,3/2 1 V(Nj+1)
+ W ( _ —2k)+leog(2 e CkB(NjH)(logNjH'B) )

+(1ogN)(3B(N) k2 (log ﬁ)ZV“‘” +k/2))
J

X exXp (O(kz(log A%B)ZV(NJ) loglog (k(log NLﬂ)V(Nj)))),
J

for some absolute constant ¢ (not depending on k).
Since 8 > g_%“, and given (29), we have 2ko — M < —ke. Since k > 1,

we also have w — 2k < —ke/2, and hence the expression above is increasing as a
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function of j. Then we have:

1 —1/2
> 5,(D) = q2949/0089 " K (10g g)¥/2 exp (gNogg (Zkoe _a@d-1/ ))
De% K—1 r
glogNg_, ra(d —1/2) ag 12372 1 \y@i)
+ N, ( - - Zk) + . log (2 e ckB(NK)(log Ngﬁ) )

1
+ (1ogNK_1)(3B(NK_1)2k2(log m)”“"ﬂ” + k/z))

X exp (O(k2 (log g)? loglog(klog g))).

Given (27) and (31), we have that K < loglogg. Note that the term involving N _; is

negative, so we can bound

Z S,(D) < q29+Ag/(10g ' oy, (O(k2 (log g)?loglog(klog g))), (36)
DeTy

where we used the fact that log(1/8) « logg. Combining the bounds (33), (34), (36) leads

to

1 2 1/4
< g29t49/1og)"* o (0(k2(los 0)2(log los(k 1o 37)
DEHZZQH IL(1/2+ B +it, xp)I¥ =4 P( ( (logg)“(loglog( gg)))

X exp (kz (logg)?log logg).

(Recall that A could change from line to line and does not depend on k).

Now using Hélder's inequality, we have that

1 1 % O
< 1
Z : k= ( Z j km) ( Z ) '
Dty IL(1/24 B +1t, xp)| Dty IL(1/2 4 B +1t, xp)| Dty
and using the bound (37), we get that
1 2g+—29
< mogg)'/* exp (2mk?(log g)® loglogg).
2 Tzl P 59" loglog)

DeHagt1
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We choose m = V9 , and then it follows that
k(logg)¥/8./loglogg

Z 1 < qu+Ck\/§(logg)7/8./loglogg, (38)

1 k
pesim s E/2Z+ B+ it xp)

for some C > 0, which does not depend on k.

1
4.2 The case > g_E+E, the second step

We will now repeat the argument above to improve the bound (38). Throughout the
argument, rather than using the large sieve inequality (Lemmas 3.2 and 3.4), we will use
Lemmas 3.3 and 3.5. We again first assume that k > 1.

We will make the following choice of parameters:

V/9(d —1/2)(logg)'/® g 4
= ' = 2| — , o =2 2 , 39
0 [4Ck(logq)\/m] 5o [ZNO] 0 [s0/21 (39)

where C is the constant in (38). For 1 <j < K, we pick Nj,sj,Zj as in (28). We choose a,d, r
such that

ad-1/2) _ 1 — 4ke. (40)
r
For example, we can pick
_2(1—3ke) , 2—Tke 1
= T2ke T 2 6ke’ T 1= 2ke’ )

and we choose K such that Ng is the largest integer of the form (28) such that
Ng <9, (42)

where ¢; > 0 is a small constant such that

cldqd2l=d  g4cr

r—1

g+ g+giNi < 2 - a)g. (43)

ri-d —1

Note that it is possible to choose such a constant c; since the last term above is of size

0(g).
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Also note that the condition (43) above ensures that
K
h=0

and that
J
ZehNh + 511N = 29,
h=0
for j < K — 1. Indeed, note that
K K K
D Ny + 5, Niy < GNg+ D 6Ny, +ag < (s§ +2)Ny + > (sf + 2)N}, + ag
h=0

h=1 h=1

K K
< ngé*d +2 ZN};d + Z adng,lfd + ag.
h=0 h=0

In the above, we used the fact that ¢; < sg + 2 for h < K. Further using the fact that
Nj, < 2r"N,, and computing the geometric series above shows that with the choice (43),
indeed the two conditions in Lemmas 3.5 and 3.6 are satisfied.

Now we proceed as in the previous step. If D ¢ 7, then there exists some
0 < u < K such that

ke? so
1< (ZPIO(D; Nu)) ,

and we then get that

1 1 k62 So
Z |L(1/2 4+ B +it, xp)|k = Z |IL(1/2 + B + it )|k(TP]0(D;Nu)) .
D¢To XD DeHagir ' XD 0

Rather than using the pointwise bound for the L-function, we use the Cauchy-Schwarz

inequality and we then have

1 ke?\ so 1 1/2
Z IL(1/2 4 B +1it, xp)l* = (K) ( Z IL(1/2+,3+it,XD)|2k)

D¢To DeHogi
1/2
x ( Z PIO(D;Nu)ZSO) .
DeHzgs1
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For the first term above, we can use the bound (38), while for the second we use

Lemma 3.3 and Stirling’s formula, and we get that

1 2 7/8
< g+14+-Ck./g(logg)’/® /loglogg ex0(—sn(d — 1/2)log s
D% L2+ B + it xp)[E P(=so(@ — 1/2) log o)

X exp (50 log (21/235/2kB(N0)(10g NLIB)V(NO),/logNO)).
0

With the choice of parameters (39), we have

2. =0, (4]
DeTs |L(1/2 + B +1it, xp)|

Now we proceed as before and we have that

1
2 IL(1/2 + B + it, xp) ¥ < D SO+ > S,D).

DeTy DeTy DeTy

Using Lemmas 3.1 and 3.6, we have that

k2B(Ng)?
l§c+ (2K) (logN—1

2gk 1 B
2g+1 k/2 K
DETsl(D) <q7" exp (NK+ 7 log 7 _q_(NKH)ﬂ)(logg) Ny

€/o

X exp (O(kz(log @)ZY(NK) loglog (k(log @)V(NK)))).

)ZV(NK)

With the choice (42) for Ny, note that we have NS — o0, so y(Ng) = 0. We have

2gk 1 1
Ne+1 81— g Wx+Dp

exp ( ) =0(1),

and then

> 5,(0) < g exp (0(K?loglog k) log g)*/%g 112 s)
DeTy
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Now we proceed as before to deal with the term S,(D), but use Lemma 3.5 instead of
Lemma 3.4. Similarly to the bound (35), it follows that

i, lo a(d—1/2)
> 5,(D) < ¢ (log )¥* > (K —j) exp (g—gg (2ka - —) (46)
£ N r
DeTy Jj=0 J
glogN; ra(d —1/2) ag 32 1 \r@®D)
+ N, ( - —2k) + leog (e CkB(1\7j+1)(log Nj+1/3) )

21,2 2 (N)
(10gN)<B(N) k2 (log Jﬂ) v /2+k/2))

X exp (O(kz(log Nlﬂ) v loglog (k(log NLﬂ)y(Nj)))).

J

for some constant ¢ > 0. Because 8 < g_zik“, we have 2ko — M > ke, in light of (40).
We also have that M — 2k <0,since k > 1.

We now claim that the contribution of S, above is small. Indeed, we first consider
N; such that yvy) =1, that is, those N; for which N; = o(1/B). Note that the third
term inside the exponential is negligible with respect to the first, and the term inside
the second exponential is negligible with respect to the fourth term inside the first
exponential. Then these terms will not affect the monotonicity of the function of j above,

and we consider

Fax) =2 Ogg(zk a(d - 1/2)) QIOgX(a(d

+ kz(E + e)z(logx)( iﬂ)

1/2) 2k)

r

Taking the derivative, setting it equal to 0, and using the fact that x = o(1/8) = o(g' ™),

it follows that the function f(x) attains its minimum at some point x;, for which
a(d—1/2) a(d—1/2)
glogXO(Zk— f/) =glogg(2ka —/)(1 +o(1)).

Hence for N; = o(1/B), we have that the function in the sum over j is decreasing
(2ka— 49112y ok

d
as a function of N; for N; < 49 “S) and is increasing for N; >
59(2"0‘—“(‘1?1/2))/(Zk—“(dil/Z)) for some § > 0. If 2k(2a — 1) < w, then since N, =<
(d-1/2) (d-1/2) .
V/g(logg)'/8/,/loglogg, we have that N; > §g2ka— S5 /=522 forall j < K — 1,
and hence the function of N; in (46) is increasing. Then note that in this case, we get that

the contribution to (46) from those N; with N; = o(1/B) is negligible.
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If in (46) we consider the contribution from those Nj such that y(NJ-) =0, that is,
N; > 1/B, then we consider the function

fx) = glo&(zka _

X

a(d—1/2) glogx ra(d —1/2)
A

- 2k),

d—1/2
a( - / ))/(Zk—

. . a(d-1/2) . .
and we note that f(x) is decreasing for x < eg®k*~ =) and increasing for

(d—1/2
ed=1/2)) ) (2k—

(d-1/2) . . .
x > eg®ke— 5. Hence, f(x) can only attain its maximum either at x < 1/8

. . (d—1/2) (d—1/2)
or x = Ny (the former is possible only when 1/8 « g@ke="57)/(2k=% =) ) We note
that the contribution from N; < 1/8 in (46) is negligible. Bounding the contribution from
Ny, and using the fact that « — 1 < 0, we get that

Z S,(D) <« q*9g~/2, 47)
DeTy

Now if k > 3/2, then since 8 > g_%“, it follows that 2k(2a — 1) < M, so the
bound (47) holds in this case.

Putting things together (equations (44), (45), (47)), it follows that for k > 3/2 and
B> g*%“, then

! 2
< ¢*9 exp (0(k? loglog k) ) (log g)K/2 gktk+1/2 (48)
DE%H IL(1/2 + B +it, xp)|¥ =4 p( ( glog ))( g9)4g

This proves the bound (3) in Theorem 1.2.
If k < 3/2,1let m be such that mk > 3/2. Using Hoélder’s inequality, we have that

m—1

1 1 L
ZI|L(1/2+;6+it,XD)|kS( Z |L(1/2+ﬂ+it,xD)|mk) ( Z 1)

D€H2g+ DEH29+1 DE7-[29+1
Since mk > 3/2, we use (48), and it follows that
1 k
2 < q*(logg)*/2gz My,

1 k
Detgyyy 1EA/2+ B+ 1t Xp)l

Picking m = 3/(2k), we get that

1 2 k)2 5k/4
> . < q*(log g)*/?g°k/%.

k

pesm EA/2+ B+t xp)|

This finishes the proof of the bound (4) in Theorem 1.2.
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S
4.3 Therange 8 K g &

Here, we choose the parameters as follows:

log,g(4(d — 1/2) + 2ka — M)
NO = [ 9 ka(l m 8) ]r Sg = 2[29/1\,0], EO — 2|—Sg/2_], (49)

where we choose

_8—3ke 2 — ke

a=4—ke, d= , T = ,
€ 8—2ke' ' 2 3ke

so that

ad—-1/2)
e

2 — 3ke. (50)

For 1 <j < K, we choose N;, s; and EJ- as in (28). We choose Ny to be the greatest integer

of the form given in (28) such that

Ny < cy9, (51)

where ¢, is a small constant such that

aci-dgdri—d
ri-d —1

8rc _
g+ _219 +24%HNE < @ - a)g.

The third term above is of size o(g), so it possible to pick such a c,. Note that the above
ensures that the conditions in Lemmas 3.2, 3.4, and 3.6 are satisfied (see the explanation
following the choice (43).) We now proceed similarly as in the previous case.

If D ¢ 7,, then for some 0 < u < K, we have

1 1 ke?\ so
E . =< . —_— P, (D;N,))%. (52)
k Z k ( I u
D¢76|L(1/2+ﬁ+lt'XD)| DeHagin |L(1/2 + B +it, xp)l ( Lo ) 0
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Now using the pointwise bound in Lemma 2.1 for the L-function in (52) and Lemma 3.2,

similarly to equation (32), it follows that

1 2 1/4
< g29+gka(1+8)+Ag/(logg)"/* oy (_ so(d —1/2)1logs, )
D;ro L2+ B + it xp)F P e

X exp (s log (21/2 5/2kB(N )(log —)y( O),/logNO))

Note that with the choice (49), it follows that

1 2. 1+68) (ka—1+2ke)
> ) &« g2+ o ), (53)
k
7 IL(/2+ B+t xp)|

Now we consider the contribution from D € 7. Using Lemma 3.1, it follows that

1
S1(D S,(D).
D;O L2 1 B+ it e D> SiD)+ D S,(D)

DeTy DeTy

Now using Lemma 3.6 and similarly to the previous case, we have that

§+k23(§,K)2 (log Nl )ZV(NK)
291 k/2py kP
> $,(D) < q*9(log 9)*/* N
DeTy

X exp (O(k2 ( log Iﬁ)zy(Nx) loglog (k(log L)V(NK))))'
K

and hence

Z S, (D) « q*9(log g)*/? exp (kz(log _ﬂ) logg) (54)
DeTo
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We now evaluate the contribution from S, (D). Using Lemma 3.4, and similarly to equation
(35), we get that

K-1

2g+Ag/(ogg)'/* k/2 e glogg _a(d-1/2)
Z S,(D) <q (logg) Z(K Dy/Sj41€xp ( n (Zkoc — )
DeTy j=0 J
+ glogNj(a(d— 1/2) zk) + %9, (21/2e3/zckB(N. )(10 1 )V(Nj+1))
IVJ' r T'N] g J+1 8 1Vj+1,3

+ (10gN)(3B(N )2k2(log ﬂ)ZV“‘” + k/2))
J

X exp (O(kz(log A%B)Zy(Nj) loglog (k(log N_ﬂ)V(Nj)))),
J

for some ¢ > 0. Since 8 K g_%“ and in light of (50), we have that 2ka — M > ke. We

rewrite the above as

14 i, lo a(d —1/2)
E SZ(D) < q29+Ag/(logg) / (logg)o(l) E exp (w (2k0l _ —)
4 N r
DE% ]:O J
glogN; ra(d —1/2) g .
+ N, ( - — Zk) + O<ZVJ loglogg) + 0((logg) ))

It follows that the maximum of the sum over j above can be attained either when

a(d—1/2)
aa-1/2)

j=0orforj= K —1 (the latter is possible only if — 2k < 0). Plugging in the

values of N, and Ny_,, it follows that the maximum is attained at j = 0, and keeping in

mind the expression (49) for ;, we obtain that

Z S,(D) < q29+g(1+3)(ka—1+2ke)_
DeHagr1

Combining the equation above, (54) and (53) finishes the proof of Theorem 1.2.

5 The Asymptotic Formula

Here, we will prove Theorem 1.3.

Proof. We write

xp(MWT_g(h)
Z Z Rl /2HE (65)
D€H29+1 L( + ﬂ XD) D€H2g+1 heM
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where 7_; is the generalized divisor function (i.e., the multiplicative function that is

k
T (P) = (—1)r(r),

for P a prime and r a positive integer, and where (,,) is the generalized binomial

given by

coefficient.) In equation (55), we truncate the sum over h and we write

xp(h)T_ (h) xp(W)t_g(h)
Z T \k Z Z D|h|1/2fﬁ Z Z D|h|1/2fﬁ ’

DE’H29+1 L( + ,8 XD) D€H2g+1 heM_x DE’H2g+1 heMsx

for some parameter X that we will choose later. For now, we can think of X < g. Let M,
denote the first term above, and M, the second. For M,, we use Perron’s formula (10) for

the sum over h and we have

1
d [
M, = me k z

DeHag+ /~: 1/2+ﬂ XD) zX(z—1)

where we are integrating over a circle of radius 1 < |z| < ¢"#. We can pick for example

|z| = ¢"#/2, and then using Theorem 1.2 it follows that

% 1 *( 1+max(k,3/2}
M, < q*9~ Xw/z(qtlg)gz( )(logg)k/z-

Since 0B > max{g~1/*¥*¢,1og g/g}, we have that 1/08 < g, so

—XNpB/2 gl+k/2 (1+max{k,3/2})

M, < g% (log g)*/?. (56)

We now focus on M;. We write M; = M(0O) + M(# 0), corresponding to whether h is a

square or not in the expression for M;. When h # [J, we use Lemma 2.3, and we get that

[T_g(h)]
MFED) e D>, G I

heM_x
h£[]

Trivially bounding the sum over h yields

M(# 0) « qz+9+<9. (57)
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Now for the term M ([J), we use Lemma 2.2 and we rewrite

MO) = Z il A H 1+ —) +0(q9. (58)
£q(2) he Mo |h|1+28 pm( |P|>

We look at the generating series of the sum over k, and we have

T () 1y A e
> () e =TT 3 e () )
heM Plh g =
- Z(L)@A(u- B) 9
ql+28 T

where A(u; 8) is given by a Euler product, which converges in a wider region (e.g., for

|lul < ,/q.) Using Perron's formula (10) in (58), we get that

M@O) = du,

()
g29+1 1 Z(ql+2ﬁ) Y Aw; B)
£4(2) Z_Mj{ (1 — wyulx/2+1

where we are integrating along a small circle around the origin. We can shift the contour
of integration to |u| = ¢?"#(1=9), and encounter the pole at u = 1. We evaluate the residue
of the pole at u = 1 and bound the contribution from the contour |u| = g?"#1~9), We get
that

2g+1
qg

M@O) =
=

k
Gq(1 + 28)@ A(1; p) + O(q29*X~‘7fﬁ<17e) (#) 2)+1)‘

Since X < g and 1/9B « g, we have that

2g9+1
qg

_ ® 41 29-XNB(1—e) k(k—1)/2+1
M@O) = o+ 200 AL; ) +0(q g )- (60)

Now we combine the bounds (56), (57), and (60), and pick X = 2g(1 — 2¢). Then it follows
that

1 1+k/2 <l+max{k,3/2})

T £ =L +20)DA(1; p) + 0(q 902
2g+1 D€H2g+1L(% + B, XD)

x (log g)¥/ 2).
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The conclusion now follows after a relabeling of the e. |

Proof of Corollary 1.4. This easily follows from Theorem 1.3. Indeed, if k¥ > 1 and
NP > g_%“, then Theorem 1.3 provides an asymptotic formula. If k < 1, then we

rewrite Theorem 1.3 as

1 1 RB(1—
¢ = L1+ 2D @A ) + 0(q P09 g9k 4 10g g)F12).

H
Hagsil DeHagia L(% + 8 XD)

Note that the main term above is of size (1/8)¥*~1/2 If giip(1 — ¢)logq > (1 + 5k/4 +
k(1 — k)/2 + ¢)logg, then indeed the expression above indeed provides an asymptotic
formula. Corollary (1.4) follows after a relabeling of e. |
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