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We introduce a sheaf-theoretic approach to tropical homology, 
especially for tropical homology with potentially non-compact 
supports. Our setup is suited to study the functorial properties 
of tropical homology, and we show that it behaves analogously 
to classical Borel-Moore homology in the sense that there are 
proper push-forwards, cross products, and cup products with 
tropical cohomology classes, and that it satisfies identities 
like the projection formula and the Künneth theorem. Our 
framework allows for a natural definition of the tropical cycle 
class map, which we show to be a natural transformation. 
Finally, we characterize the rational polyhedral spaces that 
satisfy Poincaré-Verdier duality as those that are smooth.
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1. Introduction

1.1. Background

Tropical (co)homology theory is a new tool to associate algebraic invariants to the 
spaces appearing in tropical geometry. They were introduced in [20] where it was shown 
that the tropical cohomology groups of tropical manifolds have a Hodge-theoretic inter-
pretation in algebraic geometry in case the tropical manifold arises as the tropicalization 
of a smooth projective variety. As one would expect by analogy to the algebro-geometric 
picture, tropical homology is also closely related to tropical intersection theory. In [32], 
Mikhalkin and Zharkov introduced the tropical cycle class map on rational polyhedral 
spaces equipped with a global face structure that assigns a class in tropical homology 
to every tropical cycle. This map has been further studied in [37] in the case of tropical 
surfaces, and in [22] with a special emphasis on methods that work in the locally finite 
setting. An excellent introduction to the subject can be found in [7].

1.2. Our contributions

We introduce a sheaf-theoretic viewpoint on tropical homology, by expressing tropical 
homology groups directly in terms of the sheaves Ωp

X of tropical p-forms and the dualizing 
complex DX . This will allow us to avoid the need to work with any stratification or global 
face structure of the rational polyhedral space X. We also avoid any reference to locally 
finite chains in a very similar way as this is avoided in the classical development of 
Borel-Moore homology [8]. The basis for this is the following theorem:

Theorem A (= Theorem 4.20). Let X be a rational polyhedral space. Then there exists 
a natural isomorphism

H lf
p,q(X) ∼= H−qR Hom •(Ωp

X ,DX) ,

where H lf
p,q(X) denotes the tropical homology groups defined in [22] via locally finite 

tropical chains over Z and DX denotes the dualizing complex on X.

Motivated by this, and in analogy to the classical theory, we denote

HBM
p,q (X) = H−qR Hom •(Ωp

X ,DX)
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and call it the (p, q)-th tropical Borel-Moore homology group. Replacing hypercohomol-
ogy by hypercohomology with supports, we also define compactly supported tropical 
homology groups Hp,q(X) and tropical homology groups Hp,q(Z, X) supported on a 
closed subset Z of X. These correspond to the most common support families, but we 
remark that our construction allows to work with an arbitrary support family.

Remark. In [22], what we denote by H lf
p,q(X) is denoted by HBM

p,q (X). By Theorem A, 
this will not lead to conflicts with the existing literature.

Note also that the sheaves Ωp
X agree, up to torsion, with the sheaves F p

X that are 
usually used in the literature to define tropical cohomology. See Remark 2.8 for an 
elaboration on the subtleties involved. We call the elements in Ωp

X tropical p-forms 
because they are represented by wedges of tropical 1-forms (as introduced in [31]).

Our sheaf-theoretic formulation of tropical homology makes it evident that the func-
torial behavior of tropical homology is completely determined by the functorial behavior 
of tropical p-forms on the one hand, and dualizing complexes on the other. With this in 
mind, the constructions of proper push-forwards, cross products, cup products, and cap 
products in tropical homology are straightforward generalizations of the classical con-
structions, at least after we establish some general functorial properties of the sheaves of 
tropical forms. Our point of view also sheds light on the identities that these operations 
satisfy. For example, we obtain a tropical version of the Künneth Theorem:

Theorem B (= Theorem 4.16). Let X and Y be compactifiable rational polyhedral spaces 
with torsion-free homology groups. Then we have

HBM
p,q (X × Y ) ∼=

⊕
i+j=p
k+l=q

HBM
i,k (X) ⊗Z HBM

j,l (Y )

and

Hp,q(X × Y ) ∼=
⊕

i+j=p
k+l=q

Hi,k(X) ⊗Z HBM
j,l (Y ) .

The compactifiability on X and Y is a mild condition; see Definition 4.15 for details. 
Note that our Theorem 4.16 also deals with the torsion; we have omitted this here to 
simplify the statement. Finally, note that Smacka proved a tropical Künneth Theorem 
with real coefficients using superforms in [39].

Another advantage of a sheaf-theoretic view on tropical geometry is that sheaves 
are very well-suited to pass from local to global considerations. We exploit this in our 
definition of the tropical cycle class map, where we use the definition of [32] locally and 
then utilize the sheaf property to glue. This has the advantage of avoiding the necessity 
of dealing with global face structures or triangulations of the space, as one needs to in 
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the definitions in [32,22]. Once the tropical cycle class map is defined, we prove that 
it is a natural transformation in the sense that it satisfies the compatibility conditions 
summarized in the following theorem:

Theorem C (= Corollary 5.8, Proposition 5.9, Proposition 5.12). The tropical cycle class 
map commutes with proper push-forwards, cross products, and intersections with tropical 
Cartier divisors.

Finally, we study Poincaré-Verdier duality on purely n-dimensional rational polyhe-
dral spaces that are regular at infinity (in the sense of [32]) and admit a fundamental 
cycle; we say that X admits a fundamental cycle if and only if assigning weight 1 ev-
erywhere on X defines a tropical n-cycle. We will see that a fundamental cycle induces 
morphisms

δX
p : Ωn−p

X [n] → D(Ωp
X)

for every p ∈ Z, where D(Ωp
X) denotes the Verdier dual of Ωp

X . We say that X satisfies 
Poincaré-Verdier duality if δX

p is an isomorphisms for every p ∈ Z.

Theorem D (= Theorem 6.7, Corollary 6.9). Let X be an n-dimensional rational poly-
hedral space that is regular at infinity and admits a tropical fundamental class. Then X
satisfies Poincaré-Verdier duality if and only if every point x ∈ X has a neighborhood 
isomorphic to an open subset in F × Tn for some n ∈ N and a fan F that is smooth in 
the sense of Amini–Piquerez and Aksnes. In particular, if X is smooth, p, q ∈ N, and Φ
is any family of supports, then there is a natural isomorphism

Hp,q
Φ (X) ∼= HΦ

n−p,n−q(X) , (1.1)

induced by the cap product with the fundamental class.

By the results of [22], tropical manifolds (in the sense of [35,32]) are smooth in the 
sense of Amini–Piquerez and Aksnes. In the case where the family Φ consists of either all 
compact or all closed subsets of X, the isomorphism (1.1) has already established in [22]
(and in [23] for real coefficients) for tropical manifolds and in [4,1] for rational polyhedral 
spaces that are smooth in the sense of Amini–Piquerez and Aksnes. The inclusion of 
arbitrary support families is new. Note that Theorem D, together with the smoothness 
of tropical manifolds proved in [22], implies that tropical manifolds satisfy Poincaré 
duality with arbitrary systems of supports. In [39], Smacka proved, using superforms, 
that δX

p is an isomorphism on tropical manifolds if one considers real coefficients.

1.3. Sheaves and cosheaves on rational polyhedral spaces

Let us briefly discuss why we introduce a sheaf-theoretic approach to tropical homol-
ogy theory to complement the approach using cosheaves used previously in the literature. 
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First, let us briefly recall some facts about tropical cohomology. The (p, q)-th tropical 
cohomology group of a rational polyhedral space X can be defined as the cohomology 
group Hq(X, Ωp

X) (see [32]). This description clearly encapsulates the analogy to Dol-
beault cohomology, but also makes the tropical cohomology groups accessible to standard 
sheaf-theoretic tools like Čech cohomology. Furthermore, the sheaves Ωp

X are closely re-
lated to sheaves of superforms [25,10,17] in the sense that an appropriate complex of 
superforms defines a soft resolution of Ωp

X ⊗Z R (see [23]). In particular, it is shown in 
[23] that tropical cohomology groups with real coefficients can be interpreted as tropical 
Dolbeault cohomology groups.

We have several techniques at our disposal to study the sheaves Ωp
X of tropical p-forms. 

Ideally, one could define tropical homology by taking homology groups with coefficients 
in the dual sheaf of Ωp

X . But, unfortunately, this does not yield the correct notion. As 
a remedy, one takes a different approach to dualizing Ωp

X and obtains a constructible 
cosheaf F X

p on X. Using suitable singular chains with coefficients in F X
p one obtains 

the tropical homology groups Hsing
p,q (X) and H lf

p,q(X), where for the latter one considers 
locally finite chains. As shown in [32], there is an isomorphism Hsing

p,q (X) ∼= Hq(F X
p ), 

where the latter group is the q-th cosheaf homology of F X
p .

It may seem like a natural principle that sheaves are used for cohomology while 
cosheaves are used for homology. This is, however, not necessarily the case. First of all, 
the appearance of sheaves, most notably local systems, as coefficients in homology is 
ubiquitous [8,9]. Secondly, the homology theory of cosheaves does not allow to account 
for different support families. For example, since Hsing

p,q (X) is isomorphic to a homology 
group of F X

p , one might expect H lf
p,q(X) to be isomorphic to a homology group of 

F X
p with compact supports, but homology groups with compact supports are undefined 

for cosheaves. Finally, the definitions of Hsing
p,q (X) and H lf

p,q(X) make use of the fact 
that F X

p is constructible and use a stratification of X. While the resulting homology 
groups are independent of the chosen stratification, using a stratification in the definition 
cannot be avoided. In particular, the definition of singular tropical homology groups does 
not generalize to a homology theory for arbitrary cosheaves, whereas there are singular 
homology groups with coefficients in any given sheaf [8,9].

As mentioned, our main objects of interest are the locally-finite tropical homology 
groups H lf

p,q(X), since those are the target of the tropical cycle class map (for p = q). 
As noted above, there is no notion of cosheaf homology that expresses H lf

p,q(X) as a 
cosheaf homology group. Therefore, one needs to work with locally-finite tropical chains. 
Again as noted above, tropical chains are defined with respect to a suitable stratification 
of the base space X. This makes it impossible to simply apply standard results from 
algebraic topology, but one needs to be careful to always respect the stratification, as 
for example in the development of singular intersection homology [15,13]. As the acyclic 
model theorem does not apply to tropical homology groups either, proving identities like 
the Künneth theorem for tropical homology gets quite involved, even for finite chains.
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1.4. Other related work

We are hopeful that our sheaf-theoretic approach to tropical homology can be applied 
to spaces that are not necessarily rational polyhedral, but possibly have singularities 
in their affine structures. The resulting notion is also strongly related to the invariants 
of integral affine manifolds appearing in the context of mirror symmetry [16,34,33], as 
recently shown in [42]. We also hope that our point of view on the tropical cycle class map 
could provide a new perspective for the cycle class map on non-Archimedean spaces [26]. 
This is, in turn, closely related to the study of tropical and non-Archimedean analogues 
of the Hodge conjecture [44,30,2,3]

1.5. Structure of the paper

In sections 2 and 3 we recall the definitions of the objects and operations needed in 
the main part of the paper. We try to follow the literature [29,32,20,22,36,5,7] as closely 
as possible, but will provide a new perspective on some things. Most notably, we deviate 
from the literature in our definition of tropical p-forms in section 2, and our treatment 
of tropical cycles in section 3 has an emphasis on working locally and highlighting their 
functorial properties.

In section 4 we introduce tropical Borel-Moore homology and study its functorial 
behavior. We define proper push-forwards, cross products, cup products, and cap prod-
ucts, and will prove Theorem B. Finally, we compare our theory with the on obtained 
via locally finite tropical chains by proving Theorem A.

In section 5 we will define the tropical cycle class map and show that it is compat-
ible with proper push-forwards, cross-products, and intersections with Cartier divisors, 
proving Theorem C. Furthermore, we show that our tropical cycle class map coincides 
with the one introduced in [32,22] if we are given a (global) face structure.

Section 6 is devoted to prove Theorem D.
The main ingredients of our proof of Theorem A are of an entirely topological nature, 

dealing mostly with certain sheaves of singular chains on conically stratified spaces. As 
these results are of a very different flavor, and potentially of independent interest, we 
decided to put them in Appendix A.

Acknowledgment. We would like to thank Philipp Jell, Amit Patel, Johannes Rau, and 
Kris Shaw for helpful discussions and conversations. We also thank the anonymous referee 
for encouraging us to include Theorem D. AG was supported by the ERC Starting Grant 
MOTZETA (project 306610) of the European Research Council (PI: Johannes Nicaise) 
during parts of this project. FS was partially supported by the Danish National Research 
Foundation through the Centre for Symmetry and Deformation (DNRF92) and by NSF 
CAREER grant DMS-2044564.

Conventions. The natural numbers N include 0. All homology and cohomology groups 
in this paper, whether classical or tropical, will be considered with integer coefficients.
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2. Rational polyhedral spaces and tropical forms

In this section we recall and further develop the notion of rational polyhedral spaces 
and tropical p-forms. Varying incarnations of rational polyhedral spaces (for example, 
the tropical varieties from [29]) have been fundamental to the development of tropical 
geometry since its inception. Our definition of rational polyhedral spaces follows the one 
recently given in [22]. Tropical p-forms have been introduced in the context of tropical 
(co)homology and our definition is a variation of the one given in [32].

2.1. Rational polyhedral spaces

We denote T := R ∪ {+∞} and consider it with the order topology. For n ∈ N, the 
n-fold product Tn has a natural stratification Tn = �I⊆{1,...,n} T

n
I , where the stratum

Tn
I = {(xi)1≤i≤n | xi = ∞ if and only iff i ∈ I}

is naturally identified with Rn−|I|. Recall that a (rational) polyhedron in Rn is a finite 
intersection of half-spaces of the form {x ∈ Rn | 〈m, x〉 ≤ a} with m ∈ (Zn)∗ and 
a ∈ R, where 〈·, ·〉 denotes the evaluation pairing. By a polyhedron in Tn we mean any 
set occurring as the closure of a polyhedron in some stratum Tn

I . Note that for any 
polyhedron σ in Rn and subset I ⊂ {1, . . . , n}, the intersection σ ∩ Tn

I is a polyhedron 
in Tn

I . A polyhedral set in Tn is a finite union of polyhedra.
An integral affine linear function on a subset X ⊆ Tn is a continuous function f : X →

R that is of the form x �→ 〈m, x〉 +a for some m ∈ (Zn)∗ and a ∈ R locally around every 
point in X. Here, we use the convention that 0 · (∞) = 0, and that 〈m, x〉 is only defined 
if for all i such that the coordinate mi is nonzero, we have xi �= ∞. In particular, if f
is integral affine linear on X and f(x) = 〈m, x〉 + a for x ∈ X ∩ Tn

I , then mi = 0 for 
i ∈ I. For every subset X ⊆ Tn, the integral affine linear functions on open subsets of 
X define a sheaf of abelian groups on X, denoted by AffX .

Example 2.1. Consider the polyhedral set

X = ∂ conv{(0, 0), (1, 0), (0, 1), (1, 1)}

in R2, which is the boundary of a square with sides of length one. Consider the function 
on X that is given by 0 on the top and right edge of the square, and by −1 +x1+x2 on the 
bottom and left edge of the square. This function is continuous and locally the restriction 
of an integral affine linear function on R2. In fact, it coincides with the restriction of 
an integral affine linear function on the union of any two adjacent edges of the square. 
However, it is not equal to the restriction of a single integral affine linear function on R2

everywhere because it has different slopes on parallel edges.
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Definition 2.2 (see [22, Definition 2.1]). A rational polyhedral space is a second-countable 
Hausdorff topological space X, together with a sheaf AffX of continuous functions such 
that for every x ∈ X there exists an open neighborhood U ⊆ X, an open subset V of a 
polyhedral subset of Tn for some n ∈ N, and a homeomorphism ϕ : U → V that induces 
an isomorphism ϕ−1 AffV → AffU via the pullback of functions. The data of U, V and 
ϕ is called a chart.

Definition 2.3. A morphism between two rational polyhedral spaces X and Y is a con-
tinuous map f : X → Y that induces a morphism f−1 AffY → AffX via the pullback 
of functions. A morphism is proper, if it is proper as a continuous map of topological 
spaces, that is if the preimages of compact subsets of Y are compact.

Definition 2.4 (see [22, Definition 2.2]). Let X be a rational polyhedral space.

(a) A polyhedron in X is a closed subset P ⊆ X such that there exists a chart X ⊇
U

ϕ−→ V ⊆ Tn such that P ⊂ U and ϕ(P ) ⊆ Tn is a polyhedron. The faces of P are 
the preimages under ϕ of the (finite or infinite) faces of ϕ(P ). The relative interior
relint(P ) of P is the complement in P of the union of its proper faces.

(b) A local face structure at a point x ∈ X is a finite set Σ of polyhedra in X that 
is closed under taking faces and intersections (that is if τ is a face of σ ∈ Σ, then 
τ ∈ Σ, and σ ∩ δ ∈ Σ for all σ, δ ∈ Σ), such that x is contained in the (topological) 
interior of |Σ| =

⋃
σ∈Σ σ, there exists a chart X ⊇ U → V ⊆ Tn with |Σ| ⊆ U , and 

such that x ∈ σ for all inclusion-maximal σ ∈ Σ.
(c) A (global) face structure on X is a set Σ of polyhedra in X that is closed under 

taking faces and intersections such that X =
⋃

σ∈Σ σ, and for every x ∈ X the set 
of all faces of polyhedra in Σ that contain x is a local face structure at x.

(d) We say that a closed subset S ⊆ X is locally polyhedral if at every point x ∈ X

there is a local face structure Σ and a subset Σ′ ⊆ Σ such that S ∩ |Σ| =
⋃

σ∈Σ′ σ.

2.2. Tangent spaces

As constant functions are integral affine linear, there is an inclusion RX ↪→ AffX , 
where RX denotes the constant sheaf associated to R. Following [31], we denote the 
quotient sheaf AffX /RX by Ω1

X and call it the cotangent sheaf. The sections of Ω1
X are 

called tropical 1-forms. The reason for this is that the cotangent space at a point should 
consist of linear approximations of functions, and linear functions are simply affine linear 
ones modulo constants. For x ∈ X we denote by

TZ
x X := HomZ(Ω1

X,x,Z) and

TxX := HomZ(Ω1
X,x,R)
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the (integral) tangent space of X at x. It follows immediately from the definitions that 
a morphism f : X → Y of rational polyhedral spaces induces a morphism

f � : f−1Ω1
Y → Ω1

X ,

and hence morphisms of stalks Ω1
Y,f(x) → Ω1

X,x for all x ∈ X. These dualize to a mor-
phisms

dxf : TZ
x X → TZ

f(x)Y

between the integral tangent spaces. If Y = R, that is if f is an affine function on X, the 
germ at x of the image of f in Γ(X, Ω1

X) under the quotient morphism AffX → Ω1
X defines 

a morphism TZ
x X → Z which coincides with dxf modulo the natural identification 

TZ
f(x)R ∼= Z. For this reason, we use the notation df for the image of f in Γ(X, Ω1

X).
Unfortunately, there is no known interpretation of TZ

x X or TxX as the set of equiva-
lence classes of “smooth” paths through x as in differential geometry. There is, however, 
an interpretation of a subset TZ

x X as germs of functions (R≥0, 0) → (X, x). Recall that 
such a germ is a morphism [0, ε) → X for some ε > 0 that sends 0 to x, up the equiva-
lence relation that allows to shrink the interval, i.e. restricting to [0, ε′) for ε′ < ε does 
not change the germ. To every germ γ : (R≥0, 0) → (X, x) we can associate the tangent 
vector dxγ(1) ∈ TZ

x X, where we identify TZ
0 (R≥0) with Z in the natural way. In fact, 

since affine linear functions on R≥0 are completely determined by the value and slope at 
0, the germ γ is uniquely determined by dxγ(1). We define the local cone of X at x as 
the subset of TxX given by

LCx X := {λ · d0γ(1) | λ ∈ R≥0, γ : (R≥0, 0) → (X, x) a germ}

Proposition 2.5. Let X be a rational polyhedral space, and let x ∈ X. Then LCx X is a 
rational polyhedral subspace of TxX with tangent space

T0(LCx X) = TxX

at the origin. Furthermore, there exists a unique morphism of germs

(LCx X, 0) → (X, x)

such that the induced map TxX = T0(LCx X) → TxX is the identity.

Proof. Since the definition of the local cone is local, we may assume that X is a polyhe-
dral subset of Tn for some n ∈ N, and x = (x1, . . . , xn). After a change of coordinates, 
we may further assume that there exists a 0 ≤ k ≤ n such that x ∈ {∞}k × Rn−k. 
For every connected open subset Y of a polyhedral set in Rn, every morphism Y → Tn
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whose image contains x has to map entirely into {∞}k × Rn−k. This applies in particu-
lar to open neighborhoods of 0 in R≥0 or LCx X, so both the local cone and the set of 
germs of morphisms (LCx X, 0) → (X, x) only depend on X ∩({∞}k ×Rn−k). The affine 
functions defined on a neighborhood of x are, after potentially shrinking the neighbor-
hood, precisely those that are pullbacks of affine functions on Tn−k under the projection 
X → Tn−k onto the last n − k coordinates. Therefore, the tangent space of X at x only 
depends on X ∩ ({∞}k × Rn−k) as well. After replacing X by X ∩ ({∞}k × Rn−k), we 
may thus assume that x ∈ Rn−k. In this case, the local cone at x is easily seen to be 
equal to the set

{v ∈ Rn−k | x + [0, ε)v ⊆ X for some ε > 0} ,

which is well-known to be a finite union of polyhedral cones, and in particular a poly-
hedral set. In this case, it is equally well known that x has a neighborhood in X that is 
isomorphic to a neighborhood of 0 in LCx X, so for the last part of the proof we may 
assume that x = 0 and X = LCx X. It follows immediately that TxX = T0(LCx X) and 
that the identity map defines a germ of maps (LCx X, 0) → (X, x) inducing the identity 
on tangent spaces. Since such a germ is determined by the associated map on tangent 
spaces, this finishes the proof. �
Corollary 2.6. Let X be a rational polyhedral space, and let x ∈ X. Then the local cone 
LCx X spans the tangent space TxX.

Proof. Because LCx X is invariant under scaling, a linear function on TxX vanishes on 
a neighborhood of 0 if and only if it vanishes on all of LCx X, which is true if and only 
if it vanishes on the span of LCx X. But by definition of the tangent space, a linear 
function on TxX vanishes on a neighborhood of 0 in LCX X if and only if it vanishes on 
T0(LCx X). By Proposition 2.5, this shows that LCx X spans TxX = T0(LCx X). �

To define sheaves of tropical p-forms, one would like to take the p-th exterior power 
of Ω1

X . Unfortunately, even for very well-behaved rational polyhedral spaces, 
∧p Ω1

X

might very well be nontrivial for some p > dim(X). This is remedied with the following 
definition.

Definition 2.7. For a rational polyhedral space X we denote by Xmax the set of points in 
X that has a neighborhood isomorphic to an open set in Rn. By definition, Xmax is an 
open subset of X. Let ι : Xmax ↪→ X denote the inclusion. Then one defines the sheaf of 
graded rings Ω∗

X as the image of 
∧∗ Ω1

X in ι∗
(∧∗ Ω1

X |Xmax
)
. Sections of Ωp

X are called 
tropical p-forms.

Note that Ω1
X → ι∗Ω1

X |Xmax is a monomorphism, so that the definition of Ω1
X is 

unambiguous. Also note that for p ∈ Xmax the rank of Ω1
X,p equals the local dimension 

at p. Therefore, Ωp
X = 0 for p > dim X.
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Remark 2.8. The sheaf Ωp
X of tropical p-forms is closely related to the sheaf F p

X consid-
ered in [32]: given a point x ∈ X and a local face structure Σ at x, the stalk F p

X,x is the 
dual of the sublattice F X,x

p =
∑ ∧p

TZ(σ) of 
∧p

TZ
x X, where TZ(σ) denotes the integral 

tangent space of σ at any point in its relative interior, considered as a sublattice of TZ
x X. 

On the other hand, Ωp
X,x is the sublattice of 

∧p Ω1
X,x =

∧p Hom(TZ
x X, Z) consisting of 

all p-forms vanishing on F X,x
p . One concludes that Ωp

X,x is the dual of the saturation of 
F X,x

p in 
∧p

TZ
x X and thus that Ωp

X,x has finite index in F p
X,x. In particular, one has 

F p
X,x = Ωp

X,x if F X,x
p is saturated in 

∧p
TZ

x X which happens, for example, if X is the 
tropical linear space associated to a loopless matroid (in this case, F p

X,x is equal to the 
projective Orlik-Solomon algebra of a matroid [43]). In general, however, F p

X,x and Ωp
X,x

do not coincide, not even for p = 1. A simple example where this happens is given by

X = R

(
1
1

)
∪ R

(
1

−1

)
,

where Ω1
X,0 has index 2 in F 1

X,0 because

F X,0
1 = Z

(
1
1

)
+ Z

(
1

−1

)
has index 2 in TZ

0 X = Z2.
We use the sheaves Ωp

X rather than the sheaves F p
Z because it is Ω1

X rather than F 1
Z

that appears in the tropical exponential sequence

0 → RX → AffX → Ω1
X → 0 .

We chose the notation Ωp
X because it is clearly distinguishable from F p

X and also because 
it stresses the analogy to algebraic geometry. It should be noted that our sheaves Ωp

X do 
coincide with the sheaves F p

Z defined in the post-published version of [22].

Example 2.9. Let

X = R≥0(1, 0) ∪ R≥0(0, 1) ∪ R≥0(−1, −1) ⊆ R2

be the standard tropical line, depicted in Fig. 1. Then the stalk Ω1
X,0 of the sheaf of 

tropical 1-forms at the origin is isomorphic to the space of integer linear functions on 
R2, which we can identify with Z2. For every x ∈ X not equal to 0, the stalk Ω1

X,x

is isomorphic to Z. The set Xmax is the complement of the origin, and the restriction 
Ω1

X |Xmax is locally free of rank 1. In particular, 
∧n (

Ω1
X |Xmax

)
= 0 for all n > 1, and 

hence Ωn
X = 0 for n > 1. On the other hand, we have(∧2

Ω1
X

)
∼=

∧2
Ω1

X,0
∼=

∧2
Z2 �= 0 .
0
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Z2

Z2/〈(0, 1)〉 ∼= Z

Z2/〈(1, 0)〉 ∼= Z

Z2/〈(−1, 1)〉 ∼= Z

Fig. 1. The standard tropical line and the stalks of its sheaf of tropical 1-forms.

Finally, note that an integral linear function on R2 is completely determined by its slopes 
in the directions (1, 0) and (0, 1), and hence the natural morphism Ω1

X,0 → (ι∗Ω1
X |Xmax)0, 

where ι : Xmax → X is the inclusion, is an embedding.

Example 2.10. Let N be the lattice generated by elements e0, . . . , e3 subject to the re-
lation 

∑
ei = 0, and let X be the union of the three half-planes in N ⊗Z R given by 

Hi = Re0 + R≥0ei, where i ∈ {1, 2, 3}. Let e∗
0, e∗

1, e∗
2 ∈ Hom(N, Z) be the dual basis to 

e0, e1, e2. Then 
∧2 Ω1

X,0 is freely generated by e∗
0 ∧ e∗

1, e∗
0 ∧ e∗

2, and e∗
1 ∧ e∗

2. As both e∗
1

and e∗
2 vanish on e0, the restrictions of e∗

1 ∧ e∗
2 to the interiors of all three half planes 

Hi vanish. On the other hand, no linear combination of e∗
0 ∧ e∗

1 and e∗
0 ∧ e∗

2 vanishes on 
the interiors of all three half planes. Since Xmax =

⋃
H̊i, we conclude that Ω2

X,0 is the 

quotient of 
∧2 Ω1

X,0 by Z(e∗
1 ∧ e∗

2).

Tropical p-forms can be pulled back along morphisms, as shown in the following 
proposition.

Proposition 2.11. Let f : X → Y be a morphism of rational polyhedral spaces. Then the 
pullback

f � : f−1Ω1
Y → Ω1

X

induces a pull-back

f−1Ω∗
Y → Ω∗

X ,

which we again denote by f �.

Proof. It is immediate that f � induces a morphism∧
f � : f−1

∧
Ω1

Y →
∧

Ω1
X .

To see that this induces a morphism on the quotients f−1Ω∗
Y → Ω1

X , we need to show 
that if U ⊂ Y is open and we are given a section ω ∈ Γ(U, 

∧∗ Ω1
Y ) that restricts to zero 
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on U ∩ Y max, then 
∧

f �(ω) vanishes on f−1U ∩ Xmax. Let x ∈ f−1U ∩ Xmax, and let Σ
and Δ be local face structures around x and f(x), respectively, such that f(σ) ∈ Δ for 
all σ ∈ Σ. Because 

∧
f �(ω) is constant on a neighborhood of x, it suffices to show that it 

vanishes on a maximal cell σ ∈ Σ. We may thus replace X by σ, in which case f factors 
through the rational polyhedral space f(σ). Since f(σ) ∈ Δ, there exists a maximal cell 
δ ∈ Δ containing f(σ). As f factors through δ by construction, it then suffices to show 
that the pullback of ω to 

∧∗ Ω1
δ vanishes. But as we assumed that the restriction of ω

to the interior δ̊ of δ vanishes, this follows from the fact that the sheaf 
∧∗ Ω1

δ on δ is 
constant. �
3. Tropical cycles on rational polyhedral spaces

In this section we recall several well-known constructions from tropical intersection 
theory [29,5,14]. Since we will be working with the defining formulae for each construc-
tion, we will review them in some detail, both to establish notation and for the readers 
convenience.

3.1. Tropical cycles

To define tropical cycles on rational polyhedral spaces, we first need to recall their 
definition on affine space.

Definition 3.1. Let N be a lattice. A tropical fan k-cycle on NR = N ⊗Z R is an integer 
valued function A : NR → Z such that

(1) For every λ ∈ R>0 and x ∈ NR we have A(λx) = A(x),
(2) The support |A| = {x ∈ NR | A(x) �= 0} of A is the support of a rational polyhedral 

fan in NR of pure dimension k,
(3) A is locally constant on the open subset |A|max of |A| and 0 on |A| \ |A|max,
(4) A satisfies the so-called balancing condition: if Σ is a face structure on |A| such 

that every σ ∈ Σ is a cone, then A is constant on the relative interiors of the 
inclusion-maximal cells of Σ. Therefore, A and Σ define a weighted fan in the sense 
of Allermann and Rau [5]. We ask that this weighted fan satisfies the so-called 
balancing condition (see Remark 3.3), that is that it is a tropical fan in the sense of 
[5]. By [5, Lemma 2.11] this is independent of the choice of Σ.

Remark 3.2. It is immediate from the definition that every tropical fan cycle in the 
sense above defines a tropical fan cycle in the sense of [5]. If, conversely, A = [(Σ, ω)]
is a tropical fan cycle in the sense of [5], where we use their notation here, then ω

defines a locally constant integer-valued function on the subset of |A|max consisting of 
the union of the relative interiors of all inclusion-maximal cones of Σ. This function can 
be extended uniquely to a locally constant function on all of |A|max that is independent 
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of the representative (Σ, ω) and, if extended by 0 to all of NR, is a tropical fan cycle in 
the sense of Definition 3.1.

Remark 3.3. We will rarely use the balancing-condition, but let us briefly recall its defi-
nition for the sake of being self-contained. If σ is a cone in NR and τ is a codimension-1
face of σ, then a lattice normal vector for σ with respect to τ is an element n ∈ σ ∩ N

such that the morphism∧dim(τ)
TZ(τ) →

∧dim(σ)
TZ(σ), η �→ n ∧ η

is an isomorphism, where the tangent spaces TZ(σ) and TZ(τ) are taken at any point 
of the respective cones, and we consider them as sublattices of N . If Σ is a purely k-
dimensional rational polyhedral fan in NR, and ω : Σ(k) → Z gives integer weights to its 
maximal cones, then (Σ, ω) satisfies the balancing condition if for every τ ∈ Σ(k − 1) we 
have ∑

σ : τ⊆σ∈Σ(k)

ω(σ)nσ/τ ∈ TZ(τ)

for any, and hence every, choice of lattice normal vectors nσ/τ of σ with respect to τ .

Tropical fan k-cycles on NR form an Abelian group. We remark that the sum of 
two such tropical cycles c and d is not simply the sum as integer-valued functions. This 
does hold, however, if we consider integer-valued functions modulo those functions whose 
support is a polyhedral set of dimension at most k − 1.

Definition 3.4. Let X be a rational polyhedral space. We say that a function A : X → Z

is locally constructible if for every x ∈ X there exists a local face structure Σ at x such 
that the restrictions A|relint(σ) are constant for all σ ∈ Σ.

Every integer-valued function A : X → Z on a rational polyhedral space X induces, 
at every x ∈ X, a function germ at the origin of the local cone LCx X ⊆ TxX via 
Proposition 2.5. If A is locally constructible, then for every v ∈ LCx X the value A(εv)
is independent of ε > 0, if chosen sufficiently small. This can be used to extend the germ 
to an R>0-invariant function LCx X → Z, which we extend by 0 to a function

LCx(A) : TxX → Z .

Definition 3.5. Let X be a rational polyhedral space. A tropical k-cycle on X is a locally 
constructible function A : X → Z such that LCx(A) is a tropical fan k-cycle on TxX for 
all x ∈ X. The support of a tropical cycle A on X is the set |A| = {x ∈ X | A(x) �= 0}.

The addition for tropical fan k-cycles induces an addition for tropical k-cycles on a 
rational polyhedral space X so that there is an abelian group Zk(X) of tropical k-cycles. 
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Similarly as for tropical fan cycles, the sum c + d of two tropical k-cycles agrees with 
the sum of A and B as integer-valued functions up to an integer-valued function whose 
support is a locally polyhedral subset of X of dimension at most k − 1. As both the 
definition of tropical k-cycles and the definition of the addition are local, the assignment 
U → Zk(U) on open sets of X, with the obvious restriction morphisms, defines a sheaf 
Z X

k of tropical k-cycles on X.

3.2. Proper push-forward of tropical cycles

Definition 3.6. Let A be a tropical k-cycle on a k-dimensional rational polyhedral space 
X, and let f : X → Y be a proper and surjective morphism of rational polyhedral spaces. 
Then for ever y ∈ Y which is not an element of the at most (k − 1)-dimensional locally 
polyhedral subset

f (X \ Xmax) ∪ (Y \ Y max)

of Y , we define the push-forward of A along f as

f∗A(y) =
∑

x∈f−1{y}
[TZ

y X : dxf(TZ
x X)]A(x) ,

where we consider the lattice index as 0 if it is not finite. We extend this function by 0
to a function on Y . Note that the sum over f−1{y} is in fact finite, since we can only get 
a nonzero contribution for isolated points of f−1{y}, of which there can only be finitely 
many because f is proper.

In the general case, where X is not necessarily k-dimensional and f is not necessarily 
surjective (but still proper), we consider the (co)restriction f̃ : |A| → f |A| of f and define 
f∗A as the extension to Y by 0 of f̃∗A.

If f : X → Y is a proper morphism of rational polyhedral spaces, and A ∈ Zk(X), 
then it follows immediately from the construction that f∗A is locally constructible. It is 
usually not a tropical cycle in the sense of Definition 3.5, but there is a unique tropical 
k-cycle B on Y such that f∗A and B coincide away from a locally polyhedral subset of 
dimension at most (k − 1). The uniqueness is clear, and for the existence part one only 
needs to show balancing, which can be proven locally and thus follows exactly as in [14, 
Proposition 2.25]. From this it is clear that the push-forward induces a morphism

Zk(X) → Zk(Y )

of groups of tropical k-cycles, which, by abuse of notation, we denote by f∗ as well.
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3.3. Cross products of tropical cycles

Given two tropical cycles on two rational polyhedral spaces, one gets a tropical cycle 
on the product space by taking their cross-product [5].

Definition 3.7. Let X and Y be rational polyhedral spaces, and let A ∈ Zk(X) and 
B ∈ Zl(X). Then we define the cross-product of A and B as the function

A × B : X × Y → Z, (x, y) �→ A(x) · B(y) .

It is straightforward to check that this is a tropical (k + l)-cycle on X × Y , and it is 
evident from the definition that the cross-product defines a bilinear map

Zk(X) × Zl(Y ) → Zk+l(X × Y ) .

3.4. Tropical Cartier divisors

Definition 3.8 (see [22, Definition 4.1]). Let X be a rational polyhedral space. A con-
tinuous function ϕ : X → R is tropically rational if at every x in X there exists a local 
face structure Σ such that ϕ|σ ∈ Γ(σ, Affσ) for all σ ∈ Σ. Sums of tropically rational 
functions are rational. We denote the group of tropically rational functions on X by 
M (X).

Remark 3.9. Tropically rational functions on a rational polyhedral space X are precisely 
the piecewise linear function on X with integral slopes. The terminology “rational” comes 
from the analogy with algebraic varieties, where the tropically rational functions play a 
similar role in the definition of divisors.

The condition on a function on a rational polyhedral space X to be tropically rational 
is a local condition. Therefore, the presheaf U �→ M (U) on X is in fact a sheaf, which 
we denote by M X . Every affine linear function on X is rational, so there is an inclusion 
AffX ↪→ M X . Its quotient is the sheaf DivX of Cartier divisors, that is DivX is defined 
as the unique sheaf fitting into a short exact sequence

0 → AffX → M X → DivX → 0 .

Definition 3.10. Let X be a rational polyhedral space. The group

Div(X) := Γ(X, DivX)

is the group of Cartier divisors on X. The support |D| of D ∈ Div(X) is defined in the 
sheaf-theoretic sense as the support of D considered as a global section of DivX .
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If f : X → Y is a morphism of rational polyhedral spaces, then it is straightforward 
to check that for every tropically rational function ϕ on Y , the pull-back f∗ϕ = ϕ ◦ f is 
a tropically rational function on X. Since the pull-back of tropically rational functions is 
compatible with the pull-back of affine linear functions, we obtain a pull-back morphism

f∗ : Div(Y ) → Div(X)

for Cartier divisors.
There is an intersection pairing

Div(X) × Zk(X) → Zk−1(X)

on every rational polyhedral space X due to Allermann and Rau [5]. Let us briefly recall 
its construction. To define the product D · A of a divisor D with a tropical k-cycle A, 
we first pull back D to |A|, after which we can assume that X = |A|. We can then work 
locally around a point x ∈ X and replace X by its local cone LCx X. This allows us to 
assume that X = |Σ| for some rational polyhedral cone Σ in Rn, that A is represented by 
a balanced weight function on the k-dimensional cones of Σ, and that D is represented 
by a piecewise linear function ϕ whose restrictions to the cones of Σ are linear. The 
intersection D · A is then represented by the weight Σ(k − 1) → Z that assigns to 
τ ∈ Σ(k − 1) the integer ∑

σ : τ⊆σ∈Σ(k)

〈ϕ − lτ , nσ/τ 〉A(σ) ,

which is independent of the choice of lattice normal vectors nσ/τ (see Remark 3.3) and 
an integer linear function lτ on Rn with lτ |τ = ϕ|τ .

Remark 3.11. Note that tropically rational functions on compact rational polyhedral 
spaces are bounded by continuity. If one allows tropically rational functions to obtain 
the value ∞, one obtains a less restrictive notion of tropical Cartier divisors, for which one 
should still be able to define the intersection pairing with tropical cycles, at least under 
some mild assumptions on the underlying rational polyhedral space. In the prototypical 
example of tropical toric varieties this has been done in [28].

3.5. Tropical line bundles

Following [31], we work with the following definition of tropical line bundles:

Definition 3.12. A tropical line bundle on a rational polyhedral space X is a morphism 
Y → X of rational polyhedral spaces such that locally on X there are identifications 
Y ∼= T × X of spaces over X. Two tropical line bundles are isomorphic if they are 
isomorphic as rational polyhedral spaces over X.
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Note that the only automorphisms of T are the ones of the form x �→ λ + x for 
some λ ∈ R. Therefore, the automorphism group of T × U is naturally isomorphic to 
Γ(U, AffU ) for any rational polyhedral space U . Using standard arguments involving Čech 
cohomology, this leads to the following description of the set of isomorphism classes of 
tropical line bundles on a rational polyhedral space:

Proposition 3.13 (cf. [31]). Let X be a rational polyhedral space. Then there is a natural 
bijection between the set of all isomorphism classes of tropical line bundles on X and the 
cohomology group H1(X, AffX). In particular, the set of isomorphism classes of tropical 
line bundles on X is a group.

If X is a rational polyhedral space, then the first boundary map in the long exact 
cohomology sequence associated to the short exact sequence

0 → AffX → M X → DivX → 0

associates to every Cartier divisor D ∈ H0(X, DivX) a tropical line bundle

L (D) ∈ H1(X, AffX) .

Remark 3.14. It follows from [22, Lemma 4.5] that every tropical line bundle is of this 
form if X admits a face structure. We expect this to remain true even in the absence of 
face structures, but will neither prove nor use this fact in the remainder of this paper.

If f : X → Y is a morphism between rational polyhedral spaces, then applying H1 to 
the pull-back morphism f � : f−1 AffY → AffX induces a pull-back morphism

f∗ : H1(Y, AffY ) → H1(X, AffX)

for tropical line bundles.

Proposition 3.15. Let f : X → Y be a morphism between rational polyhedral spaces, and 
let D ∈ Div(Y ) be a Cartier divisor on Y . Then we have

f∗L (D) = L (f∗D) .

Proof. This follows immediately from the commutativity of the diagram

H0(Y, Div Y ) H1(Y, AffY )

H0(X, f−1 Div Y ) H1(X, f−1 AffY )

H0(X, DivX) H1(X, AffX) ,

f−1f−1

H1(f�)
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where the horizontal morphisms are the first boundary maps in the long exact cohomol-
ogy sequences associated to the short exact sequences

0 AffY M Y Div Y 0 ,

0 f−1 AffY f−1 M Y f−1 Div Y 0 , and

0 AffX M X DivX 0 ,

respectively. �
4. Tropical (co)homology and its functorial properties

This section is devoted to giving a sheaf-theoretic definition of the tropical homology 
groups of [20,32,22] and using our understanding of sheaves to study the functorial 
behavior of tropical homology. In Theorem 4.20 we show that our definition of tropical 
homology agrees with that of [22].

Notation and general references. We will denote the constant sheaf associated to an 
abelian group A on a topological space X by AX . If F is any sheaf on X and S ⊆ X

is a locally closed subset, we will denote FS = ι!ι
−1F , where ι : S → X denotes the 

inclusion. For an abelian group A, we will sometimes denote (AX)S by AS if X is clear 
from the context. We will denote the group of morphisms between two ZX -modules 
(sheaves of abelian groups on X, that is) F and G by HomZX

(F , G ), where we will 
omit the subscript ZX if X is clear from the context. The bounded derived category 
of ZX -modules will be denoted by D(ZX), and we will omit the subscript X if X is 
a point, that is D(Z) denotes the bounded derived category of abelian groups. If C •

and D• are two cochain complexes of ZX-modules, then HomD(ZX )(C •, D•) denotes the 
group of morphisms between them in D(ZX). As usual Hom•(C •, D•) denotes the Hom-
complex and R Hom•(C •, D•) the derived Hom-complex, and similarly for the internal 
hom Hom . The i-th cohomology sheaf of C • will be denoted by Hi(C •), whereas the 
i-th hypercohomology will be denoted by Hi(C •).

A family of supports on a topological space X is a set Φ of closed subsets of X that 
is closed under taking closed subsets and finite unions.

For background on sheaf theory and Verdier duality we refer the reader to [6,9,21,24]

4.1. Tropical cohomology

Tropical cohomology groups are defined in analogy to Dolbeault cohomology groups 
in algebraic geometry.

Definition 4.1. Let X be a rational polyhedral space, let p, q ∈ Z, and let Φ be a family 
of supports. Then the (p, q)-th tropical cohomology group with supports in Φ is defined 
as
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Hp,q
Φ (X) = Hq

Φ(X, Ωp
X) .

If Φ consists of all closed subsets of X we usually omit it. If Φ consists of all compact 
subsets of X we also denote the cohomology group by Hp,q

c (X), and if Φ consists of all 
closed subsets of a given closed subset Z of X we also denote the cohomology group by 
Hp,q

Z (X).

Remark 4.2. We will frequently use the isomorphism

Hp,q
Φ (X) ∼= lim−−→

Z∈Φ
HomD(ZX )(ZZ , Ωp

X [q])

and thus represent a tropical (p, q)-cohomology class α ∈ Hp,q
Φ (X) by an arrow ZZ

α−→
Ωp

X [q] in D(ZX) for some Z ∈ Φ.

4.2. Tropical Borel-Moore homology

Similarly to the definition of the classical (i.e. non-tropical) Borel-Moore homology, 
our definition of tropical Borel-Moore homology will utilize the dualizing complex.

The dualizing complex DX of a rational polyhedral space X is an element of D(ZX)
representing the functor

D(ZX) → D(Z) : A �→ HomD(Z)(RΓcA,Z) ,

where RΓc is the (total) right derived functor of taking global sections with compact 
support, and Z is considered as a complex concentrated in degree 0. The universal 
element of the representation, that is the image of idDX

under the isomorphism

HomD(ZX )(DX ,DX)
∼=−→ HomD(Z)(RΓcDX ,Z) ,

is called the trace map and we will denote it by 
∫

X
.

Definition 4.3. Let X be a rational polyhedral space, let p, q ∈ Z, and let Φ be a family 
of supports. We define the (p, q)-th (integral) tropical homology with supports in Φ as

HΦ
p,q(X) := H0

ΦR Hom •(Ωp
X [q],DX) .

If Φ contains all closed subsets of X we also denote the homology group by HBM
p,q (X), 

where the superscript stands for Borel-Moore. Moreover, if Φ consists of all compact 
subsets of X we usually omit Φ from the notation of the homology group, and if Φ
consists of all closed subsets of a given closed subset Z of X we denote the homology 
group by HZ

p,q(X).
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(

(

Remark 4.4. We will often represent Borel-Moore homology classes by morphisms in the 
derived category. To do so, we use the identification

H0
ZR Hom •(Ωp

X [q],DX) ∼= H0R Hom•((Ωp
X)Z [q],DX) ∼= HomD(ZX )((Ωp

X)Z [q],DX)

that allows us to represent an element α ∈ HΦ
p,q(X) = lim−−→Z∈Φ HZ

p,q(X) by a morphism 

(Ωp
X)Z [q] α−→ DX for some Z ∈ Φ.

Remark 4.5. Using Verdier duality, one obtains an identification

HBM
p,q (X) = H0R Hom •(Ωp

X [q],DX) ∼=
∼= H0R Hom•(Ωp

X [q],DX) ∼= H−qR Hom•(RΓcΩp
X ,Z) .

The dualizing complex DX on a rational polyhedral space can be described explicitly 
in terms of sheaves of singular chains.

Definition 4.6 (see [40, §VI], [9]). Let X be a rational polyhedral space.

a) For i ∈ N, let Δi
X denote the sheafification of the presheaf

U �→ C−i(X, X \ U) ,

where Cj(A, B) denotes the group of relative singular j-chains with Z-coefficients of 
the pair A ⊇ B. With the usual (co)boundary maps we obtain a cochain complex 
Δ•

X .
b) The i-th homology sheaf H i

X := H−i(Δ•
X) is the sheafification of the presheaf

U �→ Hi(X, X \ U) ,

whose stalk at x ∈ X is canonically identified with Hi(X, X \ {x}).

The complex Δ•
X is homotopically fine [40, VI, Proposition 7], which implies that the 

natural morphism

ΓcΔ•
X → RΓcΔ•

is a quasi-isomorphism. The global sections with compact support of Δ−i
X are naturally 

identified with Ci(X), so the natural augmentation C•(X) → Z defined by taking degrees 
of 0-chains defines a morphism Δ•

X → DX in the derived category (using the universal 
property of DX), which is well-known to be an isomorphism. In particular, we have 
H i

X
∼= H−i(DX). This is one way of seeing that Hi(DX) = 0 for i < − dim(X).
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Remark 4.7. If X is a rational polyhedral space with a face structure Σ, the dualizing 
complex has a completely combinatorial description due to Shepard [38]. More precisely, 
DX is quasi-isomorphic to the complex which is given by 

⊕
σ∈Σ(k) Zσ in degree −k, where 

Σ(k) denotes the set of all k-dimensional polyhedra in Σ. To define the differentials, one 
needs to pick orientations on all σ ∈ Σ. Having done this, the differential is given by the 
homomorphism ⊕

σ∈Σ(k)

Zσ →
⊕

τ∈Σ(k−1)

Zτ

that is given by 0 between the components Zσ and Zτ if τ � σ, and otherwise by 
multiplication by εσ/τ , where

εσ/τ =
{

1 , if the orientations on σ and τ agree
−1 , else.

Lemma 4.8.

(a) The classical q-th (non-tropical) Borel-Moore homology group of X is isomorphic to 
HBM

0,q (X).
(b) Let Z be a locally polyhedral subset of dimension d, and let ι : Z → X denote the 

inclusion. Then for all p ∈ N we have

HZ
p,d(X) = HomZX

(Ωp
X , ι∗H

d
Z ) .

In particular, the presheaf U �→ HU∩Z
p,d (U) on X is a sheaf on X.

Proof. For (a) we use the fact that Ω0
X = ZX and the natural isomorphisms

HBM
0,q (X) = H0R Hom•(ZX [q],DX) ∼= H−qRΓDX = H−qDX .

By definition, H−qDX is the q-th classical Borel-Moore homology group of X (as intro-
duced in [8]).

For part (b) we can use Remark 4.4 and the universal property of the dualizing 
complex, to obtain the isomorphism

HZ
p,d(X) ∼= HomD(ZX )((Ωp

X)Z [d],DX) ∼= HomD(ZZ)(Ωp
X |Z [d],DZ) .

Since d = dim(Z), the cohomology groups Hi(DZ) vanish for i < −d. Therefore, DZ is 
quasi-isomorphic to a complex of injectives that is 0 in degrees < −d. It follows that

HomD(ZZ)(Ωp
X |Z [d],DZ) ∼= HomZZ

(Ωp
X |Z , H−d(DZ)) ,
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which equals HomZZ
(Ωp

X |Z , H d
Z ) by definition of H d

Z . This in turn is isomorphic to 
HomZX

(Ωp
X , ι∗H d

Z ). For the “in particular”-statement we note that for every open subset 
U ⊆ X we have DU

∼= DX |U . Therefore, the presheaf U �→ HU∩Z
p,d (U) is isomorphic to the 

presheaf U �→ HomZU
(Ωp

X |U , ι∗H d
Z |U ), which equals the sheaf HomZX

(Ωp
X , ι∗H d

Z ). �
4.3. Pull-backs

Let f : X → Y be a morphism of rational polyhedral spaces. Recall from Proposi-
tion 2.11 that pulling back tropical forms defines a morphism of graded sheaves of rings

f � : f−1Ω∗
Y → Ω∗

X .

Let (ZY
c−→ Ωp

Y [q]) ∈ Hp,q(Y ) be a tropical (p, q)-cohomology class. As the pull-back f−1

of sheaves of abelian groups defines an exact functor, it induces a functor f−1 : D(ZY ) →
D(ZX). Applying this functor to c and composing the resulting arrow with f � defines 
the pull-back

f∗c ∈ Hp,q(X) .

In other words, f∗c is represented by the composite

ZX
∼= f−1ZY

f−1c−−−→ f−1Ωp
Y [q] f�[q]−−−→ Ωp

X [q] .

The map f∗ : Hp,q(Y ) → Hp,q(X) is a morphism of abelian groups. If V is a closed 
subset of Y , then f−1ZW = Zf−1W . So the pull-back morphism can be refined to a 
morphism Hp,q

W (Y ) → Hp,q
f−1W (X). More generally, if Ψ is a family of supports on Y and 

we denote by f−1(Ψ) the family of supports on X consisting of all closed subsets of sets 
of the form f−1W for some W ∈ Ψ, then there is a pull-back morphism

f∗ : Hp,q
Ψ (Y ) → Hp,q

f−1Ψ(X) .

4.4. Proper push-forwards

If f : X → Y is a proper morphism of rational polyhedral spaces, then precomposing 
the trace 

∫
X

: RΓcDX → Z with the natural isomorphism RΓc ◦Rf∗(DX) 
∼=−→ RΓcDX de-

fines a morphism RΓc(Rf∗DX) → Z. By the universal property of the dualizing complex 
DY , this corresponds to a morphism

Rf∗DX → DY . (4.1)

Together with the composite

Ωp
Y → f∗Ωp

X → Rf∗Ωp
X (4.2)
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obtained by pulling back tropical p-forms, this defines a push-forward on tropical Borel-
Moore homology:

Definition 4.9. Let f : X → Y be a proper morphism of rational polyhedral spaces, and 
let p, q ∈ N. The pushforward map

f∗ : HBM
p,q (X) → HBM

p,q (Y )

associated to f is the composite of the morphism

HomD(ZX )(Ωp
X [q],DX) → HomD(ZY )(Rf∗Ωp

X [q], Rf∗DX)

obtained by taking the derived push-forward and the morphism

HomD(ZY )(Rf∗Ωp
X [q], Rf∗DX) → HomD(ZY )(Ωp

Y [q],DY )

defined via composition with the natural morphisms Ωp
Y → Rf∗Ωp

X in (4.2) and 
Rf∗DX → DY in (4.1).

For every closed subset Z of X, the morphism Ωp
Y → f∗Ωp

X induces a morphism 
(Ωp

Y )f(Z) → f∗((Ωp
X)Z). Therefore, the push-forward map can be refined to respect 

supports; there is a push-forward morphism HZ
p,q(X) → H

f(X)
p,q (Y ). More generally, if 

Φ and Ψ are families of supports on X and Y , respectively, such that Φ ⊆ f−1Ψ, then 
there is a push-forward morphism

f∗ : HΦ
p,q(X) → HΨ

p,q(Y ) .

It follows immediately from the functoriality of the derived push-forward and the 
pull-back of tropical forms that the push-forward on tropical Borel-Moore homology is 
functorial, that is (f ◦ g)∗ = f∗ ◦ g∗ whenever f and g are composable proper morphisms 
of rational polyhedral spaces.

For a better understanding of the push-forward we will need the following lemma:

Lemma 4.10. Let f : X → Y be a proper morphisms of rational polyhedral spaces, and let 
n = dim X. Then the morphism

f∗H
n

X → H n
Y

induced by the natural morphism Rf∗DX → DY in (4.1) is induced by the push-forwards 
Hn(X, X \ f−1U) → Hn(Y, U) of relative singular cycles for open subsets U ⊆ Y .

Proof. We will describe the morphism Rf∗Δ•
X → Δ•

Y induced by the natural morphism 
Rf∗DX → DY explicitly. To do so, we will first need to describe Rf∗Δ•

X . Note that the 
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barycentric subdivision defines an endomorphism on Δ•
X . Let S •

X = lim−−→N Δ•
X denote the 

direct limit obtained by allowing repeated barycentric subdivision, and define S •
Y simi-

larly. The natural morphism Δ•
X → S •

X is a quasi-isomorphisms since taking homology 
commutes with direct limits and the barycentric subdivision is a quasi-isomorphism. In 
particular, Rf∗Δ•

X = Rf∗S
•
X . By [9, Prop. V-1.8 and Thm. V-12.14], S •

X is a complex 
of soft sheaves, so the natural morphisms f∗S

•
X → Rf∗S

•
X and ΓcS

•
X → RΓcS

•
X are 

quasi-isomorphisms.
Next, we will show that the push-forward of relative singular cycles induces a mor-

phism f∗S
•
X → S •

Y . If S pre,i
X denotes the presheaf U �→ lim−−→N C−i(X, X \ U) on 

X, and S pre,i the analogous presheaf on Y , the push-forwards of relative chains 
Ci(X, X \ f−1U) → Ci(Y, Y \ U) for U ⊆ Y open and i ∈ Z induce a morphism 
f∗S

pre,•
X → S pre,•

Y by the functoriality of the barycentric subdivision. Note that this 
does not automatically induce a morphism of complexes of sheaves f∗S •

X → S •
Y because 

push-forward does a priori not commute with sheafification. However using [9, V-Lemma 
1.7] one sees that the presheaves S pre,i

X have the property that for every compact set 
K ⊆ X there is an equality

lim−−→
K⊆U

S pre,i
X (U) = lim−−→

K⊆U

S i
X(U) = S i

X(K) ,

where the direct limits are taken over all open subsets containing K (note that the second 
equality holds for every sheaf). Applying this to the fibers of f we obtain isomorphisms 
of stalks (f∗S

pre,i
X )y

∼= S i
X(f−1{y}) ∼= (f∗S i

X)y for all y, and hence sheafification 
commutes with push-forwards for the presheaves S pre,i

X . Consequently, the push-forward 
of relative singular cycles does in fact induce a morphism f∗S

•
X → S •

Y . To show that 
this coincides with the natural morphism Rf∗DX → DY we apply RΓc and obtain a 
morphism

ΓcS
•
X = Γcf∗S

•
X → ΓcS

•
Y ,

which is the one induced by pushing forward singular chains. In particular, in degree 0
it is the morphism

C0(X) → C0(Y )

that pushes forward points along f . This commutes with the degree morphisms to Z, 
which are the traces defining the isomorphisms S •

X
∼= DX and S •

Y
∼= DY . So by the 

definition of the natural morphism Rf∗DX → DY it must agree with the morphism 
f∗S •

X → S •
Y obtained by pushing forward relative chains. From this description it is 

clear that the morphism

f∗H
n

X → H n
Y

is induced by the push-forwards of relative singular cycles as well. �
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4.5. Cross products and the Künneth theorem

In this section we study the tropical homology group on a product X × Y of two 
rational polyhedral spaces X and Y . Let pX : X × Y → X and pY : X × Y → Y denote 
the projections. In what follows we will use the notation

F � G = p−1
X F ⊗ZX×Y

p−1
Y G

for sheaves F on X and G on Y , and

C • �L D• = p−1
X C • ⊗L

ZX×Y
p−1

Y D•

for complexes of sheaves C • on X and D• on Y , where ⊗L denotes the derived tensor 
product.

To define the cross-product in tropical homology, we first need to relate the dualizing 
complex of X × Y the dualizing complexes of the factors X and Y . The trace maps ∫

X
: RΓcDX → Z and 

∫
Y

: RΓcDY → Z induce a morphism

RΓcDX ⊗L
Z RΓcDY → Z ⊗L

Z Z = Z .

By the Künneth formula [21, VII-2.7], RΓcDX ⊗L RΓcDY is naturally isomorphic to 
RΓc(DX �L DY ), so by the universal property of DX×Y there is an induced morphism 
DX �L DY → DX×Y . Indeed, this is an isomorphism by [6, V, 10.26].

It will be convenient for us later to have an explicit description of this isomorphism 
in terms of sheaves of singular chains.

Lemma 4.11. Let X and Y be rational polyhedral spaces. Then for all i, j ∈ N, the 
morphism

H i
X � H j

Y → H i+j
X×Y

defined via the natural isomorphism DX �L DY

∼=−→ DX×Y is the one induced by the 
relative cross products

Hi(X, X \ U) ⊗Z Hj(Y, Y \ V ) → Hi+j(X × Y, (X × Y ) \ (U × V ))

for open subsets U ⊆ X and V ⊆ Y .

Proof. The Eilenberg-Zilber map defines a morphism

C•(X) ⊗Z C•(Y ) → C•(X × Y )

that induces morphisms
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C•(X, X \ U) ⊗Z C•(Y, Y \ V ) → C•(X × Y, (X × Y ) \ (U × V ))

for all pairs of open subsets U ⊆ X and V ⊆ Y . Since the products U × V for U ⊆ X

and V ⊆ Y open form a basis for X × Y , we obtain a morphism

Δ•
X � Δ•

Y → Δ•
X×Y

after sheafifying. By construction, the morphisms H i
X �H j

Y → H i+j
X×Y induced by this is 

defined by relative cross products. It thus suffices to show that this morphism describes 
the natural morphism DX �L DY → DX×Y .

Since Δ•
X and Δ•

Y are complexes of flat sheaves, the natural isomorphisms Δ•
X

∼=−→ DX

and Δ•
Y

∼=−→ DY define an isomorphism

Δ•
X � Δ•

Y

∼=−→ DX �L DY .

To finish the proof, we must show that the diagram

Δ•
X � Δ•

Y Δ•
X×Y

DX �L DY DX×Y

∼= ∼=

is commutative. By the universal property of DX×Y , we can apply RΓc and need to show 
that the two morphisms C−•(X) ⊗Z C−•(Y ) → Z in the diagram

C−•(X) ⊗Z C−•(Y ) RΓc(Δ•
X � Δ•

Y ) C−•(X × Y )

RΓcDX ⊗L
Z RΓcDY RΓc(DX �L DY ) RΓc(DX×Y ) Z ,

∼=

∼=
∫

X×Y

∼= ∼= ∼=

where the leftmost horizontal isomorphisms use the Künneth formula [21, VII-2.7]. Note 
that the left square of the diagram is commutative by the functoriality of the Künneth 
formula, coincide. By construction, the composite of the two morphisms in the top row is 
the Eilenberg-Zilber map. In particular the morphism C−•(X) ⊗ZC−•(Y ) → Z obtained 
by moving clockwise through the diagram assigns 1 to a pure tensor [x] ⊗ [y] ∈ C0(X) ⊗Z

C0(Y ) of 0-simplices (i.e. a point in X × Y ). On the other hand, by the definition of 
the natural morphism DX �L DY → DX×Y , the composite of the three morphisms in 
the lower row is the tensor product of the traces on X and Y . By the definition of 
the morphisms Δ•

X → DX and Δ•
Y → DY it follows that the morphism C−•(X) ⊗Z

C−•(Y ) → Z obtained by moving counterclockwise through the diagram is the tensor 
product of the two augmentations C−•(X) → Z and C−•(Y ) → Z defined by the degree 
of 0-cycles. This product also assigns to 1 to any pure tensor [x] ⊗ [y] ∈ C0(X) ⊗ C0(Y ). 
This finishes the proof �
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Remark 4.12. In the proof of Lemma 4.11, we did not use the fact that the Eilenberg-
Zilber map C•(X) ⊗ C•(Y ) → C•(X × Y ) is a chain homotopy equivalence. If one 
incorporates this into the proof of the lemma carefully, then it also shows that the 
natural morphism DX �L DY → DX×Y is an isomorphism.

To construct the tropical cross product we also need to relate the sheaves of tropical 
forms on X × Y with the sheaves of tropical forms on the factors. The projections pX

and pY induce morphisms

p�
X : p−1

X Ω∗
X → Ω∗

X×Y , p�
Y : p−1

Y Ω∗
Y → Ω∗

X×Y

of sheaves of skew-commutative graded rings. These morphisms induce a morphism

p�
X ⊗ p�

Y : Ω∗
X � Ω∗

Y → Ω∗
X×Y

of sheaves of skew-commutative graded rings, where we view Ω∗
X � Ω∗

Y as the skew 
tensor product (i.e. the usual tensor product of Z-algebras with a slightly modified 
multiplication to make it skew-symmetric (cf. [11, p. 571])) of p−1

X Ω∗
X and p−1

Y Ω∗
Y .

Lemma 4.13. The morphism

p�
X ⊗ p�

Y : Ω∗
X � Ω∗

Y → Ω∗
X×Y

is an isomorphism.

Proof. This is obvious in degree 1: working in charts this comes down to the facts that 
the linear span of a product is the product of the linear spans and that the dual of a 
direct sum of lattices is the direct sum of the duals. Because the exterior product of a 
sum is the skew tensor product of the exterior products of the summands, and everything 
commutes with pullbacks, we obtain an isomorphism∧∗

Ω1
X �

∧∗
Ω1

Y

∼=−→
∧∗

Ω1
X×Y

induced by pX and pY . What is left to show is that if α � β vanishes on (X × Y )max, 
then either α vanishes on Xmax or β vanishes on Y max. Assume the opposite. Then 
there exists a point x ∈ Xmax at which α is nonzero and a point y ∈ Y max at which β
is nonzero. But since the stalks of 

∧∗ Ω1
X are all free, this implies that α � β is nonzero 

an (x, y), which is a point in (X × Y )max, a contradiction. �
Since p�

X ⊗ p�
Y is an isomorphism, we obtain a canonical splitting of the inclusion 

Ωp
X � Ωp′

Y → Ωp+p′

X×Y for every p, p′ ∈ N. Having established this we are ready to define 
the cross-product in tropical Borel-Moore homology.
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Definition 4.14. Let X and Y be rational polyhedral spaces, and let α ∈ HBM
p,q (X) and 

β ∈ HBM
p′,q′(Y ). Then the composite

Ωp+p′

X×Y [q + q′] → Ωp
X [q] � Ωp′

Y [q′] α�Lβ−−−−→ DX �L DY
∼= DX×Y ,

where the leftmost morphism is the natural splitting of Ωp
X � Ωp′

Y → Ωp+p′

X×Y , defines an 
element α × β ∈ HBM

p+p′,q+q′(X × Y ), the cross product of α and β. This defines a graded 
bilinear morphism

× : HBM
∗,∗ (X) ⊗ HBM

∗,∗ (Y ) → HBM
∗,∗ (X × Y ) .

By construction, the cross-product can be refined to respect supports; if Φ and Ψ are 
families of supports on X and Y , respectively, and Φ × Ψ denotes the family of supports 
on X × Y consisting of closed subsets of sets of the form V × W , where V ∈ Φ and 
W ∈ Ψ, there exists a bilinear map

× : HΦ
∗,∗(X) ⊗ HΨ

∗,∗(Y ) → HΦ×Ψ
∗,∗ (X × Y )

As both the identification DX �L DY
∼= DX×Y and the pull-back of tropical forms 

is functorial, the same is true for cross-products. In other words, if f : X → X ′ and 
g : Y → Y ′ are proper morphisms of rational polyhedral spaces, then

f∗(α) × g∗(β) = (f × g)∗(α × β)

for all α ∈ HBM
∗,∗ (X) and β ∈ HBM

∗,∗ (Y ).
We now turn our attention to a tropical Künneth formula. To prove it, we rely on 

results from [6] and need to make the mild assumption of the spaces involved being 
compactifiable. To state this assumption we note that every rational polyhedral space 
X has a natural filtration

X : X = Xdim(X) ⊇ Xdim(X)−1 ⊃ . . . ⊃ X0 ,

where Xi is obtained from Xi+1 by removing the (i + 1)-dimensional components of 
(Xi+1)max. With this stratification X is an unrestricted pseudomanifold in the sense of 
[6].

Definition 4.15. A family of supports Φ on a rational polyhedral space X is compactifiable
if for every V ∈ Φ there exists W ∈ Φ containing V and a refinement X ′ of the natural 
stratification on X such that (X, X ′) is a pseudomanifold, the set W is a union of strata 
of (X, X ′), and (X, X ′) is compactifiable in the sense of [6]: there exists a compact 
pseudomanifold (Y, Y ) containing (X, X ′) as a dense open sub-pseudomanifold. We say 
that X is compactifiable if the family of closed supports on X is compactifiable.
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Theorem 4.16 (Tropical Künneth theorem). Let X and Y be rational polyhedral spaces 
and let Φ and Ψ be compactifiable families of supports on X and Y , respectively. Then 
for every p, q ∈ N, there is a natural decomposition HΦ

p,q(X × Y ) =
⊕

i+j=p Ai,j,q, and
for each i, j ∈ N there is a short exact sequence

0 →
⊕

k+l=q

HΦ
i,k(X) ⊗Z HΨ

j,l(Y ) → Ai,j,q →
⊕

k+l=q−1

TorZ1 (HΦ
i,k(X), HΨ

j,l(Y )) → 0 .

Proof. By Lemma 4.13, there is a decomposition

R Hom •(Ωp
X×Y ,DX×Y ) ∼=

⊕
i+j=p

R Hom •(Ωi
X � Ωj

Y ,DX×Y ) .

We denote

Ai,j,q = H−q
Φ×Ψ(R Hom •(Ωi

X � Ωj
Y ,DX×Y ))

and for V ∈ Φ and W ∈ Ψ we denote

AV,W
i,j,q = H−q

V ×W (R Hom •(Ωi
X � Ωj

Y ,DX×Y )) .

Then we obtain a splitting

HΦ×Ψ
p,q (X × Y ) =

⊕
i+j=p

Ai,j,q

and we can write the summands as direct limits via

Ai,j,q = lim−−→
V,W

AV,W
i,j,q .

Moreover, the sheaves Ωi
X (resp. Ωj

Y ) are X -cc (resp. X -cc) in the sense of [6]. In 
particular, we may apply the results of [27]1 to X and Y and obtain that the natural 
morphism

R Hom •(Ωi
X ,DX) � R Hom •(Ωj

Y ,DY ) → R Hom •(Ωi
X � Ωj

Y ,DX×Y )

is in fact an isomorphism [27, Corollary 2.8]. Furthermore, since we may assume that 
ZV is X ′-cc for some refinement X ′ of the canonical stratification X with (X, X ′)
compactifiable, and similarly for ZW , for any pair of X -cc (resp. Y -cc) complexes F •

and G • on X and Y the natural morphism

1 The results in [27] are stated over C, but their proofs only use identities from [6] that also hold over Z.
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RΓV F • ⊗L
Z RΓW G • = R Hom•(ZV , F •) ⊗L

Z R Hom•(ZW , G •) →
→ R Hom•(ZV � ZW , F • �L G •) = RΓV ×W (F • �L G •)

is an isomorphism by [27, Corollary 4.2] (this is where the compactifiable condition is 
needed). Applying this to F • = R Hom •(Ωi

X , DX) and G • = R Hom •(Ωj
Y , DY ), we 

obtain

AV,W
i,j,q = H−q

V ×W (R Hom •(Ωi
X ,DX) �L R Hom •(Ωj

Y ,DY )) =

= H−q(RΓV Hom •(Ωi
X ,DX) � RΓW Hom •(Ωj

X ,DY )) .

Now the Künneth theorem for complexes [41, Theorem 3.6.3] yields a short exact se-
quence

0 →
⊕

k+l=q

HV
i,k(X) ⊗Z HW

j,l (Y ) → AV,W
i,j,q →

⊕
k+l=q−1

TorZ1 (HV
i,k(X), HW

j,l (Y )) → 0 ,

and taking the direct limit over all pairs (V, W ) completes the proof. �
Corollary 4.17. Let X and Y be compactifiable rational polyhedral spaces such that either 
HBM

∗,∗ (X) or HBM
∗,∗ (Y ) is torsion free. Then the cross-product

HBM
∗,∗ (X) ⊗Z HBM

∗,∗ (Y ) → HBM
∗,∗ (X × Y )

is an isomorphism.

Proof. This follows immediately from Theorem 4.16 and the fact that the groups 
TorZ1 (HBM

i,k (X), HBM
j,l (Y )) all vanish. �

4.6. Cup and cap products

Let X be a rational polyhedral space. Since Ω∗
X is a sheaf of rings, its cohomology 

group has a ring structure again, the multiplication being the so-called cup product. If

(ZV
c−→ Ωp

X [q]) ∈ Hp,q
V (X) , and

(ZW
d−→ Ωp′

X [q′]) ∈ Hp′,q′

W (X) ,

where p, p′, q, q′ are integers and V and W are locally polyhedral subsets of X, then their 
cup product

c � d ∈ Hp+p′,q+q′

V ∩W (X)

is represented by the composite
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ZV ∩W

∼=−→ ZV ⊗ZX
ZW

c⊗d−−→ Ωp
X ⊗ZX

Ωp′

X [q + q′] → Ωp+p′

X [q + q′] .

Here, the last morphism is the product on Ω∗
X , and the morphism in the middle can be 

obtained using the fact that Ωp
X ⊗ZX

Ωp′

X
∼= Ωp

X ⊗L
ZX

Ωp′

X because Ω∗
X is flat and the 

functoriality of the derived tensor product.
The cup product is clearly compatible with supports, so if Φ and Ψ are two families 

of supports, then the cup product defines a bilinear map

Hp,q
Φ (X) × Hp′,q′

Ψ (X) → Hp+p′,q+q′

Φ∩Ψ (X) .

It follows directly from the associativity property of the sheaf of rings Ω∗
X that the cup 

product on H∗,∗(X) is associative. It is also unital, the unity being represented by the 
identity map on ZX → ZX = Ω0

X . It is clear from the construction that the restriction 
of the cup product to H0,∗(X) is the classical cup product on the cohomology of X (cf. 
Lemma 4.8 (a) and [21][II.9.9]).

Proposition 4.18. Let f : X → Y be a morphism of rational polyhedral spaces. Then the 
pull-back (defined in §4.3)

f∗ : H∗,∗(Y ) → H∗,∗(X)

is a ring homomorphism.

Proof. Examining the definitions of cup products and pull-backs, we see that this directly 
follows from the fact that the pull-back f � : f−1Ω∗

Y → Ω∗
X of tropical forms is a morphism 

of sheaves of graded rings. �
Similarly as the cup product, the cap product also generalizes from the classical to the 

tropical setting. To define it, let

(ZV
c−→ Ωi

X [j]) ∈ Hi,j
V (X) , and

((Ωp
X)W [q] α−→ DX) ∈ HW

p,q(X) ,

where p, q, i, j are integers and V and W are closed subsets of X. Then the cap product

α � c ∈ HV ∩W
p−i,q−j(X)

is represented by the composite

(Ωp−i
X )V ∩W [q − j]

∼=−→ ZV ⊗ZX
(Ωp−i

X )W [q − j] c⊗id−−−→ Ωi
X ⊗ZX

(Ωp−i
X )W [q] →

→ (Ωp
X)W [q] α−→ DX ,
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where the second arrow can be defined using the functoriality of the derived tensor 
product, and the third morphism is the product on Ω∗

X . This construction clearly is 
compatible with supports, so whenever Ψ and Φ are families of supports, we obtain a 
bilinear map

HΨ
p,q(X) × Hi,j

Φ (X) → HΦ∩Ψ
p−i,q−j(X) .

By the associativity property of the sheaf of rings Ω∗
X , the cap product makes HBM

∗,∗ (X)
a right H∗,∗(X)-module. It is clear from the construction that the restriction

HBM
0,∗ (X) × H0,∗(X) → HBM

0,∗ (X)

of the cap product is the cap product in classical Borel-Moore homology (cf. Lemma 4.8
(a) and [21, IX.3]).

Proposition 4.19 (Projection formula). Let f : X → Y be a proper morphism of rational 
polyhedral spaces, let V ⊆ X and W ⊆ Y be closed subsets let α ∈ HV

p,q(X) and c ∈
Hi,j

W (Y ). Then we have the equality

f∗(α � f∗c) = f∗α � c

in Hf(V )∩W
p−i,q−j (Y ).

Proof. Both sides of the equation correspond to a morphism

(Ωp−i
Y )f(V )∩W [q − j] → DY .

More precisely, the left side of the equation corresponds to the morphism obtained by 
moving counterclockwise along the square in the diagram below, whereas the right side 
of the equation corresponds to the morphism obtained by moving clockwise along the 
square.

(Ωp−i
Y )f(V )∩W [q − j] Ωi

Y ⊗ZY
(Ωp−i

Y )f(V )[q] (Ωp
Y )f(V )[q]

Rf∗(Ωp−i
X )V ∩f−1W [q − j]

Rf∗(f−1Ωi
Y ⊗ZX

(Ωp−i
X )V )[q] Rf∗(Ωi

X ⊗ZX
(Ωp−i

X )V )[q] Rf∗(Ωp
X)V [q]

Rf∗DX DY

c ⊗ id

Rf∗(f−1c ⊗ id)

Rf∗α
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It thus suffices to show that the square commutes. Using the fact that f−1 and Rf∗ are 
adjoints, this boils down to the fact that f � : f−1Ω∗

Y → Ω∗
X is a morphism of sheaves of 

rings. �
4.7. Comparison with singular tropical homology

In this section we show that our sheaf-theoretically defined tropical Borel-Moore ho-
mology groups HBM

p,q (X) are naturally isomorphic to the locally finite tropical homology 
groups H lf

p,q(X) of X that are used in [22]. The analogous statement for tropical cohomol-
ogy groups has been proven in [23], where the authors show that Hq(X, Ωp

X) is isomorphic 
to the singular cohomology group Hp,q

sing(X). It should be noted that if the tropical coho-
mology groups of X are finitely generated, the isomorphism Hp,q

sing(X) ∼= Hq(X, Ωp
X) from 

[23], combined with the universal coefficient theorem, implies that the tropical homology 
group with compact support Hp,q(X) is isomorphic to the singular tropical homology 
group Hsing

p,q (X). However, the isomorphism obtained this way is, a priori, not compati-
ble with the cycle class map. More importantly, the isomorphism of tropical cohomology 
groups does not imply that HBM

p,q (X) is isomorphic to H lf
p,q(X).

Similar to the cohomological case treated in [23], the idea to prove HBM
p,q (X) ∼=

H lf
p,q(X) is to follow closely the classical argument (see [9]) in the case p = 0. How-

ever, there is a problem with that: the classical argument uses that the complex Δ•
X

is homotopically fine and therefore its cohomology (i.e. H∗(ΔX) = H∗ Hom•(ZX , Δ•
X)) 

agrees with its hypercohomology (i.e. H∗(Δ•
X) = Ext∗(ZX , Δ•

X)). It does not follow 
directly from the homotopical fineness that for p > 0 the analogous statement holds, 
that is that H∗ Hom•(Ωp

X , Δ•
X) = Ext∗(Ωp

X , Δ•
X). To solve this we prove a more general 

statement (Proposition A.9) on conically stratified spaces, building on work of Friedman 
[13,12]

Let X be a rational polyhedral space, and let Σ be a face structure on X. We say 
that a singular simplex σ : Δq → X (where Δq denotes the standard q-simplex) respects 
the face structure Σ if for every face Θ ⊆ Δq there exists a polyhedron P ∈ Σ such 
that σ(relint(Θ)) ⊆ P . A tropical (p, q)-simplex (with respect to Σ), is a pair (σ, s), 
where σ : Δq → X is a singular q-simplex respecting the face structure Σ and s ∈
Hom(Ωp

X |σ(Δq), Zσ(Δq)). We denote by Cp,q(X; Σ) the free abelian group generated by 
tropical (p, q)-simplices (w.r.t. Σ). If (σ, s) is a tropical (p, q)-simplex, then pulling back 
(σ, s) along the i-th face morphism δq,i : Δq−1 → Δq yields a tropical (p, q − 1)-simplex 
∂p,q,i(σ, s) = (σ ◦ δq,i, s|σ(δq,i(Δq−1))). Extending ∂p,q,i by linearity and taking alternating 
sums, one defines the differentials

∂p,q =
q∑

i=0
(−1)i∂p,q,i

and obtains a chain complexes Cp,•(X; Σ). We call their homology groups
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Hsing
p,q (X; Σ) := Hq(Cp,•(X; Σ))

the singular tropical homology groups of X (with respect to Σ). They agree with the 
tropical homology groups introduced in [20]. It is well-known that they do not depend 
on Σ, which will also follow from Theorem 4.20.

Allowing locally finite chains, that is infinite sums of tropical simplices such that every 
point has a neighborhood intersecting only finitely many of them, instead of only finite 
chains we obtain chain complexes Clf

p,•(X; Σ) whose homology groups

H lf
p,q(X; Σ) = Hq(Clf

p,•(X; Σ))

are the locally finite tropical homology groups of X (with respect to Σ). They agree with
tropical homology groups studied in [22]. Again, it will follow from Theorem 4.20 that 
they are independent of the face structure Σ.

Theorem 4.20. Let X be a rational polyhedral space equipped with a face structure Σ. 
Then there are natural isomorphisms

H lf
p,q(X; Σ) ∼= HBM

p,q (X) , and

Hsing
p,q (X; Σ) ∼= Hp,q(X) .

Proof. The face structure Σ defines an admissible stratification on the space X in the 
sense of Definition A.3. By Proposition A.5, the subcomplex ΔΣ,•

X of Δ•
X consisting 

of chains respecting Σ (we refer to Appendix A for a precise definition of ΔΣ,•
X ) is 

quasi-isomorphic to Δ•
X . Furthermore, by Proposition A.9, there is a natural quasi-

isomorphism

Hom •(Ωp
X , ΔΣ,•

X )
∼=−→ R Hom •(Ωp

X ,DX) .

Taking hypercohomology with closed/compact supports we obtain natural isomorphisms

H−q Hom •(Ωp
X , Δ•

S )
∼=−→ H−qR Hom •(Ωp

X ,DX) = HBM
p,q (X) , and

H−q
c Hom •(Ωp

X , Δ•
S )

∼=−→ H−q
c R Hom •(Ωp

X ,DX) = Hp,q(X) .

Since ΔΣ,•
X is homotopically fine, the same is true for Hom •(Ωp

X , ΔΣ,•
X ). It follows that 

the natural morphisms

H−q Hom •(Ωp
X , ΔΣ,•

X ) → H−q Hom •(Ωp
X , ΔΣ,•

X ) and

H−q
c Hom •(Ωp

X , ΔΣ,•
X ) → H−q

c Hom •(Ωp
X , ΔΣ,•

X )

are isomorphisms. Note that for each i ∈ N there is a morphism
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⊕
σ

Zσ(Δi) → ΔΣ,−i
X ,

where the sum is taken over all singular i-simplices σ : Δi → X respecting Σ, that sends 
the generator of Zσ(Δi) to the global section represented by σ ∈ Ci(X; Σ) = Ci(X, X \
X; Σ) (see (A.1)). This morphism is in fact an isomorphism: the stalk of both 

⊕
σ Zσ(Δi)

and ΔΣ,−i
X at x ∈ X is isomorphic to the free abelian group on singular i-simplices that 

respect Σ and contain x in their image. Therefore, if we write ισ : σ(Δi) → X for the 
inclusion, we have

Hom
(

Ωp
X , ΔΣ,−i

X

)
∼= Hom

(
Ωp

X ,
⊕

σ

Zσ(Δi)

)
∼=

∼=
⊕

σ

Hom
(
Ωp

X ,Zσ(Δi)
) ∼=

⊕
σ

(ισ)∗ Hom
(
Ωp

X |σ(Δi),Zσ(Δi)
)

,

where the direct sum commutes with Hom because Ωp
X is constructible. The group of 

global sections of this last sheaf is precisely Clf
p,i(X; Σ), and the group of its global sections 

with compact support is precisely Cp,i(X; Σ). Leaving the straightforward check that this 
identification commutes with the differentials to the reader, we obtain an isomorphism

Γ
(
Hom (Ωp

X , ΔΣ,•
X )

)
∼= Clf

p,−•(X; Σ) and

Γc

(
Hom (Ωp

X , ΔΣ,•
X )

)
∼= Cp,−•(X; Σ)

of cochain complexes of abelian groups. Taking their (−q)-th cohomology finishes the 
proof. �
5. The tropical cycle class map

In this section we define the cycle class maps

cyc: Zk(X) → HBM
k,k (X)

on a rational polyhedral space X in our framework. These have been defined before in 
[32] in the case of compact supports and in [22] for closed supports. Our framework 
naturally allows to include families of supports, that is we show that the cycle class 
A ∈ Zk(X) actually lives in H |A|

k,k(X). Moreover, our construction is local in the sense 
that we do not make any assumption on the existence of global face structures. If a global 
face structure does exist, we show in Theorem 5.13 that our definition of the cycle class 
map agrees with that in [22].
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5.1. Conventions for orientations

To define the tropical cycle class map one needs to make a choice regarding orienta-
tions. There are two ways of defining an orientation for Rn that are relevant for us, one 
being the choice of a generator for 

∧n
TZ

0 Rn ∼=
∧n

Zn, the other being the choice of a 
generator for Hn(Rn, Rn \ {0}). For the construction of the tropical cycle class map we 
need to choose, once and for all, an isomorphism∧n

TZ
0 Rn ∼=−→ Hn(Rn,Rn \ {0})

that allows us to compare these two notions of orientation, and our choice will be 
the one that sends e1 ∧ . . . ∧ en to class of the (linearly embedded) singular simplex 
[en, en−1, . . . , e1, e0], where e1, . . . , en is any basis for Zn and e0 = − 

∑n
i=1 ei.

Suppose that σ is a k-dimensional polyhedron in Rn and assume we have chosen 
an orientation ησ ∈

∧k
TZ(σ). Choosing an embedding f : σ → Rk, the orientation ησ

induces an element in 
∧k Rk and hence a class [σ] in

H(Rk,Rk \ {0}) = H(f(σ), f(σ) \ {f(x)}) = H lf (σ, ∂σ)

for every choice of a point x ∈ σ \ ∂σ of which [σ] is independent. The class [σ] does 
not depend on f either; if the orientation of f is flipped, then the signs in both the 
identifications 

∧k
TZ(σ) =

∧k Rk and H lf (σ, ∂σ) = H(Rk, Rk \ {0}) are flipped, that 
is a change of orientation of f flips the sign of the class we are defining exactly twice. 
Now let τ ⊆ σ be a face of σ of codimension 1 and assume we have also chosen an 
orientation ητ ∈

∧k−1
TZ(τ). Then with our convention in place we also obtain a class 

[τ ] ∈ H lf
k−1(τ, ∂τ). If ∂τ denotes the composite

H lf
k (σ, ∂σ) → H lf

k−1(∂σ) → H lf
k−1(∂σ, ∂σ \ relint(τ)) ∼= H lf

k−1(τ, ∂τ),

and nσ/τ ∈ TZ(σ) is any lattice normal vector of σ with respect to τ , the equalities 
∂τ [σ] = [τ ] and ησ = ητ ∧ nσ/τ are equivalent. In this case, we say that the chosen 
orientations on σ and τ are compatible.

5.2. Tropical cycles as sheaf hom

The following crucial observation, together with Lemma 4.8 (b), will allow us define 
the tropical cycle class map.

Proposition 5.1. Let X be an n-dimensional rational polyhedral space. Then there is a 
natural isomorphism of sheaves

Z X
n

∼= Hom (Ωn
X , H n

X ) .
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Proof. We will first define the isomorphism locally around a point x ∈ X. Let Σ be 
a local face structure at x. After potentially shrinking Σ, we may assume that |Σ| is 
compact, in which case Σ gives a CW-complex structure to the neighborhood |Σ| of x. 
After choosing orientations ησ ∈

∧dim(σ)
TZ(σ) for all σ ∈ Σ, cellular homology provides 

a description of H n
X,x = Hn(X, X \ {x}) as a subgroup of the free group on Σ(n), where 

Σ(i) denotes the set of i-dimensional cells of Σ. Namely, it is the group of all weights 
w : Σ(n) → Z such that for every (n − 1)-dimensional cell τ ∈ Σ containing x we have∑

σ : τ⊆σ∈Σ(n)

εσ/τ w(σ) = 0 , (5.1)

where εσ/τ is either 1 or −1, depending on whether the chosen orientations on σ and τ
agree or not. If y is a point in the interior of |Σ|, then the set

Σy = {σ ∈ Σ | there exists τ ∈ Σ so that σ ⊆ τ and y ∈ τ}

is a local face structure at y, so with the same reasoning we conclude that H n
X,y is the 

group of weights w : Σy(n) → Z satisfying the condition displayed in (5.1) for all (n −1)-
dimensional cells τ ∈ Σ containing y. This description is continuous in the sense that we 
obtain an exact sequence

0 → H n
X →

⊕
σ∈Σ(n)

Zσ →
⊕

τ :x∈τ∈Σ(n−1)

Zτ

on the interior of |Σ|, where the map to the right is determined by the condition (5.1). 
Note that this is precisely the description of H n

X one obtains from Shepard’s com-
binatorial description of the dualizing complex mentioned in Remark 4.7. Applying 
Hom (Ωn

X , −) to the sequence, we obtain an exact sequence

0 → Hom (Ωn
X , H n

X ) →
⊕

σ∈Σ(n)

ισ∗ Hom (Ωn
X |σ,Zσ) →

⊕
τ :x∈τ∈Σ(n−1)

ιτ∗ Hom (Ωn
X |τ ,Zτ ) ,

where ιδ : δ → X denotes the inclusion for every δ ∈ Σ. By Lemma A.8, for every δ ∈ Σ
we have an isomorphism

Hom (Ωn
X |δ,Zδ)

∼=−→ (κδ)∗ Hom (Ωn
X |relint(δ),Zrelint(δ)) ,

where κδ : relint(δ) → δ denotes the inclusion, and the latter sheaf is in turn naturally 
isomorphic to the constant sheaf (∧n

TZ
δ X

)
δ

on δ. Here, we denote TZ
δ X := Γ(relint(δ), Ω1

X |relint(δ))∗, which is naturally isomorphic to 
TZ

x X for any x ∈ relint(δ). If σ ∈ Σ(n), then TZ
σ X is isomorphic to Zσ and is generated 

by ησ. We thus obtain an exact sequence
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0 → Hom (Ωn
X , H n

X ) →
⊕

σ∈Σ(n)

Zσ →
⊕

τ :x∈τ∈Σ(n−1)

(∧n
TZ

τ X
)

τ
,

where the component of the rightmost morphism going from Zσ to 
(∧n

TZ(τ)
)

τ
is 0

if τ is a face of σ at infinity, and sends the generator 1 of Zσ to ητ ∧ nσ/τ else, where 
nσ/τ ∈ TZ(σ) is any lattice normal vector of σ relative to τ . This effectively yields a 
presentation of Hom (Ωn

X , H n
X ) on a neighborhood of x as the sheaf of locally constant 

functions A on Xmax such that for every codimension-1 face τ ∈ Σ(n − 1) we have

ητ ∧

⎛⎝ ∑
σ∈Στ (n)

A(σ)nσ/τ = 0

⎞⎠ ,

where Στ (n) denotes the subset of Σ(n) consisting of cells that have τ as a finite face. 
This equality holds if and only if∑

σ∈Στ (n)

A(σ)nσ/τ ∈ TZ(τ) ,

which is precisely the balancing condition (see Remark 3.3). In other words, we obtain 
an isomorphism Z X

n
∼= Hom (Ωn

X , H n
X ) in a neighborhood of x.

To show that these local isomorphisms glue to a global isomorphism, we essentially 
need to show that the local isomorphisms are independent of all choices. The choices 
we made were the local face structure and the orientations on them. We used the same 
orientations to pick generators for 

∧n
TZ(σ) and Hn(σ, ∂σ), so if we picked the opposite 

orientation on one of the cells σ, we would change signs twice and hence obtain the same 
isomorphism. It remains to show that a different local face structure would also provide 
the same isomorphism. But to compare two different choices of local face structures one 
can always pass to a common refinement, and it is clear that the construction of the 
isomorphism is compatible with refinements. �
Remark 5.2. Going through the proof of Proposition 5.1 we obtain the following descrip-
tion of the isomorphism Z X

n
∼= Hom (Ωn

X , H n
X ) locally around a point x using a local 

face structure Σ at x and orientations ησ ∈
∧n

TZ(σ) on each of its maximal cells σ ∈ Σ. 
The description of the morphisms Ωn

X → H n
X corresponding to A ∈ Zn(X) uses three 

ingredients:

(1) Using the orientations and cellular homology, we can choose for each facet σ ∈ Σ(n)
of dimension n a chain [σ] supported on σ such that H n

X is, locally around x, 
isomorphic to the subsheaf of Δ−n

X generated by the [σ], σ ∈ Σ.
(2) Whenever ω ∈ Γ(U, Ωn

X) is a tropical n-form defined on an open subset of the interior 
of |Σ|, we can pair it with ησ to obtain a locally constant, integer-valued function 
〈ω, ησ〉 on U ∩ σ.
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(3) If A is a tropical n-cycle defined on the interior of |Σ|, then it defines a multiplicity 
A(σ) on every σ ∈ Σ(n).

With notation as in (1), (2), and (3), the morphism Ωn
X → H n

X that A is mapped to 
by the isomorphism can now be described by the rule

ω �→
∑

σ∈Σ(n)

A(σ)〈ω, ησ〉[σ] .

5.3. The tropical cycle class map

We can now define the tropical cycle class map. We do this in two steps, first for 
top-dimensional tropical cycles and then in general.

Definition 5.3. Let X be an n-dimensional rational polyhedral space. We define the trop-
ical cycle class map on n-dimensional tropical cycles

c̃ycX : Zn(X) → HBM
n,n (X)

as the composite of the canonical map

Zn(X) → Hom(Ωn
X , H n

X )

and the canonical identification

Hom(Ωn
X , H n

X ) = HomD(X)(Ωn
X [n],DX) = HBM

n,n (X) ,

where the first equality holds since H−j(DX) = H j
X = 0 for j > n.

To define the tropical cycle class map in the remaining dimensions we use push-
forwards:

Definition 5.4. Let X be an n-dimensional rational polyhedral space. For a tropical cycle 
A ∈ Zi(X), i ∈ N, we define its tropical cycle class by

cycX(A) := ι∗(c̃yc|A|(A)) ∈ HBM
i,i (X) ,

where ι : |A| ↪→ X is the inclusion map. Note that c̃yc|A|(A) is defined, since i = dim |A|.

Remark 5.5. It is also possible to define a refined cycle class that respects supports. 
Namely, we can view the tropical cycle class of A ∈ Zi(X) as an element of H |A|

i,i (X)

For top-dimensional tropical cycles, we now have two ways to take their tropical cycle 
classes which are a priori different: one by applying c̃yc and one by applying cyc. As 
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a byproduct of the compatibility with push-forwards we will see that they agree (see 
Corollary 5.7).

5.4. Compatibility with push-forwards

As we have seen, both tropical cycle groups and tropical Borel-Moore homology groups 
are functorial with respect to proper morphisms. We will now show that the tropical cycle 
class map respects push-forwards, that is that it defines a natural transformation between 
tropical cycle groups and tropical homology groups.

Proposition 5.6. Let f : X → Y be a proper morphism of n-dimensional rational poly-
hedral spaces. Then the tropical cycle class map c̃yc commutes with push-forwards. In 
other words, the diagram

Zn(X) Zn(Y )

HBM
n,n (X) HBM

n,n (Y )

f∗

f∗

c̃ycX c̃ycY

is commutative.

Proof. Inspecting the definitions of c̃ycX , c̃ycY , and the push-forward in homology, we 
see that the statement boils down purely formally to proving the commutativity of the 
diagram

Zn(X) Zn(Y )

Hom(Ωn
X , H n

X ) Hom(Ωn
Y , H n

Y ) ,

f∗

where the vertical maps are induced by the natural isomorphisms of Proposition 5.1, and 
the lower horizontal map sends a morphism Ωn

X → H n
X to the composite

Ωn
Y → f∗Ωn

Y → f∗H
n

X → H n
Y ,

where the rightmost morphism is the (−n)-th cohomology of the natural morphism 
Rf∗DX → DY . By Lemma 4.10, this morphism is induced by the push-forward mor-
phisms Hn(X, X \ f−1U) → Hn(Y, U) between the singular relative homology groups. 
So let A ∈ Zn(X). We will compare the two morphisms in Hom(Ωn

Y , H n
Y ) obtained from 

A. Since tropical n-cycles on Y are determined by their restriction to a dense open subset 
of Y max, it suffices to do this locally at a point y ∈ Y max \ f(X \ Xmax). Let ϕ ∈ Ωn

Y,y. 
To compute the image of ϕ under the morphism obtained from A by moving along the 
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square counterclockwise, we first take its image f∗ϕ in (f∗Ωn
X)y = Γ(f−1{y}, Ωn

X). We 
note that the support of f∗ϕ only consists of isolated points of f−1{y}. Indeed, f∗ϕ

is nonzero at x ∈ f−1{y}, if and only if dxf : TZ
x X → TZ

y Y is injective, which is the 
case if and only if f is injective on a neighborhood of x. In particular, we see that f∗ϕ

is supported on finitely many points, call them x1, . . . , xk, because f−1{y} is compact. 
Now we take the image of f∗ϕ under the morphism

(f∗Ωn
X)x = Γ(f−1{y}, Ωn

X) → Γ(f−1{y}, H n
X ) = (f∗H

n
X )y

induced by A. To understand it we use the explicit description of the canonical morphism 
Zn(X) → Hom(Ωn

X , H n
X ) given in Remark 5.2, which is particularly simple here because 

we are working on Xmax. We pick an orientation ηy ∈
∧n

TZ
y Y , which induces orienta-

tions ηxi
∈

∧n
TZ

xi
X for all 1 ≤ i ≤ k. These orientations define generators [σxi

] ∈ H n
X,xi

and [δ] ∈ H n
Y,y. The image of f∗ϕ in Γ(f−1{y}, H n

X ) is then represented by

k∑
i=1

A(xi)〈f∗ϕ, ηxi
〉[σxi

] .

We observe that

〈f∗ϕ, ηxi
〉 = [TZ

y Y : dxi
f(TZ

xi
X)]〈ϕ, ηy〉 .

So when we finally apply the morphism

(f∗H
n

X )y = Γ(f−1{y}, H n
X ) → H n

Y,y,

we see that (
k∑

i=1
[TZ

y Y : dxi
f(TZ

xi
X)]A(xi)

)
〈ϕ, ηy〉[δ]

is the image of ϕ. Looking back at Definition 3.6, we see that this is precisely the image 
of ϕ under the morphism Ωn

Y,y → H n
Y,y induced by f∗A. �

Corollary 5.7. Let X be an n-dimensional rational polyhedral space. Then the two mor-
phisms c̃ycX , cycX : Zn(X) → HBM

n,n (X) coincide.

Proof. Let A ∈ Zn(X), and let ι : |A| → X be the inclusion. The statement is trivially 
true for A = 0, so we may assume that |A| is an n-dimensional rational polyhedral 
subspace of X. By definition of cycX , we have cycX(A) = ι∗(c̃yc|A|(A)), which equals 
c̃ycX(ι∗A) by Proposition 5.6. As ι∗A = A, this finishes the proof. �
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Corollary 5.8. Let f : X → Y be a proper morphism of rational polyhedral spaces. Then 
the tropical cycle class map cyc commutes with push-forwards. In other words, the dia-
gram

Zi(X) Zi(Y )

HBM
i,i (X) HBM

i,i (Y )

f∗

f∗

cycX cycY

is commutative for all i ∈ N.

Proof. By definition of the tropical cycle class map, the assertion holds if X is a rational 
polyhedral subspace of Y and f is the inclusion. Now assume f is general and A ∈ Zi(X). 
Using the result for inclusions and the fact that push-forwards are functorial for both 
tropical homology classes and tropical cycles, we reduce to the case where X = |A|, 
Y = f(|A|), and dim(X) = i. If dim(Y ) < dim(X), then HBM

i,i (Y ) = 0 and the statement 
is trivial, so we may assume i = dim(Y ) = dim(X). In this case, the result follow from 
Proposition 5.1 and Corollary 5.7. �
5.5. Compatibility with cross products

Given tropical cycles A and B on locally polyhedral spaces X and Y , we have defined 
their cross-product (§3.3) and the cross-product of their tropical cycle classes (§4.5). We 
now show that the tropical cycle class of the former equals the latter.

Proposition 5.9. Let X, Y be rational polyhedral spaces, and let i, j ∈ N. Then the tropical 
cycle class map takes cross products to cross products. In other words, the diagram

Zi(X) ⊗Z Zj(Y ) Zi+j(X × Y )

HBM
i,i (X) ⊗Z HBM

j,j (Y ) HBM
i+j,i+j(X × Y )

×

×
cycX ⊗ cycY

cycX×Y

is commutative.

Proof. Let A ∈ Zi(X) and B ∈ Zj(Y ). By the functoriality of the cross-product we may 
assume that X = |A| is purely i-dimensional, and Y = |B| is purely j-dimensional. In 
this case, both morphisms

cyc(A) × cyc(B) : Ωi+j
X×Y [i + j] → DX×Y , and

cyc(A × B) : Ωi+j
X×Y [i + j] → DX×Y
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are completely determined by the morphisms Ωi+j
X×Y → H i+j

X they induce by taking 
cohomology in degree −(i +j). By Proposition 5.1, it suffices to compare these morphisms 
locally at a point z = (x, y) ∈ (X × Y )max. Then x ∈ Xmax and y ∈ Y max. Let 
ηx be a generator of 

∧i
TZ

x X and ηy a generator of 
∧j

TZ
y Y , and let [σx] and [σy]

be the corresponding generator of H i
X,x and H j

Y,y. Then as explained in Remark 5.2, 
the morphism Ωi

X,x → H i
X,x defined by X is given by ω �→ 〈ω, ηx〉A(x)[σx], and the 

morphism Ωj
Y,y → H i

Y,y defined by B is given by ω �→ 〈ω, ηy〉B(y)[σy]. By definition 

of the cross product and Lemma 4.11, the morphism Ωi+j
X×Y,z → H i+j

X×Y,z induced by 

cyc(A) × cyc(B) takes ω ⊗ ω′ ∈ Ωi
X,x ⊗ Ωj

Y,y
∼= Ωi+j

X×Y,z to

〈ω, ηx〉〈ω′, ηy〉A(x)B(y)[σx] × [σy].

Here [σx] × [σy] denotes the classical cross-product, which equals the generator [σz] of 
H i+j

X×Y corresponding to the generator ηz = ηx ⊗ ηy of 
∧i+j

TZ
z (X × Y ). Therefore, the 

expression above for the image of ω ⊗ ω′ equals

〈ω ⊗ ω′, ηx ⊗ ηy〉(A × B)(z)[σz]

which is precisely the image of ω ⊗ ω′ under the morphism Ωi+j
X×Y,z → H i+j

X×Y,z induced 
by cycX×Y (A × B). �
5.6. The first Chern class of a divisor

Let X be a rational polyhedral space. As explained in §3.5, the set of isomor-
phism classes of tropical line bundles on X is an abelian group, naturally isomorphic 
to H1(X, AffX).

Definition 5.10 (see [31, Section 5] and [22, Definition 3.6]). Let X be a rational poly-
hedral space, and let d : AffX → Ω1

X be the quotient map. Then the first Chern class is 
defined as the morphism

c1 := H1(d) : H1(X, AffX) → H1(X, Ω1
X) = H1,1(X) .

If L is a tropical line bundle on X, corresponding to α ∈ H1(X, AffX), then the first 
Chern class of L is c1(L ) := c1(α).

Proposition 5.11. Let f : X → Y be a morphism of rational polyhedral spaces, and let L
be a tropical line bundle on Y . Then

c1(f∗L ) = f∗(c1(L )) .

Proof. This follows immediately from the commutativity of the diagram



A. Gross, F. Shokrieh / Journal of Algebra 635 (2023) 577–641 621
H1(Y, AffY ) H1(Y, Ω1
Y )

H1(X, f−1 AffY ) H1(X, f−1Ω1
Y )

H1(X, AffX) H1(X, Ω1
X) ,

f−1 f−1

H1(f�) H1(f�)

where the horizontal morphisms are induced by the quotient morphisms Aff → Ω1. �
Also recall from §3.4 that there is a sheaf of tropical Cartier divisors DivX which fits 

into a short exact sequence

0 → AffX → M X → DivX → 0 , (5.2)

the first connecting homomorphism of whose associated long exact cohomology sequence 
is the map

Div(X) = H0(X, DivX) → H1(X, AffX), D �→ L (D) .

Composing this with the first Chern class defines a map

Div(X) → H1,1(X), D �→ c1(L (D))

that assigns a (1, 1)-cohomology class to every Cartier divisor. We will need to work 
with a factorization of this map. A Cartier divisor D ∈ Div(X) is, by definition, a global 
section of DivX whose support is, again by definition, equal to |D|. Therefore, it defines a 
morphism Z|D| → DivX . Composing this with the morphism DivX → AffX [1] defined by 
(5.2) and the projection morphism AffX [1] → Ω1

X [1] defines a morphism Z|D| → Ω1
X [1], 

and hence an element in H1,1
|D|(X) (see Remark 4.2), the image of which in H1,1(X) is 

c1(L (D)). We can thus view c1(L (D)) as an element in H1,1
|D|(X).

We will now show that taking the cap product with the first Chern class c1(L (D))
corresponds to intersecting with D. This is a generalization of [22, Theorem 4.15], where 
the statement is shown without supports. As our setup does not assume a global face 
structure to exist, the main difficulty is to reduce to a local computation where one 
can use a local face structure. In principle, this local computation should be a straight-
forward computation in a suitable exterior algebra. Yet obtaining the correct sign is 
surprisingly subtle. One only obtains the correct sign if the cap product and the inter-
section product are defined in a way compatible with the orientation convention chosen 
in §5.1.

Proposition 5.12. Let X be a rational polyhedral space. Then for every tropical Cartier 
divisor D ∈ Div(X) and for every tropical cycle A ∈ Zi(X) we have
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cycX(D · A) = cycX(A) � c1(L (D))

in H |D|∩|A|
i−1,i−1(X).

Proof. First we reduce to the case X = |A|. Let ι : |A| ↪→ X be the inclusion map. Then 
by definition of the intersection pairing, and by Corollary 5.8, we have

cycX(D · A) = cycX(ι∗(ι∗D · A)) = ι∗ cyc|A|(ι∗D · A)

in H |D|∩|A|
i−1,i−1(X). On the other hand, by the projection formula (Proposition 4.19) we have

cycX(A) � c1(L (D)) = ι∗ cyc|A|(A)c1(L (D)) = ι∗(cyc|A|(A) � ι∗(c1(L (D))))

in H
|D|∩|A|
i−1,i−1(X), which equals ι∗(cyc|A|(A) � c1(L (ι∗D))) by Propositions 3.15 and 

5.11. It thus suffices to show that

cyc|A|(ι∗D · A) = cyc|A|(A) � c1(L (ι∗D))

in HBM
i−1,i−1(|ι∗D|), which allows us to assume X = |A|. In this case, we will interpret 

c1(L (D)) as an element of H1,1
|D|(X) and show that the equality holds in H |D|

i−1,i−1(X). 
Since |D| is at most (i − 1)-dimensional, the presheaf

U �→ H
U∩|D|
i−1,i−1(U)

on X is a sheaf by Lemma 4.8 (b). We can thus work locally around a point x ∈ X, 
where we can use a local face structure Σ. After potentially shrinking and refining Σ, we 
can assume that the divisor D is principal, say D = div(ϕ), and that ϕ|σ ∈ Γ(σ, Affσ)
for all σ ∈ Σ. As usual, we choose an orientation on each σ ∈ Σ in form of a generator

ησ ∈
∧dim σ

TZ(σ),

and these orientations define classes [σ] ∈ Γ(X, Δ− dim σ
X ) supported on σ for all σ ∈ Σ.

The tropically rational function ϕ defines a morphism Z|D| → DivX , and, by definition, 
the first Chern class c1(L (D)) ∈ H1,1

|D|(X) is the composite of this morphism with 
the composite DivX → AffX [1] → Ω1

X [1], where the first morphism comes from the 
exact sequence (5.2). These are morphisms in the derived category D(ZX) that are not 
represented by morphisms between the complexes involved. To remedy this, we note that 
the exact sequence (5.2) yields an isomorphism between DivX and the complex

. . . → 0 → AffX → M X → 0 → . . . ,
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where M X sits in degree 0, and that the short exact sequence

0 → ZU → ZX → Z|D| → 0 ,

where U = X \ |D|, yields an isomorphism between Z|D| and the complex

. . . → 0 → ZU → ZX → 0 → . . . ,

where ZX sits in degree 0. The first Chern class c1(L (D)) is then represented by the 
diagram

ZX M X 0 0

ZU AffX AffX Ω1
X ,

·ϕ

·ϕ − id

where each column represents an element in D(ZX) and the minus sign in the middle 
morphism in the lower row is there by convention. Tensoring with Ωi−1

X [i − 1] from 
the right and composing with the multiplication morphism Ωi−1

X ⊗Z Ω1
X → Ωi

X , and 
the morphism Ωi

X [i] → Δ•
X representing cycX(A), we see that cyc(A) � c1(L (D)) is 

represented by the morphism ((Ωi−1
X )U → Ωi−1

X )) → Δ•
X , where the former complex sits 

in degrees −i and −(i − 1), that is given by

(Ωi−1
X )U → Δ−i

X : ω �→ −
∑

σ∈Σ(i)

〈d(ϕ|σ) ∧ ω|σ, ησ〉A(σ)[σ] ,

in degree −i and 0 in every other degree. The morphism in degree −i extends to a 
morphism Ωi−1

X → Δ−i
X , defining a chain homotopy between the morphism of cochain 

complexes just defined, and the morphism that is given by

Ωi−1
X → Δ−(i−1)

X : ω �→ ∂

⎛⎝ ∑
σ∈Σ(i)

〈d(ϕ|σ) ∧ ω, ησ〉A(σ)[σ]

⎞⎠
in degree −(i − 1) and is 0 in all other degrees. To simplify the expression on degree 
−(i − 1) we pick for every finite codimension-1 face τ of a cone σ ∈ Σ(i) a lattice 
normal vector nσ/τ , and we set εσ/τ equal to 1 if the chosen orientations on σ and τ are 
compatible, and to −1 otherwise. Recall that this means that

εσ/τ ησ = ητ ∧ nσ/τ .

We now compute that
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∂

⎛⎝ ∑
σ∈Σ(i)

〈d(ϕ|σ) ∧ ω, ησ〉A(σ)[σ]

⎞⎠ =

=
∑

τ∈Σ(i−1)

∑
σ∈Στ (i)

〈d(ϕ|σ) ∧ ω, εσ/τ ητ ∧ nσ/τ 〉A(σ)εσ/τ [τ ] =

∑
τ∈Σ(i−1)

∑
σ∈Στ (i)

〈ω ∧ d(ϕ|σ), nσ/τ ∧ ητ 〉A(σ)[τ ] ,

where Στ (i) denotes the set of cells σ ∈ Σ(i) that have τ as a finite face. Note that we 
only need to consider finite faces because if ω is defined at a point of an infinite face of 
σ, then 〈d(ϕ|σ) ∧ ω, ησ〉 = 0. Let lτ be an affine linear function on a neighborhood of |Σ|
such that lτ |τ = ϕ|τ . Then we can rewrite the coefficient of [τ ] in the expression above 
as

∑
σ∈Στ (i)

(〈
ω ∧ (d(ϕ|σ) − dlτ ), nσ/τ ∧ ητ

〉
A(σ) +

〈
ω ∧ dlτ , nσ/τ ∧ ητ

〉
A(σ)

)
=

=
∑

σ∈Στ (i)

〈
ω, ητ

〉
·
〈
(d(ϕ|σ) − dlτ ), nσ/τ

〉
A(σ)+

+
〈

ω ∧ dlτ ,

⎛⎝ ∑
σ∈Στ (i)

A(σ)nσ/τ

⎞⎠ ∧ ητ

〉
.

By the balancing condition and the fact that 
∧i

TZ(τ) = 0, the second summand of the 
last expression vanishes and we see that the coefficient of [τ ] is given by

〈ω, ητ 〉

⎛⎝ ∑
σ∈Στ (i)

〈
(d(ϕ|σ) − dlτ ), nσ/τ

〉
A(σ)

⎞⎠ .

But this is precisely the coefficient of [τ ] one gets in cycX(D ·A) (compare the coefficient 
with the weights of D · A described in §3.4), finishing the proof. �
5.7. Compatibility with the singular cycle class map

Let X be a locally polyhedral space, equipped with a face structure Σ whose cells are 
compact, and let A ∈ Zk(X) be a tropical k-cycle on X. There exists a face structure Σ′

on |A| such that every cell of Σ′ is contained in a cell of Σ. For each σ ∈ Σ′(k) we choose 
an orientation ησ ∈

∧k
TZ(σ), which give rise to chains [σ] ∈ Γ(X, Δ−k

X ) supported on 
σ via cellular homology. The locally finite cycle class of A, as considered in [22, Section 
4] (also see [32, Section 4]) is defined as

cyclf
X (A) =

∑
′

A(σ) · [σ] ⊗ ησ ,

σ∈Σ (k)
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where [σ] ⊗ ησ is the locally finite tropical (k, k)-chain defined by [σ] and ησ, and A(σ)
is the constant value that A has on σ. Since any two face structures have a common 
refinement, this is independent of the choice of Σ′ and defines a morphism

cyclf
X : Zk(X) → H lf

k,k,(X; Σ) .

Theorem 5.13. Let X be a rational polyhedral space, equipped with a face structure Σ
with compact cells. Then the natural isomorphism (Theorem 4.20)

H lf
k,k(X; Σ)

∼=−→ HBM
k,k (X)

is compatible with the two tropical cycle class maps. In other words, the diagram

Zk(X)

H lf
k,k(X; Σ) HBM

k,k (X)

cyclf
X cycX

∼=

is commutative.

Proof. Let A ∈ Zk(X), and let Σ′ be a face structure on |A| whose cells are contained in 
cells of Σ. Choose orientations ησ ∈

∧k
TZ(σ) for all σ ∈ Σ′, and let [σ] ∈ Γ(X, Δ−k

X ) be 
the chain supported on σ obtained from ησ via cellular homology. Using the face structure 
Σ′, the morphism cycX(A) : Ωk

X [k] → DX in D(ZX) can actually be represented as a 
morphism of complexes Ωk

X [k] → ΔΣ,•
X , namely as the morphism whose component in 

degree −k is given by

Ωn
X [k] � ω �→

∑
σ∈Σ′(k)

A(σ) · 〈ω, ησ〉[σ] ∈ ΔΣ,−k
X .

This corresponds to the locally finite tropical (k, k)-chain

∑
σ∈Σ′(k)

A(σ) · [σ] ⊗ ησ ∈ Clf
k,k(X; Σ)

under the isomorphism Hom(Ωk
X , ΔΣ,−k

X ) ∼= Clf
k,k(X; Σ) used in the proof of Theo-

rem 4.20. Noting that this tropical chain represents cycX(A) by definition finishes the 
proof. �
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6. Poincaré-Verdier duality

In this section we study when a rational polyhedral space satisfies Poincaré-Verdier 
duality. Our goal is to prove that this is the case if and only if they are smooth in the 
sense of [4,1]. Note that the most commonly used example of smoothness for rational 
polyhedral spaces in the literature is being locally matroidal. By the results of [22], 
locally matroidal rational polyhedral spaces are smooth in the sense of [4,1].

6.1. Smoothness

Let X be a rational polyhedral space of dimension n. We say that X admits a funda-
mental class if it is pure-dimensional and the constant function with value 1 defines an 
element [X] ∈ Zn(X). By the definition of balancing, if X admits a fundamental class, 
then the same is true for the local cones LCx(X) for all x ∈ X.

We say that X is regular at infinity if every point of X has a neighborhood isomorphic 
to an open subset of |F | ×Tn for some fan F and some n ∈ Z. This notion is equivalent 
to the one introduced in [32].

Following [22], we say that an n-dimensional rational polyhedral space X admitting 
a fundamental class satisfies Poincaré duality if for all p, q ∈ Z the morphism

Hp,q(X) → HBM
n−p,n−q(X), α �→ [X] � α

is an isomorphism.
Following [4] and [1] we make the following definition.

Definition 6.1. Let X be a rational polyhedral space. We say that X is smooth if it is 
regular at infinity, admits a fundamental class, and LCx X satisfies Poincaré duality for 
all x ∈ X.

Remark 6.2.

a) If Σ is a fan, then a local cone LCx |Σ| only depends on the unique cone σ of Σ
containing x in its relative interior. It coincides with what is sometimes called the 
star of Σ at σ. Aksnes follows this convention on stars in [1] and it follows that 
Definition 6.1 agrees with the definition of what Aksnes calls “local Poincaré duality 
space” as that condition is precisely that all stars of a fan should satisfy Poincaré 
duality. Amini and Piquerez [4] use the same condition, namely that all stars should 
satisfy Poincaré duality, for what they call “smooth” fans, but they use the other 
common convention on stars: for them, the star of Σ at σ is the image of LCx |Σ| in 
the quotient Span |Σ|/ Span σ (where we still assume x ∈ relint(σ)). As Aksnes has 
pointed out [1, page 24], the Künneth formula (Theorem 4.16) implies that a fan, 
and hence any rational polyhedral space, is a “Poincaré duality space” in the sense 
of Aksnes if and only if it is “smooth” in the sense of Amini-Piquerez.
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b) While we follow Amini-Piquerez in their usage of the adjective “smooth”, tropically 
smooth spaces are analogous to classical smooth spaces only in that they locally 
satisfy Poincaré duality. Classically, there is the much larger class of orientable ho-
mology manifolds that also satisfy Poincaré duality locally but are not considered 
smooth. Prior to the work of Amini–Piquerez and Aksnes, the adjective “smooth” 
had been reserved for tropical manifolds, which are connected rational polyhedral 
spaces that are regular at infinity and whose local cones are Bergman fans of ma-
troids [35,32]. It was shown in [22] that tropical manifolds are smooth in the sense 
of Definition 6.1.

Lemma 6.3. Let X be a rational polyhedral space. If X is smooth, then so is LCx X for 
all x ∈ X. In particular X is smooth if an only if it is pure-dimensional and every 
point of X is isomorphic to an open subset of F ×Tn for some smooth fan F and some 
nonnegative integer n.

Proof. For every y ∈ LCx X there exists z ∈ X close to x with LCz X = LCy(LCx X). 
Therefore, smoothness of X implies smoothness of LCx X.

The “in particular” statement follows from the fact that X is regular at infinity if and 
only if every x ∈ X has a neighborhood isomorphic to an open subset of LCx X × Tn

for some nonnegative integer n. �
6.2. Poincaré-Verdier duality

We now study the Verdier dual of the sheaf of tropical p-forms on a smooth rational 
polyhedral space X. Recall that, for any complex C • ∈ D(ZX), its Verdier dual is defined 
as

D(C •) := R Hom •(C •,DX) .

It is immediate from this definition that D(ZX) = DX . What is less obvious is that for 
a constructible complex C • ∈ D(ZX) there is a natural isomorphism D(D(C •)) ∼= C •, 
justifying the terminology “dual”.

If X is purely n-dimensional and admits a fundamental class, then there is a duality 
morphism

δp : Ωn−p
X [n] → D(Ωp

X)

defined as the composite

Ωn−p
X [n] → Hom (Ωp

X , Ωn
X [n]) → R Hom •(Ωp

X , Ωn
X [n]) → R Hom •(Ωp

X ,DX) = D(Ωp
X) ,

where the last morphism is the composition with the morphism Ωn
X [n] [X]−−→ DX given by 

the fundamental class.
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Definition 6.4. We say that a rational polyhedral space X admitting a fundamental 
class satisfies Poincaré-Verdier duality if for all p ∈ N the duality morphism δp is an 
isomorphism.

Note that δp being an isomorphism, and hence satisfying Poincaré-Verdier duality, is 
a local condition.

Lemma 6.5. Let X be an n-dimensional rational polyhedral space admitting a fundamental 
class and satisfying Poincaré-Verdier duality. Furthermore, let Φ be a family of supports 
on an open subset U ⊆ X. Then for all p, q ∈ Z, the cap product with the fundamental 
class [U ] of U induces an isomorphism

Hn−p,n−q
Φ (U) = [U ]	(−)−−−−−→ HΦ

p,q(U) .

Proof. Since satisfying Poincaré-Verdier duality is a local condition, U satisfies Poincaré-
Verdier duality and we may assume U = X. Applying hypercohomolgy with supports is 
functorial, so X satisfying Poincaré-Verdier duality implies that δp induces isomorphisms 
on hypercohomology. Applying hypercohomolgy with supports in Φ in degree −q to δp

we thus obtain an isomorphism

Hn−p,n−q
Φ (X) = H−q

Φ (Ωn−p
X [n])

H−q
Φ (δp|X )−−−−−−−→ H

−q
Φ (D(Ωp

X)) = HΦ
p,q(X) .

By definition of δp, this is precisely the cap product with the fundamental class [X]. �
Proposition 6.6. Let X be an n-dimensional rational polyhedral space admitting a funda-
mental class. Then the following are equivalent:

a) X satisfies Poincaré-Verdier duality.
b) Every open subset of X satisfies Poincaré duality.
c) Every point of X has a neighborhood basis of open subsets satisfying Poincaré duality.

Proof. That a) implies b) is precisely the content of Lemma 6.5 when one takes as 
the family of supports all closes subsets. Clearly, b) implies c). Now assume c) holds, 
let x ∈ X, and let U be a neighborhood basis for x consisting of open subsets of X

satisfying Poincaré duality. As observed above, the morphism

H−q(Ωn−p
X [n]|U ) → H−q(D(Ωp

X)|U )

induced by δp is given by the cap product with the fundamental class, and therefore is 
an isomorphism for all U ∈ U by assumption. It follows that the morphism

H −q(Ωn−p
X [n])x = lim−−→ H−q(Ωn−p

X [n]|U ) → lim−−→ H−q(D(Ωp
X)|U ) = H −q(D(Ωp

X))x

U∈U U∈U
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induced by δp is an isomorphism. Since x, p, and q were arbitrary, this implies that all 
duality morphisms are isomorphisms, implying a). �
Theorem 6.7. Let X be an n-dimensional rational polyhedral space that is regular at 
infinity and admits a fundamental class. Then X satisfies Poincaré-Verdier duality if 
and only if X is smooth.

Proof. Let x ∈ X. By Proposition 6.6 it suffices to show that LCx X satisfies Poincaré 
duality if any only if x has a neighborhood basis consisting of open sets satisfying Poincaré 
duality. We first prove this in the case where X = L × Tk for some fan L and k ∈ Z≥0, 
and x is the unique point of {0} × {∞}k. In this case, X satisfies Poincaré duality if and 
only if L = LCx X satisfies Poincaré duality by [22, Lemma 5.8]. It is left to show that 
there exist sufficiently many neighborhoods of x in X that satisfy Poincaré duality. While 
x does not have enough neighborhoods that are isomorphic to X as rational polyhedral 
spaces, it is easy to construct neighborhoods V of x that are homeomorphic to X in a 
way respecting any fan structure of L, and this is enough to conclude that V satisfies 
Poincaré duality if and only if X does. We now provide the details of this argument: the 
point x has a neighborhood basis consisting of sets of the form

(U ∩ L) × (α, ∞]k ,

for sufficiently small balls U in TxX and sufficiently large α ∈ R. Let V be such a 
neighborhood. There exists a homeomorphism

f1 : L → U ∩ L

such that f1(v) is a positive multiple of v for all v ∈ L and a strictly increasing homeo-
morphism f2 : T → (α, ∞]. Let f = f1 × fk

2 : X → V be the induced homeomorphism. 
By construction, the homeomorphism f maps each stratum of X into itself. Therefore, 
for each p ∈ Z≥0 the sheaves f−1Ωp

V and Ωp
X have isomorphic stalks. Since both sheaves 

are locally constant on the strata of X and these locally constant sheaves are glued iden-
tically, they are in fact isomorphic. As f is a homeomorphism we also have f−1DV = DX

and f induces isomorphisms

f−1 : Hp,q(V )
∼=−→ Hp,q(X) , and

f−1 : HBM
p,q (V )

∼=−→ HBM
p,q (X) .

If either V or X satisfies Poincaré duality, then HBM
n,n (V ) = HBM

n,n (X) = Z. Therefore, 
f−1[V ] = ±[X], which in turn implies that f−1δV

p = ±f−1δX
p . We conclude that V

satisfies Poincaré duality if and only if X satisfies Poincaré duality. As already explained, 
this happens if and only if L = LCx X satisfies Poincaré duality.
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If X is a general polyhedral space, then x has a neighborhood isomorphic to LCx X ×
Tk for some k ∈ Z≥0 in a way that x corresponds to the unique point of {0} × {∞}k. 
The assertion is thus reduced to the case treated above. �
Corollary 6.8. Let X be a smooth n-dimensional rational polyhedral space. Then there is 
a natural isomorphism DX

∼= Ωn
X [n].

Proof. The dualizing complex DX is canonically isomorphic to D(ZX). Since ZX = Ω0
X , 

we obtain

DX = D(ZX) = D(Ω0
X) ∼= Ωn

X [n]

by applying Theorem 6.7. �
Another immediate consequence of Theorem 6.7 is that smooth rational polyhedral 

spaces satisfy Poincaré duality with respect to arbitrary families of supports. As already 
mentioned in the introduction, for compact and closed supports this has also been proved 
in [4,1] building on the Mayer-Vietoris argument given for tropical manifolds in [22]. To 
apply the result in practice, one first needs to show that the rational polyhedral space X
in question is smooth. For this one can use [22], where it is proved that tropical manifolds 
are smooth, or the results of [4] about shellable fans.

Corollary 6.9. Let X be a smooth rational polyhedral space of dimension n. Then for 
every p, q ∈ Z and every family of supports Φ the morphism

Hn−p,n−q
Φ (X) → HΦ

p,q(X), α �→ [X] � α

is an isomorphism.

Proof. This follows directly from Lemma 6.5 and Theorem 6.7. �
Data availability

No data was used for the research described in the article.

Appendix A. Complexes of singular chains on CS sets

The goal of this appendix is to construct an explicit complex ΔS ,•
X quasi-isomorphic 

to DX on a rational polyhedral space X such that

Hom•(Ωp
X , ΔS ,•

X ) = R Hom•(Ωp
X , ΔS ,•

X )

for all p ∈ N. To prove this result, we generalize it to a result about constructible 
sheaves on conically stratified spaces, which are well-studied in the context of intersection 
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cohomology. We refer to [6] for an early definition of conically stratified spaces and the 
classical study of their intersection cohomology (which is sheaf theoretic), and to [13] for 
a treatment with a focus on singular intersection homology, which is particular relevant 
in this appendix.

Definition A.1 (see [13, Definition 2.2.16]). Let X be a topological space. A stratification
of X is a collection S of disjoint locally closed subsets of X such that X =

⋃
S∈S S, 

each S ∈ S is a pure-dimensional topological manifold, and such that for every S ∈ S

the closure S is a union of strata of dimension less than dim(S).

Next we recall the definition of conically stratified spaces. If L is a stratified space, we 
will use the notation ̊c(L) for the open cone over L, that for the space (T×L)/({∞} ×L). 
The open cone ̊c(L) has an induced stratification, with the cone point being the unique 
0-dimensional stratum, and all other strata being of the form R ×S, where S is a stratum 
of L.

Definition A.2 (see [13, Definition 2.3.1]). Let X be a topological space, equipped with 
a stratification S . We say that X is conically stratified, or a CS set for short, if for all 
S ∈ S and x ∈ S there exist a neighborhood U of x in S, a neighborhood V of x in 
X, and a compact stratified space L such that V is homeomorphic to U × c̊(L) in a way 
respecting the stratification.

Definition A.3. We say that a stratification S of a topological space X is admissible, if 
the stratified space (X, S ) is conically stratified and for every stratum S ∈ S the pair 
(S, S) is homeomorphic to a pair (U, D̊n), where D̊n is the open unit disc in Rn and U
is an open subset of the closed unit disc Dn that contains D̊n.

Example A.4. If X is a rational polyhedral space with a face structure Σ, then the relative 
interiors of the polyhedra in Σ stratify X, and this stratification is admissible.

Let X be a topological space equipped with a stratification S . Exactly as for face 
structures (see §4.7), we say that a singular simplex σ : Δq → X (where Δq denotes 
the standard q-simplex) respects the stratification S if the relative interior of any face 
of Δq is mapped into a stratum of S . For every open set U ⊆ X and i ∈ Z we 
denote by Ci(U ; S ) the free abelian group on all singular i-simplices in U respecting 
the stratification S . Since faces of simplices respecting the stratification respect the 
stratification again, we obtain a chain complex C•(U, S ), and a quotient

C•(X, U ; S ) = C•(X; S )/C•(U ; S ) (A.1)

of relative chains that respect the stratification. We denote the i-th homology of these 
complexes by
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Hi(U ; S ) = Hi(C•(U ; S )) , and

Hi(X, U ; S ) = Hi(C•(X, U ; S )) .

For every k we denote by ΔS ,−k
X the sheafification of the presheaf U �→ Ck(X, X \U ; S ). 

The differentials on the complexes of relative chains that respect the stratification induce 
a differential that makes ΔS ,•

X a cochain complex. By definition, ΔS ,•
X is a subcomplex 

of Δ•
X .

Proposition A.5. Let X be a conically stratified space with stratification S . Then the 
inclusion map

ΔS ,•
X → Δ•

X

is a quasi-isomorphism.

Proof. For the purpose of this proof we will denote

Hstrat
∗ (X) = H∗(X; S )

for a conically stratified space X with stratification S .
We need to show that H−i(ΔS ,•

X ) → H−i(Δ•
X) is an isomorphism of sheaves for 

all i ∈ Z. At a point x ∈ X, the stalks of these sheaves are Hi(X, X \ {x}; S ) and 
Hi(X, X \ {x}), respectively, so using the long exact sequence for relative homology and 
the five lemma, it suffices to show that the natural morphisms

Hstrat
∗ (U) → H∗(U)

are isomorphisms for all open subsets U ⊆ X. This follows from [13, Theorem 5.1.4] once 
we show that the four hypothesis of the theorem are satisfied.

(1) Since the barycentric subdivision restricts to an equivalence of complexes C•(X; S )
→ C•(X; S ), there are compatible Mayer-Vietoris sequences for Hstrat

∗ and H∗.
(2) If {Uα} is an increasing collection of open subsets of a CS set X such that

Hstrat
∗ (Uα) → H∗(Uα)

is an isomorphism for each α, then

Hstrat
∗

(⋃
α

Uα

)
→ H∗

(⋃
α

Uα

)

is also an isomorphism because
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Hstrat
∗

(⋃
α

Uα

)
∼= lim−−→

α

Hstrat
∗ (Uα) and

H∗

(⋃
α

Uα

)
∼= lim−−→

α

H∗(Uα) .

(3) The statement is true if X is a point. It is also true if X is homeomorphic to Rn×c̊(L)
in a way respecting the stratification for some n ∈ N and some CS set L, because 
in this case X can be contracted to a point in a way that respects the stratification, 
reducing to the case where X is a point.

(4) If X only has a single stratum, then Cstrat
• (X) = C•(X) and therefore the statement 

is true for X. �
The following Proposition is inspired by [12, Proposition 3.7].

Proposition A.6. Let X be a conically stratified space with stratification S , and let U ⊆
X be an open subset. Then the inclusion

ΔU∩S ,•
U → ΔS ,•

X |U ,

where U ∩ S is the induced stratification on U , is an equivalence of complexes

Proof. For every open subset V ⊆ U with V ⊆ U the inclusion

C•(U, U \ V ; S ) → C•(X, X \ V ; S )

is an equivalence by the excision theorem (see [19, Section 2.1]). To show that this stays 
an equivalence when sheafifying, we need to make sure that the homotopy inverses are 
compatible with restrictions. Let S : C•(X; S ) → C•(X; S ) be the barycentric subdivi-
sion (see [19, Section 2.1]) and let T : id ⇒ S be a (functorial) chain homotopy between 
the identity and S. We use T to define a new chain homotopy TU whose action on 
singular n-simplices is given by

TU σ =
{

0, if σ(Δn) ⊆ U,

Tσ, else.

By the functoriality of T , this induces morphisms

Ck(X, X \ V ; S ) → Ck+1(X, X \ V ; S )

for all k ∈ N and open subsets V ⊆ X, which are compatible with restrictions. Therefore, 
they induce morphism ΔS ,k

X → ΔS ,k−1
X of sheaves for all k ∈ Z, whose restrictions to 

U we denote by ψk : ΔS ,k
X |U → ΔS ,k−1

X |U . Let f = id −(dψ + ψd). We claim that the 



634 A. Gross, F. Shokrieh / Journal of Algebra 635 (2023) 577–641
sequence (f i)i of powers of f converges to a morphism f∞ in the sense that for every 
section s ∈ Γ(V, ΔS ,k

X ), where V ⊆ U is open, there exists a covering V =
⋃

λ Vλ such 
that the sequence f i(s)|Vλ

converges to f∞(s)|Vλ
in the discrete topology on Γ(Vλ, ΔS ,k

X )
(that is the sequence is eventually constant). As the open subsets V ⊂ U with V ⊆ U

form a basis for the topology of U , it suffices to show that the sequence (f i(s))i is 
eventually constant for every s ∈ C−k(X, X \ V ; S ) for such an open subset V of U . By 
linearity, we may even assume that s is represented by a single singular (−k)-simplex σ. 
We have

f(σ) = σ − (∂ψ + ψ∂)σ = σ − (∂T + T∂)σ + (∂(T − TU ) + (T − TU )∂)σ =

= S(σ) + (∂(T − TU ) + (T − TU )∂)σ .

Note that for any singular j-simplex δ we have

(T − TU )(δ) =
{

Tδ, if δ(Δj) ⊆ U

0, else.

In particular, (T − TU )c is a linear combination of simplices contained in U for every 
chain c. Therefore, f(σ) −Sσ is represented by a linear combination of singular simplices 
that are contained in U . As f is the identity on simplices that are contained in U , we 
see inductively that f i(σ) − Siσ is represented by a linear combination of simplices that 
are contained in U for all i ∈ N. Since we assumed that V ⊂ U , the space X is the 
union of U and X \ V . Thus, for i large enough the chain Siσ will be represented by a 
linear combination of simplices that are either contained in U or in X \ V . The latter 
are 0 in C−k(X, X \ V ; S ), so f i(σ) is represented by a linear combination of simplices 
that are contained in U . It follows immediately that the sequence (f i(σ))i is eventually 
constant, and we conclude that f∞ is well-defined. It also follows that f∞(σ) is contained 
in C−k(U, U \V ; S ). This shows that f∞ maps into the subcomplex ΔU∩S ,•

U of ΔS ,•
X |U .

It is clear from the definitions that f∞ respects the differentials, so we have con-
structed a morphism ΔS ,•

X |U → ΔU∩S ,•
U . If ι : ΔU∩S ,•

U → ΔS ,•
X |U denotes the inclusion, 

then f∞ ◦ι = id by construction. The construction of f∞ also provides a chain homotopy 
id ⇒ ι ◦ f∞, namely the limit

∞∑
i=0

ψf i .

This converges in the same sense as before, because once f i(s) in ΔU∩S ,•
U we have 

ψ(f i(s)) = 0 by definition. We conclude that ι is an equivalence of complexes. �
Proposition A.7. Let X be a conically stratified space with stratification S , and let A ⊂ X

be a locally closed subset of X that is a union of strata. Then the morphism
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Hom•(ZA, ΔS ,•
X ) → R Hom•(ZA,DX)

that is induced by the inclusion ΔS ,•
X → Δ•

X and the natural identification Δ•
X

∼= DX , 
is an isomorphism in D(Z).

In particular, the natural morphism

Hom •(ZA, ΔS ,•
X ) → R Hom •(ZA,DX)

is an isomorphism in D(ZX).

Proof. By Proposition A.5, we need to show that if ΔS ,•
X → I • is an injective resolution, 

then the induced morphism

Hom•(ZA, ΔS ,•
X ) → Hom•(ZA, I •)

is a quasi-isomorphism. Let U ⊆ X be an open subset such that A is closed in U . Then 
the morphism above is a quasi-isomorphism if and only if the morphism

Hom•(ZA, ΔS ,•
X |U ) → Hom•(ZA, I •|U )

is a quasi-isomorphism. Since the natural morphism ΔU∩S ,•
U → ΔS ,•

X |U is a chain equiv-
alence by A.6, the induced morphism

Hom•(ZA, ΔU∩S ,•
U ) → Hom•(ZA, ΔS ,•

X |U )

is a quasi-isomorphism as well, so it suffices to show that the morphism

Hom•(ZA, ΔU∩S ,•
U ) → Hom•(ZA, I •|U )

that is induced by the composite ΔU∩S ,•
U → ΔS ,•

X |U → I •|U is a quasi-isomorphism. As 
this composite is an injective resolution of ΔU∩S ,•

U we may replace X by U and assume 
that A is closed in X.

Let i : A → X be the inclusion. Since i! is right-adjoint to i∗, it suffices to show that 
the morphism

ΓA(X, ΔS ,•
X ) = Hom•

(
ZA, i!

(
ΔS ,•

X

))
→ Hom• (

ZA, i!I •)
= Γ(A, i!I •)

is a quasi-isomorphism. The natural morphism ΔA∩S ,•
A → i!(ΔS ,•

X ) defined by push-
forwards of chains along i defines an isomorphism

Γ(A, ΔA∩S ,•
A ) ∼= ΓA(X, ΔS ,•

X )

on global sections because both sides are the chain complexes of locally finite chains in 
A that respect the stratification. It thus suffices to show that the morphism
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Γ(A, ΔA∩S ,•
A ) → Γ(A, i!I •) (A.2)

induced by the composite ΔA∩S ,•
A → i!ΔS ,•

X → i!I • is a quasi-isomorphism. By con-
struction, there is a commutative diagram

ΔA∩S ,•
A i!I •

DA i!DX

∼= ∼=

in D(ZA) whose vertical arrows are isomorphism. Since we defined the upper horizontal 
morphism via the push-forward of singular cycles, which is, of course, compatible with the 
trace morphisms, the lower horizontal morphism is the natural isomorphism DA

∼= i!DX . 
We conclude that the upper horizontal morphism is an isomorphism in D(ZA) as well. 
Because i! is the right-adjoint of the exact functor i∗, the upper horizontal morphism in 
the diagram is in fact an injective resolution. That the morphism displayed in (A.2) is 
a quasi-isomorphism now follows from the fact that ΔA∩S ,•

A is homotopically fine and 
from [9, IV Theorem 2.2], finishing the proof of the main statement.

For the “in particular” statement we note that

Hom•(ZU∩A, ΔU∩S ,•
U ) → R Hom•(ZU∩A,DU )

is a quasi-isomorphism for every open subset U ⊆ X by the main statement. Together 
with Proposition A.6 we see that

Hom•(ZA|U , ΔS ,•
X |U ) → R Hom•(ZA|U ,DX |U )

is a quasi-isomorphism for all open subsets U of X, which directly implies the claim. �
Lemma A.8. Let Y be a subset of the closed unit disc Dn ⊆ Rn such that its intersection 
Z = Y ∩ D̊n with the open unit disc D̊n is nonempty and connected. Furthermore, let F
be sheaf of abelian groups on Dn such that the restriction F |D̊n is constant. Then the 
restriction maps

Hom(F |D̊n ,ZD̊n) → Hom(F |Z ,ZZ) , and

Hom(F |Y ,ZY ) → Hom(F |Z ,ZZ)

are isomorphisms.

Proof. The fact that

Hom(F |D̊n ,ZD̊n) → Hom(F |Z ,ZZ)
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is an isomorphism follows immediately from the fact that F |D̊n is constant and Z is 
connected. For the second map we consider the short exact sequence

0 → FZ → FY → FY \Z → 0

of sheaves on Y . Applying Hom(−, ZY ) we obtain an exact sequence

0 → Hom(FY \Z ,ZY ) → Hom(FY ,ZY ) → Hom(FZ ,ZY ) → Ext1(FY \Z ,ZY ) .

As ZY does not have any sections supported on a proper closed subset of Y , we have

Hom(FY \Z ,ZY ) = 0 .

Furthermore, there is a natural isomorphism

Hom(FZ ,ZY ) ∼= Hom(F |Z ,ZZ) .

We conclude that the restriction

Hom(F |Y ,ZY ) → Hom(F |Z ,ZZ)

is injective. To show that it is surjective as well we consider the commutative square

Hom(F ,ZDn) Hom(F |D̊n ,ZD̊n)

Hom(F |Y ,ZY ) Hom(F |Z ,ZZ) .

∼=

From the discussion above we know that the vertical arrow on the right is an isomor-
phism, and that the horizontal arrows are injective (set Y = Dn in the discussion above 
for the top arrow). So, to finish the proof, it suffices to show that the top horizontal 
arrow is surjective. In other words, it suffices to prove the result for Y = Dn, that is to 
show the surjectivity of

Hom(F ,ZDn) → Hom(F |D̊n ,ZD̊n) .

In the exact sequence from above we can see that this map is surjective if and only if 
Ext1(FSn−1 , ZDn) = 0, where Sn−1 = Dn \ D̊n. Let i : Sn−1 → Dn be the inclusion. By 
Verdier duality for i we see that

Ext1(FSn−1 ,ZDn) = Ext1(F |Sn−1 , i!ZDn) .

For k ∈ N, the k-th cohomology sheaf Hk(i!ZDn) is the restriction to Sn−1 of the sheaf 
associated to the presheaf
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U → Hk(U, U ∩ D̊n)

on Dn (cf. [18, pp. 14-15] for a closely related example). As the pair (Dn, D̊n) is locally 
homeomorphic to the pair given by an open half-space in Rn and its closure, these sheaves 
are all zero and hence i!ZDn = 0, finishing the proof. �
Proposition A.9. Let X be a conically stratified space with an admissible stratification 
S , and let F be a sheaf of abelian groups on X such that F |S is locally free of finite 
rank for every stratum S ∈ S . Then the natural morphism

Hom •(F , ΔS
X ) → R Hom •(F ,DX)

is an isomorphism in D(ZX). In particular, the natural morphism

Hom•(F , ΔS
X ) → R Hom•(F ,DX)

is an isomorphism in D(Z).

Proof. The statement is local on X, so we may assume that the stratification S is finite. 
We do induction on the number of strata on which F is nontrivial. If this number is 0, 
then F = 0 and the statement is trivial. So let us assume there is a stratum on which F
is nontrivial, and let S ∈ S be maximal with that property. The stratum S is an open 
subset of the support supp(F ), so if A = supp(F ) \ S we obtain an exact sequence

0 → FS → F → FA → 0 .

We can use this to obtain a commutative diagram

Hom •(FA, ΔS
X ) Hom •(F , ΔS

X ) Hom •(FS , ΔS
X )

R Hom •(FA, ΔS
X ) R Hom •(F , ΔS

X ) R Hom •(FS , ΔS
X )

where the lower row is an exact triangle. Note that the vertical arrow on the left is 
an isomorphism by the induction hypothesis. Since FS is locally free and S is simply 
connected, the sheaf FS is isomorphic to a finite sum of several copies of ZS. So by 
Proposition A.7, the right arrow is an isomorphism as well. If we can show that the 
morphisms of complexes in the upper row of the diagram defines a short exact sequence 
in every degree, the statement follows from the five lemma. We recall from the proof of 
Theorem 4.20 that for every i ∈ Z there is an isomorphism

ΔS ,−i
X

∼=
⊕

Zσ(Δi) ,

σ
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where the direct sum is over all singular i-simplices σ : Δi → X respecting the stratifi-
cation. Consequentially, for every sheaf of Abelian groups G that is locally free of finite 
rank when restricted to any stratum in S , we have

Hom (G , ΔS ,−i
X ) = Hom

(
G ,

⊕
σ

Zσ(Δi)

)
=

⊕
σ

Hom (G ,Zσ(Δi)) ,

where the last equality holds because G is constructible. If for a simplex σ appearing in 
the direct sum we denote by Tσ ∈ S the unique stratum into which the relative interior 
of Δi maps, there is an isomorphism

Hom (G ,Zσ(Δi)) ∼= (Hom(G |Tσ
,ZTσ

))σ(Δi)

induced by restricting sections by Lemma A.8. So, to finish the proof, it suffices to show 
that for every stratum T ∈ S the sequence

0 → Hom((FA)|T ,ZT ) → Hom(F |T ,ZT ) → Hom((FS)|T ,ZT ) → 0

is exact. If T = S, this is the case because the second morphism is an isomorphism and 
the first group is trivial, whereas if T �= S this is the case because the first morphism is 
an isomorphism and the last group is trivial.

For the “in particular” statement we apply RΓ to the isomorphism

Hom •(F , ΔS ,•
X ) → R Hom •(F ,DX)

and note that the natural morphism

Hom•(F , ΔS ,•
X ) = Γ(Hom •(F , ΔS ,•

X )) → RΓ Hom •(F , ΔS ,•
X )

is an isomorphism because ΔS ,•
X , and hence Hom •(F , ΔS ,•

X ), is homotopically fine [9, 
IV Theorem 2.2]. �
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