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Negative moments of
the Riemann zeta-function

By Hung M. Bui at Manchester and Alexandra Florea at Irvine

Abstract. Assuming the Riemann Hypothesis, we study negative moments of the
Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in �.s/.
For example, integrating j�.1

2
C ˛ C i t/j�2k with respect to t from T to 2T , we obtain an

asymptotic formula when the shift ˛ is roughly bigger than 1
log T

and k < 1
2

. We also obtain
non-trivial upper bounds for much smaller shifts, as long as log 1

˛
� log log T . This pro-

vides partial progress towards a conjecture of Gonek on negative moments of the Riemann
zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an
upper bound for the average of the generalized Möbius function.

1. Introduction

For k > 0, the 2kth moment of the Riemann zeta-function is given by

Ik.T / D
Z T

0

j�.1
2

C i t/j2k dt:

Hardy and Littlewood [16] computed the second moment, and Ingham [22] computed the
fourth moment. It is conjectured that

(1.1) Ik.T / � ckT .log T /k2

for an explicit constant ck , whose value was predicted by Keating and Snaith [23] using analo-
gies with random matrix theory. Their conjecture was later refined by Conrey, Farmer, Keating,
Rubinstein and Snaith [8] to include lower order powers of log T , for integer k. Under the
Riemann Hypothesis (RH), Soundararajan [35] established almost sharp upper bounds for all
the positive moments. This result was later improved by Harper [17], who obtained upper
bounds of the conjectural magnitude as in (1.1). There is a wealth of literature on obtaining
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lower and upper bounds for positive moments of �.s/; for (an incomplete) list of results, we
refer the reader to [3, 18±20, 30, 31, 33, 34].

In this paper, we are interested in studying negative moments of the Riemann zeta-
function. For k > 0 and ˛ > 0, let

I�k.˛; T / D 1

T

Z T

0

j�.1
2

C ˛ C i t/j�2k dt:

Studying negative moments of L-functions or, more generally, moments of ratios of L-func-
tions, has applications to many challenging problems in number theory. For a thorough list of
applications of moments of ratios of L-functions, we refer the reader to Conrey and Snaith’s
paper [9]. Here, we will only mention a few. The Ratios Conjecture, due to Conrey, Farmer
and Zirnbauer [7], predicts precise asymptotic formulas for averages of ratios of L-functions
in families, and generalizes the study of the negative moments. Farmer observed in [11] that
obtaining an asymptotic formula for the average of the ratio of two over two zeta-functions
(a precursor of the Ratios Conjecture) implies Montgomery’s Pair Correlation Conjecture.
Focusing on the family of quadratic Dirichlet L-functions, Conrey and Snaith [9] showed that
the Ratios Conjecture for this family implies that 100 % of L.1

2
; �d / ¤ 0, where �d varies over

real primitive characters. (We note that a conjecture due to Chowla [6] states that L.1
2
; �d /

never vanishes, and the Ratios Conjecture provides the strongest result in this direction.) More
recently, the study of negative moments of L-functions has seen unexpected applications in
other problems unrelated at first sight to L-functions. For example, assuming various conjec-
tures about negative moments in families, Wang [39] showed that almost all integers (without
any ªlocal obstructionsº) can be written as the sum of three cubes.

A conjecture due to Gonek [15] states the following.

Conjecture 1.1 (Gonek). Let k > 0. Uniformly for 1
log T

� ˛ � 1,

I�k.˛; T / �
�

1

˛

�k2

;

and uniformly for 0 < ˛ � 1
log T

,

I�k.˛; T / �
´

.log T /k2

if k < 1
2
;

�

log e
˛ log T

�

.log T /k2

if k D 1
2
:

Gonek’s original conjecture predicted formulas for k > 1
2

and ˛ � 1
log T

as well, which
seem to be contradicted however by more recent evidence (see the next paragraph). Under RH,
Gonek [15] also proved lower bounds of the conjectured order of magnitude for all k > 0 and

1
log T

� ˛ � 1, and for k < 1
2

and 0 < ˛ � 1
log T

.
No other progress has been made towards Gonek’s conjecture so far, but more recent

random matrix theory computations due to Berry and Keating [2], Fyodorov and Keating [14]
and Forrester and Keating [13] suggest that certain corrections to the above conjecture are
due in some ranges. Namely, when ˛ � 1

log T
, random matrix theory computations seem to

contradict Gonek’s prediction for the negative moments when k � 3
2

. In particular, the work in
[2, 13] suggests certain transition regimes when k D 2nC1

2
, for n a positive integer (Gonek’s

conjecture already captures the first transition at k D 1
2

featuring a logarithmic correction, and
in this case the two conjectures do agree).
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Reinterpreting the random matrix theory computations in [2], one would expect that for
a shift 0 < ˛ � 1

log T
and j a natural number such that 2j �1

2
< k < 2j C1

2
,

(1.2) I�k.˛; T / � .log T /k2

.˛ log T /�j.2k�j /;

while for k D 2j �1
2

and j a natural number, one would expect

I�k.˛; T / � log

�

e

˛ log T

�

.log T /k2

.˛ log T /�j.2k�j /:

We note that the above prediction indeed agrees with Conjecture 1.1 for k D 1
2

and ˛ � 1
log T

.
We remark that one could also predict (1.2) for integer k using heuristic ideas similar as in [8].

In this paper, we study the negative moments of the Riemann zeta-function. While obtain-
ing lower bounds for the negative moments is a more tractable problem (see the comment
after Conjecture 1.1), no progress has been made so far on obtaining asymptotic formulas or
non-trivial upper bounds. When the shift ˛ is ªbig enoughº, we obtain upper bounds which
are almost sharp according to Conjecture 1.1, up to some logarithmic factors. We also obtain
the first non-trivial upper bounds for the negative moments for a wide range of much smaller
shifts ˛ (roughly ˛ � .log T /�O.1/); however, the bounds in these cases are far from sharp.

More precisely, we prove the following.

Theorem 1.2. Assume RH. Let k � 1
2
; ˛ > 0 and "; ı > 0, such that u D log 1

˛

log log T
� 1.

Then

1

T

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt

� .log log T /k.log T /k2

if ˛ � .log log T /
4
k

C"

.log T /
1

2k

,(1.3)

� exp
�

.4C"/ log T log log log T
log log T

�

if 1

.log T /
1

2k

� ˛ D o
�

.log log T /
4
k

C"

.log T /
1

2k

�

,(1.4)

� T .1Cı/.ku� 1
2

Ck"/ if ˛ � 1

.log T /
1

2k

.(1.5)

We also have the following bounds for k < 1
2

.

Theorem 1.3. Assume RH. Let k < 1
2
; ˛ > 0 and "; ı > 0, such that u D log 1

˛

log log T
� 1.

Then

1

T

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt

� .log log T /k
� log.˛ log T /

˛

�k2

if ˛ � log log T
log T

,(1.6)

� exp
�

C1.log log T /
�

log log log T
˛ log T

�2
�

if 1
log T

� ˛ D o
� log log T

log T

�

,(1.7)

� exp
�

C2

�

1
˛ log T

�
2k

1�2k�k"

�

if 1

.log T /
1

2k
�"

� ˛ D o
�

1
log T

�

,(1.8)

� T .1Cı/.ku� 1
2

Ck"/ exp
�

O
� log T log log log T

log log T

�

�

if ˛ D o
�

1

.log T /
1

2k
�"

�

,(1.9)

for some constants C1; C2 > 0.
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Remarks. (1) We remark that results about negative moments of quadratic Dirichlet
L-functions were recently proven in the function field setting, first in [4] for shifts big enough,
and later improved in [12] to include small shifts.

(2) We note that the bound (1.3) in Theorem 1.2 and the bound (1.6) in Theorem 1.3 are
ªalmost sharpº. We remind the reader that in these cases, according to Gonek’s Conjecture 1.1,
we expect I�k.˛; T / � . 1

˛
/k2

. Hence, the former bound is off by a power of log T which de-
pends on ˛, while the latter is off by a log log T factor (namely, .log log T /k.log.˛ log T //k2

).

We also further use the upper bounds to obtain an asymptotic formula for the negative
moments in the following ranges.

Theorem 1.4. Assume RH. Let k > 0, C; " > 0 and

˛ � max

´

C
.log log T /

4
k

C"

.log T /
1

2k

;
.1 C "/ log log T

2 log T

µ

:

Then we have

1

T

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt

D .1 C o.1//�.1 C 2˛/k2
Y

p

�

1 � 1

p1C2˛

�k2
 

1 C
1
X

j D1

�k.pj /2

p.1C2˛/j

!

;

where �k.n/ denotes the nth Dirichlet coefficient of �.s/�k .

As an application, we study averages of the generalized Möbius function. Studying aver-
ages of the Möbius function has a long history due to its connections to RH. For example, RH is
a consequence of the Mertens conjecture which states that, if we denote by

M.x/ D
X

n�x

�.n/;

then
jM.x/j �

p
x;

for x � 1. The Mertens conjecture was disproven by Odlyzko and te Riele [29], who showed
that

lim inf
x!1

M.x/p
x

< �1:009 and lim sup
x!1

M.x/p
x

> 1:06:

The true order of M.x/ is somewhat mysterious, and Odlyzko and te Riele [29] noted that ªNo
good conjectures about the rate of growth of M.x/ are knownº.

Under RH, Littlewood [25] proved that M.x/ � x
1
2

C". This was improved in several
works [24, 26, 38], and Soundararajan [36] showed that

M.x/ �
p

x exp
�
p

log x.log log x/14
�

on RH. A note of Balazard and de Roton [1] on Soundararajan’s paper [36] improves the power
of log log x in the bound above, and it was stated in [1] that the power .log log x/

5
2

C" is the
limitation of the ideas in [1, 36].
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Assuming RH and the conjectured order of magnitude of the negative second moment
of �0.�/ by Gonek [15] and Hejhal [21], Ng [28] also showed that

M.x/ �
p

x.log x/
3
2 :

Using Theorem 1.2, we improve the result in [36]. As before, let �k.n/ denote the nth
Dirichlet coefficient of �.s/�k . Let

Z�k.s/ D 1

s..s � 1/�.s//k
:

The function Z�k.s/ is holomorphic in the disc js � 1j < 1 and has a Taylor series,

Z�k.s/ D
1
X

j D0


�k;j .s � 1/j :

We prove the following.

Theorem 1.5. Assume RH. For k > 0, we have

X

n�x

�k.n/ D �sin.k�/

�

x

.log x/kC1

 

N
X

j D0

.�1/j �.k C j C 1/
�k;j

.log x/j

C O

�

.N C 1/kC 1
2

�

N C 1

log x

�N C1�
!

C Ek;

for any N � 0 with

Ek �
´p

x exp."
p

log x/ if k < 1;
p

x exp
�

.log x/
k

kC1 .log log x/
7

kC1
C"
�

if k � 1:

Also, if we assume Conjecture 1.1, then

Ek �
´p

x.log x/
k2

4 if k � 2;
p

x exp
�

.log x/
k�2

k .log log x/�1C"
�

if k > 2:

Remark 1. Notice that the main term above vanishes if k 2 Z.

Proving Theorem 1.5 requires good bounds for the negative moments of �.s/ when
roughly

˛ � 1

.log T /
1

2k

:

We remark that obtaining the bound (1.3) in Theorem 1.2 is the most delicate part of the proof
and requires a recursive argument which allows us to obtain improved estimates at each step.

The ideas in the proof of Theorems 1.2 and 1.3 are sieve-theoretic inspired ideas, as
in the work of Soundararajan [35] and Harper [17]. However, unlike in the work in [35]
and [17], the contributions of zeros of �.s/ play an important part, and one needs to be careful
about the choice of parameters in the sieve-theoretic argument, in order to account for the big
contributions coming from the zeros.
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The paper is organized as follows. In Section 2, we prove some lemmas providing a lower
bound for the logarithm of �.s/, as well as a pointwise lower bound for j�.s/j. In Section 3, we
introduce the setup of the problem, and prove three main propositions. In Section 4, we consider
the case of a ªbigº shift ˛, and do the first steps towards proving Theorems 1.2 and 1.3 in this
case. In Section 5, we obtain the bound (1.3) in the smaller region

˛ � 1

.log T /
1

2k
�"

;

and prove the bounds (1.6), (1.7) and (1.8) from Theorem 1.3 as well. In Section 6, we obtain
the bound (1.3) in the wider region stated in the theorem by using a recursive argument. We
consider the cases of ªsmallº shifts in Section 7 and prove the bounds (1.5) and (1.9). We then
prove Theorem 1.4 in Section 8, and Theorem 1.5 in Section 9.

Throughout the paper " denotes an arbitrarily small positive number whose value may
change from one line to the next.

Acknowledgement. The authors would like to thank Steve Gonek, Jon Keating and
Nathan Ng for helpful conversations and comments, Kannan Soundararajan for pointing out
a mistake in a previous version of this paper, as well as the referee for several useful sugges-
tions.

2. Preliminary lemmas

The first two lemmas concern the lower bounds for j�.s/j.

Lemma 2.1. Assume RH. Let ˛ > 0. Then

log j�.1
2

C ˛ C i t/j �
log t

2�

2��
log
�

1 � e�2��˛
�

C <
�

X

p�e2��

.log p/a˛.pI �/

p
1
2

C˛Cit

�

� log log log T

2
�
�

log
1

�˛

�
.�/

C O

�

�2e��

1 C �t
C � log.1 C �

p
t /p

t
C 1

�

;

where

(2.1) a˛.nI �/ D
1
X

j D0

�

.j C 1/

log n C 2�j�
e�2�j�˛ � .j C 1/n2˛

2�.j C 2/� � log n
e�2�.j C2/�˛

�

and


.�/ D
´

1 if �˛ D o.1/;

0 if �˛ � 1:

Proof. We use the work in [5]. Let

f˛.x/ D log

�

4 C x2

˛2 C x2

�

;
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and let m�.x/ be an extremal majorant for f˛, whose Fourier transform ym� is supported
in Œ��; ��, satisfying the properties from [5, Lemma 8]. By [5, Equation 3.1],

(2.2) log j�.1
2

C ˛ C i t/j �
�

1 � ˛

2

�

log
t

2
� 1

2

X




m�.t � 
/ C O.1/;

where the sum over 
 is over the ordinates of the zeros of �.s/ on the critical line. Using the
explicit formula, [5, Equation 3.2] leads to

X




m�.t � 
/ D m�

�

t � 1

2i

�

C m�

�

t C 1

2i

�

� log �

2�
ym�.0/(2.3)

C 1

2�

Z 1

�1
m�.x/<

�

� 0

�

�

1

4
C i.t � x/

2

��

dx

� 1

�
<
 1
X

nD2

ƒ.n/

n
1
2

Cit
ym�

�

log n

2�

�

!

;

where

ym�.�/ D
1
X

j D0

�

j C 1

� C j�

�

e�2�.�Cj�/˛ � e�4�.�Cj�/
�

� j C 1

.j C 2/� � �

�

e�2�..j C2/���/˛ � e�4�..j C2/���/
�

�

:

For n � e2�� we note that

ym�

�

log n

2�

�

D 2�a˛.nI �/

n˛
C O

�

1

n2 log n

�

:

Combining that with (2.2), (2.3) and [5, Equations (3.3), (3.4), (3.5)], we obtain

log j�.1
2

C ˛ C i t/j �
log t

2�

2��
log.1 � e�2��˛/ C <

�

X

n�e2��

ƒ.n/a˛.nI �/

n
1
2

C˛Cit

�

(2.4)

C O

�

�2e��

1 C �t
C � log.1 C �

p
t /p

t
C 1

�

:

It is easy to see that a˛.nI �/ � 0. Also, with log n � 2�� we have

a˛.nI �/ <
1

log n
C

1
X

j D1

.j C 1/e�2�j�˛

�

1

log n C 2�j�
� 1

2�.j C 2/� � log n

�

C
1
X

j D1

.j C 1/e�2�j�˛

2�.j C 2/� � log n
.1 � n2˛e�4��˛/

� 1

log n
C 2.2�� � log n/

1
X

j D1

.j C 1/e�2�j�˛

.log n C 2�j�/.2�.j C 2/� � log n/
(2.5)

C 1 � n2˛e�4��˛

2��

1
X

j D1

e�2�j�˛
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<
1

log n
C 2.2�� � log n/

.2��/2

1
X

j D1

e�2�j�˛

j
C 1 � n2˛e�4��˛

2��.1 � e�2��˛/

D 1

log n
� 2.2�� � log n/

.2��/2
log.1 � e�2��˛/ C O

�

1

�

�

:(2.6)

Note that if �˛ � 1, then the second term above is O.��1/, and if �˛ D o.1/; then it is

(2.7) � 1

��
log

1

�˛
:

Now we use the expression (2.6) for a˛.nI �/ and evaluate the contribution from the
prime squares in (2.4). When dealing with the main term of size 1

log n
above, we proceed simi-

larly as in [17] or [36, Lemma 2]. For the second term, we trivially bound the sum over primes
and use the bound (2.7), and it follows that the contribution from prime squares is

� � log log log T

2
�
�

log
1

�˛

�
.�/

� O.1/:

Dealing similarly with the sum over prime cubes and higher powers and combining the equation
above and (2.4) finishes the proof.

Lemma 2.2. Assume RH. If 0 < ˛ D o. 1
log log t

/, then

log j�.1
2

C ˛ C i t/j � log t

2 log log t
log
�

1 � .log t /�2˛
�

C O

�

log t

log log t

�

(2.8)

C O

�

log t

.log log t /2
log

1

1 � .log t /�2˛

�

;

and if 1
2

� ˛ � 1
log log t

, then

log j�.1
2

C ˛ C i t/j � � log log log t C O.1/;

otherwise

log j�.1
2

C ˛ C i t/j � �
�

1

2
C 8˛

1 � 4˛2

�

.log t /1�2˛

log log t

� log log log t C O

�

.log t /1�2˛

.1 � 2˛/2.log log t /2

�

:

Proof. Carneiro and Chandee established the last two bounds in [5, Theorem 2] and in
the case 0 < ˛ D o. 1

log log t
/ they obtained

log j�.1
2

C ˛ C i t/j � log t

2 log log t
log
�

1 � .log t /�2˛
�

C O

�

.log t /1�2˛

.log log t /2.1 � .log t /�2˛/

�

:

We will now prove the improved bound (2.8).
Let � D log log t

�
. From (2.4) and (2.6) we have

log j�.1
2

C ˛ C i t/j �
log t

2�

2 log log t
log
�

1 � .log t /�2˛
�

�
X

n�.log t/2

ƒ.n/

n
1
2

C˛

�

1

log n

� 2.2 log log t � log n/

.2 log log t /2
log
�

1 � .log t /�2˛
�

C O

�

1

log log t

��

C O.1/:
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We now consider the sum over n above, which expands into three terms. The contribution of
the first and the last term is

� log t

log log t
;

while the second term is

D � log.1 � .log t /�2˛/

log log t

�

2.log t /1�2˛

1 � 2˛
C O

�

.log log t /3
�

�

C log.1 � .log t /�2˛/

2.log log t /2

�

4.log t /1�2˛ log log t

1 � 2˛
C O.log t /

�

D O

�

log t

.log log t /2
log

1

1 � .log t /�2˛

�

;

by the prime number theorem and partial summation. This establishes (2.8).

The next lemma is the classical mean value theorem (see, for instance, [27, Theorem 6.1]).

Lemma 2.3. For any complex numbers a.n/ we have

Z 2T

T

ˇ

ˇ

ˇ

ˇ

X

n�N

a.n/

n
1
2

Cit

ˇ

ˇ

ˇ

ˇ

2

dt D
�

T C O.N /
�

X

n�N

ja.n/j2
n

:

Now let ` be an integer, and for z 2 C, let

E`.z/ D
X

s�`

zs

sŠ
:

If z 2 R, then for ` even, E`.z/ > 0.
We have the following elementary inequality.

Lemma 2.4. Let ` be an even integer and let z be a complex number such that jzj � `
e2 .

Then

e<.z/ � max

²

1; jE`.z/j
�

1 C 1

15e`

�³

:

Proof. We have

e<.z/ D jezj � jez � E`.z/j C jE`.z/j:

Now we have

jez � E`.z/j �
1
X

j D`C1

jzjj
j Š

;

and we can proceed as in [32, Lemma 1] to get that

jez � E`.z/j � 1

16e`
:

Hence

e<.z/ � jE`.z/j C 1

16e`
:
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If jE`.z/j � 15
16

, then we have e<.z/ � 1. Otherwise, if jE`.z/j > 15
16

, we get that

e<.z/ � jE`.z/j
�

1 C 1

15e`

�

;

and this completes the proof.

Let �.n/ be the multiplicative function given by

�.pj / D 1

j Š
;

for p a prime. We will frequently use the following fact. For any interval I , s 2 N and a.n/ a
completely multiplicative function, we have

(2.9)

�

X

p2I

a.p/

�s

D sŠ
X

p j n ) p2I
�.n/Ds

a.n/�.n/;

where �.n/ denotes the number of prime factors of n, counting multiplicity.

3. Setup of the proof and main propositions

We will first introduce some notation and state some key lemmas, before proceeding to
the proof of Theorems 1.2 and 1.3.

Let
I0 D .1; T ˇ0 �; I1 D .T ˇ0 ; T ˇ1 �; : : : ; IK D .T ˇK�1 ; T ˇK �

for a sequence ˇ0; : : : ; ˇK to be chosen later such that ǰ C1 D r ǰ , for some r > 1.
Also let j̀ be even parameters which we will also choose later on. Let sj be integers. For

now, we can think of sj ǰ � 1, and
PK

hD0 `hˇh � 1.
We let T ǰ D e2��j for every 0 � j � K and let

Pu;v.t/ D
X

p2Iu

b˛.pI �v/

p
1
2

C˛Cit
;

where b˛.nI �/ is a completely multiplicative function in the first variable and

b˛.pI �/ D �a˛.pI �/ log p:

For p � e2��, if �˛ � 1, we note from equation (2.5) that

jb˛.pI �/j � 1 C 2�� � log p

2��

1
X

j D1

2 log p

log p C 2�j�
e�2�j�˛ C log p

2��

1
X

j D1

e�2�j�˛

� 1 C
1
X

j D1

e�2�j�˛ D 1

1 � e�2��˛
:

On the other hand, if �˛ D o.1/, then from (2.6) we get that

jb˛.pI �/j � 2.2�� � log p/ log p

.2��/2

1
X

j D1

e�2�j�˛

j
C O.1/ � 1

2
log

1

�˛
C O.1/:
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Thus we can rewrite the bound for b˛.pI �/ as a single bound,

(3.1) jb˛.pI �/j � b.�/

�

log
1

�˛

�
.�/

;

where 
.�/ D 0 if �˛ � 1 and 
.�/ D 1 if �˛ D o.1/, and where

(3.2) b.�/ D
´

1
1�e�2��˛ if �˛ � 1;

1
2

C " if �˛ D o.1/:

Let

Tu D
²

T � t � 2T W max
u�v�K

jPu;v.t/j � `u

ke2

³

:

Denote the set of t such that t 2 Tu for all u � K by T
0. For 0 � j � K � 1, let Sj denote the

subset of t 2 ŒT; 2T � such that t 2 Th for all h � j , but t … Tj C1.
We will prove the following lemma.

Lemma 3.1. For t 2 ŒT; 2T �, we either have

max
0�v�K

jP0;v.t/j >
`0

ke2
;

or

j�.1
2

C ˛ C i t/j�2k � S1.t/ C S2.t/;

where

S1.t/ D .log log T /k

�

1

1 � T �ˇK˛

�
2k
ˇK

exp

�

2k

�

log
1

�K˛

�
.�K/�

�
K
Y

hD0

max

²

1; jE`h
.kPh;K.t//j2

�

1 C 1

15e`h

�2³

� exp

�

O

�

�2
Ke��K

1 C �K t
C �K log.1 C �K

p
t /p

t
C 1

��

and

S2.t/ D .log log T /k
K�1
X

j D0

K
X

vDj C1

�

1

1 � T � ǰ ˛

�
2k

ǰ

exp

�

2k

�

log
1

�j ˛

�
.�j /�

�
j
Y

hD0

max

²

1; jE`h
.kPh;j .t//j2

�

1 C 1

15e`h

�2³� ke2

j̀ C1
jPj C1;v.t/j

�2sj C1

� exp

�

O

�

�2
j e��j

1 C �j t
C �j log.1 C �j

p
t /p

t
C 1

��

:

Proof. For T � t � 2T , we have the following possibilities:

(1) t … T0,

(2) t 2 T
0,

(3) t 2 Sj for some 0 � j � K � 1.



12 Bui and Florea, Negative moments of the Riemann zeta-function

If t … T0, then the first condition is automatically satisfied. Now suppose that t 2 T0.
Suppose that t 2 T

0. We use Lemma 2.1 with � D �K and the inequality in Lemma 2.4
with z D k<Ph;K.t/.

Now if t 2 Sj , then we use Lemma 2.1 with � D �j , the inequality in Lemma 2.4 with
z D k<Ph;j .t/ and the fact that there exists some v � j C 1 such that

ke2

j̀ C1
jPj C1;v.t/j > 1:

We will also need the following propositions.

Proposition 3.2. For 0 � v � K and ˇ0s0 � 1, we have

Z 2T

T

jP0;v.t/j2s0 dt � T s0Šb.�0/2s0

�

log
1

�0˛

�2s0
.�0/

.log log T ˇ0/s0 :

Proof. Using (2.9), we have

P0;v.t/s0 D s0Š
X

p j n ) p�T ˇ0

�.n/Ds0

b˛.nI �v/�.n/

n
1
2

C˛Cit
:

It then follows from Lemma 2.3 that
Z 2T

T

jP0;v.t/j2s0 dt D .T C O.T ˇ0s0//.s0Š/2
X

p j n ) p�T ˇ0

�.n/Ds0

b˛.nI �v/2�.n/2

n1C2˛

� T s0Š

�

X

p�T ˇ0

b˛.pI �v/2

p1C2˛

�s0

� T s0Šb.�v/2s0

�

log
1

�v˛

�2s0
.�v/

.log log T ˇ0/s0 ;

where we have used the fact that �.n/2 � �.n/ and the bound (3.1). Now since

b.�v/

�

log
1

�v˛

�2s0
.�v/

� b.�0/

�

log
1

�0˛

�2s0
.�0/

;

the conclusion follows.

Proposition 3.3. Let 0 � j � K � 1. Then, for
Pj

hD0
`hˇh C sj C1 ǰ C1 � 1 and for

j C 1 � v � K, we have

Z 2T

T

j
Y

hD0

jE`h
.kPh;j .t//j2jPj C1;v.t/j2sj C1 dt

� T sj C1Š.log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

� b.�j C1/2sj C1

�

log
1

�j C1˛

�2sj C1
.�j C1/

.log r/sj C1 :
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Proof. Using (2.9), we have

Z 2T

T

j
Y

hD0

jE`h
.kPh;j .t//j2jPj C1;v.t/j2sj C1 dt(3.3)

D .sj C1Š/2

Z 2T

T

ˇ

ˇ

ˇ

ˇ

X

n�T
Pj

hD0
`hˇhCsj C1 ǰ C1

c.n/�.n/

n
1
2

C˛Cit

ˇ

ˇ

ˇ

ˇ

2

dt;

where

c.n/ D
X

nDn1:::nj C1

p j nh ) p2Ih

�.nh/�`h;hD0;:::;j

�.nj C1/Dsj C1

� j
Y

hD0

b˛.nhI �j /k�.nh/

�

b˛.nj C1I �v/:

Using Lemma 2.3 in (3.3) and the fact that �.m/2 � �.m/ for any m, we obtain that

(3.3) �
�

T C T
Pj

hD0
`hˇhCsj C1 ǰ C1

�

.sj C1Š/2

�
 

j
Y

hD0

X

p j nh ) p2Ih

�.nh/�`h

jb˛.nhI �j /j2k2�.nh/�.nh/

n1C2˛
h

!

�
X

p j nj C1 ) p2Ij C1

�.nj C1/Dsj C1

jb˛.nj C1I �v/j2�.nj C1/

n1C2˛
j C1

:

Now we use the assumption that
Pj

hD0
`hˇh C sj C1 ǰ C1 � 1. Bounding �.nh/ � 1, remov-

ing the condition on the number of primes of nh, and using (3.1), we get that

(3.3) � T sj C1Š
Y

p�T ǰ

�

1 � k2jb˛.pI �j /j2
p1C2˛

��1�
X

p2Ij C1

jb˛.pI �vj2
p1C2˛

�sj C1

� T sj C1Š.log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

b.�v/2sj C1

�
�

log
1

�v˛

�2sj C1
.�v/�

log
ǰ C1

ǰ

�sj C1

� T sj C1Š.log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

b.�j C1/2sj C1

�
�

log
1

�j C1˛

�2sj C1
.�j C1/

.log r/sj C1 ;

which finishes the proof of the proposition.

A minor modification of the proposition above (where we do not have the contribution
from the j C 1 interval) yields the following.

Proposition 3.4. For
PK

hD0 `hˇh � 1, we have

Z 2T

T

K
Y

hD0

jE`h
.kPh;K.t//j2 dt � T .log T ˇK /

k2b.�K/2.log 1
�K ˛

/2
.�K /

:
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4. The case ˛ �
1

.log T /
1

2k
�"

, first steps

Here, we will consider the case

˛ � 1

.log T /
1

2k
�"

;

which will be a starting point in the proof of Theorems 1.2 and 1.3.
We choose

(4.1) ˇ0 D a.2d � 1/.log log T /2

.1 C 2"/k.log T /
�

log 1
1�.log T /�2˛

� ; s0 D
�

a

ˇ0

�

; `0 D 2

�

sd
0

2

�

and

(4.2) ǰ D rj ˇ0; sj D
�

a

ǰ

�

; j̀ D 2

�

sd
j

2

�

; 1 � j � K;

where we can pick, for example,

a D 4 � 3k"

2.2 � k"/
; r D 2

2 � k"
; d D 8 � 7k"

2.4 � 3k"/
;

so that

(4.3)
a.2d � 1/

r
D 1 � k":

Here, K is chosen such that it is the maximal integer for which

(4.4) ˇK �
´

log.˛ log T /
˛ log T

if ˛ log T ! 1;

c if ˛ � 1
log T

;

where c > 0 is a small constant such that

(4.5) c1�d

�

ad r1�d

r1�d � 1
C 2r

r � 1

�

� 1 � a:

Note that the above ensures that the conditions in Propositions 3.3 and 3.4 are satisfied.
If t … T0, then there exists 0 � v � K such that ke2

`0
jP0;v.t/j > 1. Then we have

Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt

�
Z 2T

T

�

ke2

`0
jP0;v.t/j

�2s0

j�.1
2

C ˛ C i t/j�2k dt

�
�

ke2

`0

�2s0
�

1

1 � .log T /�2˛

�

.1C"/k log T

log log T
Z 2T

T

jP0;v.t/j2s0 dt;

by using the pointwise bound in Lemma 2.2,

(4.6) j�.1
2

C ˛ C i t/j�1 �
�

1

1 � .log T /�2˛

�

.1C"/ log T

2 log log T

:
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By Proposition 3.2 and Stirling’s formula, we get that
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt(4.7)

� T

�

1

1 � .log T /�2˛

�

.1C"/k log T

log log T p
s0 exp

�

�.2d � 1/s0 log s0

C 2s0 log

�

ke
3
2 b.�0/

�

log
1

�0˛

�
.�0/q

log log T ˇ0

��

D o.T /;

using the choice of s0 in (4.1).
Now assume that t 2 T0. Using Lemma 3.1, we have

Z

T0

j�.1
2

C ˛ C i t/j�2k dt �
Z 2T

T

S1.t/ dt C
Z 2T

T

S2.t/ dt:

With the choice (4.4) of ˇK , we have that

�

1

1 � T �ˇK˛

�
2k
ˇK �

8

<

:

1 if ˛ � 1
log T

;

.log T /O.1/ if ˛ D o
�

1
log T

�

and

exp

�

O

�

�2
Ke��K

1 C �K t
C �K log.1 C �K

p
t /p

t
C 1

��

D O.1/;

so

Z 2T

T

S1.t/ dt � .log log T /k exp

�

2k

�

log
1

�K˛

�
.�K/�

.log T /c1
.�K/

�
Z 2T

T

K
Y

hD0

max

²

1; jE`h
.kPh;K.t//j2

�

1 C 1

15e`h

�2³

dt:

Note that in the inequality above, we can assume without loss of generality that

max

²

1; jE`h
.kPh;K.t//j2

�

1 C 1

15e`h

�2³

D jE`h
.kPh;K.t//j2

�

1 C 1

15e`h

�2

:

Using Proposition 3.4 and the observation that 
.�K/ D 0 in the first two cases, and 
.�K/ D 1

in the third case, we get that

Z 2T

T

S1.t/ dt

�

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

T .log log T /k
� log.˛ log T /

˛

�k2

if ˛ log T ! 1;

T .log log T /k.log T /k2. 1
1�T �c˛ /2

if ˛ � 1
log T

;

T .log log T /k exp
�

k2
�

1
4

C "
�

.log log T /
�

log 1
˛ log T

�2
�

if ˛ D o
�

1
log T

�

:

(4.8)
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Now we will need to bound the contribution from S2.t/. Using Proposition 3.3 and
Stirling’s formula, we have

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

.K � j /
p

sj C1 exp

 

2k

ǰ
log

1

1 � T � ǰ ˛

� .2d � 1/sj C1 log sj C1

C 2sj C1 log

�

ke
3
2 b.�j C1/

�

log
1

�j C1˛

�
.�j C1/�

C 2k

�

log
1

�j ˛

�
.�j /
!

� .log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

:

In the equation above, note that if ǰ ˛ log T � ", then

2k

ǰ
log

1

1 � T � ǰ ˛
� 2k

ǰ
log

1

1 � e�"
< .2d � 1/sj C1 log sj C1;

so the contribution in this case will be o.T .log log T /k/. Now if ǰ ˛ log T < ", then

log
1

1 � T � ǰ ˛
< log

1

˛
� log. ǰ log T / C log

1

1 � "
2

;

so we obtain that
Z 2T

T

S2.t/ dt(4.9)

� T .log log T /k
K�1
X

j D0

.K � j /

s

1

ǰ C1

� exp

 

log log T

ǰ

�

2k
log 1

˛

log log T
� a.2d � 1/

r

�

C log. ǰ log T /

ǰ

�

a.2d � 1/

r
� 2k

�

C 2a

r ǰ
log

�

ke
3
2 b.�j C1/

�

log
1

�j C1˛

�
.�j C1/�

C 2k

ǰ
log

1

1 � "
2

C a.2d � 1/

r ǰ
log

r

a
C 2k

�

log
1

�j ˛

�
.�j /
!

� .log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

:

5. Proof of Theorems 1.2 and 1.3 for ªbigº shifts ˛

Here, we will prove the bound (1.3) in Theorem 1.2 when

˛ � 1

.log T /
1

2k
�"

;



Bui and Florea, Negative moments of the Riemann zeta-function 17

and the bounds (1.6), (1.7), (1.8) in Theorem 1.3. Recall that

u D
log 1

˛

log log T
:

The contribution from t … T0 and from S1.t/ has already been bounded in Section 4 (see
equations (4.7) and (4.8)). Now we focus on bounding the contribution from S2.t/.

First assume that

˛ � 1

.log T /
1

2k
�"

and k � 1

2
:

We rewrite (4.9) as

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

.K � j /

s

1

ǰ C1
exp

 

log log T

ǰ

�

2ku � a.2d � 1/

r

�

C log. ǰ log T /

ǰ

�

a.2d � 1/

r
� 2k

�

C 2k

�

log
1

�j ˛

�
.�j /

C O

�

log log log T

ǰ

�

!

.log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

:

Note that
a.2d � 1/

r
� 2k < 0;

and using (4.3) and the fact that ˛ � 1

.log T /
1

2k
�"

, it follows that

2ku � a.2d � 1/

r
� �k":

Hence we get

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

.K � j /

s

1

ǰ C1
(5.1)

� exp

 

�k" log log T

ǰ
C 2k

�

log
1

�j ˛

�
.�j /

C O

�

log log log T

ǰ

�

!

.log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

:

We first consider the contribution from those j for which 
.�j / D 1. Let R1 denote this
contribution. Using the fact that K � log log T and after a relabeling of the ", we have that

R1 � T .log log T /k
X

j

exp

 

�k" log log T

ǰ
C 2k log

1

ǰ ˛ log T
C O

�

log log log T

ǰ

�

C
�

1

4
C "

�

k2

�

log
1

ǰ ˛ log T

�2

log. ǰ log T /

!

;

where the sum over j is such that 
.�j / D 1. Since ˛ � 1
log T

, we have
�

log
1

ǰ ˛ log T

�2

log. ǰ log T / �
�

log
1

ǰ

�2

log log T:
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As 
.�j / D 1, we have ǰ ! 0 in the sum in R1 above, and then it follows that

(5.2) R1 D o.T .log log T /k/:

Now we consider the contribution in (5.1) from those j with 
.�j / D 0. Let R2 denote
that term. We have that

R2 � T .log log T /k
X

j

exp

 

�k" log log T

ǰ
C O

�

log log log T

ǰ

�

C k2b.�j /2 log. ǰ log T /

!

;

where the sum is over j such that 
.�j / D 0. Keeping in mind the choices for ǰ (equations
(4.2) and (4.4)), it then follows that

(5.3) R2 D
´

o.T .log log T /k/ if ˛ log T ! 1;

o
�

T .log log T /k.log T /k2. 1
1�T �c˛ /2�

if ˛ � 1
log T

:

Combining the bounds (4.7), (4.8), (5.2) and (5.3), the bound (1.3) follows when

˛ � 1

.log T /
1

2k
�"

and k � 1

2
:

Now assume that

k <
1

2
and ˛ � 1

log T
:

If a.2d�1/
r

� 2k � 0, then the same argument as before works. Hence we assume we have

a.2d � 1/

r
� 2k > 0:

We rewrite the bound (4.9) for S2.t/ as
Z 2T

T

S2.t/ dt(5.4)

� T .log log T /k
K�1
X

j D0

.K � j /

s

1

ǰ C1

� exp

 

�2k log.˛ log T /

ǰ
C log ǰ

ǰ

�

a.2d �1/

r
�2k

�

C 2

ǰ

�

log log
1

�j C1˛

�
.�j C1/

C 2k

�

log
1

�j ˛

�
.�j /

C k2b.�j /2

�

log
1

�j ˛

�2
.�j /

log. ǰ log T / C O

�

1

ǰ

�

!

:

In (5.4), we first consider the contribution from those j for which 
.�j / D 1, i.e., those j

for which ǰ D o. 1
˛ log T

/. As before, we denote this contribution by R1. We let

f .x/ D �2k log.˛ log T /

x
C log x

x

�

a.2d � 1/

r
� 2k

�

C 2

x
log log

1

x˛ log T

C 2k log
1

x˛ log T
C k2

�

1

4
C "

��

log
1

x˛ log T

�2

log.x log T /:
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By taking the derivative, we see that when 1
log T

� ˛ D o
� log log T

log T

�

, the maximum of f .x/

(when x D o. 1
˛ log T

/) is attained at some

x0 � 1

log log T
;

while if ˛ � log log T
log T

, the function f .x/ is increasing on the interval under consideration.
Hence, we get that

(5.5) R1 D

8

<

:

o.T .log log T /k/ if ˛ � log log T
log T

;

O
�

T exp
�

C1.log log T /
�

log log log T
˛ log T

�2
��

if 1
log T

� ˛ D o
� log log T

log T

�

;

for some C1 > 0.
Now we bound the contribution in (5.4) from those j for which 
.�j / D 0. It is easy to

see that in this case, the function in (5.4) is decreasing in j , so

R2 D o.T .log log T /k/:

Combining the above with (4.7), (4.8) and (5.5), the bounds (1.6) and (1.7) follow.
Now we assume that

1

.log T /
1

2k
�"

� ˛ D o

�

1

log T

�

:

We rewrite the bound (4.9) for S2.t/ as

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

.K � j /

s

1

ǰ C1
exp

 

�2k log.˛ log T /

ǰ

C log ǰ

ǰ

�

a.2d � 1/

r
� 2k

�

C 2

ǰ
log log

1

�j C1˛

C 2k log
1

�j ˛
C O

�

.log log T /3 C 1

ǰ

�

!

:

In the sum over j above, the maximum is attained at j0 such that ǰ0
� .˛ log T /

2k
a.2d�1/

r �2k .
It then follows that

Z 2T

T

S2.t/ dt � T exp

�

C2

�

1

˛ log T

�
2k

1�2k�k"
�

;

for some C2 > 0 (and after a relabeling of the "). Combining the above and (4.7), (4.8), the
bound (1.8) follows when 1

.log T /
1

2k
�"

� ˛ D o. 1
log T

/.

6. Proof of Theorem 1.2, bounds (1.3) and (1.4); some recursive estimates

Here, we will prove the bounds (1.3) and (1.4). To do that, we will use an inductive
argument, which will be performed in Section 6.2. The first step of the argument in carried out
in the next subsection.
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6.1. The range ˛ � .log log T /
4

k
C"=.log T /

1

2k , k �
1
2

, the first step. We previously
obtained the bound (1.3) in the region

˛ � 1

.log T /
1

2k
�"

and k � 1

2
:

Hence, we will assume that

(6.1)
.log log T /

4
k

C"

.log T /
1

2k

� ˛ D o

�

1

.log T /
1

2k
�"

�

;

when k � 1
2

.
Let

(6.2) ˛ D .log log T /b

.log T /
1

2k

;

where b � 4
k

C ". From (6.1), we have that b D o.
log log T

log log log T
/. We will show that for any ı > 0,

we have

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt � T exp

 

.log T /
3.1Cı/
kb�1

exp
�2 log log T log log log log T

.kb�1/ log log log T

�

!

:

We choose ˇ0; `0; s0 as in (4.1) and ǰ ; j̀ ; sj are chosen as in (4.2). We choose a; d; r

such that

(6.3)
a.2d � 1/

r
D 1 � n log log log T

log log T
;

where

(6.4) n D .2kb � 2/

�

1 � 10ı

12.1 C ı/

�

:

For simplicity of notation, let x D log log log T
log log T

. We can take

a D
1 � n.1 � ı

24
/x

1 � n.1 � ı
12

/x
; d D 1 � n

2

�

1 � ı

12

�

x; r D
1 � n.1 � ı

24
/x

1 � nx
:(6.5)

We choose ˇK such that

ˇ1�d
K

�

ad r1�d

r1�d � 1
C 2r

r � 1

�

� 1 � a:

Again, the above inequality ensures that the conditions in Propositions 3.3 and 3.4 are satisfied.
Note that the condition above can be re-expressed as

ˇ1�d
K � c1.1 � a/.r � 1/.1 � d/;

for some constant c1 > 0. We then choose K such that ˇK is the largest of the form in (4.2)
such that

(6.6) ˇK �
exp

�6 log log T log log log log T
n log log log T

�

.log T /
6

n.1� ı
12

/

:
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If t … T0, then we proceed as in Section 5 and similarly to equation (4.7), we get that
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt(6.7)

� T

�

1

1 � .log T /�2˛

�

.1C"/k log T

log log T p
s0 exp

 

�.2d � 1/s0 log s0

C 2s0 log

�

ke
3
2 b.�0/

�

log
1

�0˛

�
.�0/q

log log T ˇ0

�

!

D o.T /:

Now we suppose that t 2 T0. Similarly as in Section 5, using Proposition 3.4 we get that
Z 2T

T

S1.t/ dt(6.8)

� T .log log T /k exp

 

c1
.log T /

6

n.1� ı
12

/ log log T

exp
�6 log log T log log log log T

n.1� ı
12

/ log log log T

�

!

exp
�

k2.log log T /3
�

� T exp

 

.log T /
6

n.1� ı
12

/

exp
�4 log log T log log log log T

n log log log T

�

!

;

for some c1 > 0 (note that the constant c1 can change from line to line).
To bound the contribution from S2.t/, we proceed as in equation (4.9) and obtain that

Z 2T

T

S2.t/ dt(6.9)

� T .log log T /k
K�1
X

j D0

.K � j /

s

1

ǰ C1
exp

 

log log T

ǰ

�

2ku � a.2d � 1/

r

�

C log. ǰ log T /

ǰ

�

a.2d � 1/

r
� 2k

�

C 2a

r ǰ
log

�

ke
3
2 b.�j C1/

�

log
1

�j C1˛

�
.�j C1/�

C 2k

ǰ
log

1

1 � "
2

C a.2d � 1/

r ǰ
log

r

a

C 2k

�

log
1

�j ˛

�
.�j /
!

.log T ǰ /
k2b.�j /2.log 1

�j ˛
/
2
.�j /

:

Since

˛ D .log log T /b

.log T /
1

2k

and given (6.3), we get that

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

exp

�

log log log T

ǰ
.n � 2kb C 2/

C .log log T /3 C O

�

1

ǰ

��

;
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where we used the fact that K � log log T and the fact that

log log
1

ǰ ˛ log T
� log log

1

ˇ0˛ log T
� log log log T

2k
:

With the choice (6.4), we have that n � 2kb C 2 � �ı, and then

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

exp

�

�ı log log log T

ǰ
C .log log T /3 C O

�

1

ǰ

��

:

In the sum over j above, the maximum is attained at j D K � 1, and given the choice
(6.6) for ˇK , it follows that

(6.10)

Z 2T

T

S2.t/ dt D o.T /:

Combining equations (6.7), (6.8) and (6.10), it follows that

(6.11)

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt � T exp

 

.log T /
3.1Cı/
kb�1

exp
�2 log log T log log log log T

.kb�1/ log log log T

�

!

:

6.2. The range ˛ � .log log T /
4

k
C"=.log T /

1

2k , k �
1
2

, a recursive bound. Here, we
have the same setup as in the previous subsection. Namely, we assume (6.1) and (6.2).

We will perform the same argument as before, but with a different choice of parameters.
We suppose that at step m � 1, for any ı > 0, we have the bound

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt � T exp

 

.log T /.1Cı/. 3
kb�1

/m�1

log log T

exp
�2�3m�2 log log T log log log log T

.kb�1/m�1 log log log T

�

!

� exp
�

.1 C ı/k2.log log T /3
�

:

(6.12)

Note that we proved the first step of the induction in Section 6.1 (see equation (6.11)). Using
(6.12), we will show that

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt � T exp

 

.log T /.1Cı/. 3
kb�1

/m

log log T

exp
�2�3m�1 log log T log log log log T

.kb�1/m log log log T

�

!

� exp
�

.1 C ı/k2.log log T /3
�

:

(6.13)

Let

(6.14) "0 D ı.kb � 1/ log log T

4kb.m � 1/
�

log log T � 2kb log log log T C ı.kb�1/ log log log T
2.m�1/

�

;

and

(6.15) p D log log T

log log T � 2kb"0 log log log T
; q D log log T

2kb"0 log log log T
;

so that 1
p

C 1
q

D 1. Let

(6.16) f D b.1 � "0/:
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We will perform the inductive argument as long as

(6.17)

�

kpf � 1

3

�m�1

<
ı log log T

9 log log log T
:

We choose

ˇ0 D
3.2d � 1/

�

1 C ı
3

�

. 3
kpf �1

/m�1 exp
�2�3m�2 log log T log log log log T

.kpf �1/m�1 log log log T

�

4q.log T /.1C ı
3

/. 3
kpf �1

/m�1
;

s0 D
�

1

qˇ0

�

;

`0 D 2

�

sd
0

2

�

;

(6.18)

where

a D
1 � n.1 � ı

12
/x

1 � n.1 � ı
6
/x

; d D 1 � n

2

�

1 � ı

6

�

x; r D
1 � n

�

1 � ı
12

�

x

1 � nx
:

As before, we have
a.2d � 1/

r
D 1 � nx:

Recall that x D log log log T
log log T

and we choose

(6.19) n D
2.kb � 1/.kpf � 1/m�1

�

1 � ı
24

�

3m�1
�

1 C ı
3

�
:

We also choose ˇK such that K is the maximal integer for which

(6.20) ˇK �
exp

�6 log log T log log log log T
n log log log T

�

.log T /
6

n.1� ı
24

/

:

If t … T0, there exists 0 � v � K such that ke2

`0
jP0;v.t/j > 1. Using Hölder’s inequality,

we have
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt

�
Z 2T

T

�

ke2

`0
jP0;v.t/j

�2s0

j�.1
2

C ˛ C i t/j�2k dt

�
�

ke2

`0

�2s0
�Z 2T

T

j�.1
2

C ˛ C i t/j�2kp dt

�
1
p
�Z 2T

T

jP0;v.t/j2s0q dt

�
1
q

:

For the first integral above, we will use the bound (6.12) with ı 7! ı
3

. Note that

˛ D .log log T /f

.log T /
1

2kp

:

Then using the recursive bound (6.12), we obtain that
Z 2T

T

j�.1
2

C ˛ C i t/j�2kp � T exp

 

.log T /.1C ı
3

/. 3
kpf �1

/m�1

log log T

exp
�2�3m�2 log log T log log log log T

.kpf �1/m�1 log log log T

�

!

(6.21)

� exp

��

1 C ı

3

�

p2k2.log log T /3

�

:
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Now using Proposition (3.2), we have that

Z 2T

T

jP0;v.t/j2s0q dt � T .s0q/Šb.�0/2s0q

�

log
1

�0˛

�2s0q
.�0/

.log log T ˇ0/s0q:

Combining the bound above and (6.21) and using Stirling’s formula, we get that
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt(6.22)

� T exp

 

.log T /.1C ı
3

/. 3
kpf �1

/m�1

log log T

exp
�2�3m�2 log log T log log log log T

.kpf �1/m�1 log log log T

�

!

� exp

��

1 C ı

3

�

pk2.log log T /3

�

s
1

2q

0 exp

 

�.2d � 1/s0 log s0

C 2s0 log

�

ke
3
2
p

qb.�0/

�

log
1

�0˛

�
.�0/q

log log T ˇ0

�

!

:

Recall the choice (6.18) for s0. Note that we have

log log
1

�0˛
� log log log T; log log.ˇ0 log T / < log log log T

and
log q � log log log T:

Using the three bounds above in (6.2), it follows that
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt

� T exp

 

.log T /.1C ı
3

/. 3
kpf �1

/m�1

log log T

exp
�2�3m�2 log log T log log log log T

.kpf �1/m�1 log log log T

�

!

exp

��

1 C ı

3

�

pk2.log log T /3

�

� exp
�

�.2d � 1/s0 log s0 C 4s0 log log log T C O.s0/
�

:

By (6.17) we get
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt(6.23)

� T exp

 

�.log T /.1C ı
3

/. 3
kpf �1

/m�1

log log T

4 exp
�2�3m�2 log log T log log log log T

.kpf �1/m�1 log log log T

�

!

exp
�

.1 C ı/k2.log log T /3
�

� T exp
�

.1 C ı/k2.log log T /3
�

:

Now suppose that t 2 T0. Using Proposition 3.4 and proceeding as before, we get that

Z 2T

T

S1.t/ dt � .log log T /k exp

�

c1.log T /

3m.1C ı
3

/

.kb�1/.kpf �1/m�1.1� ı
24

/2
log log T(6.24)

� exp

�

� 3m log log T log log log log T

.kb � 1/.kpf � 1/m�1 log log log T

��

� exp
�

.1 C ı/k2.log log T /3
�

;
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for some c1 > 0, and where we trivially bounded 
.�K/ � 1. Now given the choice of param-
eters in (6.14), (6.15), (6.16), we have

kpf � 1 D .kb � 1/

�

1 � ı

4.m � 1/

�

C O

�

log log log T

log log T

�

> .kb � 1/

�

1 � 7ı

24.m � 1/

�

:

Using this in (6.24) leads to

Z 2T

T

S1.t/ dt � T exp

 

.log T /.1Cı/. 3
kb�1

/m

log log T

exp
�2�3m�1 log log T log log log log T

.kb�1/m log log log T

�

!

(6.25)

� exp
�

.1 C ı/k2.log log T /3
�

:

To bound the contribution from S2.t/, we proceed as in (6.9). We rewrite

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

exp

�

log log log T

ǰ
.n � 2kb C 2/(6.26)

� n log log log T log. ǰ log T /

ǰ log log T

C log log T C k2.log log T /3 C O

�

1

ǰ

��

;

where we used the fact that k � 1
2

. Note that the maximum in the sum over j is attained either
at j D 0 or j D K � 1. Now given the choices (6.18) and (6.19), the contribution from j D 0

is

� exp

 

log log log T

ˇ0

�

�ı.kb � 1/

4
C

n log
�kpf �1

3

�m�1

log log T

�

C O

�

1

ˇ0
C .log log T /3

�

!

;

and again using the choices (6.19) and (6.17), it follows that the contribution from j D 0 is
negligible.

For the contribution from j D K � 1, proceeding similarly as in the bound for S1.t/, it
follows that
Z 2T

T

S2.t/ dt � T exp

 

.log T /.1Cı/. 3
kb�1

/m

log log T

exp
�2�3m�1 log log T log log log log T

.kb�1/m log log log T

�

!

exp
�

.1 C ı/k2.log log T /3
�

:

Combining the above, (6.23) and (6.25), the induction conclusion (6.13) follows.
Now taking m maximal as in (6.17), we get that

(6.27)

Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt � T exp
�

.1 C ı/k2.log log T /3
�

:

6.3. The range ˛ � .log log T /
4

k
C"=.log T /

1

2k , k �
1
2

, once more. Here, we use the
same setup as in Section 6.2. Once again, we assume (6.1) and (6.2).

We will improve the bound (6.27). The proof is similar to the proof in the previous cases,
so we will skip some of the details.

As before, let

p D log log T

log log T � 2kbı log log log T
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and

(6.28) q D log log T

2kbı log log log T
;

so that 1
p

C 1
q

D 1. We choose

(6.29) ˇ0 D .6d � 5/ log log log T

.1 C 2ı/pqk2.log log T /3
; s0 D

�

1

qˇ0

�

; `0 D 2

�

sd
0

2

�

:

We choose ǰ ; sj ; j̀ as in (4.2), and a; d; r are such that

a.2d � 1/

r
D 1 � ı:

We also choose K maximal such that

(6.30) ˇK � c;

where c is a small constant as in (4.5). Note that the conditions in Propositions 3.3 and 3.4 are
satisfied.

We now proceed as before. If t … T0, then as in Section 6.2, we have that
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt

�
�

ke2

`0

�2s0
�Z 2T

T

j�.1
2

C ˛ C i t/j�2kp dt

�
1
p
�Z 2T

T

jP0;v.t/j2s0q dt

�
1
q

� T exp
�

.1 C ı/pk2.log log T /3
�

exp

 

�.2d � 1/s0 log s0

C 2s0 log

�

ke
3
2
p

qb.�0/

�

log
1

�0˛

�
.�0/q

log log T ˇ0

�

!

:

Note that 
.�0/ D 0 with the choice of parameters (6.29). We deduce that
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt(6.31)

� T exp
�

.1 C ı/pk2.log log T /3
�

� exp
�

�.2d � 1/s0 log s0 C 2s0 log log log T C O.s0/
�

D o.T /;

by (6.28) and the choice of parameters in (6.29). Using the choice of ˇK in (6.30), we also get
that

(6.32)

Z 2T

T

S1.t/ dt � T .log log T /k.log T /k2

:

To bound the contribution from S2.t/, we rewrite equation (6.9) using the fact that

.�j / D 0 for all j and that K � log log T . We have
Z 2T

T

S2.t/ dt � T .log log T /kC1
K�1
X

j D0

exp

�

log log T

ǰ

�

1 � 2k � 2kb log log log T

log log T

�

C 4 log log log T

ǰ

�

2k � a.2d � 1/

r

�

C k2 log log T C O

�

1

ǰ

��

:
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In the sum over j above, note that if k D 1
2

, then the exponential term is bounded by

exp

�

�c1 log log log T

ǰ
C k2 log log T

�

;

for some c1 > 0. If k > 1
2

, then the exponential term is bounded by

exp

�

�c1 log log T

ǰ
C k2 log log T

�

;

for some c1 > 0. In both cases, we obtain that
Z 2T

T

S2.t/ dt D o
�

T .log log T /k.log T /k2�

:

Combining the above, (6.32) and (6.31), the bound (1.3) follows.

6.4. The range 1=.log T /
1

2k � ˛ D o..log log T /
4

k
C"=.log T /

1

2k /. Here, we prove
the bound (1.4). We will only sketch the proof, since it is similar to the proof in the previous
cases. We choose the parameters ǰ ; j̀ ; sj as in (4.1), (4.2), and a; d; r as in (6.3) and (6.5),
where

(6.33) n D 6

1 � ı
:

We also choose ˇK as in (6.6). We now proceed as in Section 6.1.
As in (6.7), we have

Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt D o.T /:(6.34)

Also, as in (6.8), and keeping in mind the choice (6.33) for n, we get that

Z 2T

T

S1.t/ dt � T exp

 

log T log log T

exp.
2 log log T log log log log T

3 log log log T
/

!

:(6.35)

To bound the contribution from S2.t/, we proceed as in equation (6.9). Since

˛ � 1

.log T /
1

2k

;

we have

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

exp

�

log log log T

ǰ
.n C 2/ C .log log T /3 C O

�

1

ǰ

��

:

The maximum in the sum above is attained when j D 0. So, keeping in mind the choice of ˇ0

in (4.1), we obtain that
Z 2T

T

S2.t/ dt � T exp

�

.4 C ı/ log T log log log T

log log T

�

;(6.36)

after a relabeling of the ı. Combining (6.34), (6.35) and (6.36), the conclusion follows in
this case.
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7. Proof of Theorems 1.2 and 1.3 for small shifts ˛

In this section, we will prove the bounds (1.5) and (1.9). The proof will be similar to the
one in the previous subsection, but we choose the parameters differently. Recall that

u D
log 1

˛

log log T
:

Let ı > 0. We choose

(7.1) ˇ0 D
.2ku C 2d � 1 � a.2d�1/

r
/ log log T

.1 C ı/ku log T
; s0 D

�

1

ˇ0

�

; `0 D 2

�

sd
0

2

�

;

where we pick

a D 1 � 3k"

1 � 2k"
; r D 1

1 � 2k"
; d D 2 � 7k"

2.1 � 3k"/
;

so that

(7.2)
a.2d � 1/

r
D 1 � 4k":

We further pick ǰ ; j̀ ; sj as in (4.2). We choose K to be maximal such that

(7.3) ˇK � c;

for c a small constant such that

(7.4) c1�d

�

rad

r1�d � 1
C 2r

r � 1

�

� 1 � a � ˇ1�d
0 :

Note that the above ensures that the conditions in Propositions 3.2, 3.3 and 3.4 are satisfied.
If t … T0, then we proceed as before, and similarly to equation (4.7) we get that

Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt

� T 1C.1Cı/ku exp

 

�.2d � 1/s0 log s0

C 2s0 log

�

ke
3
2 b.�0/

�

log
1

�0˛

�
.�0/q

log log T ˇ0

�

!

:

Keeping in mind the choice of parameters (7.1), we obtain that
Z

ŒT;2T �nT0

j�.1
2

C ˛ C i t/j�2k dt

� T
1C.1Cı/ku

2ku�
a.2d�1/

r

2ku�
a.2d�1/

r C2d�1 exp

�

O

�

log T log log log T

log log T

��

:

(7.5)

Now if t 2 T0, then since 
.�K/ D 1, we use Proposition 3.4 and the expression (7.3)
for ˇK as before to get that

(7.6)

Z 2T

T

S1.t/ dt � T .log T /O.1/ exp

 

�

1

4
C "

�

k2

�

log
1

˛

�2

log log T

!

:
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Similarly as before (see equation (4.9)), we have

Z 2T

T

S2.t/ dt � T .log log T /k
K�1
X

j D0

.K � j /

s

1

ǰ C1
exp

 

log log T

ǰ

�

2ku � a.2d � 1/

r

�

C log. ǰ log T /

ǰ

�

a.2d � 1/

r
� 2k

�

C C 2a

r ǰ
log

�

e
3
2 b.�j C1/

�

log
1

�j C1˛

�
.�j C1/�

C 2k

ǰ
log

1

1 � "
2

!

�

log T ǰ
�k2b.�j /2.log 1

�j ˛
/
2
.�j /

:

As K � log log T , we further write the above as

Z 2T

T

S2.t/ dt � T

K�1
X

j D0

exp

 

log log T

ǰ

�

2ku � a.2d � 1/

r

�

C O

�

log T log log log T

log log T

�

!

:

Since

˛ D o

�

1

.log T /
1

2k
�"

�

;

we have

2ku � a.2d � 1/

r
� 2k":

Hence the sum over j above achieves its maximum when j D 0. Using (7.1), we obtain that

Z 2T

T

S2.t/ dt � T
1C.1Cı/ku

2ku�
a.2d�1/

r

2ku�
a.2d�1/

r C2d�1 exp

 

O

�

log T log log log T

log log T

�

!

:(7.7)

Combining equations (7.2), (7.5), (7.6) and (7.7) and after a relabeling of the ", the bounds
(1.5) and (1.9) follow.

8. The asymptotic formula

In this section, we shall prove Theorem 1.4. We have

1

2�i

Z 1C iT
2

1� iT
2

e
z2

2 Xz 1

�.1
2

C ˛ C i t C z/k�.1
2

C ˛ � i t C z/k

dz

z
(8.1)

D
1
X

m;nD1

�k.m/�k.n/

.mn/
1
2

C˛

�m

n

��it
W
�mn

X

�

;

where

(8.2) W.x/ D 1

2�i

Z 1C iT
2

1� iT
2

e
z2

2 x�z dz

z
;
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by writing the zeta-functions in (8.1) as Dirichlet series and integrating term-by-term. On the
other hand, by deforming the line of integration, the left hand side of (8.1) is equal to

j�.1
2

C ˛ C i t/j�2k

C 1

2�i

Z �.1�"/˛C iT
2

�.1�"/˛� iT
2

e
z2

2 Xz 1

�.1
2

C ˛ C i t C z/k�.1
2

C ˛ � i t C z/k

dz

z

C O
�e� T 2

8 X

T
max

"˛���1C˛

1

j�.1
2

C � C i.t ˙ T
2

//jkj�.1
2

C � � i.t � T
2

//jk
�

:

For t 2 ŒT; 2T �, the O-term is

� e� T 2

8 X

T
T

k log 1
"˛

log log T � e� T 2

8 XT Ok.1/;

by Lemma 2.2. Hence, integrating over t 2 ŒT; 2T � we obtain that
Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt

D
1
X

m;nD1

�k.m/�k.n/

.mn/
1
2

C˛
W
�mn

X

�

Z 2T

T

�m

n

��it
dt

� 1

2�i

Z �.1�"/˛C iT
2

�.1�"/˛� iT
2

e
z2

2 Xz

Z 2T

T

1

�.1
2

C ˛ C i t C z/k�.1
2

C ˛ � i t C z/k
dt

dz

z

C O
�

e� T 2

8 XT Ok.1/
�

:

Furthermore, by the Cauchy±Schwarz inequality the second term above is

�"
X�.1�"/˛

˛

Z T
2

� T
2

e� z2

2

�Z 2T

T

j�.1
2

C "˛ C i.t C z//j�2k dt

�
1
2

�
�Z 2T

T

j�.1
2

C "˛ � i.t � z//j�2k dt

�
1
2

dz

�"
X�.1�"/˛

˛
T .log log T /k.log T /k2

�" TX�.1�"/˛.log T /k2C1;

in view of (1.3) and (1.6) in Theorems 1.2 and 1.3, and the fact that

1

˛
� min

²

.log T /
1

2k

.log log T /
4
k

C"
;

log T

log log T

³

:

Thus,
Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt D
1
X

m;nD1

�k.m/�k.n/

.mn/
1
2

C˛
W
�mn

X

�

Z 2T

T

�m

n

��it
dt(8.3)

C O
�

TX�.1�"/˛.log T /k2C1
�

C O
�

e� T 2

8 XT Ok.1/
�

:
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We next consider the contribution of off-diagonal terms m ¤ n on the right-hand side
of (8.3), which is

�
X

m¤n

dk.m/dk.n/

.mn/
1
2

C˛
ˇ

ˇlog m
n

ˇ

ˇ

ˇ

ˇ

ˇ
W
�mn

X

�
ˇ

ˇ

ˇ
:

We note from (8.2) that W.x/ � x�1 trivially and

W.x/ D 1 C O.x/ C O
�e� T 2

8

xT

�

if x � 1, by moving the contour to the �1-line, and so this contribution is bounded by

�
X

m¤n
mn�X

dk.m/dk.n/

.mn/
1
2

C˛
ˇ

ˇlog m
n

ˇ

ˇ

C e� T 2

8 X

T

X

m¤n
mn�X

dk.m/dk.n/

.mn/
3
2

C˛
ˇ

ˇlog m
n

ˇ

ˇ

C X
X

m¤n
mn>X

dk.m/dk.n/

.mn/
3
2

C˛
ˇ

ˇlog m
n

ˇ

ˇ

D E1 C E2;

say, where E1 and E2 denote the sums with m
n

… Œ1
2
; 2� and m

n
2 Œ1

2
; 2�, respectively. With E1,

ˇ

ˇlog m
n

ˇ

ˇ � 1 and we get

E1 �
X

mn�X

dk.m/dk.n/

.mn/
1
2

C˛
C e� T 2

8 X

T

X

mn�X

dk.m/dk.n/

.mn/
3
2

C˛
(8.4)

C X
X

mn>X

dk.m/dk.n/

.mn/
3
2

C˛

� X
1
2

�˛.log X/2k�1 C e� T 2

8 X

T
:

For E2, we use the fact that

(8.5)
dk.m/dk.n/

.mn/�
� dk.m/2

m2�
C dk.n/2

n2�
;

and we have

E2 �
X

m�
p

2X

dk.m/2

m1C2˛

X

n¤m
m
2

�n�2m

1
ˇ

ˇlog m
n

ˇ

ˇ

(8.6)

C e� T 2

8 X

T

X

m�
p

2X

dk.m/2

m3C2˛

X

n¤m
m
2

�n�2m

1
ˇ

ˇlog m
n

ˇ

ˇ

C X
X

m>

q

X
2

dk.m/2

m3C2˛

X

n¤m
m
2

�n�2m

1
ˇ

ˇlog m
n

ˇ

ˇ
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� log X
X

m�
p

2X

dk.m/2

m2˛
C e� T 2

8 X log X

T

X

m�
p

2X

dk.m/2

m2C2˛

C X
X

m>

q

X
2

dk.m/2 log m

m2C2˛

� X
1
2

�˛.log X/k2 C e� T 2

8 X log X

T
:

We are left with the contribution of the diagonal terms m D n on the right-hand side
of (8.3). By (8.2) this is

T

1
X

nD1

�k.n/2

n1C2˛
W
�n2

X

�

D T

2�i

Z 1C iT
2

1� iT
2

e
z2

2 Xz
1
X

nD1

�k.n/2

n1C2˛C2z

dz

z

D T

2�i

Z 1C iT
2

1� iT
2

e
z2

2 Xz�.1 C 2˛ C 2z/k2

�
Y

p

�

1 � 1

p1C2˛C2z

�k2
 

1 C
1
X

j D1

�k.pj /2

p.1C2˛C2z/j

!

dz

z
:

We move the contour to the �.1 � "/˛-line, crossing a simple pole at z D 0. In doing so, we
get that this is equal to

T �.1 C 2˛/k2
Y

p

�

1 � 1

p1C2˛

�k2
 

1 C
1
X

j D1

�k.pj /2

p.1C2˛/j

!

C O
�

TX�.1�"/˛˛�.k2C1/
�

C O
�

e� T 2

8 XT Ok.1/
�

:

Thus,
Z 2T

T

j�.1
2

C ˛ C i t/j�2k dt

D T �.1 C 2˛/k2
Y

p

�

1 � 1

p1C2˛

�k2
 

1 C
1
X

j D1

�k.pj /2

p.1C2˛/j

!

C O
�

TX�.1�"/˛.log T /k2C1
�

C O
�

e� T 2

8 XT Ok.1/ log X
�

C O
�

X
1
2

�˛.log X/k2�

;

by combining the above with (8.3), (8.4) and (8.6). We choose X D T 2, then the error terms
above become T 1�2.1�"/˛.log T /k2C1, and the conclusion follows after a relabeling of the ".

9. Proof of Theorem 1.5

9.1. Assuming RH: k � 1. Following the arguments in [10, Chapter 17], it is standard
from Perron’s formula that

(9.1)
X

n�x

�k.n/ D 1

2�i

Z cCiŒx�

c�iŒx�

xs

�.s/k

ds

s
C O

�

.log x/k
�
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with c D 1 C 1
log x

. We will now deform the contour. The choice of the new contour depends
on whether k is an integer or not because of the singularity of �.s/�k at s D 1 when k … Z.
We will use the Selberg±Delange method in this case (see, for instance, [37, Chapter 5]).

We first describe the contour deformation when k 2 Z. Let

x0 D exp
�

.log x/
k

kC1 .log log x/
kC8
kC1

�

; ˛0 D .log log x0/
8
k

C"

.log x0/
1
k

and

J D
�

log2

Œx�

x0

�

� log x:

We replace the line segment c C i t , jt j � Œx�, with a piecewise linear path comprising of
a number of horizontal and vertical line segments,

J
[

j D1

.Vj [ Hj / [ V0;

where

V0W s D 1

2
C ˛0 C i t; jt j � x0;

Vj W s D 1

2
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8
k

C"

.log.2j �1x0//
1
k

C i t; 2j �1x0 � jt j � min¹2j x0; Œx�º;

1 � j � J;

Hj W s D � ˙ i2j x0;
1

2
C .log log.2j x0//

8
k
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.log.2j x0//
1
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� � � 1

2
C .log log.2j �1x0//

8
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C"
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;

1 � j � J � 1;

HJ W s D � ˙ i Œx�;
1

2
C .log log.2J �1x0//

8
k

C"

.log.2J �1x0//
1
k

� � � 1 C 1

log x
:

If k … Z, we use the contour deformation above, but replace V0 by V0 D V 0
0 [ � , where

� is the truncated Hankel-type contour made up of the anticlockwise circle js � 1j D 1
log x

excluding the point 1 � 1
log x

, and the linear paths joining 1
2

C ˛0 to 1 � 1
log x

and then back to
1
2

C ˛0 with arguments �� and C� , respectively.
Notice that in either case, we encounter no singularity in moving the contour.
We first consider the integral over � when k … Z. We will see that the main contribution

only arises from this. Recall that

Z�k.s/ D 1

s..s � 1/�.s//k

and Z�k.s/ is holomorphic in the disc js � 1j < 1. By Cauchy’s formula we have
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1
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�k;j .s � 1/j D
N
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�k;j .s � 1/j C O
�

�

.1 C "/js � 1j
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uniformly for js � 1j < 1
2

. Notice that � is contained in the disc js � 1j < 1
2

so

1
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:

The O-term above is
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log x
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:

Furthermore, the first term in (9.2) is

x

.log x/kC1

N
X

j D0


�k;j

.log x/j

1

2�i

Z

� 0

ezzkCj dz;

after a change of variables, where � 0 is made up of the anticlockwise circle jzj D 1 excluding the
point �1, and the linear paths joining � log x

2
C˛0 log x to �1 and then back to � log x

2
C˛0 log x

with arguments �� and C� , respectively. We extend the linear paths to from �1 to �1 and
then back to 1. The error term arising from doing so is

� x

.log x/kC1

N
X
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j
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:

For the main term, the contour is the Hankel contour, and hence by [37, Chapter 5, Theorem 2],
it is equal to

x
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Thus
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We next consider the integrals along V0 and V 0
0. Let

T0 D exp

�
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.log log x0/8
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:

For T0 � T � x0 we have

1

.log T /
1
k

� ˛0 � .log log T /
8
k

C"

.log T /
1
k

and so
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by (1.4). We hence get
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by diving the segment of integration into dyadic intervals. The same bound holds for the integral
along
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:

Furthermore, we note from Lemma 2.2 that
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p

x exp

�

.log x/
k

kC1 .log log x/
7

kC1
C"

�

:
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Combining (9.3) and (9.5) we obtain that

1

2�i

Z

V0

xs

�.s/k

ds

s
�

p
x exp

�

.log x/
k

kC1 .log log x/
7

kC1
C"
�

:

The same bound holds for the integral over V 0
0.

For the contribution from the vertical segments
SJ

j D1 Vj , we deduce from (1.3) that it is
bounded by

�
p

x.log x/
k2

4
C"

J �1
X

j D0

exp

�

log x.log log.2j x0//
8
k

C"

.log.2j x0//
1
k

�

(9.6)

�
p

x exp

�

log x.log log x/
8
k

C"

.log x0/
1
k

�

�
p

x exp

�

.log x/
k

kC1 .log log x/
7

kC1
C"

�

:

For s 2 Hj , 1 � j � J � 1, again like (9.4) we have

j�.s/j�1 � .2j x0/
1

2k
C":

So the contribution to (9.1) from the horizontal segments
SJ �1

j D1 Hj is

�
p

x

J �2
X

j D0

.2j x0/� 1
2

C" exp

�

log x.log log.2j x0//
8
k

C"

.log.2j x0//
1
k

�

(9.7)

�
p

xx
� 1

2
C"

0 exp

�

log x.log log x/
8
k

C"

.log x0/
1
k

�

�
p

x:

We are left with the integral along HJ , which is bounded by

(9.8) max
1
2

C .log log x/8=kC"

.log x/1=k
���1C 1

log x

exp
�

.� � 1/ log x � k log j�.� ˙ ix/j
�

:

For
1

2
C .log log x/

8
k

C"

.log x/
1
k

� � � 1

2
C o

�

1

log log x

�

;

Lemma 2.2 implies that this is

� exp

 

.� � 1/ log x C k log x

2 log log x
log

1

1 � .log x/1�2�
(9.9)

C Ok

�

log x

log log x

�

C Ok

�

log x

.log log x/2
log

1

1 � .log x/1�2�

�

!

� exp

 

.� � 1/ log x C k log x

2 log log x
log

1

.2� � 1/ log log x
C Ok

�

.2� � 1/ log x
�

C Ok

�

log x

log log x

�

C Ok

�

log x

.log log x/2
log

1

2� � 1

�

!

;
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which is decreasing with respect to � , and, hence,

(9.10) � exp

 

�.8 C k/ log x log log log x

2 log log x
C Ok

�

log x

log log x

�

!

� 1:

For

1 � 1

log log x
� � � 1 C 1

log x
;

the second estimate in Lemma 2.2 leads to a bound of size

� exp
�

.� � 1/ log x C k log log log x C Ok.1/
�

� .log log x/k :(9.11)

Finally, for
1

2
C O

�

1

log log x

�

� � � 1 � 1

log log x
;

we use the last estimate in Lemma 2.2 to get the bound

� exp

 

.� � 1/ log x C .log x/2�2�

.1 � �/ log log x
C " log x(9.12)

C Ok

�

.log x/2�2�

.1 � �/2.log log x/2

�

!

� x":

Combining the estimates we obtain the first part of the theorem for k � 1.

9.2. Assuming RH: k < 1. The arguments are similar to the previous case. Let

x1 D exp
�
p

" log x log log x
�

; ˛1 D "
log log x1

log x1

and J D dlog2
Œx�
x1

e � log x. We replace the contour in (9.1) with

J
[

j D1

.Vj [ Hj / [ V 0
0 [ �;

where V 0
0 [ � is the contour joining the points 1

2
C ˛1 � ix1 and 1

2
C ˛1 C ix1, as described

below, and

Vj W s D 1

2
C "

log log.2j �1x1/

log.2j �1x1/
C i t; 2j �1x1 � jt j � min¹2j x1; Œx�º; 1 � j � J;

Hj W s D � ˙ i2j x1;
1

2
C"

log log.2j x1/

log.2j x1/
� � � 1

2
C"

log log.2j �1x1/

log.2j �1x1/
; 1 � j � J �1;

HJ W s D � ˙ i Œx�;
1

2
C "

log log.2J �1x1/

log.2J �1x1/
� � � 1 C 1

log x
:

Here � is the truncated Hankel-type contour made up of the anticlockwise circle js � 1j D 1
log x

excluding the point 1 � 1
log x

, and the linear paths joining 1
2

C ˛1 to 1 � 1
log x

and then back
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to 1
2

C ˛1 with arguments �� and C� , respectively, and V 0
0 consists of the two vertical seg-

ments joining the Hankel contour and the point 1
2

C ˛1 � ix1 and 1
2

C ˛1 C ix1 respectively.
Again we encounter no singularity in doing so.

For the integral over � , we have the main term as before. Also, the error term arising
from extending the linear paths to from �1 to �1 and then back to 1 is now

� x

.log x/kC1

N
X

j D0

j
�k;j j
.log x/j

Z � log x

2
C˛1 log x

�1
ezjzjkCj dz

� x exp

�

� log x

2
C ˛1 log x

�

D
p

x exp

�

"
log x log log x1

log x1

�

�
p

x exp
�

"
p

log x
�

:

Hence

1

2�i

Z

�

xs

�.s/k

ds

s
D �sin.k�/

�

x

.log x/kC1

 

N
X

j D0

.�1/j �.k C j C 1/
�k;j

.log x/j

C O

�

.N C 1/kC 1
2

�C1N

log x

�N C1�
!

C O
�p

x exp
�

"
p

log x
�

�

:

For the integral along V0, let

T1 D exp

�

log x1

log log x1

�

:

If T1 � T � x1, then 1
log T

� ˛1 � log log T
log T

, and hence

1

2�i

Z 1
2

C˛1CiT

1
2

C˛1C iT
2

xs

�.s/k

ds

s
� x

1
2

C˛1

T

Z 1
2

C˛1CiT

1
2

C˛1C iT
2

ˇ

ˇ

ˇ

ˇ

ds

�.s/k

ˇ

ˇ

ˇ

ˇ

� x
1
2

C˛1 exp
�

.log log T /1C"
�

;

by (1.7). It follows that

1

2�i

Z 1
2

C˛1Cix1

1
2

C˛1CiT1

xs

�.s/k

ds

s
� x

1
2

C˛1 exp
�

.log log x1/1C"
�

(9.13)

D
p

x exp

�

"
log x log log x1

log x1
C .log log x1/1C"

�

�
p

x exp
�

"
p

log x
�

;

by relabelling ". The same bound holds for the integral along

Z 1
2

C˛1�iT1

1
2

C˛1�ix1

:
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Also, by (9.4) we have

1

2�i

Z 1
2

C˛1CiT1

1
2

C˛1�iT1

xs

�.s/k

ds

s
(9.14)

�
p

x exp

�

"
log x log log x1

log x1
C
�

k

2
C "

�

log log x1 log T1

log log T1

�

�
p

x exp
�

"
p

log x
�

;

by another relabelling of ". Combining (9.13) and (9.14), we obtain that

(9.15)
1

2�i

Z

V0

xs

�.s/k

ds

s
�

p
x exp

�

"
p

log x
�

:

The same bound holds for the other integrals. Indeed, similar to (9.6) and (9.7) we have

J
X

j D1

1

2�i

Z

Vj

xs

�.s/k

ds

s
�

p
x.log x/

k2

4
C"

J �1
X

j D0

exp

�

"
log x log log.2j x1/

log.2j x1/

�

(9.16)

�
p

x.log x/
k2

4
C1C" exp

�

"
log x log log x1

log x1

�

�
p

x exp
�

"
p

log x
�

and

J �1
X

j D1

1

2�i

Z

Hj

xs

�.s/k

ds

s
�

p
x

J �2
X

j D0

.2j x1/
k
2

�1C" exp

�

"
log x log log.2j x1/

log.2j x1/

�

(9.17)

�
p

xx
� 1

2
C"

1 .log x/ exp

�

"
log x log log x1

log x1

�

�
p

x exp
�

"
p

log x
�

:

Similar to (9.8), (9.9), (9.10), (9.11) and (9.12) we get

1

2�i

Z

HJ

xs

�.s/k

ds

s

� max
1
2

C"
log log x

log x
���1C 1

log x

exp
�

.� � 1/ log x � k log j�.� ˙ ix/j
�

�

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

exp
�

.k�1/ log x
2

� k log x log log log x
log log x

COk

� log x
log log x

�

�

if 1
2

C "
log log x

log x
� � � 1

2
C o. 1

log log x
/;

.log log x/k if 1 � 1
log log x

� � � 1 C 1
log x

;

x" if 1
2

C O. 1
log log x

/ � � � 1 � 1
log log x

;

� x";

by Lemma 2.2. This, together with (9.15), (9.16) and (9.17), establishes the first part of the
theorem for k < 1.
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9.3. Assuming Conjecture 1.1. We will prove the theorem in the case k 2 Z. When
k … Z, we have the main term just like in previous subsections.

We replace the contour in (9.1) by H1 [ V0, where

V0W s D 1

2
C ˛2 C i t; jt j � Œx�;

H1W s D � ˙ i Œx�;
1

2
C ˛2 � � � 1 C 1

log x

for some 1
log x

� ˛2 � 1 to be chosen later. We encounter no pole in doing so.
On one hand, by Conjecture 1.1 we get

1

2�i

Z

V0

xs

�.s/k

ds

s
�

p
xx˛2

�

1

˛2

�
k2

4

:(9.18)

On the other hand, we have

1

2�i

Z

H1

xs

�.s/k

ds

s
� max

1
2

C˛2���1C 1
log x

exp
�

.� � 1/ log x � k log j�.� ˙ i Œx�/j
�

:

Like in (9.9) and (9.10), this is

� exp

 

.� � 1/ log x C k log x

2 log log x
log

1

.2� � 1/ log log x
(9.19)

C Ok

�

.2� � 1/ log x
�

C Ok

�

log x

log log x

�

C Ok

�

log x

.log log x/2
log

1

2� � 1

�

!

� exp

 

� log x

2
C

k log x log 1
˛2

2 log log x
� k log x log log log x

2 log log x

C Ok

�

˛2 log x
�

C Ok

�

log x

log log x

�

C Ok

� log x log 1
˛2

.log log x/2

�

!

for 1
2

C ˛2 � � � 1
2

C o. 1
log log x

/, and as in (9.11) and (9.12), it is

� .log log x/k C x"

for 1
2

C O. 1
log log x

/ � � � 1 C 1
log x

. In view of (9.19), we choose

˛2 D

8

ˆ

<

ˆ

:

1
log x

if k � 2;

1

.log x/
2
k .log log x/1�"

if k > 2;

and then
1

2�i

Z

H1

xs

�.s/k

ds

s
�

p
x:

Combining with (9.18) we obtain the second part of the theorem.
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