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Negative moments of
the Riemann zeta-function

By Hung M. Bui at Manchester and Alexandra Florea at Irvine

Abstract. Assuming the Riemann Hypothesis, we study negative moments of the
Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in {(s).
For example, integrating |{ (2 + a + it)|72* with respect to t from T to 2T we obtain an
asymptotic formula when the shift « is roughly bigger than Tog T and k < 5. We also obtain
non-trivial upper bounds for much smaller shifts, as long as log < log log T'. This pro-
vides partial progress towards a conjecture of Gonek on negative moments of the Riemann
zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an
upper bound for the average of the generalized M&bius function.

1. Introduction

For k > 0, the 2kth moment of the Riemann zeta-function is given by

T
1u(T) = /0 L +in* dr.

Hardy and Littlewood [16] computed the second moment, and Ingham [22] computed the
fourth moment. It is conjectured that

(1.1) 1(T) ~ cx T(log T)¥*

for an explicit constant ¢, whose value was predicted by Keating and Snaith [23] using analo-
gies with random matrix theory. Their conjecture was later refined by Conrey, Farmer, Keating,
Rubinstein and Snaith [8] to include lower order powers of log 7', for integer k. Under the
Riemann Hypothesis (RH), Soundararajan [35] established almost sharp upper bounds for all
the positive moments. This result was later improved by Harper [17], who obtained upper
bounds of the conjectural magnitude as in (1.1). There is a wealth of literature on obtaining
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lower and upper bounds for positive moments of ¢(s); for (an incomplete) list of results, we
refer the reader to [3, 18-20, 30,31, 33, 34].

In this paper, we are interested in studying negative moments of the Riemann zeta-
function. For k > 0 and « > 0, let

1 T
I(@.T) = ?/0 6L + o+ 0| dt.

Studying negative moments of L-functions or, more generally, moments of ratios of L-func-
tions, has applications to many challenging problems in number theory. For a thorough list of
applications of moments of ratios of L-functions, we refer the reader to Conrey and Snaith’s
paper [9]. Here, we will only mention a few. The Ratios Conjecture, due to Conrey, Farmer
and Zirnbauer [7], predicts precise asymptotic formulas for averages of ratios of L-functions
in families, and generalizes the study of the negative moments. Farmer observed in [11] that
obtaining an asymptotic formula for the average of the ratio of two over two zeta-functions
(a precursor of the Ratios Conjecture) implies Montgomery’s Pair Correlation Conjecture.
Focusing on the family of quadratic Dirichlet L-functions, Conrey and Snaith [9] showed that
the Ratios Conjecture for this family implies that 100 % of L(%, xa) # 0, where y; varies over
real primitive characters. (We note that a conjecture due to Chowla [6] states that L(%, Xd)
never vanishes, and the Ratios Conjecture provides the strongest result in this direction.) More
recently, the study of negative moments of L-functions has seen unexpected applications in
other problems unrelated at first sight to L-functions. For example, assuming various conjec-
tures about negative moments in families, Wang [39] showed that almost all integers (without
any “local obstructions”) can be written as the sum of three cubes.
A conjecture due to Gonek [15] states the following.

Conjecture 1.1 (Gonek). Let k > 0. Uniformly for @ <ua<l,
1\¥*
I (0, T)y<|—) ,
o

(log T)** ifk <
(log g ) log T ifk =

i 1
and uniformly for 0 < o < e T

]_k(O(, T) = {

W= D=

2
seem to be contradicted however by more recent evidence (see the next paragraph). Under RH,

Gonek [15] also proved lower bounds of the conjectured order of magnitude for all kK > 0 and
10ng <o < 1,and for k < % and 0 < o < @.

No other progress has been made towards Gonek’s conjecture so far, but more recent
random matrix theory computations due to Berry and Keating [2], Fyodorov and Keating [14]
and Forrester and Keating [13] suggest that certain corrections to the above conjecture are
due in some ranges. Namely, when o < —T, random matrix theory computations seem to
contradict Gonek’s prediction for the negative moments when k > § . In particular, the work in
[2, 13] suggests certain transition regimes when k = 2”2+ L forn a positive integer (Gonek’s
conjecture already captures the first transition at k = % featuring a logarithmic correction, and
in this case the two conjectures do agree).

Gonek’s original conjecture predicted formulas for k > 1 and o < gT as well, which
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Remterpretmg the random matrix theory computatlons in [2], one would expect that for

ashift0 <o < T and j a natural number such that j Lok <X +1,

(1.2) I_4(@,T) = (log T)K* (a log T) ™/ @k=D),

while for k = 2JT_1 and j a natural number, one would expect

I_4(@.T) = lo log T)F* (a log T) =/ @k,
g = ) (log g

We note that the above prediction indeed agrees with Conjecture 1.1 for k = % and o < @.
We remark that one could also predict (1.2) for integer k using heuristic ideas similar as in [8].
In this paper, we study the negative moments of the Riemann zeta-function. While obtain-
ing lower bounds for the negative moments is a more tractable problem (see the comment
after Conjecture 1.1), no progress has been made so far on obtaining asymptotic formulas or
non-trivial upper bounds. When the shift « is “big enough”, we obtain upper bounds which
are almost sharp according to Conjecture 1.1, up to some logarithmic factors. We also obtain
the first non-trivial upper bounds for the negative moments for a wide range of much smaller
shifts & (roughly o > (log T)~9M); however, the bounds in these cases are far from sharp.

More precisely, we prove the following.

Theorem 1.2. Assume RH. Let k > %, o >0ande,§ > 0, such that u = lolg oe T < 1
Then

1 2T
7/ LA +a+in) "k ar
T

4.,
(1.3) < (loglog T)* (log TH** if o > UogloeDE"
(log T) 2k
+e
(1.4) < eXp((4—i—£) lﬁfgfgg%}oglogT) if 1 T <La= ((loglog T)k )’
(log T') 2K (logT) 2
(1.5) « T+ ku—3+ke) if o <
(log T) 2%

We also have the following bounds for k < %

Theorem 1.3. Assume RH. Let k < %, o> 0ande,§ > 0, such thatu = lolg Toe T < 1.

Then
1 2T
?/T LG +a+in] ™k dt
2
(1.6) < (loglog T)¥ (leeleloe Dk if o> el
2 .
(L.7) <« exp(C1 (loglog T')(log %) ) if @ Lo= 0(%),
2k

1.8 (c ) f —— < a=o(gly),
( ) < exp 2(o{logT) lf (logT)ﬁ_a La O(IOgT)

1.9 T(1+8)(ku—%+ks) (0 log T logloglog T ) . _ 1 ’
(1.9 <« exp (—loglogT )) ifa 0(—(1ogT)ﬁ_8)

for some constants C1, Cy > 0.
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Remarks. (1) We remark that results about negative moments of quadratic Dirichlet
L-functions were recently proven in the function field setting, first in [4] for shifts big enough,
and later improved in [12] to include small shifts.

(2) We note that the bound (1.3) in Theorem 1.2 and the bound (1.6) in Theorem 1.3 are
“almost sharp”. We remind the reader that in these cases, according to Gonek’s Conjecture 1.1,
we expect I (., T) < (5, )k Hence, the former bound is off by a power of log 7" which de-

pends on «, while the latter is off by a log log T factor (namely, (log log T')* (log(« log T))k

We also further use the upper bounds to obtain an asymptotic formula for the negative
moments in the following ranges.

Theorem 1.4. Assume RH. Letk > 0, C,e > 0 and

¥ > max (log log T)k T (1+¢)loglogT
B (log T)zk ’ 2logT

Then we have

1 2T
—/ G +a+in|*dt
TrJr
_ k2 1 1 (p’)?
= (I + o)1 + 2a) 1;[( p1+2a) ( Z p(1+2a)]
where [uy(n) denotes the n™ Dirichlet coefficient of ¢(s)™*.
As an application, we study averages of the generalized Mobius function. Studying aver-

ages of the Mobius function has a long history due to its connections to RH. For example, RH is
a consequence of the Mertens conjecture which states that, if we denote by

M(x) =) pn),
then
IM(x)| < VX,

for x > 1. The Mertens conjecture was disproven by Odlyzko and te Riele [29], who showed

that y y
timinf 2 < 1009 and fim sup L)

X—>00 X X—>00 X

> 1.06.

The true order of M(x) is somewhat mysterious, and Odlyzko and te Riele [29] noted that “No
good conjectures about the rate of growth of M (x) are known”.

Under RH, Littlewood [25] proved that M (x) < x27¢. This was improved in several
works [24,26,38], and Soundararajan [36] showed that

M(x) < /x exp(y/log x(log log x) ')

on RH. A note of Balazard and de Roton [1] on Soundararajan’s paper [36] improves the power
of loglog x in the bound above, and it was stated in [1] that the power (loglogx)2T¢ is the
limitation of the ideas in [1,36].
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Assuming RH and the conjectured order of magnitude of the negative second moment
of ¢’(p) by Gonek [15] and Hejhal [21], Ng [28] also showed that

M(x) < +/x(log x)%.
Using Theorem 1.2, we improve the result in [36]. As before, let py (1) denote the nth
Dirichlet coefficient of ¢(s)~%. Let
1
s((s = DEs)*

The function Z_j (s) is holomorphic in the disc |s — 1| < 1 and has a Taylor series,

Z_k(s) =

o0
Z_(s) =Y yorjls = 1)
Jj=0
We prove the following.

Theorem 1.5. Assume RH. For k > 0, we have

sin(k ) X Y ()T +j+ Dy,
Zﬂk(n) - (log x)k+1 Z (log x)/
n<x o8 j=0 g
N 4+ 1\ N+l
+ 0((N + 1)k+%(—+) )) + Ex,
log x
forany N > 0 with
Jx exp(e/log x) ifk <1,
Er < ke 7 _4e
JVx exp((log x) F+T (loglog x)F+17°)  ifk > 1.
Also, if we assume Conjecture 1.1, then
k2
Vx(logx) & ifk <2,
Er £ k=2
Jxexp((logx) & (loglogx)~'T¢) ifk > 2.

Remark 1. Notice that the main term above vanishes if k € Z.

Proving Theorem 1.5 requires good bounds for the negative moments of ¢(s) when

roughly
1

(log T) 2
We remark that obtaining the bound (1.3) in Theorem 1.2 is the most delicate part of the proof
and requires a recursive argument which allows us to obtain improved estimates at each step.

The ideas in the proof of Theorems 1.2 and 1.3 are sieve-theoretic inspired ideas, as
in the work of Soundararajan [35] and Harper [17]. However, unlike in the work in [35]
and [17], the contributions of zeros of {(s) play an important part, and one needs to be careful
about the choice of parameters in the sieve-theoretic argument, in order to account for the big
contributions coming from the zeros.

o>
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The paper is organized as follows. In Section 2, we prove some lemmas providing a lower
bound for the logarithm of ¢(s), as well as a pointwise lower bound for | (s)|. In Section 3, we
introduce the setup of the problem, and prove three main propositions. In Section 4, we consider
the case of a “big” shift «, and do the first steps towards proving Theorems 1.2 and 1.3 in this
case. In Section 5, we obtain the bound (1.3) in the smaller region

1

o> —,
(log T)2k~*
and prove the bounds (1.6), (1.7) and (1.8) from Theorem 1.3 as well. In Section 6, we obtain
the bound (1.3) in the wider region stated in the theorem by using a recursive argument. We
consider the cases of “small” shifts in Section 7 and prove the bounds (1.5) and (1.9). We then
prove Theorem 1.4 in Section 8, and Theorem 1.5 in Section 9.

Throughout the paper ¢ denotes an arbitrarily small positive number whose value may

change from one line to the next.

Acknowledgement. The authors would like to thank Steve Gonek, Jon Keating and
Nathan Ng for helpful conversations and comments, Kannan Soundararajan for pointing out
a mistake in a previous version of this paper, as well as the referee for several useful sugges-
tions.

2. Preliminary lemmas

The first two lemmas concern the lower bounds for [{(s)].

Lemma 2.1. Assume RH. Let a« > 0. Then

log 5- 1 DA
log|¢(3 +a+it) > _2g 2A” log(1 — e™2mA%) 4 9% (log p)aa(p ))
T

1 .
p<e2nA p2+a+zt
logloglog T’ 1\’
————— — | log—
2 Aa
A2e™8  Alog(1+ A1
Lo X270 | Aloel£AVD )
1+ At Jt
where
0o . . 5
2.1) ag(n; A) = Z(Ll).e—anAa - '(J + )n=* €—2n(j+2)Aa)
iz logn 4+ 2njA 27(j +2)A —logn
and
1 ifAa =o0(1),
y(A) = :
0 ifAa > 1.
Proof. 'We use the work in [5]. Let
4+ x2
= log| ———— ),
) =tog( 555
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and let ma(x) be an extremal majorant for fy, whose Fourier transform 7 is supported
in [—-A, A, satisfying the properties from [5, Lemma 8]. By [5, Equation 3.1],

1
(2.2) log|t(3 +a+it) > (1 - %) log% -5 ;mA(t —y) + 0(),

where the sum over y is over the ordinates of the zeros of {(s) on the critical line. Using the
explicit formula, [5, Equation 3.2] leads to

1 1 1 ~
(2.3) Xy:mA([_y):mA(l_Z_i)+mA(t+E)_ (;%T”mA(O)

1 [ (1 i(t—x)
#ap [ maeon (5 (557 )

1 (< Am) . (logn
—;9%(2 §+ith( 271) ’

n=217
where
Fia(E) = i (ﬂ(e—zmswma _ (i)
PG
__JEL (enGenape _ e—4n((j+2)A—s)))‘
(J+2)A-¢
For n < ¢2™2 we note that

1 2 T A 1
A ogny _ wag(n; A) Lo ‘
2w n n2logn

Combining that with (2.2), (2.3) and [5, Equations (3.3), (3.4), (3.5)], we obtain

log L , A(n)ag(n; A)
1 . 27T _ —2mAa e el
(24) logl¢(z +a+it)] > A log(1 —e ) + 0 ZZ:A o hratit )
n<e<T

AZe™A  Alog(l + AV
Lo e og(1+ ‘/_)+1.
1+ At NG

It is easy to see that ay(1; A) > 0. Also, with logn < 27 A we have

1 00 . 1 1
A . 1 —2njAa _
aq(n; )<—lon+§ (j + De logn +2njA  27(j 4+ 2)A —logn
gn i g ¢

o0 . — /
Z (Jj + De 2mjfe (1_n2ae—4nAa)
i 2n(j +2)A —logn
o0 ; —2njAa
(j + e 2™
2.5 < — +2Q2rxA -1
2.5) ~ logn +207 ogn); (logn +27jA)2n(j + 2)A —logn)

2¢xe—471Aot o

l—n —2njAa
+ 2w A ng ¢
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_ 1 22 A —logn) e e 2miA n 1 — n2ee—4mha
logn (2mA)? = J 2 A(1 — e—2mAa)
00 = o 2 ol - e 1 0 1),
Note that if A >> 1, then the second term above is O(A™1), and if Ao = o(1), then it is
2.7 < L log L
~ A Aa

Now we use the expression (2.6) for ay(n; A) and evaluate the contribution from the
prime squares in (2.4). When dealing with the main term of size @ above, we proceed simi-
larly as in [17] or [36, Lemma 2]. For the second term, we trivially bound the sum over primes
and use the bound (2.7), and it follows that the contribution from prime squares is

logloglog T 1\"®
> 0808081 (10— )  —oq).
> > 0g A (1)

Dealing similarly with the sum over prime cubes and higher powers and combining the equation
above and (2.4) finishes the proof. D

Lemma 2.2. Assume RH. If 0 < @ = o(m), then

logt _ logt
2.8 1 1 it)] > ——=——1log(1 — (log?)™2%) 4+ O
@8 loglehanting = 5ot iog(1 - Gogn ) + 0 o)

log? 1 1
O b
(loglogt)? &1_ (log1)=2«
and if % —a K m, then

10g|§(% +a+it)| > —logloglogt + O(1),

otherwise

. 1 S (logt)l—Za
1 1 Nl > —( -
0g|f(z +a+it)| = (2+1—4a2) loglog ¢

(log t)1—20z )

—logloglogt + O
ogloglogl + ((1 —2a)2(loglogt)?

Proof. Carneiro and Chandee established the last two bounds in [5, Theorem 2] and in
the case 0 < o = o(m) they obtained

logt
o8 log(1 — (log#)™2*) + O(

1 1 i) > ———
ng(z tatin]z 2loglogt

(log l) 1—2«
(loglog1)?(1 — (log?)~2%) J°
We will now prove the improved bound (2.8).

Let A = lOngOgt. From (2.4) and (2.6) we have

log 5& A(n 1
log €3 +ar+in)] = - 22 log(1 — (logr) ) = Y S
2loglogt n2to \logn
n<(logt)?
2(2loglogt —logn)

-2
(Qloglog)? log(l — (logt) a)

1
0(loglogt)) + o).
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We now consider the sum over n above, which expands into three terms. The contribution of

the first and the last term is
logt

loglogt’
while the second term is

log(1 — (log¢)™2%) (2(log ) ~2*
_ _log( — (log)7™) (2(log#) ™% 0((loglog1)?)
loglog? 1 -2«

log(1 — (logt)™2%) [ 4(logt)' 2% loglog t
2(loglog t)? 1 -2«

+ O(log t))
. logt o 1
N (loglog )2 81_ (logt)=2« )’

by the prime number theorem and partial summation. This establishes (2.8). |

The next lemma is the classical mean value theorem (see, for instance, [27, Theorem 6.1]).

Lemma 2.3. For any complex numbers a(n) we have

2T a(n)
/;~ n;\] p 3 it
Now let £ be an integer, and for z € C, let

Ei(z) = Z i—j

s<t

’ ja@m)?

dt = (T + O(N)) Y _

n<N

n

If z € R, then for £ even, E;(z) > 0.
We have the following elementary inequality.

Lemma 2.4. Let £ be an even integer and let z be a complex number such that |z| < :42.

Then .
") < 1,|E 14+ — ).
e _maX{ N e(Z)I( 5ot

Proof. We have
e§R(Z) — |€Z| < |ez —E¢(2)| + |E¢(2)].

Now we have .
2|/

o0
le” — E¢(z2)| < Z 7,

j=t+1
and we can proceed as in [32, Lemma 1] to get that
e — Ee(2)] = —.
16et
Hence

1
R(z)
e <|Ep(2)| + —.
= |E¢(2)] 6ot
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If |E¢(2)] < R’ then we have ¢™(?) < 1. Otherwise, if | E;(z)| > 16, we get that
1
R(2)
e <|E/|l1+ —
< 1E(1+ 1z )
and this completes the proof. O

Let v(n) be the multiplicative function given by

: 1
V(pj) = -_"
J:

for p a prime. We will frequently use the following fact. For any interval /, s € N and a(n) a
completely multiplicative function, we have

(2.9) (Za(p)) =st ) amy).

pel pln= pel
Qn)=s

where Q(n) denotes the number of prime factors of 7, counting multiplicity.

3. Setup of the proof and main propositions

We will first introduce some notation and state some key lemmas, before proceeding to
the proof of Theorems 1.2 and 1.3.
Let
Io= (1,75, 1, = (TP, TH, ..., Ix = (TPx—1 TPK]

for a sequence Py, . .., Bk to be chosen later such that 8; 1 = rf;, for some r > 1.

Also let £; be even parameters which we will also choose later on. Let s; be integers. For
now, we can thlnkofsJ,B] = 1, and Zh otnBn < 1.

We let A/ = 274/ for every 0 < j < K and let

ba(p; Av)
Py (1) = Z " Tiatir’
PEly p?

where by (n; A) is a completely multiplicative function in the first variable and

ba(p; A) = —aq(p; A)log p.

278 if Ao > 1, we note from equation (2.5) that

Forp <e

27A —log p — 2log p logp
b A <1 —27'rjAa —2mjAa
balp: ) = 1+ =2 ; log p + 27jA° TN Z

1

00

—2mjAa __
<< e —
—1+Ze 1 — e 2mAa’

j=1
On the other hand, if Aa = o(1), then from (2.6) we get that

22A —log p)log p o= e~ 27iA

(2 A)?

1 1
ba(p; )] = +0(1) = S log 1 + O().
(04

Jj=1
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Thus we can rewrite the bound for b, (p; A) as a single bound,

y(8)
3.1 lba(pi )] = b(A)(log A—) ,
o
where y(A) = 0if Ao > 1 and y(A) = 1 if Ae = o(1), and where
1 .
T o rAa if Ao > 1,
(3.2) h(A) = { 1me772
% +e if Ao = o(1).

Let
Ly
Tu=4T <t <2T: max |Py,(1)] < —5.
ke?

u<v<k
Denote the set of ¢ such thatz € 7;, forallu < Kby 7’.For0 < j < K — 1, let & denote the

subset of t € [T, 2T ] such thatt € T forallh < j,but? ¢ Tj41.
We will prove the following lemma.

Lemma 3.1. Fort € [T,2T], we either have

Lo
P -
Og)ngl 00 (] > 5.
or
G +a+in < S1() + S2(0).
where
k 1 % 1 y(Ak)
Sl (l) = (IOg IOg T) (m) exp(2k (10g AKO[) )
K 1 2
x 1_[max{1,|Egh(kPh’K(t))|2(1+ ; ) }
e 15e¢n
AZ ™K Aglog(l + Ag /i
xexp(O( K LY og(1l + K\/_)+1))
1+ Agt ﬁ
and
kK—l K 1 g—’jf 1 Y@
J=0v=j+1
J 2 2 2s;
1 ke J+1
X 1|Eg, (kPy (1)) 1 —|P; t
}}:[Omax{ |Ey,, (kPp,;(1))] ( + ISeeh) }(Ejﬂl J+1,v()|)
AZe™ A log(l + A /1
Xexp(O( J 4 Ajlog(+ J«f)H)).
1+ Ajt Jt
Proof. For T <t < 2T, we have the following possibilities:
(1) ¢ To,
2) teT’,

(3) t € 8 forsome0 < j < K —1.
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If t ¢ 9, then the first condition is automatically satisfied. Now suppose that t € Jy.

Suppose that ¢ € T’. We use Lemma 2.1 with A = Ag and the inequality in Lemma 2.4
with z = kM Py, g (1).

Now if 7 € &, then we use Lemma 2.1 with A = A, the inequality in Lemma 2.4 with
z = kM Py (1) and the fact that there exists some v > j + 1 such that

ke?

Ej+1

|Pj+1,0(0)] > 1. O

We will also need the following propositions.

Proposition 3.2. For 0 <v < K and Boso < 1, we have

2T 1\ 2s0v(o0)
/ | Po.v(1)?%0 dt < Tso!b(Ag)>* (log A_) (log log TPo)so.
T [11°%

Proof. Using (2.9), we have

ba(n; Ay)v(n)
> =

Po,y(1)*° = so!

1 .
pln= p<Tho0 pztetit
Q(n)=s0
It then follows from Lemma 2.3 that
2T b A 2 2
[ 1Poswnd = @+ ohyz Y PSR
T niTe
pln= p<TFo
Q(n)=so
ba(p;Av)z 50
< TSO!( P T
p<TPho

250y (Ay)
) (log log TA0)so,

< Tsolb(Ay)?50 (log i

v

where we have used the fact that v(n)? < v(n) and the bound (3.1). Now since

’

)2s0y(Av) )2SOJ/(AO)

b(Av)(log A < b(Ao) (log Ao

v

the conclusion follows. O

Proposition 3.3. Let 0 < j < K — 1. Then, for Zi:o LpBhn + sj+1Bj+1 < 1 and for
j+1=<v <K, wehave

2T J
T l_[ |E4h(kPh,j(f))|2|Pj+1,U(z)|2sj+1 dt
h=0

2 )2 _1 y2v(A))
&« Tsj+1'(log By yF P (B log i)™

255 +17(Aj+1)
X b(Aj41)?5+1 (log ) (log r)%/+1,
Aj+10l
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Proof. Using (2.9), we have

2T J
(3:3) / 1‘[|Eeh(kPh,(z)>| P10+ di

2T
= (Sj+1 !)2/T Z Z(Zn:;)f:z

n<TZh=0tnBntsj 41841

where .
J
=3 (H oty A,-)kmnh))ba(nm; Ay).
n=nj..n; i h=0
plnp= pely

Qnp)<tp,h=0,...,j
Qnj+1)=5)+1
Using Lemma 2.3 in (3.3) and the fact that v(m)? < v(m) for any m, we obtain that

(3.3) < (T + TZh=0tbntsi+1Bi41) (5, 4 11)2

J DA N21292(0)
|ba(np: &))"k v(np)
(¥

h=0 p|n, = pely h
Qnp)=<ty

Z b (j+1; Ay)|? V(nj+1)
1+2a
Jj+1

X
n

plnjy1=pelj
Qnj+1)=5j+1
Now we use the assumption that Z;lzo LnBn + sj+1Bj+1 < 1. Bounding v(np) < 1, remov-
ing the condition on the number of primes of 7, and using (3.1), we get that

k21bo(p: AP\ |ba (p: Ay|?\ /!
(3.3) € T'sj41! 1_[ (1—W) ( Z P )
p<THi PELj+1

2 )2 _1 \2v(A))
< Tsjn!log TH PO (0 251

1 28 +1v(Ay) Bt Sj+1
1 lo
« (1o Ava) ( 7 )

2 (log L )2V(A))
1 25j+1v(Aj+1)
- (log ) (log r)%+1,
j+1¢
which finishes the proof of the proposition. ]

A minor modification of the proposition above (where we do not have the contribution
from the j + 1 interval) yields the following.

Proposition 3.4. For Y.5_, £, < 1, we have

2T K . o,
/ 1_[ | Eg,, (kPp, k(1)[*dt < T(log TﬂK)k b(Ak)*(log 7)™ 2K
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+, first steps

(log T)2k ¢

4. The case o >

Here, we will consider the case
1
(07 >> 1
(log T)2%~*

which will be a starting point in the proof of Theorems 1.2 and 1.3.

We choose
a(2d —1)(loglog T')? a sd
@1 po= . so=| | =2
(1 + 2¢)k(log T)(log W) Po
and
d
. a A
(4.2) Bi=r'Bo. si=|| =24 1<j=<K
' Bj ' 2
where we can pick, for example,
4 —3ke 2 8 — Tke
a = ——m, r = ——, = ’
22 —ke) 2 —ke 2(4 — 3ke)
so that
2d — 1
4.3) aQd =D _ g,
r

Here, K is chosen such that it is the maximal integer for which

alogT

“44) By < {—log(alog T) ifalogT — oo,
) K=

C lfOl < @,

where ¢ > 0 is a small constant such that

d.,.1—d

a‘r 2r
4.5 1—d <1l-a.
4.5) c (rl—d—1+r—1)_ a

Note that the above ensures that the conditions in Propositions 3.3 and 3.4 are satisfied.
. 2
If t ¢ Ty, then there exists 0 < v < K such that kgLO|PO,v(t)| > 1. Then we have

/ EG +a+it) 2k dr
[T,2T1\T

2T ([ o2 250 i
<[ (5 mal) i v inar
T 0

(4e)klog T

ke2 250 1 “ToglogT 2T )
(%) (mm) [ ireorea

by using the pointwise bound in Lemma 2.2,

(14¢e)log T

1 . 1 1 2loglog T’
(4.6) IKG+a+i)| €| ———e .

1 — (log T)—2«
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By Proposition 3.2 and Stirling’s formula, we get that

4.7 / LG +a+in|™kar
[T.2T\To
(14+e)klog T

1 loglog 7"
< T(W) \/Eexp(—(Zd — 1)5() 10g S0

5 1 \7A0)
+ 259 log (kezb(Ao) (log —) y/loglog Tﬂo)
A()O{

N——"

= o(T),

using the choice of sg in (4.1).
Now assume that t € Jy. Using Lemma 3.1, we have

2T 2T
[ |;(% +a+inkdr < / Si(t)dt +/ Sa(1)dt.
To T

T

With the choice (4.4) of Bk, we have that

1 — T—hke (log T)°W ifa = o(1r gT)

and

AZe™AK Aglog(l 4+ Ax /1)
exp| O K + + 1)) = 0(1),
p( (1 + At NG M)

SO

1 v(Ak)
(log T)ClV(AK)
Aga

21 K 1 2
/ l_[max{l |E¢h(kPhK(t))|2(1+ 156“) }d:.

Note that in the inequality above, we can assume without loss of generality that

2T
/ S1(t) dt <« (loglog T)k exp (2k (log
T

1 1y
2 _ 2
max{ 11, P P (14 157 ) | = 10 PP (1+ 15057) -

Using Proposition 3.4 and the observation that y(Ag) = 0 in the first two cases, and y (Ag) = 1
in the third case, we get that

2T
4.8) / S1(t)dt
T
2
T (log log Ty (‘eeleloe 7)) if alog T — oo,
2 1 2 .
<« { T(loglog T)* (log T)k (=r=c=) ifo < @,

T (loglog T)¥ exp(kz( + ¢)(loglog T') (log a]OgT)z) ifa = 0(]0gT)
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Now we will need to bound the contribution from S,(¢). Using Proposition 3.3 and
Stirling’s formula, we have

2T il 2k 1
S>(t)dt < T(loglog T K—j)/sit1exp|l — log ————
| S:00d1 < Taoglog ) LK ien| e s

—(2d = 1)sj41logsj+1

5 1 y(Aj+1)
+2Sj+110g(ke2b(Aj+1)(log ) )
Aj+10[

1 V(Aj)
2k | log ——
N (OgAja)

kzb(Aj)z(log ﬁ)ZV(AJ-)

x (log Tk )

In the equation above, note that if ;o log T > ¢, then
2k 1 2k

B Ei—The T B ETo e

so the contribution in this case will be o(T (log log T)¥). Now if 8 jalogT < e, then

! < log & log(B;log T) +1 !
7 oga og(B; log Ogl_%,

< (2d —1)sj+1logsjy1,

log
so we obtain that

2T
4.9) / So(t) dt
T

K—-1
1
<« T(loglog TY* > (K — j)
iz Bi+1

« ex loglog T ok 10g(% a2d —1)
P Bj loglog T r
n log(BjlogT) (a(2d — 1) Y
Bi r
2a 3 1 V(AjJrl)
+ —log| ke2b(A; (10 ) )
B, g( (Aj+1)| log Ana

2k 1 a2d —1)
+ ——log

r 1 \7@A)
+ log — 4+ 2k | log ——
;o 1—3 B ta (OgAja)

K2b(A ) (log 51524

x (log Tﬂf)

5. Proof of Theorems 1.2 and 1.3 for ‘“big” shifts o

Here, we will prove the bound (1.3) in Theorem 1.2 when
1

a»>—
(logT)2c~*¢



Bui and Florea, Negative moments of the Riemann zeta-function 17

and the bounds (1.6), (1.7), (1.8) in Theorem 1.3. Recall that
1
v log & '
loglog T
The contribution from z ¢ 75 and from S;(¢) has already been bounded in Section 4 (see

equations (4.7) and (4.8)). Now we focus on bounding the contribution from S ().
First assume that

We rewrite (4.9) as

2T K—1
1 loglog T 2d — 1
/ SH(1) dt < T(loglog Tk Z(K_j) ; exp( oglog (2ku B u)
T . .
Jj=0

j+1 Bj r
log(B; log T) ((a(2d — 1 1 \74)
+ og(p; log T) (a( ) _ Zk) + 2k (log —)
B r Aja
. _1 y2v(Aj)
+ 0(loglog10gT) (log TA7)¥ (B Woe 7)™
Bj
Note that 0d — 1
M — 2k <0,
r
and using (4.3) and the fact that o > ——L+—— it follows that
(log T)2K~*
2d — 1
2ku — M < —ke.
r
Hence we get
2T K-1 1
(5.1) / Sa(t)dt < T(loglog TYF > (K — j)
T = Bj+1
keloglog T 1 ")
xexp| ———— + 2k (log —)
( Bj Ajo
+0 (log e T) (log TP O (e )77
Bj

We first consider the contribution from those j for which y(A;) = 1. Let Ry denote this
contribution. Using the fact that K < loglog T" and after a relabeling of the ¢, we have that

keloglog T logloglog T

R; <« T(loglog T)k Zexp
J

1 1 2
- K (log—— ) 1 log T
+(4+8) (OgﬂjalogT) o&(p; log ))’

where the sum over j is such that y(A;) = 1. Since o > @, we have

Bj BjalogT Bj

1 2 1)?
log —) log(BjlogT) < (log —) loglog 7.
( Bjalog T / B
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As y(Aj) = 1, we have B; — 0 in the sum in R above, and then it follows that
(5.2) Ry = o(T (loglog T)¥).

Now we consider the contribution in (5.1) from those j with y(A;) = 0. Let R, denote
that term. We have that

Ry <« T(loglog T)k Zexp

(_ke loglog T Lo (log loglog T)
J

Bj Bj
+ k2b(A))? log(B; log T)),
where the sum is over j such that y(A;) = 0. Keeping in mind the choices for B, (equations
(4.2) and (4.4)), it then follows that
' o(T (loglog T)%) ifalogT — oo,
2T o(T(loglog T)k(log T)kZ(I—Tl—C“)z) if @ < @.
Combining the bounds (4.7), (4.8), (5.2) and (5.3), the bound (1.3) follows when

(5.3)

1
a>» ———— and k> .
(log T") 25— 2

Now assume that

1
k<§ and o >

log T~
If w — 2k < 0, then the same argument as before works. Hence we assume we have
2d —1
a2d=1 o o,

r
We rewrite the bound (4.9) for S»(¢) as

2T
5.4) / So(t) dt
T

K—1
[ 1
« T(loglog T)* Z(K— i)
=0 ,3j+1

" exp(—zk log(alog T) n log B (a(2d -1 —2k)

B Bj r
) 1 y(Aj+1) 1 \7A)
+ — | loglo ) + Zk(lo —)
,Bj( £ gAjHa gAja

) ) 1 2y(Aj) 1
+ k“b(Aj) (log m) log(BjlogT) + O(E))

In (5.4), we first consider the contribution from those j for which y(A;) = 1,1i.e., those j
for which B; = o( L_). As before, we denote this contribution by R;. We let

alogT
fx) = _2k log(ic logT) n log x (a(Zd —1) B Zk) n 2

X r

1 1 I
2k log —— + k2| = log———— ] 1 log 7).
+ °8 xalogT + (4 +8)(0g xo log T) og(xlogT)
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e <o =0o(*%T) the maximum of f(x)

By taking the derivative, we see that when Toa loa T

(when x = 0(@)) is attained at some
_ 1
" loglog T’

while if o > loﬁ)lg(”;’wT, the function f(x) is increasing on the interval under consideration.

Hence, we get that

o(T (log log T)¥) ifa > loﬁ)g’%?,

5.5 Ry = .
O(T exp(C1 (loglog T')(log 1<;g11)<;g72‘) )) if m L o= (—loﬁ)lgo%T),

for some C; > 0.
Now we bound the contribution in (5.4) from those j for which y(A;) = 0. It is easy to
see that in this case, the function in (5.4) is decreasing in j, so

R> = o(T (loglog T)¥).

Combining the above with (4.7), (4.8) and (5.5), the bounds (1.6) and (1.7) follow.
Now we assume that

1
— <KLa=0 .
(log T)i_s (log T)
We rewrite the bound (4.9) for S»(?) as

2T K—1
1 2k log(eelog T
/ SH(1) dt < T(loglog T)¥ Z(K_j) exp _ 2klog(alogT)
j=0 ﬂj+1 IBJ
log B; (a(zd —1) ) P
* —2k | + —loglog
Pi : Bi Ajtia

1 1
+ 2klog— + O((log logT)? + —) .
Aja Bi

2k
In the sum over j above, the maximum is attained at jo such that B, < («logT) e

It then follows that
2 P
/ Sz(l‘)dt < TeXp(Cz( ) ),
T alogT

for some C, > 0 (and after a relabeling of the ¢). Combining the above and (4.7), (4.8), the

bound (1.8) follows when —————— K o = 0(10 7)-
(log T) 2K ¢

6. Proof of Theorem 1.2, bounds (1.3) and (1.4); some recursive estimates

Here, we will prove the bounds (1.3) and (1.4). To do that, we will use an inductive
argument, which will be performed in Section 6.2. The first step of the argument in carried out
in the next subsection.
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6.1. The range « > (loglog T )%"'s /(og T )ﬁ, k > %, the first step. We previously
obtained the bound (1.3) in the region
1
a>» ———— and k>
(log T)2%~*

Hence, we will assume that

o Db 1)
. — =  La=0o| —F),
(log T) 2% (log )2 —*
1
when k > 5
Let
loglog T)?
62) o = togloe 17,
(log T') 2%
where b > % + &. From (6.1), we have that b = 0(%). We will show that for any § > 0,
we have

T 3(148)
1 -\ —2k (log ') #»=1
A |é’(§—|-0[—|-ll‘)| dt < TCXp(eX (210glogT10glogloglogT) ’

(kb—1)logloglog T

We choose B, £o. 50 as in (4.1) and B;, {;,s; are chosen as in (4.2). We choose a,d, r
such that

a2d —1) 1 nlogloglog T

6.3
() r loglog T
where
106
6.4 =Qkb-2)(1 - ——).
9 "= )( 1231 +5))
For simplicity of notation, let x = —lolgo lgo]go lgOgTT. We can take
1—n(l-2)x 8 1—n(l-2)x
(6.5) a:M, d=1-"(1-2 x, r= ( 24).
1—n(l—)x 2 12 1—nx

We choose Bk such that

d..1—d
1—af a®r 2r _
1—a.
Px (rl—d—1+r—1)—

Again, the above inequality ensures that the conditions in Propositions 3.3 and 3.4 are satisfied.
Note that the condition above can be re-expressed as

Brd <ci(l—a)r—1)(1—-d),

for some constant ¢; > 0. We then choose K such that Sk is the largest of the form in (4.2)
such that

6loglog T loglogloglog T'
exp( nlogloglog T’ )

(6.6) Bk < c
(log T)"0~12
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If t ¢ Ty, then we proceed as in Section 5 and similarly to equation (4.7), we get that

(6.7) / LG +a+in| 2 dr
[T2T\To
(1+e)klogT

1 loglog 7"
< T(W) J%exp(—@d — 1)S() 10gS0

- 1 7(Ao)
+ 259 log (kezb(Ao) (log A_Ooz) y/loglog Tﬂo)

= o(T).

Now we suppose that ¢t € 7. Similarly as in Section 5, using Proposition 3.4 we get that
2T
(6.8) / S1(2) dt
T

6
5
k (log T)""' =12 loglog T ) 3
< T(lOg log T) eXp (6‘1 ex (6 loglog T" log log log log T) eXp (k (log log T) )

n(l—%)logloglog T

6
(log T) n(l—l‘%)
4loglog T loglogloglog T’ ’
exp( nlogloglog T )

LT exp(

for some c¢; > 0 (note that the constant ¢; can change from line to line).
To bound the contribution from S,(¢), we proceed as in equation (4.9) and obtain that

2T
(6.9) / So(t)dt
T

K—1
1 loglog T 2d — 1
<& T(loglog T)k Z (K — j) exp<0gi(2ku — M)

= Bj+1 Bi r
n log(B; logT) (a(2d - 2k)
Bj r
2a 3 1 y(Aj4+1)
—log| ke2b(A; 1
" rBj Og( e JH)(Og Aj+10!) )
2k 1 a2d —1) r
+ —log + log —
,Bj 1—% r,Bj a
1 \Y@») 25(A V2 (loe —L_)2V(A))
+ 2k (IOg 7 ) (log T4 P e a0
Aja

Since
(loglog T)?
o= —F—

(log T) >
and given (6.3), we get that
2T K—1
logloglog T
/ Sa2(t) dt <« T(loglog T)k Z exp(%(n —2kb +2)
T J

Jj=0

+ (loglog T)3 + O(ﬁi)),

J
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where we used the fact that K < loglog 7" and the fact that

logloglog T’
log < .
Boalog T 2k

With the choice (6.4), we have that n — 2kb + 2 < —§, and then

aT k-l §logloglog T 1
/ S2(t) dt <« T(loglog T)k Z exp(—og;i + (loglog T)* + 0(,8_))
T / !

loglog

- <1
BjologT — o8

j=0

In the sum over j above, the maximum is attained at j = K — 1, and given the choice
(6.6) for Bk, it follows that

2T
(6.10) / So(t)dt = o(T).
T
Combining equations (6.7), (6.8) and (6.10), it follows that
2T . (log 7) %51
(6.11) / |§(% +Ol+lt)| 2k dt L TGXP( 2loglog T loglogloglog T’ ’
T exp( (kb—1)logloglog T’ )

6.2. Therange a > (loglog T )%"'s [(ogT) ﬁ, k> %, arecursive bound. Here, we
have the same setup as in the previous subsection. Namely, we assume (6.1) and (6.2).

We will perform the same argument as before, but with a different choice of parameters.
We suppose that at step m — 1, for any § > 0, we have the bound
(log T)(1+8)(kb3—l ! loglog T)

2-3M—2]oglog T loglogloglog T
exp( (kb—1)"—1logloglog T )

X exp((l + 8§)k2(loglog T)3).

2T
(6.12) / A +a+in™*ar <« Texp(
T

Note that we proved the first step of the induction in Section 6.1 (see equation (6.11)). Using
(6.12), we will show that

o7 (148) ()
log T k=17 loglog T
(6.13) f A +a+in*dr < Texp<(0g ) 0208 ))
T

2-3Mm—1oglog T loglogloglog T
(kb—1)" logloglog T

x exp((1 + 8)k*(loglog T)?).

exp

Let
6.14) & = §(kb —1)loglog T |
4kb(m —1)(loglog T — 2kblogloglog T + S(kb—;()rLOEII(;gIOgT)
and
(6.15) loglog T loglog T

P= loglog T — 2kbe’logloglog T’ 1= 2kebe logloglog T’
1 1 _
so that 2T 4= 1. Let

(6.16) f=b1-2¢).
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We will perform the inductive argument as long as

6.17) (kpf - l)m_l - Sloglog T .
3 9logloglog T
We choose
am—2
i o 204D D e (B )
44q(log T)(H'?)(W)m_l
[
0= [Qﬂo}
Sd
w25
where

) 8
azl—n(l—lg—z)x’ J =1 n(l 8)x, r=1—n(1—ﬁ)x‘
1—71(1—6))6 2

As before, we have

ad — 1)
—~ =1—nx.
logloglog T’ 4
__ loglog
Recall that x = Tloglog T~ and we choose

o 2(kb — V)(kpf — )" (1 - 2;)
3m=1(1 + %) '

We also choose Bk such that K is the maximal integer for which

(6.19)

6loglog T loglogloglog T’
exp
(620) ,BK < ( nloglog 160g T )
(log T) n(lfﬁ)
If t ¢ Ty, there exists 0 < v < K such that %|Po,v(t)| > 1. Using Holder’s inequality,
we have

/ EG +a+in) "k dr
[T,2TI\To

ke?

2T 250 i
< [ (Fpoan) e arinar
T 0
ke2\ 250 2T L 2T 1
< (i) (/ 1 +a+in)| ke dt) ’ (/ | Po.y (£) |20 dt)q.
50 T T
For the first integral above, we will use the bound (6.12) with § 85 Note that
(loglog T)/
o= ———.
(log T') >

Then using the recursive bound (6.12), we obtain that

(log T)(1+%)(k17}—1 o loglog T
2-3M—2oglog T loglogloglog T )

2T
(6.21) / EA +a+in™k « Texp(
r exp( (kpf—1)m—llogloglog T

X exp((l + g)p2k2(log log T)3).
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Now using Proposition (3.2), we have that

2T 2s50qy(Ao)
/T |P0,U(t)|2s°q dt < T(s0q)'b(Ag)>*04 (log A_ooz) (loglog Tﬂo)soq.

Combining the bound above and (6.21) and using Stirling’s formula, we get that

(6.22) / CA +a+in™kar
[T,2TI\To

(log T)(1+%)(k1’.?'—l o log log T)

T ex
< P 2-3m—2]oglog T log logloglog T

GXP( (kpf—1)m—1logloglog T )

1

§ L
X exp((l + g)pkz(log log T)3)s5q exp(—(2d — 1)sgp log so

1 7(Ao)
+ 250 log (ke% Vb (Ao) (log A_oa) \/loglog TﬂO) .

Recall the choice (6.18) for s¢. Note that we have
1
loglog A g <logloglog T, loglog(BologT) < logloglogT
oo

and
logg < logloglogT.

Using the three bounds above in (6.2), it follows that

/ LG +a+it) 2 ar
[T,2T\To

S 3 m—1
(log T)(H?)(kpf—l) loglog T 8 5 3
LT exp( 2-3Mm—2]oglog T log logloglog T exp{ {1+ 3 pk=(loglogT)

CXp( (kpf—1)m"—1logloglog T )
x exp(—(2d — 1)so log so + 4s9 logloglog T + O(s0)).

By (6.17) we get

(6.23) LG +a+in|™kdt
[T.2T1\To

(log T)(H%)(kpf%*l ! loglog T

2-3Mm—2]oglog T loglogloglog T
4 exp( (kpf—1)m—1llogloglog T )

LT exp((l + 8)k?(loglog T)3).

&L Texp (— ) exp((l + 8)k?(loglog T)3)

Now suppose that ¢ € Ty. Using Proposition 3.4 and proceeding as before, we get that

3 a+4)

2T
(6.24) / S1(t)dt < (loglog T)* exp (cl(log T) (kb=D(kpf =1y =1 (1=Fp)?2 loglog T
T
3™ loglog T loglogloglog T
x exp| —
P (kb —1)(kpf — 1)"=llogloglog T
X exp((l + 8)k?(loglog T)3),
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for some ¢y > 0, and where we trivially bounded y(Ag) < 1. Now given the choice of param-
eters in (6.14), (6.15), (6.16), we have

. 8 logloglog T B B 768
kpf—l—(kb—l)(l——4(m_1))—i—O(—lOglOgT )>(kb 1)(1 —24(m—1))'

Using this in (6.24) leads to

2T (1+8) (=)™
log T k-1’ loglog T
(6.25) / S1(r)dt < T exp (ng 33n—11 T o OgT
T exp( . oglog T loglogloglog )

(kb—1)" logloglog T
x exp((1 + §)k*(loglog T)?).

To bound the contribution from S»(¢), we proceed as in (6.9). We rewrite

K—1

logloglog T
Z exp(w(n —2kb +2)
j=0 Pi

nlogloglog T log(B; log T')
Bjloglog T
1
+ loglog T + k2(loglog T)3 + O(IB—)),
J
where we used the fact that k > % Note that the maximum in the sum over j is attained either
at j =0or j = K — 1. Now given the choices (6.18) and (6.19), the contribution from j = 0

1S
logloglog T [ 8(kb — 1 log(keL=1ym~1 ]
<<exp<og 0808 (—( )+n0g( 3 ) )+0(ﬂ_+(loglogT)3),
0

2T
(6.26) / S»(1)dt < T(loglog T)¥
T

Po 4 loglog T

and again using the choices (6.19) and (6.17), it follows that the contribution from j = 0 is
negligible.

For the contribution from j = K — 1, proceeding similarly as in the bound for S (¢), it
follows that

2T (log T)(H'S)(ﬁ)m loglog T

Sp(t)ydt T exp( ) exp((l + 8)k?(loglog T)3).

2-3Mm—1oglog T loglogloglog T

r exp( (kb—1)"logloglog T )

Combining the above, (6.23) and (6.25), the induction conclusion (6.13) follows.
Now taking m maximal as in (6.17), we get that

2T
(6.27) / LG +a+in|™* dr < Texp((1 + 8§)k>(loglog T)3).
T

6.3. The range @ > (loglog T )%"'e /(ogT) ﬁ, k > %, once more. Here, we use the
same setup as in Section 6.2. Once again, we assume (6.1) and (6.2).
We will improve the bound (6.27). The proof is similar to the proof in the previous cases,
so we will skip some of the details.
As before, let
_ loglog T
P= loglog T — 2kbs logloglog T
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and
B loglog T
~ 2kbSlogloglog T’

(6.28) q

so that % + é = 1. We choose
6.29) By — (6d —5)logloglog T ’ SO:[ 1 ] Zo=2’7ﬁ—‘-
(1 + 28) pgk?(loglog T')3
We choose f;,s;,{; asin (4.2), and a, d, r are such that
a2d —1)
——— =

1-6.
We also choose K maximal such that
(6.30) Bk =<c,

where ¢ is a small constant as in (4.5). Note that the conditions in Propositions 3.3 and 3.4 are
satisfied.
We now proceed as before. If ¢ ¢ Tp, then as in Section 6.2, we have that

/ G +a+ina
[T,2T1\To

< (—) (/ L + o +it) 2P dt) (/ | Po,v(1)|?*04 dt)
Lo T T

LT exp((l + 8) pk?(loglog T)3) exp (—(2d — 1)so log so

3 1 y(Ao)
+ 259 log (keZ /qb(Ao) (log A_) \/loglog TBO) .
oo

Note that y(Ag) = 0 with the choice of parameters (6.29). We deduce that
(6.31) / LG +a+in| 2k dr
[T.2T]\To

LT exp((l + 8) pk?(loglog T)3)
X exp(—(2d — 1)sologso + 259 logloglog T + O(so))
=o(T),

N =

by (6.28) and the choice of parameters in (6.29). Using the choice of g in (6.30), we also get
that

2T
(6.32) / S1(t) dt < T(loglog T)*(log T)¥”.
T

To bound the contribution from S»(¢), we rewrite equation (6.9) using the fact that
Y(Aj) = 0forall j and that K < loglog 7. We have

2T K—1
loglog T 2kblogloglog T
f S>(1)dt < T(loglog T)**! Z exp(w(l —2k — 0808 08 )
T = Bj loglog T

4logloglog T 2d —1 1
+ M(Zk— a(—)) + k2 loglog T + O(—))
Bi r Bj
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In the sum over j above, note that if k = %, then the exponential term is bounded by
( c1logloglog T
xp| ——————
Bi

for some c; > 0. If k > %, then the exponential term is bounded by
( cqloglog T
expl ————

Bi

for some c¢; > 0. In both cases, we obtain that

+ k2% loglog T),
+ k2 loglog T),

2T
/ SH(t)dt = o(T(log log T)k(log T)kz).
T
Combining the above, (6.32) and (6.31), the bound (1.3) follows.

6.4. The range 1/(log T)ﬁ <L a = o((loglog T)%"'e/(log T)ﬁ). Here, we prove
the bound (1.4). We will only sketch the proof, since it is similar to the proof in the previous
cases. We choose the parameters 8;,{;,s; asin (4.1), (4.2), and a,d,r as in (6.3) and (6.5),
where

(6.33) 6
. n=-—:.
1-6§
We also choose B as in (6.6). We now proceed as in Section 6.1.
As in (6.7), we have

(6.34) / LA +a+in)* dt = o(T).
[T,2TN\T0
Also, as in (6.8), and keeping in mind the choice (6.33) for n, we get that
2T
log T'loglog T
(635) / S1 (t) dt LT CXP( 2loglog T loglogloglog T’ :
r CXp( 3logloglog T’ )
To bound the contribution from S»(¢), we proceed as in equation (6.9). Since
1
o >> 1 >
(log T') 2%
we have
2T K—1
logloglog T 1
/ Sa2(¢)dt <« T(loglog T)k Z exp(w(n +2) + (loglog T)3 + 0(—))
T = Bj Bj

The maximum in the sum above is attained when j = 0. So, keeping in mind the choice of B¢
in (4.1), we obtain that

2T
4+ 8)log T log log log T
(6.36) / Sy (1) dt < Texp(( +6)log T'log log log )
T

loglog T

after a relabeling of the §. Combining (6.34), (6.35) and (6.36), the conclusion follows in
this case.
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7. Proof of Theorems 1.2 and 1.3 for small shifts «

In this section, we will prove the bounds (1.5) and (1.9). The proof will be similar to the
one in the previous subsection, but we choose the parameters differently. Recall that

log é
U=—>"5—
loglog T
Let § > 0. We choose

Qku +2d —1— w) loglog T 1 sg
s S0 = . to=2 ,

(1 + 8)kulog T Bo 2

(7.1 po=

where we pick

1 —3ke 1 2 —Tke
a=— r=—", S
1 —2ke 1 —2ke 2(1 — 3ke)
so that
2d — 1
(7.2) @@= e
r
We further pick B;,£;,s; as in (4.2). We choose K to be maximal such that
(7.3) Bk <c,
for ¢ a small constant such that
d
1—d ra 2r 1—d
(7.4) c (rl_d_l—i-r_l)fl—a— 0 -

Note that the above ensures that the conditions in Propositions 3.2, 3.3 and 3.4 are satisfied.
If t ¢ Jo, then we proceed as before, and similarly to equation (4.7) we get that

|l rasinrar
[T2TN\To
« T1+A+8)ku exp(—(Zd — 1)sp log s¢

3 1 y(Ao)
+ 250 log (ke2b(A0) (log —) \/loglog Tﬂo) .
A()Ol

Keeping in mind the choice of parameters (7.1), we obtain that

(7.5) / LG +a+in|kar
[T,2TN\To
1+(1+8)ku Zk;’(;:(j’i_l) log T logloglog T
< T 2ku—=—=5—>-42d—1 exp 0 .
loglog T

Now if ¢ € T, then since y(Ag) = 1, we use Proposition 3.4 and the expression (7.3)
for Bk as before to get that

2T
(7.6) / Si1(t)dt <« T(log T)O(l) exp((;1 + 8)k2 (log 5)
T

2
log log T).
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Similarly as before (see equation (4.9)), we have

T K—-1
sz So(t) dt < T(loglog T)¥ Z(K ) /,BJI-H exp(logggT (2ku _ a(Zdr— 1))

j=0
n log(B; logT) (a(2d -1 B 2k)
Bj r

) 1 y(Aj+1)
+ —i——alog(egb(AjH)(log ) )
rB; Ajpa

2k 1 CEZBOA )2 (log )27 (A))
+ ZLlog )(log D AL

B T1-3

As K < loglog T, we further write the above as

2T K-1
loglog T 2d —1 log T'logloglog T
/ Sa(t)dt T E exp(%(zku_a( ))+0(0g ogloglog ))
T

= B r loglog T
Since
(i)
a=o —— ).
(logT)2x—*¢
we have od — 1
2ku — u > 2ke.
r

Hence the sum over j above achieves its maximum when j = 0. Using (7.1), we obtain that

ok @Q2d=1)

2T 1+(1+8)k S log T'logloglog T
1.7) / Sy(t)dt < T Yo T2 [ o 281108108108 T ) )
T loglog T

Combining equations (7.2), (7.5), (7.6) and (7.7) and after a relabeling of the &, the bounds
(1.5) and (1.9) follow.

8. The asymptotic formula

In this section, we shall prove Theorem 1.4. We have

1 1+ 22 1 dz
(8.1) — e X — - 1 : i
2mi Jy-ir (G +a+it+2)(z+a—it+z)f z

Wi (m) g (n) (@)—”W(mn),

: ==
ma=1 (mn)2Fe A7 X

where

1
(8.2) W)=-— [~ eTx 7,
2 _ir z
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by writing the zeta-functions in (8.1) as Dirichlet series and integrating term-by-term. On the
other hand, by deforming the line of integration, the left hand side of (8.1) is equal to

IE +a+it)

1 —(l—s)a-i—% 2 1 dz
2 —(-g)a—iL ¢ é‘(%+a+it+z)k§(%+o¢—it+z)k7
2
+ O(e—TSX max ! )
T easosite [((5+o+it £ D)FIG +o—itF D)k

Fort € [T,2T], the O-term is

2

e~ 8 X klogﬁ

2
T loglogT < e_%XTOk(l)’

<

by Lemma 2.2. Hence, integrating over ¢ € [T, 27| we obtain that

2T
/T LA +a+it)* dr
_ i Mk(m)uk(n)W(@) /” (ﬂ)‘”dl
mn=1 (m”)%ﬂ X /Jr An
1 U-oatE Zsz 1 dtﬁ
T (GHoatit+)kG+a—it+2)k z

[ 2

2mi —(1—e)a—iL
72 10)
+ 0(e s XT9%W),

Furthermore, by the Cauchy—Schwarz inequality the second term above is

y—(1-8)a z 2 2T 3
L —/ e_Z(/ |§(%+ea+i(z+z))|—2"dz)
o _g T

2T 1
x (/ E( +ea —i(t —z2)) 72 dt) dz
T

X—(l—s)a
< TT(log log T)k (log T)k2

&L TX (0 (log T)kZH,
in view of (1.3) and (1.6) in Theorems 1.2 and 1.3, and the fact that

{ (log T) 2% log T }

1
— < min ,
o (log log T)%“ loglog T

Thus,
2T

Mk(m)ﬂk(n)W<%)/ (%)—” Jt
T

1
m,n=1 (mn)§+a

+ O(TX (=92 (log T)F*+1)

2T
(8.3) / EG +a+it)kdr =
T

+ O(e_TTzXTOk(l)).
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We next consider the contribution of off-diagonal terms m # n on the right-hand side

of (8.3), which is
x|

m#n (mn)2+a|10g n

We note from (8.2) that W(x) < x~! trivially and
72

W(x) =1+ O(x) + o(e;—f)

if x < 1, by moving the contour to the —1-line, and so this contribution is bounded by

T2
d d D¢ d d
< k(lm) k(1) L Z k(;%) k(1)
man (mn)i"'“‘log%‘ r man (mn)i"'“‘log%}
mn<X mn<X
d d
X Z k(;? k(1)
man (mn)2 “‘log%|
mn>X
= E1 + E,

say, where £ and E5 denote the sums with 7% ¢ [%, 2] and %F € [%, 2], respectively. With E7,
[log 2| >> 1 and we get

de(mde(n) e 5 X dp(m)di(n)
(mn)%""" i T Z (mn)%"'“
di(m)dy (n)

(mn)%"'“

e_TTZX

T

(8.4) E K«

mn<X mn<X

+ X
mn>X

< X%—O((logx)2k—l +

For E,, we use the fact that

di(m)dy(n) < di(m)? n di(n)*

(8'5) (mn)(r m2o n2o

’

and we have

dy (m)? 1
(8'6) Er L Z ml+2a Z ‘log ‘
<v2X n#Em
T <n<2m

72
e 8 X di (m)? 1

+ T Z m3+t2a Z
m<«/2X n#m

dy (m)? 1
+X Z mk3j-12a Z

m> 2

33
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2
dp(m)? e 8 XlogX di(m)?
< logX Z m2¢x + T Z m2+2¢x
m<a/2X m<a/2X
di.(m)?logm
X Z k (m)~ log

T2t
e X

T2
~% X log X
< X1 %(log X)F 4 & -2 08T

T
We are left with the contribution of the diagonal terms m = n on the right-hand side
of (8.3). By (8.2) this is

2 n2 1+ir © 2
n T 2 2 n)- dz
Ty () - g [, Y
— 1 o 27ri 1_% n:1n1+2a+22 z
T (T 2
= e X70(1 + 2a 4 22)F
2mi 1-iL

k2 i
Xl—[ LN (p)? Ndz
1+2a+22 p(1+2a+22)j z
j=1

We move the contour to the —(1 — &)a-line, crossing a simple pole at z = 0. In doing so, we
get that this is equal to

k2 1 pk(p?)?
¢+ 20) l_[(l - 1+2a) I+ Z (1+2a)/
U “p
+ O(TX (1=Dag—(+D) 4 O(e_TXTOk(l)).

Thus,

2T
/ (L + o +in) " dt
T
2 1 1i(p?)?
= T¢(1 + 2a)F H(l - m) I+ Z L (+20);
4 p Jj=1 p
1+ O(TX~0=99(1og TYF+1) 4 0(e= 5 XTO% W log X) + 0(X 3% (log X)¥°).

by combining the above with (8.3), (8.4) and (8.6). We choose X = T2, then the error terms
above become 717208 (1gg T)k2+1, and the conclusion follows after a relabeling of the «.

9. Proof of Theorem 1.5

9.1. Assuming RH: k > 1. Following the arguments in [10, Chapter 17], it is standard
from Perron’s formula that
c+i[x] 5 ds

©.1 Zﬂk( ) = E i TG s + 0((log x)¥)
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withec =1+ 102 +- We will now deform the contour. The choice of the new contour depends
on whether k is an integer or not because of the singularity of £(s) % at s = 1 when k ¢ Z.
We will use the Selberg—Delange method in this case (see, for instance, [37, Chapter 5]).

We first describe the contour deformation when k € Z. Let

8
i log 1 % T¢€
xo = exp((log 1) 7 (log log 1) 1), ag = (loglog xo)t 72
(log xo)*
and
_ [x]
J =] log, — | < logx.
X0

We replace the line segment ¢ + iz, |¢| < [x], with a piecewise linear path comprising of
a number of horizontal and vertical line segments,

J
U uHp) U,
j=1

1
Vo: s =—-+4ag+it, |t] < xo,

2
1 (loglog(2/~1xg))E+e . .
Vie s=-+ (log log( . xO))l +it, 2/71xo < |t| < min{2” xq, [x]}.
2 (log(2/~1x0)) %
l<j=</J,

. 8 . 8
. 1 (loglog(2) xo)) %+ 1 (loglog(2/~1xg))xte
Hj: s =o0+i2/x9, =+ (log log( .XO))I <o0o=<—--+ (log log( - XO))I
(log(2/ x¢)) % 2 (log(2/=1x¢))*
1<j=<J-1,
1 log1 2.]—1 %-{-8 1
Hyp: s=o0+i[x], _+(0g0g( %0)) <o<l1

(log(27 ~xq)) & log x

If k ¢ Z, we use the contour deformation above, but replace Vo by Vo = Vj U ', where
I' is the truncated Hankel-type contour made up of the anticlockwise circle |s — 1| = 10; =
excluding the point 1 — @, and the linear paths joining % +aptol — @ and then back to
% + ap with arguments — and + 7, respectively.

Notice that in either case, we encounter no singularity in moving the contour.

We first consider the integral over I' when k ¢ Z. We will see that the main contribution
only arises from this. Recall that

1
s((s = DE(s)*

and Z_4(s) is holomorphic in the disc |s — 1| < 1. By Cauchy’s formula we have

Z_k(s) =

oo N
Za®) =Y vk =1 =3yl = D7+ o(((+e)ls— 1))

Jj=0 j=0
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uniformly for |s — 1] < % Notice that I is contained in the disc |s — 1] < % SO

1 x5 ds 1
9.2 —_— —_—= S(s — Dkz_ d
©-2) 2mwi Jr §(s)k K 2mi /1"x (s ) k() ds
N |
= — | -1k a
Lk f 0 s

+0((1+8)N+1/xf“(s)|s—1|k+N+1|ds|).
T

The O-term above is

-5 1 N+1
<L (1+ z?)NJrl/1 ) x7(1— o) N+ 4 * ( + 8)

L (log x)k+1 \ log x

X (l—l-s N+1/°° kN1 X l—i—e)NH
< e 't dt +
(log x)*+1 \ log x 1 (log x)k*+1 \ log x

xTk+N +2)(1+e\VT!
it (ioes)

(N + DE+2 (N 4 1\ V!
(log x)*+1 ( ) '

Furthermore, the first term in (9.2) is

N
. dz,
lo xk+1Zlo x)/ 2mwi F/ez z
g 1)kt £ (log

after a change of variables, where I'” is made up of the anticlockwise circle |z| = 1 excluding the
point —1, and the linear paths joining —%% + & log x to —1 and then back to —%% + @ log x
with arguments —m and +, respectively. We extend the linear paths to from —oo to —1 and

then back to co. The error term arising from doing so is
N

X
<
(log x)k—i—l ;}

log x

log x

log x

ly—k,;| [~ 2 tooloex

(logx)/ J-o

eZ|z/* i dz

2
8
1 log1 kte
- e PRt
(log xo) ¥
< x exp((log x)F1T (log log x) 1 7¢).

( log x )
L xexp| ——— + aplogx

For the main term, the contour is the Hankel contour, and hence by [37, Chapter 5, Theorem 2],
it is equal to

N
X V—k,j 1
(log x)k+1 ;) (log x)/ T(—=(k + j))

Cosinfkn) x (DTG + Dyry
N 7 (logx)k+1 et (log x)/
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Thus
N

1 x5 ds sin(k) X (=D)/T(k +j+1)y_ N
fars = 2 s

2t JrL(s)k s 7 (logx)k+1 = (log x)/

ey (N 41 N+1
ro(w () )

+ 0 (ﬁ exp((log x) R (loglog x)kiv“l"'g)) .

We next consider the integrals along Vp and V. Let
log x¢
To=exp| —————= ).
’ xp((log log xo)S)

8
loglog T)k t¢
<<(g gT)

For Ty < T < xo we have

— < I
(logT)* (log T)*
and so
1 stao+iT s g xatao pitaotiT | g
e i b et
270 Jyvagt T CO)K s T Jitaorif 166

<« x2teo exp(log T (log log T)_Hs),
by (1.4). We hence get
1 .
1 5 +ao+ixo s d
9.3) - x_k_s
270 Jvao+iTy §(8)C S

« xzteo exp(log xo (log log x¢) ™ ¢)

8
1 log1 % te
= ﬁexp( og x (log nglo)
(log x0) *
< ﬁexp((log x)kkﬁ (loglog x)kiﬂ—i_e)’

by diving the segment of integration into dyadic intervals. The same bound holds for the integral

along
/ %-i—oto—i To
%-on—ixo

Furthermore, we note from Lemma 2.2 that

+ log xo(log log xo)_1+€)

1 loglog x
©-4) 1E(5)7Y < (J¢] + 2)FF T et
for s € Vp. So
1 .
1 5 +tao+iTo s d
(9.5) — x_k_s
2mi Jlyag—iTy §()€ s

8
log x(loglog xo)k T¢  loglog xq log T
<<ﬁexp(g(gglo) ggogo)
(log x0) % loglog Ty

< Vx exp((log x)kLJrl (loglog x)kjrlJrs) .
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Combining (9.3) and (9.5) we obtain that
1 x* ds K ;
— — " &« Jxexp((log x)F+T (log log x) A1 T¢).
2,”[V0§(S)ks V/x exp((log x) T (log log x) )

The same bound holds for the integral over V.
For the contribution from the vertical segments Ujjzl V;, we deduce from (1.3) that it is

bounded by
J—1

2 i 2+e
(9.6) < Jx(logx)T+e ) exp(logx(log 10g(2f x?))k )
j=0 (log(2/ x0)) ¥

8
log x(log log x) % ¢
<<ﬁexp( g x(log gl) )
(log xo)

< ﬁexp((log x)kkﬁ (loglog x)k7+1+8),

Fors € Hj,1 < j < J — 1, again like (9.4) we have
. 1
2(s)| 7! < (27 x0) 2% FE.
So the contribution to (9.1) from the horizontal segments UJJ;II Hj is

g 1 i B4e
(9.7) < Jx Z(zj X0) 3T exp (logx(log log(2/ x?))k )
j=0 (log(27x0))*

log x (log log x)%“ )

—%—i—s
&L A/xxy 2 exp 1
(log xo)*®

< Wx.

We are left with the integral along H y, which is bounded by

9.8) max exp((0 — 1) logx — klog|¢ (o +ix)]).
1 Goglog)8/kte o\ 1
2 (logx)l/k =7 = log x
For .
1 (loglogx)kte 1 1
_+M505_+0(_),
2 (log x)* 2 loglog x

Lemma 2.2 implies that this is

klog x 1

2loglog x A (log x)1—20

log x log x 1
O\ —— (0] 1
+ k(loglogx) + k((loglogx)2 A (10gx)1—2”))

klog x
0
2loglog x g (20 — 1) loglog x

log x log x 1
0 e —— O 1 b}
+ k(loglogx) + k((loglogx)2 °8 20—1))

9.9 < exp ((0 —1)logx +

+ O ((20 —1)log x)

< exp((a —1)logx +
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which is decreasing with respect to o, and, hence,

8 4+ k) log x logloglog x log x
9.10) « exp| - & Klogxlogloglogx ) ( logx )} )
2loglog x loglog x
For
1 1
l-——<0<1 :
loglog x log x

the second estimate in Lemma 2.2 leads to a bound of size
(9.11) < exp((0 — 1) logx + klogloglog x + Ok (1)) < (log log x)¥.

Finally, for

1 1 1

-4+ O0|——— | <0<l ———,

2 loglog x log log x
we use the last estimate in Lemma 2.2 to get the bound

(10g x)2—20

(1 —0)loglogx
(log x)2—20
+ 0 rieg logx)Z))

Combining the estimates we obtain the first part of the theorem for k > 1.

(9.12) < exp((a —1)logx + + elogx

< x°.

9.2. Assuming RH: k < 1. The arguments are similar to the previous case. Let

logl
X1 = exp(\/slogxloglogx), o] = 8&
0g X1

and J = [log, M] < log x. We replace the contour in (9.1) with

X1
J
JuH)H UV UT,
j=1

where V(; U I is the contour joining the points % + a1 —ixy and % + a1 + ixq, as described
below, and
1 loglog(2/~1xy)

. . . i—1 . i .
Vj: S—§+8m+”» 277 xy St =min{2/ xq, [x]}, 1<) <J,

, 1 loglog(2/ 1 loglog(2/~1
Hy s=o+idixg, Lpeoeloe@x) 1 Jloglog@ "xy) =\,
2 log(2/ x1) 2 log(2/=1xy)
1 loglog(2/~1! 1
Hy: s=o0+i[x], —+80g0g( x1)§0§1+ .
2 log(2/—1x1) log x

1
log x

and the linear paths joining % +oaptol — 10; — and then back

Here I is the truncated Hankel-type contour made up of the anticlockwise circle |s — 1| =

) . )
excluding the point 1 — Toex
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to % + a1 with arguments —7 and +, respectively, and V{ consists of the two vertical seg-
ments joining the Hankel contour and the point % + a1 —ixy and % + a1 + ix; respectively.
Again we encounter no singularity in doing so.

For the integral over I', we have the main term as before. Also, the error term arising
from extending the linear paths to from —oo to —1 and then back to oo is now

N _logx
x |V—k.;] Treloex k)
< T . e’|z| dz

(log )FFT & (log )/ [

log x
<L xexp 5 + ag log x

( logxloglogxl)
= Jxexple——————
log x1

& +/xexp(g/log x).

Hence

1 x5 ds sin(km) X N (—1)/Tk +j + D)y,
e

2ri Jres)k s w (logx)ktl = (log x)/

oo (2)™)
+ 0(Vx exp(eiogx) ).

For the integral along 1, let

7 log x1
=exp|l —— ).
! P loglog x

1 loglog T’
If 7y < T < xy, then ;7 < o < ;7 and hence
1 st T s g gzt /;+a1+iT ds
270 Jiqay+i2 G(s)F s T Jita+i2 |L(s)

< x2te exp((loglog ) %),

by (1.7). It follows that

1 .
1 5tap+ixg x5 ds .
(9.13) —/ —— — < x2 ¥ exp((loglog x1) ' ¢

27 Jivayimy §()F s ( )

log x log log x1

= xexp(s + (loglogx1)1+8)
log x1

& +/xexp(gy/log x),

by relabelling e. The same bound holds for the integral along

Lo —iT,
Lo —ix ‘
2 1 1
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Also, by (9.4) we have

1 .
1 sta1+iT) x5 ds

(9.14) — _—
2700 Jivai—ity C(9)F s

log x log log x k loglog xqlog T

<<\/§expsg gg1+_+ glog xy log /1]

log x1 2 loglog T}
< +/xexp(ey/logx),
by another relabelling of . Combining (9.13) and (9.14), we obtain that
1 x* ds
(9.15) ——— < +/xexp(ey/logx).

2mi Jyy L()F s
The same bound holds for the other integrals. Indeed, similar to (9.6) and (9.7) we have

J—1

log x loglog(2/ x1)
9.16 D« Jxllogx) e :
10 Z 2 /v C(S)" Vrllos) ¥ ,Zo xp(g Tog(2/ x1)
1 log1
& x(logx)s e exp(e—ogx o8 ngl)
log x
< +/xexp(g+/log x)
and
x5 log x loglog(2/ x1)
9.17 — << 2 xy)5" :
G17) Z 27 /H g(s)k 5 ‘/_Z( *1)* (8 log(2/ x1)
_1 1 log1
« Jix) ) e(logx)exp(gw)
log x1
< +/xexp(gy/log x).
Similar to (9.8), (9.9), (9.10), (9.11) and (9.12) we get
1 x* ds
2ni JH, é‘(s)k s
< max exp((o — 1)logx — klog |¢ (0 £ ix)])
2+8]01g0]g0§cx =0= 1+logx
eXp((k_I%Ing _ klogﬁ)lgol%lgo)%logx
< +0k(lol;lgo)gcx)) lf + gloﬁ)lgogx =0 5 2 + O(IOgllogx)’
k .
(loglog x) if 1 — W <o=<1+ logx’
o1 1
x* lfi + O(IOglogx) =o=1- loglog x
< x°,

by Lemma 2.2. This, together with (9.15), (9.16) and (9.17), establishes the first part of the
theorem for k < 1.
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9.3. Assuming Conjecture 1.1. We will prove the theorem in the case k € Z. When
k ¢ 7., we have the main term just like in previous subsections.
We replace the contour in (9.1) by Hy U Vy, where

1 .
Vo: s = 5 Toa it ] < [x].

1
Hi: s=o0+xtilx], - 4+a<o=<1+
2 log x
1

for some fogx = @2 = 1 to be chosen later. We encounter no pole in doing so.

On one hand, by Conjecture 1.1 we get

I s d I
(9.18) [ D« (—)

27i Jy, C(s)k s o

On the other hand, we have

1 x5 ds
— —— <K max exp((o — 1) logx — klog |l (o £i[x])]).
271 JH, é‘(s)k S T tar<o<i+] ( )

log x

#‘T\)

Like in (9.9) and (9.10), this is

k log x 1

9.19 — Dl
9.19) < eXP<(0 )ng+210glogx % (20 — D) loglogx

log x
+ O ((20 — 1) logx) + O (L)
log log x

0 log x 1 1
0
k (loglog x)?2 83 —1

logx klogxlog é k log x log log log x
L exp| — —

2 2loglog x 2loglog x

log x log x log 5~
+ O (a2 log x) + Ok(i) + Ok(—az)

loglog x (loglog x)?
for % 4+ar <o < % + O(W)’ and as in (9.11) and (9.12), it is
< (loglog x)F + x*

<o <1+ —L. In view of (9.19), we choose

1 1
for 2 + O(IOglogx) — log x *

L ifk <2,

log x

0y = .
— ifk > 2,
(log x) % (loglog x)1—¢

1 s d
/ x——s<<ﬁ.

27i Ju, L)k s

Combining with (9.18) we obtain the second part of the theorem.

and then
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