
1

Federated Learning of
Generalized Linear Causal Networks

Qiaoling Ye, Arash A. Amini and Qing Zhou

Abstract—Causal discovery, the inference of causal relations among variables from data, is a fundamental problem of science.

Nowadays, due to an increased awareness of data privacy concerns, there has been a shift towards distributed data collection,

processing and storage. To meet the pressing need for distributed causal discovery, we propose a novel federated DAG learning method

called distributed annealing on regularized likelihood score (DARLS) to learn a causal graph from data stored on multiple clients. DARLS

simulates an annealing process to search over the space of topological sorts, where the optimal graphical structure compatible with a sort

is found by distributed optimization. This distributed optimization relies on multiple rounds of communication between local clients and a

central server to estimate the graphical structure. We establish its convergence to the solution obtained by an oracle with access to all the

data. To the best of our knowledge, DARLS is the first distributed method for learning causal graphs with such finite-sample oracle

guarantees. To establish the consistency of DARLS, we also derive new identifiability results for causal graphs parameterized by

generalized linear models, which could be of independent interest. Through extensive simulation studies and a real-world application, we

show that DARLS outperforms existing federated learning methods and is comparable to oracle methods on pooled data, demonstrating

its great advantages in estimating causal networks from distributed data.

Index Terms—Causal graphs, federated learning, generalized linear models, simulated annealing, topological sorts.

✦

1 INTRODUCTION

INFERRING causal relations among variables is a funda-
mental problem in many applications such as compu-

tational biology, medical science, social study, etc. It is
tightly connected to various areas in statistics, including
randomized experiments [1, 2], retrospective counterfactual
reasoning [3], potential outcomes [4, 5], and probabilistic
graphical models [6, 7]. A critical yet challenging step in
causal inference via graphical models is the identification of
cause-effect relations from data, namely the causal discovery
problem, typically formulated as structure learning of a
causal graph or its Markov equivalence class. As a primary
causal model, causal graphs have been widely used in
epidemiology [8, 9], pathophysiology [10], economics [11],
and risk analysis [12] among many other domains. A causal
graph is usually represented by a directed acyclic graph
(DAG), where edges encode causal effects among variables
(nodes). The probability density of a set of random variables
{X1, . . . , Xp} in a causal DAG G0 factorizes as

p(x1, . . . , xp) =

p∏

j=1

p(xj | PAj = paj), (1)

where PAj ⊂ {X1, . . . , Xp} \ {Xj} is the parent set of Xj

with paj being its value. When the parents of Xj are set to
paj by experiment, the conditional distribution [Xj | PAj =
paj] is also interpreted as the intervention distribution of Xj

i.e. [Xj | do(PAj = paj)] [13]. Since randomized experiments
are not always feasible or available, various approaches have
been put forward to learn causal DAGs from observational
data; see [14, 15, 16] for recent reviews.

Department of Statistics and Data Science, University of California, Los An-
geles, CA 90095, USA. Email: yeqiaoling@g.ucla.edu, aaamini@stat.ucla.edu,
zhou@stat.ucla.edu (corresponding author).

1.1 Federated learning

In this work, we focus on the task of federated DAG
learning, i.e., learning causal relations encoded by DAGs
from distributed data, with a particular interest in non-
Gaussian cases which encompass a wide variety of data
types. Moreover, distributed learning of Gaussian linear
DAG models can be achieved through simple updates of
its sufficient statistics (Remark 1). Distributed data storage
has been used for privacy protection when managing the
copious amount of data generated everyday by government
agencies, research institutions, medical centers, technology
companies, etc [17]. These organizations often collect similar
data, or data from the same population, and collaborate
in diverse domains such as social, scientific, and business
sectors. Notable examples include the exposure notification
system by Google and Apple in 2021 for tracking COVID-19
exposure and a privacy-preserving analytics platform for
health metrics collection [18], as well as small clinics pooling
data from other facilities to achieve statistically significant
results due to their limited datasets. Such collaborations
necessitate strict privacy disclosures, ensuring that sensi-
tive data held privately by each institution is not shared
externally.

Federated learning proves to be an effective tool when
preserving data privacy or when merging data from multiple
sources is infeasible. This approach empowers local entities
to collaboratively learn from decentralized data without the
need for direct data sharing. As a result, federated learning
not only addresses privacy and logistical concerns, but also
facilitates the development of robust and generalized models
by learning from a diverse range of data sources.

A straightforward method for federal learning to ob-
tain a global estimate is to average local estimates, a

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

technique known as one-shot parameter averaging [19]. This
approach, however, falls short of achieving any desired
level of accuracy compared to the global estimate based
on all the data [20, 21]. To address these limitations, more
sophisticated communication-efficient algorithms that adopt
multiple communication rounds between local clients and a
central server have been developed [22, 23]. Such algorithms
are increasingly vital in distributed optimization for multi-
agent systems, including electronic power systems, sensor
networks, and smart manufacturing [24, 25].

1.2 Contribution of this work

Despite the methodological advances reviewed above, learn-
ing causal DAGs from data distributed across multiple local
clients is still a challenging task. A major difficulty is how
to integrate local information to efficiently estimate a global
causal graph as if data across all local clients were accessible
to the statistician. There are simple approaches that iterate
over local datasets (once) and then combine the local graphs
or the local p-values to form a global graph [26, 27, 28].
However, simple aggregation of local estimates, using this
single-iteration approach, would not lead to an estimate
close to the corresponding global estimate constructed if the
combined data were accessible. Hereafter, we call such a
global estimate an oracle solution.

Another challenge specific to our problem comes from
the acyclicity constraint on DAGs. Obviously, simple average
graphs are likely to fail this essential constraint and thus
cannot provide meaningful causal interpretations. To over-
come these difficulties, we propose a score-based learning
method that carries out multiple rounds of communication to
estimate DAGs from distributed data. Our objective function
is equivalent to a regularized log-likelihood of the overall
data, which has been shown to be effective in learning
both continuous and discrete DAGs [29, 30, 31]. The central
server proposes a candidate ordering π, where the score
of π is evaluated via distributed optimization over DAGs
compatible with π. Then, the candidate sort π is selected by
simulated annealing. Because every DAG has at least one
ordering, searching over the space of orderings ensures that
the acyclicity constraint is always satisfied.

Our method is an example of federated learning, where a
central server communicates with distributed local clients to
learn a DAG. We show that the convergence rate of our
federated estimate to the oracle estimate on the overall
data is O(log(n)/

√
m) for a fixed true DAG, where n is

the total sample size across all local clients and m is the
smallest local sample size (Theorem 1, Section 4.1). Therefore,
even for a finite sample, as long as log(n)/

√
m is small,

our distributed estimate will be essentially identical to
the oracle solution, achieving the ideal efficiency while
preserving data privacy. To the best of our knowledge, our
approach is the first federated causal discovery method
with such a nice theoretical guarantee. While this work was
under review, two federated DAG learning methods were
published [32, 33]. Neither of the two papers establishes such
an oracle estimation guarantee. We will further elaborate on
other technical differences in Section 3.4.

Another contribution of our work is the use of generalized
linear models (GLMs) for local conditional distributions in (1),

which brings several advantages to causal structure learning.
Our proposed GLM DAG model is a flexible family for
various data types beyond linear Gaussian models with
equal variance and multi-logit models [31, 34]. The negative
log-likelihood functions under commonly used GLMs are
convex, which facilitates the optimization task. Furthermore,
we show that GLM DAG models are identifiable under
mild conditions (Proposition 1, Section 2), while other
models, such as multinomial for discrete networks and
Gaussian linear DAGs (with heterogeneous variance), are
not identifiable in general [35, 36]. Under such identifiability,
we establish the ℓ2-consistency of a global maximizer DAG
of our regularized likelihood score (Theorem 2, Section 4.2).

1.3 Organization

The paper is organized as follows. Section 2 defines the
generalized linear DAG model and establishes some identifi-
ability results under this model. In Section 3, we set up the
optimization problem for learning causal graphs and develop
the DARLS algorithm that combines simulated annealing to
search over permutation space and a distributed optimization
algorithm to optimize the network structure given an order-
ing. We then establish theoretical results on the convergence
of the distributed optimization algorithm and estimation
consistency in Section 4. Section 5 consists of simulation
studies that compare our method to existing ones using
distributed and combined data, test the robustness of DARLS
against violations of its underlying model assumptions, and
examine the accuracy loss and computational efficiency
of our distributed learning algorithm. We also apply the
distributed learning methods to ChIP-sequencing data for
modeling protein-DNA binding networks in Section 6. The
paper is concluded with a discussion in Section 7. All proofs
are relegated to the supplementary material.

2 GENERALIZED LINEAR DAG MODELS

Denote by xj ∈ R
dj a realization of variable Xj , where

dj = 1 for a numerical Xj and dj = rj − 1 for a categorical
variable Xj with rj classes, using the one-hot encoding. Let
βij ∈ R

di×dj denote the parameters associated with the edge
Xi → Xj and βij = 0 if Xi /∈ PAj . Put

βj := [β0j , β1j , . . . , βpj] ∈ R
(d+1)×dj , (2)

x := [1, x1, . . . , xp] ∈ R
d+1, (3)

where β0j ∈ R
1×dj and d =

∑p
i=1 di. Here and elsewhere,

[x, y] denotes the vertical concatenation of two vectors
or matrices x and y. We define a generalized linear DAG
(GLDAG) by (1) with conditional densities given by GLMs
with canonical links, that is,

p(xj | paj ,βj) = cj(x
j) exp

(
〈β⊤

j x, x
j〉 − bj(β⊤

j x)
)
,

j ∈ [p] := {1, . . . , p}
(4)

where bj and cj are both functions from R
dj to R. Note

that β⊤
j x =

∑
i∈PAj

β⊤
ijx

i only depends on the parent set
PAj . GLDAG models allow for many common distributions
via the choice of the log partition-function bj(·). Examples
include the Bernoulli distribution for bj(θ) = log(1 + eθ),
constant-variance Gaussian for bj(θ) = θ2/2, Poisson for

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

bj(θ) = exp(θ), Gamma for bj(θ) = − log(−θ) and the

multinomial for bj(θ) = log
(
1 +

∑dj

l=1 e
θl
)
. Note that in the

multinomial case bj(·) is a multivariate function, operating
on a vector θ = (θl) ∈ R

dj , in contrast to the other example
for which bj(·) is a scalar function. The Bernoulli and
multinomial choices above give rise to logistic and multi-logit
regression models for each node.

We collect all the parameters of model (4) in a matrix
β ∈ R

(d+1)×d which is obtained by horizontal concatenation
of βj , j = 1, . . . , p, each as defined in (2). We say that a
GLDAG (4) is continuous if all the variables are continuous.
Recall that in this case, dj = 1 for all j ∈ [p] and thus β is
a (p + 1) × p matrix. We rewrite the log pdf of (4), in the
continuous case, as

L(x;β) =

p∑

j=1

[
log cj(x

j) + xjβ⊤
j x− bj

(
β⊤
j x

)]
, (5)

where β⊤
j x ∈ R and βij 6= 0 if and only if Xi → Xj . Next,

we define identifiability of DAG models following [37, 38, 39],
and show that continuous GLDAGs are identifiable.

Definition 1 (Identifiability). Suppose we are given a joint
distribution L(X) = L(X1, . . . , Xp) that has been generated
from an unknown GLDAG model (4) with a graph G0. If the
distribution L(X) cannot be generated by any GLDAG model
with a different graph G 6= G0, then we say G0 is identifiable from
L(X).

It is well-known that linear Gaussian DAGs (with het-
erogeneous variance) and multinomial DAGs in general are
not identifiable [35, 36]. In contrast, continuous GLDAG
models (5) are identifiable under mild assumptions:

Proposition 1. Suppose the joint distribution L(X) is defined
by the log-pdf L(x;β) with a DAG G0 according to (5) such
that βij 6= 0 if and only if i ∈ PAj in G0. If L(x;β) is second-
order differentiable with respect to x and, for all j, the first-order
derivative of bj(·) exists and is not constant, then G0 is identifiable
from L(X).

Proposition 1 establishes the identifiability of continuous
GLDAG models (5), partially justifying our goal as to learn
causal graphs. This result expands the class of identifiable
DAG models in the literature. A different class of identifiable
DAG models is the additive noise model, Xj = fj(PAj) +
εj , under assumptions of nonlinear fj [37, 38, 40] or non-
Gaussian error [41].

3 FEDERATED DAG LEARNING

In this section, we construct the objective function using
distributed data and propose a simulated annealing search
combined with an iterative optimization method to learn
causal DAG structures. We start with the definition of
topological sorts for DAGs. Given a permutation π on [p], we
permute a vector v = (v1, . . . , vp) according to π to obtain a
relabeled vector vπ =

(
vπ(1), . . . , vπ(p)

)
. A topological sort of

a DAG is a permutation of nodes such that if a ∈ PAb, then a
precedes b in the order defined by π, denoted by a ≺π b. By
definition (1), every DAG has at least one topological sort.

Let {xh}nh=1 be an i.i.d. sample of size n from model (4).

We also let xjh represent the observed value of the j-th

variable (Xj) in the h-th data point. Consider a subset
I ⊂ [n]. The normalized negative log-likelihood of the
subsample {xh}h∈I is given, up to an additive constant,
by

ℓI(β) :=
1

|I|
∑

h∈I

p∑

j=1

[
bj(β

⊤
j xh)− 〈β⊤

j xh, x
j
h〉
]
. (6)

Note that in this notation, ℓ[n] denotes the normalized
negative log-likelihood of the entire sample of size n.

3.1 Global objective function and annealing

We consider the case that the overall data is stored on K
different servers, where each local clientMk holds its private
data {xh}h∈Ik

and communicates with a central server C.

Let nk = |Ik| be the sample size inMk so that
∑K

k=1 nk = n.
The normalized negative log-likelihood based on the entire

data can be decomposed as ℓ[n](β) =
∑K

k=1
nk

n ℓIk
(β). Let P

be the set of all permutations on [p] and D(π) ⊂ R
(d+1)×d

the set of DAGs whose topological sorts are compatible with
a permutation π ∈ P . Note that D(π) is a linear subspace of
R
(d+1)×d. We ideally would like to estimate β by minimizing

a regularized loss function of the form

min
π∈P

f(π), where

f(π) := min
β∈D(π)

K∑

k=1

nk

n
ℓIk

(β) + ρ(β), (7)

and ρ(·) is an appropriate regularizer to promote sparsity
in β. We call f(π) the global objective function since it is
defined using all data across local clients.

Recall that βij 6= 0 if and only if i ∈ PAj . To learn sparse
DAGs, we apply group regularization of the form

ρ(β) = λ
∑

i,j

ρg(βij), (8)

where ρg(·) is a nonnegative and nondecreasing group
regularizer and λ > 0 is a tuning parameter. Restricted
to D(π), the regularizer can be further simplfied to ρ(β) =
λ
∑

j

∑
i≺πj

ρg (βij). In this paper, we consider the Group
Lasso (i.e., group ℓ2) penalty with the choice

ρg(βij) = |||βij |||F , (9)

where |||βij |||F is the Frobenius norm of matrix βij . As a con-
vex penalty and a natural extension of Lasso regularization,
Group Lasso has demonstrated remarkable performance in
grouped variable selection [42].

To search over (π ∈ P, β ∈ D(π)) with distributed data
as in (7), we propose the distributed annealing on regularized
likelihood score (DARLS) algorithm, which applies annealing
strategies to search over the permutation space, coupled
with a distributed optimization method. Such manner of
joint optimization over the topological sort space and the
DAG space has demonstrated great effectiveness in structure
learning; see for example, [43, 44, 45, 46] and the references
thereof.

The main steps of DARLS are outlined in Algorithm 1. At
each annealing iteration, a permutation π+ is proposed based
on current π̂ (line 5) and is accepted with probability accord-
ing to simulated annealing given a decreasing temperature

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

Algorithm 1 Distributed annealing on regularized likelihood
score (DARLS).

Input: {xh}nh=1 distributed over K clients, π0,
temperature schedule {T (i)}Ni=0, τ .

Output: π̂, β̂.

1: Select tuning parameter λ by BIC selection given π0.

2: π̂ ← π0, compute (β̂, f(π̂)) by Algorithm 2.
3: for i = 0, . . . , N do
4: T ← T (i).
5: Central server C proposes π+ by flipping a

random interval (length up to τ) in π̂.
6: Compute (β+, f(π+)) using Algorithm 2.

7: C sets (π̂, β̂, f(π̂))← (π+, β+, f(π+)) with prob.

min
{
1, exp

(
− f(π+)−f(π̂)

T

)}
.

8: end for
9: Refine the causal structure implied by β̂.

Algorithm 2 Distributed optimization to compute the global
permutation score.

Input: π, β
(0)
π , number of iteration T .

Output: β̂π, f(π).

1: Server C broadcasts π to local clients {Mk}Kk=1.
2: for t = 0, 1, . . . , T − 1 do

3: EachMk computes ∇ℓIk
(β

(t)
π) and sends it to C.

4: C computes ∇ℓ[n]

(
β
(t)
π

)
= 1

n

∑
k
nk∇ℓIk

(
β
(t)
π

)
and

broadcasts it to local clients.
5: EachMk computes β

(t+1)
k,π = ϕk,π

(
β
(t)
π

)
via (10)

and sends it to C.
6: C computes β

(t+1)
π = 1

n

∑
k
nkβ

(t+1)
k,π and broadcasts it

to local clients.
7: end for
8: EachMk reports F

(T)
k := nkFk

(
β
(T)
π

)
to C, and C sets β̂π ←

β
(T)
π and f(π)← 1

n

∑
k
F

(T)
k .

schedule. To compute the score of the optimal DAG structure
for a given permutation, we use the distributed optimization
approach outlined in Algorithm 2, the details of which are
discussed in Section 3.2 below. This approach allows multiple
rounds of communications between local clients and the
central server to update and synthesize information. Note
that DARLS can be applied to any objective function as long
as the gradient w.r.t. β has a closed-form expression. Other
steps (line 1 and line 9) are discussed in Section 3.3.

Remark 1. To estimate Gaussian DAGs from multiple
independent data sets, we can use first-order methods, such
as stochastic gradient or proximal gradient algorithm [46].
Given π+, this type of approach computes the global estimate
β+ using sample covariances of local data sets. Hence, dis-
tributed learning of Gaussian DAGs only requires averaging
local sufficient statistics and does not need the distributed
optimization (line 6, Algorithm 1), and thus it is not the focus
of this work.

3.2 Local objectives and distributed optimization

For any fixed π, we use distributed computing to evaluate
f(π), as the samples Ik, k ∈ [K] are not shared among

the local clients. That is, instead of directly working with
the objective function in (7), we rely on local versions of
it to guide a distributed algorithm that divides the task of
computing f(π) among the K local client. In particular, we
consider the local objective functions

fk(π) := min
β∈D(π)

Fk(β), where

Fk(β) := ℓIk
(β) + ρ(β).

The global version (7) can be rewritten as f(π) =
minβ∈D(π) F (β) where F (β) := ℓ[n](β) + ρ(β). Typically,
each of F and Fk is nonsmooth due to the presence of the
regularizer ρ, but the difference hk := Fk −F = ℓIk

− ℓ[n] is
often smooth. The gradient of hk is used to guide iterations in
each local client. That is, given the current (global) estimate
β, local clientMk performs the update

ϕk,π(β) := argmin
ξ∈D(π)

[
F̃k(ξ) := Fk(ξ)− 〈∇hk(β), ξ〉

= Fk(ξ)− 〈∇ℓIk
(β)−∇ℓ[n](β), ξ〉

]
. (10)

The local regularized loss Fk guided by ∇hk, denoted by F̃k,
is a first-order approximation to the global regularized loss

F , up to an additive constant. Let β
(t)
π be the global estimate

of the algorithm at iteration t. At the next iteration, t+ 1, we

obtain local estimates β
(t+1)
k,π = ϕk,π(β

(t)
π) for k = 1, . . . ,K.

These local estimates are then passed to the central server
C to compute the next global estimate by averaging, i.e.,

β
(t+1)
π =

∑K
k=1

nk

n β
(t+1)
k,π . The main steps of this distributed

optimization method are outlined in Algorithm 2.

The above approach is essentially a version of the
DANE algorithm [19, 21, 22, 23]. Note that to calculate local

updates β
(t+1)
k,π (line 5, Algorithm 2), only the current global

estimate β
(t)
π and the global gradient ∇ℓ[n](β(t)

π) need to
be communicated to each local client. In Section 4.1, we
show that for a sufficiently large minimum sample size per

client, i.e. mink nk, the sequence {β(t)
π }t≥0 thus produced

will converge to a global minimizer β̂π of F (·) over D(π).

Another piece in the distributed optimization is to com-
pute the local update (10) (line 5, Algorithm 2), for which we
use the proximal gradient algorithm (Algorithm 3). Given
a current global estimate β(t), optimizing local objective

F̃k(ξ) (10) is equivalent to

min
ξ∈D(π)

ℓIk
(ξ)− 〈∇hk(β(t)), ξ〉+ ρ(ξ). (11)

Define ℓ̃Ik
(ξ) := ℓIk

(ξ) − 〈∇hk(β(t)), ξ〉, a surrogate for
the global likelihood ℓ[n](ξ). To solve (10), we use iterative
proximal gradient descent. At each iteration, we minimize a

quadratic approximation to ℓ̃Ik
around the current solution

ξ, plus a regularization term,

ξ+ := argmin
ξ′∈D(π)

[
ℓ̃Ik

(ξ) + 〈∇ℓ̃Ik
(ξ), ξ′ − ξ〉

+
1

2s
|||ξ′ − ξ|||2F + ρ(ξ′)

]
, (12)

where s > 0 plays the role of a step size and ξ+ is our next
estimate of the solution. Equivalently, the update (12) can be

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

re-written as

ξ+ = proxsρ

(
ξ − s∇ℓ̃Ik

(ξ)
)
, (13)

where

proxsρ(β) := argmin
u

(
sρ(u) +

1

2
|||β − u|||2F

)

is a proximal operator applied to the scaled function sρ(·).
Equation (13) is known as a proximal gradient update, and for
our choice of the regularizer given by (8) and (9), has the
following closed-form expression:

(
proxsρ(β)

)
ij
=

(
1− s

|||βij |||F

)

+

βij

This is often referred to as the block soft-thresholding operator.
To determine the value of the step size s, we use backward
line search, shrinking an initial value s0 until a proper
step size is found (line 7, Algorithm 3). Convergence of
Algorithm 3 is guaranteed given the convexity of (11) over
D(π) [47, 48]. However, to avoid possible slow convergence,
we set a maximum iteration for early stopping (line 2).
We refer readers to [49] for more details on the proximal
algorithms.

Computational complexity. Let us now give an estimate
of the overall computational complexity of DARLS. For
simplicity, consider numerical Xj so that dj = 1 for all j.
Then, βj is a vector in R

p+1 and β = (βj)j∈[p] can be thought
of as a vector of dimension p(p+ 1) = O(p2). From (5), for a
single sample x ∈ R

p+1,

∂L(x, β)/∂βj =
(
xj − b′j(βT

j x)
)
x

and hence needs O(p) operations to compute. Calculat-
ing ∂L(x, β)/∂β then needs O(p2) operations for a single
sample, and hence ∇ℓI(β) has computational complexity
O(|I|p2). For subsequent calculations, note that ∇ℓI(β) is
itself an O(p2)-dimensional vector. For simplicity, assume
that all the K local clients have the same number of local
samples, namely m := n/K. Then, the complexity of step 3
of Algorithm 2 is, O(mp2), where we are treating parallel
computations as one. Let M be the maximum number of iter-
ations in Algorithm 3. Since computing proxsρ(β) also needs

O(p2) operations, the complexity of step 5 of Algorithm 2
(that is, the entire Algorithm 3) is O(Mmp2). The complexity
of steps 4 and 6 of Algorithm 2 are O(Kp2). The overall
complexity of Algorithm 2 is thus, O((Mmp2+Kp2)T). This
gives the overall complexity of O

(
p2
(
M(n/K)+K

)
NT

)
for

DARLS.

3.3 Tuning parameters and structure estimation

Given an initial permutation π0, we use BIC grid search
to select tuning parameter λ that is used in the group
Lasso penalty (8) (line 1, Algorithm 1). To construct the
grid, we select 20 equally spaced points λ(i), on the log scale,
from the interval [0.01, 0.1], where λ = 0.1 is sufficiently
large to produce an empty graph in our test. We select
the tuning parameter λ(i) that minimizes the BIC score,

BIC(i) = 2ℓ[n](β̂
(i)) + (log n)N (β̂(i)), where β̂(i) ∈ D(π0)

is the minimizer of F (β) with penalty parameter λ(i) over

D(π0), computed by Algorithm 2, andN (β̂(i)) is the number

Algorithm 3 Use the proximal gradient algorithm to compute
local permutation scores.

Input: {xh}h∈Ik
, π, β(t−1) ∈ D(π),∇hk(β(t−1)), s0 > 0,

κ ∈ (0, 1), max-iter, tol.

Output: β
(t)
k,π .

1: iter← 0, err←∞, ξ ← β(t−1).
2: while iter < max-iter and err > tol do
3: ∇ℓ̃Ik

(ξ)← ∇ℓIk
(ξ)−∇hk(ξ)

4: s← s0/|||∇ℓ̃Ik
(ξ)|||F .

5: repeat

6: ξ+ ← proxsρ(ξ − s∇ℓ̃Ik
(ξ)).

7: break if ℓ̃Ik
(ξ+) ≤ ℓ̃Ik

(ξ) + 〈∇ℓ̃Ik
(ξ), ξ+ − ξ〉

+ 1
2s |||ξ+ − ξ|||2F .

8: s← κs.
9: err← d (ξ+, ξ) where d(x, y) := |||x−y|||F

max{1,|||y|||F } .

10: ξ ← ξ+ and iter← iter +1.

11: end while
12: β

(t)
k,π ← ξ.

of free parameters in β̂(i). Note that our tuning parameter
selection is done before estimating π and β in Algorithm 1,
which is different from the common practice that selects
λ after obtaining a solution path. Our strategy greatly
reduces the computational cost and works well in practice as
demonstrated in our prior work [46].

An estimated GLDAG parameter β̂ is provided at the
end of the DARLS annealing search, from which we can
estimate a causal structure (line 9, Algorithm 1). Let W be
a p× p weighted adjacency matrix of a DAG with weights

Wij := |||β̂ij |||F . The use of a group Lasso regularizer helps
to produce a sparse estimated DAG, but false positive edges
would present in general. Hence, we further refine estimated
structures by setting Wij to zero if |Wij | < αmaxij |Wij |.
One can adjust the value of α to achieve a desired sparsity
level, especially when having prior knowledge. In our
simulation tests, we fix α = 0.1 to remove edges whose
weights are relatively small compared to others.

3.4 Comparison to other federated learning methods

In this section, we elucidate the distinctions between our
approach and two recent federated methods, FedDAG [33]
and NOTEARS-ADMM [32]. First and foremost, our work
stands out as the only method with a crucial theoretical
guarantee, ensuring convergence of the federated estimate
to the oracle estimate based on all local data (see Section 4).
Second, the imposition of the acyclicity constraint in our
work diverges from the approaches by the other methods.
In our algorithm, we rely on order-based search by the
central server, while the other two methods use a continuous
algebraic constraint [50]. However, recent work [51] shows
that the algebraic constraint cannot be satisfied exactly and
therefore, post-processing such as thresholding is needed to
obtain an estimated DAG. Third, the associated distributed
optimization is also very different. In our algorithm, the
local client and the central sever communicate the gradient
information. FedDAG [32] adopts a strategy where the
central server averages over proxy adjacency matrices from
local clients and broadcasts the average back to local clients

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

in each round of communication. In NOTEARS-ADMM [33],
the model parameters (e.g. weighted adjacency matrix) of
local clients and the central server are exchanged via iterative
updating rules in the alternative direction method of multi-
pliers (ADMM). Lastly, our work is focused on generalized
linear models for various classes of variables, while the other
two papers are focused on continuous variables in linear and
nonlinear Gaussian cases.

4 THEORETICAL GUARANTEES

In this section, we study the convergence of the distributed
optimization (Algorithm 2) to the oracle solution and estab-
lish the consistency of the global minimizer of (7). As our
method is primarily motivated by applications involving
a large amount of distributed data, we develop theoretical
results under the setting that n is large and the number of
variables p stays fixed. Our focus in the analysis will be on
the non-Gaussian case. In the Gaussian setting, the sample
covariance matrix is a sufficient statistic and the local client
can communicate their versions to the central server in one
round, which can then form the full matrix and compute the
global DAG estimate. In other words, there is no need for an
elaborate distributed algorithm such as Algorithm 1 in the
Gaussian case.

4.1 Oracle guarantees

Recall the local iteration functions ϕk,π defined in (10). The
overall iteration function for the distributed algorithm can
be written as Φπ(·) :=

∑
k

nk

n ϕk,π(·) (line 6, Algorithm 2).
Let Σ := E[xhx

⊤
h] be the population second-moment matrix

of the model and λmin(Σ) its minimal eigenvalue. For a
matrix β, let BF (β; r) denote the Frobenius ball of radius r
centered at β. We consider the case of numerical variables,
i.e. dj = 1 for all j, which includes continuous and binary
discrete random variables. The following theorem provides
convergence guarantees on the distributed optimization

algorithm represented by Φπ for any fixed π. Let β̂π be
any global minimizer of the global objective function, i.e.,

β̂π ∈ argmin
ξ∈D(π)

ℓ[n](ξ) + ρ(ξ), (14)

where ρ(ξ) is a convex regularizer. In the distributed data

setting, β̂π is an oracle solution with access to all data across
multiple local clients. Let Ω :=

⋃
π D(π) ⊂ R

(p+1)×p be the
parameter space of GLDAGs. We recall that for θ ∈ Ω, θj
denotes the jth column and that {xh} is an i.i.d. sample from
a GLDAG model (4).

Theorem 1 (Convergence to the oracle). Assume that the

coordinates of xh are T -bounded, that is, |xjh| ≤ T for all h ∈
[n] and j ∈ [p]. Let θ ∈ Ω be any GLDAG parameter and
r > 0, and set R∗

1 = maxj ‖θj‖1 and rp := 2r
√
p. Let bp =

inf |t|≤T (rp+R∗

1
) b

′′(t), and assume that b′′(·) is bp-Lipschitz on
[−Trp, T rp]. Define

ζn :=


T 3

ψ
(
bp(r +

R∗

1√
p)
)
+ b′′(0)

bpλmin(Σ)


 p3/2 log(np)√

m
,

where ψ(x) := max{x,√x} and m := mink |Ik|. Assume
further that np ≥ max{K + 1, 3}. There exist constants

c1, C1, C > 0 such that if C1T
2
√
p2 log(np)/m ≤ λmin(Σ),

then with probability at least 1− 3(np)−c1 −P(|||β̂π − θ|||F > r),

|||Φπ(β)− β̂π|||F ≤ Cζn |||β − β̂π|||F ,
for all β ∈ BF (β̂π, r).

Theorem 1 applies to any θ ∈ Ω. It is natural to take θ to
be β∗

π , the minimizer of the population loss defined as

β∗
π := argmin

ξ∈D(π)

E[ℓ[n](ξ)]. (15)

Since β̂π is a consistent estimate of β∗
π for any π (Theorem 2,

Section 4.2), then P(|||β̂π − β∗
π|||F > r) goes to zero as n

grows. Thus, with high probability, the iteration operator

Φπ(·) will be a contraction: the sequence {β(t)
π }t≥0 produced

by the distributed algorithm converges geometrically to

the oracle estimator β̂π if Cζn < 1. For fixed p, and for

sufficiently large r such that β
(0)
π ∈ BF (β̂π, r), one can

always satisfy the condition of Cζn < 1 by taking m
(the minimum sample size per client) large enough. Hence,
Theorem 1 provides a quantitative lower bound on m for
the geometric convergence to kick in. Note that the T -
boundedness assumption is trivially satisfied for binary and
ordinal data, which are the primary focus of this work.

Theorem 1 is proved by establishing the uniform concen-
tration of the Hessian of the GLDAG model (4) around its
expectation over certain balls in the parameter space, and
then invoking a general convergence result for the DANE
algorithm which we derive in the supplementary material (cf.
Theorem S2). Establishing such uniform concentration in the
GLDAG model is challenging due to the highly dependent

and nonlinear relation among {xjh}pj=1. A technical tool
in establishing the concentration of the Hessian is the
Ledoux–Talagrand contraction theorem. In order to extend
the argument to the multi-logit and generally vector-valued
DAG models with dj > 1, one needs a multivariate extension
of the contraction theorem which is not available in literature
at the moment. This extension is, in principle, possible and
we leave it for the future work.

4.2 Consistency

In this section we establish consistency results under the
class of models in (4), without the restriction to numerical
variables. Let us write ψ(x;β) := − log p(x | β) for the
negative log-likelihood of a single sample x from model (4).
We view x, xh and β as vectors by concatenating the columns
when dealing with ψ(·; ·), so that β ∈ R

D for D = d(d+ 1).
Recall that F (β) = ℓ[n](β) + λn

∑
i,j |||βij |||F is the global

regularized negative log-likelihood and Ω is the GLDAG
parameter space. The optimization problem (7) is equivalent

to minβ∈Ω F (β). Let us denote by β̂ ∈ Ω a global minimizer
of F (β) and β∗ ∈ Ω the true parameter with the true DAG
G∗. For any β, let us consider the (cross) Fisher information
matrix

I(β;β∗) := Eβ∗∇2ψ(x;β).

We note that ψ(x; ·) is a convex function for exponential
families, and hence I(β;β∗) is always positive semi-definite.

To establish the consistency of β̂ as well as that of β̂π ,

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

used in Theorem 1, for any fixed π, we make the following
assumptions:

(A1) The true DAG G∗ is identifiable.
(A2) For every π, there exists a neighborhood of β∗

π ,
denoted by nb(β∗

π) and functions Mjkl such that∣∣∣ ∂3

∂βj∂βk∂βl
ψ(x;β)

∣∣∣ ≤ Mjkl(x) for all β ∈ nb(β∗
π),

almost surely, and Eβ∗ [Mjkl(x)] <∞ for all j, k and l.
(A3) For every π, we have

inf
u∈D(π), ‖u‖=1

〈u, I(β∗
π;β

∗)u〉 > 0.

In (A2), it is impliclty assumed that ψ(x; ·) is finite in nb(β∗
π)

almost surely.
Before stating our theoretical results, we define Π∗ :=

{π : β∗
π = β∗} which is exactly the set of permutations

consistent with β∗ or the topological sorts of G∗, and in
particular, it is nonempty. To see this, we first note that for
any π that is consistent with β∗, we have β∗ ∈ D(π). A
KL divergence argument then shows that β∗ is the unique
solution of the optimization problem defining β∗

π . That is, any
π consistent with β∗ belongs to Π∗. Conversely, if π ∈ Π∗,
then β∗ = β∗

π ∈ D(π), and hence π is consistent with β∗.
With this observation, we establish the desired consistency
results in the following theorem.

Theorem 2. Assume (A1)–(A3) and
√
nλn = Op(1). Then,

(a) For every π, F (·) has a unqiue minimizer β̂π over D(π) and

sup
π∈P
|||β̂π − β∗

π|||F = Op(n
−1/2).

(b) F (·) has a unique minimizer β̂ over Ω (the space of DAGs)
and

|||β̂ − β∗|||F = Op(n
−1/2).

(c) With probability converging to one as n → ∞, β̂ = β̂π̂ for
some (sequence of) π̂ ∈ Π∗.

Theorem 2 confirms that the Group Lasso regularized esti-

mator β̂, defined as a global minimzier of F , is
√
n-consistent,

and it will identify a correct topological sort π̂ ∈ Π∗ in the
large-sample limit. Moreover, the theorem also establishes the

uniform consistency of restricted miminizers β̂π for all π, the
oracle estimators in Theorem 1. Assumption (A1) holds under
mild conditions according to Proposition 1, Assumption (A2)
is a standard regularity condition, and Assumption (A3) is
related to the non-singularity of the second moment matrix
Σ = Eβ∗(xx⊤). For example, consider the case dj = 1 for
all j and assume that the elements of x are T -bounded and
let Rj = maxπ ‖[β∗

π]j‖1, viewing β∗
π as a matrix with jth

column [β∗
π]j . Then if inf |t|≤TRj

b′′j (t) > 0 for all j, non-
singularity of Σ is sufficient for (A3) to hold.

5 RESULTS ON SIMULATED DATA

Denote by s0 the number of edges in a graph on p nodes.
We downloaded the following networks (p, s0) from the
Bayesian networks repository [52] to simulate data: Asia
(8, 8), Sachs (11, 17), Child (20, 25), Insurance (27,
52), Alarm (37, 46), Hailfinder (56, 66) and Hepar2 (70,
123). We generated data under the GLDAG model (4) and
other common DAG models, in Section 5.3 and Section 5.4

respectively, where the latter is to examine the robustness of
our method against violation of its model assumptions.

5.1 Methods

We compared the DARLS algorithm to the following DAG
structure learning methods: the standard greedy hill climbing
(HC) algorithm [53], the Peter-Clark (PC) algorithm [54],
the max-min hill-climbing (MMHC) algorithm [55], the fast
greedy equivalence search (FGES) [56, 57, 58], the NOTEARS
algorithm [50], and the DAG-GNN method [59]. Among
these methods, PC is a constraint-based method and MMHC
is a hybrid method. The other three methods are score-based,
where HC searches over DAGs, FGES searches over the
equivalence classes, NOTEARS uses continuous optimization
to estimate DAG structures, and DAG-GNN applies graph
neural networks architecture to learn DAGs.

Following the practice for DAG learning on distributed
data as in [26, 27, 28], we combined local estimates generated
by a competing method to obtain a global graph estimate.
Denote the dataset on a local client by Dk = {xh}h∈Ik

,
k ∈ [K]. We applied a competing method on each local
dataset Dk to obtain a completed partially directed acyclic
graph (CPDAG) Ak, and then constructed a global graph
using {Ak}Kk=1. We used CPDAGs here because all the
competing methods were developed under non-idenfitiable
DAG models. Among the five competing methods, only
PC and FGES output a CPDAG, and thus we converted
estimated DAGs from the other methods to CPDAGs to
obtain Ak. Given {Ak}K1 , we counted occurrences of the
three possible orientations between each pair (i, j): i → j,
i ← j, or i − j (undirected). We then ranked orientations
across all node pairs in the descending order of their counts,
and sequentially added these edge orientations to an empty
graph, as long as they would not introduce a directed cycle
(a cycle consisting of all directed edges). By the end of this
process, we had a partially directed graph. Lastly, we applied
Meek’s rules [56, 60] to maximally orient undirected edges,
and hence constructed a global CPDAG estimate.

Remark 2. The HC global estimates had too many edges
using this approach, because its local CPDAGs lacked
consensus, resulting in a large number of candidate edges
and much higher FP edges. To solve this problem, we did not
add any edge between a node pair (i, j) if the majority of the
local graphs {Ak} had no edges between them. In this way,
global graphs estimated by HC became reasonably sparse
compared to global estimates by the other methods.

Moreover, we provide numerical results comparing
DARLS and NOTEARS-ADMM [32] on binary data in supple-
mentary material Section S2, because NOTEARS-ADMM was
not designed for categorical data with more than two levels.
The numerical results demonstrate that DARLS outperforms
NOTEARS-ADMM, consistently achieving much lower SHD
across various data-generating scenarios.

We implemented the DARLS algorithm in MATLAB and
used the following packages to run competing methods:
bnlearn [61] for the MMHC and HC algorithms, pcalg [62]
for the PC algorithms and rcausal [57] for the FGES.
The NOTEARS and DAG-GNN methods were run with
their online Python code [63, 64]. Competing methods were

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

applied to each local dataset using a 2016 MacBook Pro (2.9
GHz Intel Core i5, 16 GB memory). Since DARLS is designed
for distributed computing, it was run on a computer cluster.

In this study, the DARLS algorithm (Algorithm 1) was
initialized with a random permutation. According to the land-
scape of the objective function, we set the initial annealing
temperature to 5 · 10−2 and gradually decreased it to 5 · 10−5

in a geometric fashion over a total of 103 iterations. Note that
since the log-likelihood has been normalized by the sample
size, as in (6), the range of the objective function is quite small.
For the PC algorithm, a significance level of 0.01 was used
to generate graphs with desired sparsity. FGES was applied
with a significance level of 0.1, which was the default value.
For MMHC and HC methods, the maximum number of
parents for a node was set to three. For NOTEARS, we used
the default ℓ2 loss and the default threshold value. For DAG-
GNN, we set its threshold as 0.15 and used other default
parameter values, where the default value of the threshold is
0.3 and it is used to refine the final DAG structure, similar to
the parameter α in our post-processing step (Session 3.3). In
our numerical pilot experiments using all the default values
of DAG-GNN, it always output empty graphs. Thus, we
manually tuned its input parameters one by one, and this
method only generated non-empty structures when reducing
the threshold value.

5.2 Accuracy metrics

Given estimates generated by the above methods, we use
a few metrics to evaluate their structural accuracy. To stan-
dardize the performance metrics, we transform an estimated
DAG into its CPDAG when the true DAG is not identifiable,
before calculating the following metrics.

Let P, TP, FP, M, R be the number of estimated edges,
true positive edges, false positive edges, missing edges
and reversed edges, respectively. More specifically, P is the
number of edges in the estimated graph, FP is the number
of edges in the estimated graph skeleton but not in the true
skeleton, and M counts the number of edges in the true
skeleton but not in the skeleton of the estimated graph.
TP reports the number of consistent edges between the
estimated DAG/CPDAG and the true DAG/CPDAG, where
a consistent edge must have the same orientation between
the two nodes. There are two possible orientations for an
edge in a DAG and three in a CPDAG. Lastly, the number of
reversed edges R = P− TP− FP. We then define structural
Hamming distance, SHD = R + FP + M, as a combined
metric. A method has higher structure learning accuracy if it
achieves a lower SHD.

5.3 GLDAG data

Logistic GLDAGs model (4) with bj(β
⊤
j x) = log(1 +

exp(β⊤
j x)) for all j ∈ [p], was used to generate binary

data Xj ∈ {0, 1}, where the coefficient parameters {βij}
were uniformly sampled from [−1.5,−0.8] ∪ [0.8, 1.5]. We
simulated 20 datasets for each network under two settings,
n = 100p,K = 10 and n = 10, 000,K = 20, where a total of
n observations were randomly assigned to K local clients.
Since GLDAGs are identifiable, we compare an estimated
DAG by DARLS to the true DAG when calculating the

TABLE 1: DARLS against others on distributed logistic data.

Network (p) DARLS MMHC FGES HC PC GNN

Asia (8) 4.6 6.7 9.0 7.2 6.7 8.4
Sachs (11) 10.0 10.0 19.1 13.3 13.7 20.6
Child (20) 10.4 22.1 28.8 18.8 23.1 29.4

Insurance (27) 21.6 38.2 42.9 41.0 39.6 49.9
Alarm (37) 18.8 38.5 37.1 35.0 33.8 -

Hailfinder (56) 27.5 69.2 56.0 51.2 - -
Hepar2 (70) 51.7 89.0 66.2 62.8 - -

Asia (8) 3.5 5.2 8.2 4.7 5.5 6.8
Sachs (11) 8.3 11.1 19.4 10.2 11.8 14.7
Child (20) 8.2 19.2 23.0 11.7 20.8 21.5

Insurance (27) 20.4 34.0 39.9 31.6 37.5 47.4
Alarm (37) 19.1 43.0 41.4 31.5 40.5 -

Hailfinder (56) 27.7 91.7 72.5 50.4 - -
Hepar2 (70) 48.8 118.5 86.5 73.5 - -

The upper panel pertains to scenarios with n = 100p and K = 10,
while the lower panel illustrates cases using n = 10, 000 and
K = 20. The minimum average SHD of each network is highlighted
in bold.

SHD. For all other methods, we compare estimated and
true CPDAGs since they do not assume an identifiable DAG.

Table 1 reports the average performance metrics SHD
across 20 datasets for each of the seven graphs, using six
methods. A detailed breakdown, including averages of TP,
FP, R, and M, along with the standard deviations of SHD, is
provided in Table S1 in the supplement. Since NOTEARS
estimates were too sparse to be competitive, using the default
settings, we decreased the penalty tuning parameter to 10−4

from the suggested value of 10−1. We only report its results
for two small graphs, Asia and Sachs in the supplementary
material. Its SHD falls within the median performance
spectrum compared to the other methods. DAG-GNN (GNN
in Table 1) was time-demanding in computing graphs, taking
more than one hour for each data set when n = 10, 000, while
other competing methods took at most 5 minutes. Thus, we
only provide its results for the first four graphs that are
relatively small. PC also had difficulty generating estimates
within a reasonable time limit (30 minutes per estimation)
for the last two networks, Hailfinder and Hepar2, and
hence it was removed from the comparisons on these two
graphs.

Table 1 shows that in both cases n = 100p and
n = 10, 000, DARLS consistently achieved the lowest
SHD among all methods for every network, demonstrating
higher accuracy in estimating graphical structures. The
relative efficacy of DARLS remains robust, showing no
signs of diminishing as the graph size increases. Across the
four largest graphs, Insurance, Alarm, Hailfinder and
Hepar2, DARLS consistently achieved about 40% decrease
in SHD relative to the second-best method for n = 10, 000.
Additional numerical studies on the performance of DARLS
with growing graph sizes from 76 to 223 are provided in
the supplementary material Section S4, showing comparable
or even more substantial improvement. DARLS identified
more TP edges than the other methods in almost every

case. The refinement step via thresholding β̂ also helped
to reduce SHD by cutting down FP edges. A key difference
from the competing methods is the federated learning feature

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

discretized before network estimation; see Figure S1 in the
supplemental material for illustration of the discretization.

We distributed this dataset across K = 20 local clients,
and hence each local client contains around 400 samples.
Then we applied DARLS, HC, MMHC, PC and FGES to
the distributed data to learn the protein-DNA binding
network. NOTEARS and DAG-GNN were excluded in this
comparison because their performance was not competitive
as demonstrated in the simulation studies. Local estimates
of a competing method were combined to construct a global
graph as we did in Section 5. To ease the comparison, we
controlled the sparsity of estimated networks such that every
method produced two graphs using the distributed data,
with roughly ŝ0 = 17 and 29 edges, except FGES which
had difficulty generating output close to 17 edges. We also
applied each method on the combined data (i.e, K = 1) with
the same parameters in Section 5. In this case, each estimated
graph had around ŝ0 = 30 edges. The only exception is PC,
whose estimate had 21 edges even when its significance level
had been reduced to 10−10. Key parameters of each method
are reported in Section S5 in the supplemental material.

Since the true network structure is unknown, test data
likelihood under multinomial DAG models in ten-fold cross
validation is used to assess the accuracy of estimated net-
works. Denote by g̃ and g the likelihood values using training
and test datasets, respectively, under multinomial DAG
models (see supplemental material Section S5 for calculation

of g̃ and g). We also compute BIC = −2 log g̃ + log(ñ)N (Ĝ)
for model comparison, where ñ is the training sample size

and N (Ĝ) is the number of multinomial parameters for

estimated graph Ĝ. We choose some benchmarks to ease
comparison. Denote by gB and BICB the highest test data
likelihood and the lowest BIC value, respectively. Define
the log-likelihood difference ∆(log g) = log g − log gB and
the BIC difference ∆BIC = BIC − BICB. Note that since
log g is test data log-likelihood while BIC is calculated with
training data, the magnitude of ∆BIC is much larger than
∆(log g). We also compute the value of exp {−∆BIC/(2ñ)}
as an approximation to the normalized marginal likelihood

ratio (NLR) (P (X̃ | Ĝ)/P (X̃ | ĜB))1/ñ, where X̃ denotes

training data, between estimated DAGs Ĝ by a competing

method and ĜB by the BIC benchmark.

Table 3 summarizes ŝ0, ∆(log g), ∆BIC and NLR of each
method under three comparison settings, namely sparse,
moderate and oracle. The first two settings report results
with different degree of sparsity in estimated graphs using
distributed data over K = 20 clients, and the last one shows
results of the corresponding oracle solutions on the combined
data (i.e., K = 1). In both sparse and moderate settings,
DARLS achieves the highest test data likelihood and the
smallest BIC, outperforming all the other methods by a sub-
stantial margin, which again demonstrates its effectiveness
in DAG learning with distributed data. Oracle methods,
except PC, have comparable test data likelihood values, all
higher than their corresponding results on distributed data.
Comparing the likelihood between combined and distributed
data for each method, we see that DARLS shows the smallest
difference. In other words, among all the methods, DARLS
has the smallest loss when applied to distributed data as
compared to its oracle result on the combined data.

E2f1

Zfx

Myc
Klf4

Tcfcp2l1

Esrrb

Nanog

Pou5f1

Sox2
STAT3

Smad1

Mycn

E2f1

Zfx

Myc
Klf4

Tcfcp2l1

Esrrb

Nanog

Pou5f1

Sox2
STAT3

Smad1

Mycn

E2f1

Zfx

Myc
Klf4

Tcfcp2l1

Esrrb

Nanog

Pou5f1

Sox2
STAT3

Smad1

Mycn

Fig. 3: DAG (left) and the converted CPDAG (right) learned
by DARLS.

It is worth mentioning that the likelihood for each method
is calculated under the multinomial DAG model, instead
of the GLDAG model. Thus, the superior performance
of the distributed learning by DARLS on this real-world
data suggests that our proposed GLDAG model is a good
approximation to the underlying data generation mechanism.

To gain more scientific insights, we show in Figure 3
the sparser DAG (ŝ0 = 17 in Table 3) and its converted
CPDAG, learned by DARLS from the full dataset (n = 8, 462)
distributed over K = 20 local clients. An interesting
observation is the directed path Nanog→Pou5f1→Sox2 in
the estimated CPDAG, among the three core regulators
in the gene regulatory network in mouse embryonic stem
cells [68, 71]. It is well-known that many genes are co-
regulated by Pou5f1, Sox2 and Nanog. The estimated path
suggests that Nanog binding would cause the binding of
Pou5f1, which then may cause Sox2 binding. This provides
new clue for how the three TFs work together to co-regulate
downstream genes. Data analysis in [68], the original work
that generated the ChIP-Seq data, suggests that there are two
clusters of TFs that tend to co-bind: The first group consists of
Nanog, Sox2, Oct4, Smad1 and STAT3, while the second group
includes Mycn, Myc, Zfx and E2f1. These two groups are
clearly recovered in the estimated CPDAG, which contains a
dense undirected subgraph on the second group of TFs and
a fully directed subgraph on the first group. Moreover, the
directed edge Myc→Pou5f1 indicates that the second group
might be in the causal upstream of the first group, a novel
hypothesis for potential experimental investigation.

7 DISCUSSION

In this paper, we develop the DARLS algorithm that in-
corporates a distributed optimization method in simulated
annealing to learn causal graphs from distributed data.
Based on simulation studies and a real data application,
we have shown that DARLS is highly competitive even
when its model assumptions are violated. In its distributed
optimization given an ordering, DARLS learns a causal graph
by optimizing a convex penalized likelihood. In practice,
one may consider concave penalties [30, 46] to improve
accuracy when learning DAGs, although there may be lack of
theoretical guarantees for convergence of distributed learning
with a concave penalty. This is certainly a promising further
development for our method.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

TABLE 3: Comparison on the ChIP-Seq dataset. Best performance of each case is in bold.

Method
Sparse Moderate Oracle

ŝ0 ∆(log g) ∆BIC NLR ŝ0 ∆(log g) ∆BIC NLR ŝ0 ∆(log g) ∆BIC NLR

DARLS 16.5 −136.9 1051.6 0.501 27.5 −22.4 297.7 0.822 31.0 −3.7 540.2 0.701
MMHC 17.0 −149.6 2470.0 0.198 29.5 −44.4 1062.4 0.498 30.0 −1.7 0.0 1.000
FGES 11.5 −164.3 2478.5 0.196 28.0 −39.6 1026.6 0.510 34.0 −2.7 250.9 0.848
HC 17.0 −151.9 2510.1 0.192 29.0 −36.8 1174.9 0.462 30.0 0.0 7.9 0.995
PC 17.0 −156.3 2510.1 0.192 29.0 −36.9 942.6 0.538 21.0 −77.1 1047.8 0.503

Our proposed GLDAG model includes a family of flexible
distributions besides linear Gaussian models (with equal
variance), and thus can be applied to different types of
data. It is also possible to generalize the framework of
GLDAGs (4) to model nonlinear causal relations among
variables. Consider scalar variables Xj ∈ R for simplicity.
For each edge Xi → Xj , we associate a nonlinear function
fij(x

i). Then the β⊤
j x in (4) is replaced by

∑
i∈PAj

fij(x
i),

leading to a generalized additive model for [Xj | PAj].
Such generalization is expected to approximate real causal
relations with higher accuracy. We have established that
continuous GLDAGs are identifiable, justifying their use in
causal discovery, and it is left as future work to study the
identifiability of general GLDAGs.

The primary focus of this paper is on big distributed
data, with large n but moderate p. Under this setting, we
established the convergence of the solution obtained by
distributed optimization to a global minimizer of the loss
(i.e. the oracle solution) and the consistency of the global
minimizer as an estimator of the true DAG parameter.
However, generalizing the convergence and consistency
results to allow diverging p is theoretically interesting and
left as future work.

ACKNOWLEDGMENT

This work was supported by NSF grants DMS-1952929, DMS-
2305631 and DMS-1945667.

REFERENCES

[1] D. B. Rubin, “Estimating Causal Effects from Large
Data Sets Using Propensity Scores,” Annals of Internal
Medicine, vol. 127, pp. 757–763, 1997.

[2] G. W. Basse, A. Feller, and P. Toulis, “Randomization
Tests of Causal Effects under Interference,” Biometrika,
vol. 106, pp. 487–494, 2019.

[3] S. L. Morgan and C. Winship, Counterfactuals and Causal
Inference. Cambridge University Press, 2015.

[4] A. P. David, “Causal Inference without Counterfactuals,”
Journal of the American Statistical Association, vol. 95, no.
450, pp. 407–424, 2000.

[5] D. B. Rubin, “Causal Inference Using Potential Out-
comes,” Journal of the American Statistical Association, vol.
100, no. 469, pp. 322–331, 2011.

[6] P. Spirtes, C. Glymour, and R. Scheines, Causation,
Prediction, and Search. Springer-Verlag, New York, 1993.

[7] S. L. Lauritzen, Graphical Models. Clarendon Press,
1996.

[8] M. M. Glymour, “Using Causal Diagrams to Understand
Common Problems in Social Epidemiology,” in Methods
in Social Epidemiology. John Wiley and Sons, 2006, pp.
393–428.

[9] P. W. G. Tennant, E. J. Murray, K. F. Arnold, L. Berrie,
M. P. Fox, S. C. Gadd, W. J. Harrison, C. Keeble, L. R.
Ranker, J. Textor, G. D. Tomova, M. S. Gilthorpe, and
G. T. H. Ellison, “Use of Directed Acyclic Graphs (DAGs)
to Identify Confounders in Applied Health Research:
Review and Recommendations,” International Journal of
Epidemiology, vol. 50, no. 2, pp. 620–632, 2021.

[10] X. Shen, S. Ma, P. Vemuri, and et al., “Challenges
and Opportunities with Causal Discovery Algorithms:
Application to Alzheimer’s Pathophysiology,” Scientific
Reports, vol. 10, no. 1, p. 2975, 2020.

[11] G. W. Imbens, “Nonparametric Estimation of Average
Treatment Effects under Exogeneity: A Review,” The
Review of Economics and Statistics, vol. 86, no. 1, pp. 4–29,
2004.

[12] H. Seiti, A. Makui, A. Hafezalkotob, M. Khalaj, and I. A.
Hameed, “R.Graph: A New Risk-based Causal Reason-
ing and Its Application to COVID-19 Risk Analysis,”
Process Safety and Environmental Protection, vol. 159, pp.
585–604, 2022.

[13] J. Pearl, Causality: Models, Reasoning, and Inference. Cam-
bridge University Press, 2000.

[14] M. Drton and M. H. Maathuis, “Structure Learning in
Graphical Modeling,” Annual Review of Statistics and Its
Application, vol. 4, no. 1, pp. 365–393, 2017.

[15] C. Heinze-Deml, M. H. Maathuis, and N. Meinshausen,
“Causal Structure Learning,” Annual Review of Statistics
and Its Application, vol. 5, pp. 371–391, 2018.

[16] R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu, “A
Survey of Learning Causality with Data: Problems and
Methods,” ACM Computing Surveys, vol. 53, no. 4, pp.
1–37, 2020.

[17] A. Mehmood, I. Natgunanathan, Y. Xiong, G. Hua, and
S. Guo, “Protection of Big Data Privacy,” IEEE Access,
vol. 4, pp. 1821–1834, 2016.

[18] Apple and Google, “Explosure Notification Privacy-
preserving Analytics (enpa) white paper,” Apple and
Google, Tech. Rep., 2021.

[19] Y. Zhang, J. C. Duchi, and M. J. Wainwright,
“Communication-Efficient Algorithms for Statistical Op-
timization,” Journal of Machine Learning Research, vol. 14,
pp. 3321–3363, 2013.

[20] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li,
“Parallelized Stochastic Gradient Descent,” in Advances
in Neural Information Processing Systems, vol. 23, 2010,

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

pp. 2595–2603.
[21] O. Shamir, N. Srebro, and T. Zhang, “Communication-

Efficient Distributed Optimization using an Approx-
imate Newton-type Method,” Proceedings of the 31st
International Conference on International Conference on
Machine Learnings, vol. 32, no. 2, pp. 1000–1008, 2014.

[22] M. I. Jordan, J. D. Lee, and Y. Yang, “Communication-
Efficient Distributed Statistical Inference,” Journal of the
American Statistical Association, vol. 114, no. 526, pp. 668–
681, 2018.

[23] J. Fan, Y. Guo, and K. Wang, “Communication-efficient
accurate statistical estimation,” arXiv:1906.04870, 2019.

[24] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low,
S. Chakrabarti, R. Baldick, and J. Lavaei, “A Survey
of Distributed Optimization and Control Algorithms
for Electric Power Systems,” IEEE Transactions on Smart
Grid, vol. 8, no. 6, pp. 2941–2962, 2017.

[25] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong,
H. Wang, Z. Lin, and K. H. Johansson, “A Survey of
Distributed Optimization,” Annual Reviews in Control,
vol. 47, pp. 278–305, 2019.

[26] Y. Na and J. Yang, “Distributed Bayesian Network
Structure Learning,” IEEE International Symposium on
Industrial Electronics, pp. 1607–1611, 2010.

[27] K. X. Gou, G. X. Jun, and Z. Zhao, “Learning Bayesian
Network Structure from Distributed Homogeneous
Data,” Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing, vol. 3, pp. 250–254, 2007.

[28] Y. Tang, J. Wang, M. Nguyen, and I. Altintas, “PEnBayes:
A Multi-layered Ensemble Approach for Learning
Bayesian Network Structure from Big Data,” Sensors,
vol. 19, no. 20, p. 4400, 2019.

[29] F. Fu and Q. Zhou, “Learning Sparse Causal Gaussian
Networks with Experimental Intervention: Regulariza-
tion and Coordinate Descent,” Journal of the American
Statistical Association, vol. 108, pp. 288–300, 2013.

[30] B. Aragam and Q. Zhou, “Concave Penalized Estimation
of Sparse Gaussian Bayesian Networks,” Journal of
Machine Learning Research, vol. 16, pp. 2273–2328, 2015.

[31] J. Gu, F. Fu, and Q. Zhou, “Penalized Estimation of
Directed Acyclic Graphs from Discrete Data,” Statistics
and Computing, vol. 29, pp. 161–176, 2019.

[32] E. Gao, J. Chen, L. Shen, T. Liu, M. Gong, and H. Bon-
dell, “FedDAG: Federated DAG Structure Learning,”
Transactions of Machine Learning Research, 2023.

[33] I. Ng and K. Zhang, “Towards federated Bayesian
Network Structure Learning with Continuous Optimiza-
tion,” International Conference on Artificial Intelligence and
Statistics, 2022.

[34] B. Aragam, J. Gu, and Q. Zhou, “Learning Large-Scale
Bayesian Networks with the sparsebn Package,” Journal
of Statistical Software, vol. 91, no. 11, pp. 1–38, 2019.

[35] J. Pearl, “Causal Diagrams for Empirical Research,”
Biometrika, vol. 82, no. 4, pp. 669–710, 1995.

[36] D. Heckerman, D. Geiger, and D. M. Chickering, “Learn-
ing Bayesian Networks: The Combination of Knowledge
and Statistical Data,” Machine Learning, vol. 20, pp. 197–
243, 1995.

[37] P. O. Hoyer, D. Janzing, J. Mooij, J. Peters, and
B. Schölkopf, “Nonlinear Causal Discovery with Ad-

ditive Noise Models,” Preceedings of 21st International
Conference on Neural Information Processing Systems, pp.
689–696, 2008.

[38] J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf,
“Causal Discovery with Continuous Additive Noise
Models,” Journal of Machine Learning Research, vol. 15,
pp. 2009–2053, 2014.

[39] J. Peters and P. Bühlmann, “Identifiability of Gaus-
sian Structural Models with Equal Error Variances,”
Biometrika, vol. 101, no. 1, pp. 219–228, 2014.

[40] P. Bühlmann, J. Peters, and J. Earnest, “Cam: Causal
Additive Models, High-Dimensional Order Search and
Penalized Regression,” The Annals of Statistics, vol. 42,
pp. 2526–2556, 2014.

[41] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen,
“A Linear Non-Gaussian Acyclic Model for Causal
Discovery,” Journal of Machine Learning Research, vol. 7,
no. 72, pp. 2003–2030, 2006.

[42] M. Yuan and Y. Lin, “Model Selection and Estimation
in Regression with Grouped Variables,” Journal of Royal
Statistical Society, Series B, vol. 68, no. 1, pp. 49–67, 2007.

[43] P. Larrañaga, M. Poza, Y. Yurramendi, R. H. Murga,
and C. M. H. Kuijpers, “Structure Learning of Bayesian
Networks by Genetic Algorithms: A Performance Anal-
ysis of Control Parameters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 9, pp. 912–
926, 1996.

[44] N. Friedman and D. Koller, “Being Bayesian about
Network Structure. A Bayesian Approach to Structure
Discovery in Bayesian Networks,” Machine Learning,
vol. 50, pp. 95–125, 2003.

[45] M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaf-
falon, “Learning Bayesian Networks with Thousands of
Variables,” in Advances in Neural Information Processing
Systems, pp. 1864–1872, 2015.

[46] Q. Ye, A. A. Amini, and Q. Zhou, “Optimizing Reg-
ularized Cholesky Score for Order-Based Learning
of Bayesian Networks,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, vol. 43, pp. 3555–3572,
2021.

[47] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems,”
SIAM Journal on Imaging Scciences, vol. 2, no. 1, pp. 183–
202, 2009.

[48] Y. Nesterov, “Gradient Methods for Minimizing Com-
posite Functions,” Mathematical Programming, Series B,
vol. 140, no. 125–161, 2013.

[49] N. Parikh and S. Boyd, “Proximal algorithms,” Founda-
tions and Trends in Optimization, vol. 1, no. 3, pp. 123–231,
2013.

[50] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing,
“Dags with NO TEARS: Continuous Optimization for
Structure Learning,” in Advances in Neural Information
Processing Systems, 2018.

[51] D. Wei, T. Gao, and Y. Yu, “DAGs with No Fears: A
Closer Look at Continuous Optimization for Learning
Bayesian Networks,” 34th Conference on Neural Informa-
tion Processing Systems, 2020.

[52] M. Scutari, “Bayesian network repository,” http://www.
bnlearn.com/bnrepository/, 2007, accessed: 2020-05-01.

[53] J. A. Gámez, J. L. Mateo, and J. M. Puerta, “Learning

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3381860

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

