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1. Introduction
1.1. Background

Tropical (co)homology theory is a new tool to associate algebraic invariants to the
spaces appearing in tropical geometry. They were introduced in [20] where it was shown
that the tropical cohomology groups of tropical manifolds have a Hodge-theoretic inter-
pretation in algebraic geometry in case the tropical manifold arises as the tropicalization
of a smooth projective variety. As one would expect by analogy to the algebro-geometric
picture, tropical homology is also closely related to tropical intersection theory. In [32],
Mikhalkin and Zharkov introduced the tropical cycle class map on rational polyhedral
spaces equipped with a global face structure that assigns a class in tropical homology
to every tropical cycle. This map has been further studied in [37] in the case of tropical
surfaces, and in [22] with a special emphasis on methods that work in the locally finite
setting. An excellent introduction to the subject can be found in [7].

1.2. Our contributions

We introduce a sheaf-theoretic viewpoint on tropical homology, by expressing tropical
homology groups directly in terms of the sheaves Q% of tropical p-forms and the dualizing
complex D x. This will allow us to avoid the need to work with any stratification or global
face structure of the rational polyhedral space X. We also avoid any reference to locally
finite chains in a very similar way as this is avoided in the classical development of
Borel-Moore homology [8]. The basis for this is the following theorem:

Theorem A (= Theorem 4.20). Let X be a rational polyhedral space. Then there exists
a natural isomorphism

HYY,(X) 2 HUR Ao (%, Dx)

where Héfq(X) denotes the tropical homology groups defined in [22] via locally finite
tropical chains over Z and Dx denotes the dualizing complex on X.

Motivated by this, and in analogy to the classical theory, we denote

HPM(X) =H R o (94, Dx)
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and call it the (p, q)-th tropical Borel-Moore homology group. Replacing hypercohomol-
ogy by hypercohomology with supports, we also define compactly supported tropical
homology groups H, ,(X) and tropical homology groups H, ,(Z,X) supported on a
closed subset Z of X. These correspond to the most common support families, but we
remark that our construction allows to work with an arbitrary support family.

Remark. In [22], what we denote by HY/ (X) is denoted by HJ}M(X). By Theorem A,
this will not lead to conflicts with the existing literature.

Note also that the sheaves Q% agree, up to torsion, with the sheaves .Z% that are
usually used in the literature to define tropical cohomology. See Remark 2.8 for an
elaboration on the subtleties involved. We call the elements in Q% tropical p-forms
because they are represented by wedges of tropical 1-forms (as introduced in [31]).

Our sheaf-theoretic formulation of tropical homology makes it evident that the func-
torial behavior of tropical homology is completely determined by the functorial behavior
of tropical p-forms on the one hand, and dualizing complexes on the other. With this in
mind, the constructions of proper push-forwards, cross products, cup products, and cap
products in tropical homology are straightforward generalizations of the classical con-
structions, at least after we establish some general functorial properties of the sheaves of
tropical forms. Our point of view also sheds light on the identities that these operations
satisfy. For example, we obtain a tropical version of the Kiinneth Theorem:

Theorem B (= Theorem 4.106). Let X andY be compactifiable rational polyhedral spaces
with torsion-free homology groups. Then we have

HPM(X xY)= @ HEY(X) @z HM(Y)
i+j=p
k+l=q

and

Hyo(X xY)= @ Hix(X) ez HM(Y) .
pas

The compactifiability on X and Y is a mild condition; see Definition 4.15 for details.
Note that our Theorem 4.16 also deals with the torsion; we have omitted this here to
simplify the statement. Finally, note that Smacka proved a tropical Kiinneth Theorem
with real coefficients using superforms in [39].

Another advantage of a sheaf-theoretic view on tropical geometry is that sheaves
are very well-suited to pass from local to global considerations. We exploit this in our
definition of the tropical cycle class map, where we use the definition of [32] locally and
then utilize the sheaf property to glue. This has the advantage of avoiding the necessity
of dealing with global face structures or triangulations of the space, as one needs to in
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the definitions in [32,22]. Once the tropical cycle class map is defined, we prove that
it is a natural transformation in the sense that it satisfies the compatibility conditions
summarized in the following theorem:

Theorem C (= Corollary 5.8, Proposition 5.9, Proposition 5.12). The tropical cycle class
map commutes with proper push-forwards, cross products, and intersections with tropical
Cartier divisors.

Finally, we study Poincaré-Verdier duality on purely n-dimensional rational polyhe-
dral spaces that are regular at infinity (in the sense of [32]) and admit a fundamental
cycle; we say that X admits a fundamental cycle if and only if assigning weight 1 ev-
erywhere on X defines a tropical n-cycle. We will see that a fundamental cycle induces
morphisms

55(: Q% Pln] = 2(0%)

for every p € Z, where 2(0%) denotes the Verdier dual of Q% . We say that X satisfies
Poincaré-Verdier duality if 6{7( is an isomorphisms for every p € Z.

Theorem D (= Theorem 6.7, Corollary 6.9). Let X be an n-dimensional rational poly-
hedral space that is regular at infinity and admits a tropical fundamental class. Then X
satisfies Poincaré-Verdier duality if and only if every point x € X has a neighborhood
isomorphic to an open subset in F' x T™ for some n € N and a fan F that is smooth in
the sense of Amini—Piquerez and Aksnes. In particular, if X is smooth, p,q € N, and ®
is any family of supports, then there is a natural isomorphism

HYY(X) = HY (X), (1.1)

n—p,n—q

induced by the cap product with the fundamental class.

By the results of [22], tropical manifolds (in the sense of [35,32]) are smooth in the
sense of Amini—Piquerez and Aksnes. In the case where the family ® consists of either all
compact or all closed subsets of X, the isomorphism (1.1) has already established in [22]
(and in [23] for real coefficients) for tropical manifolds and in [4,1] for rational polyhedral
spaces that are smooth in the sense of Amini-Piquerez and Aksnes. The inclusion of
arbitrary support families is new. Note that Theorem D, together with the smoothness
of tropical manifolds proved in [22], implies that tropical manifolds satisfy Poincaré
duality with arbitrary systems of supports. In [39], Smacka proved, using superforms,
that 5]‘;( is an isomorphism on tropical manifolds if one considers real coefficients.

1.8. Sheaves and cosheaves on rational polyhedral spaces

Let us briefly discuss why we introduce a sheaf-theoretic approach to tropical homol-
ogy theory to complement the approach using cosheaves used previously in the literature.
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First, let us briefly recall some facts about tropical cohomology. The (p, ¢)-th tropical
cohomology group of a rational polyhedral space X can be defined as the cohomology
group H(X, Q%) (see [32]). This description clearly encapsulates the analogy to Dol-
beault cohomology, but also makes the tropical cohomology groups accessible to standard
sheaf-theoretic tools like Cech cohomology. Furthermore, the sheaves QOF are closely re-
lated to sheaves of superforms [25,10,17] in the sense that an appropriate complex of
superforms defines a soft resolution of Q% ®z R (see [23]). In particular, it is shown in
[23] that tropical cohomology groups with real coefficients can be interpreted as tropical
Dolbeault cohomology groups.

We have several techniques at our disposal to study the sheaves Q% of tropical p-forms.
Ideally, one could define tropical homology by taking homology groups with coefficients
in the dual sheaf of Q% . But, unfortunately, this does not yield the correct notion. As

a remedy, one takes a different approach to dualizing Q% and obtains a constructible

aX
'/P

the tropical homology groups H3%8(X) and HY (X), where for the latter one considers

locally finite chains. As shown in [32], there is an isomorphism H;f‘;g(X) = Hq(,?}f(),

cosheaf ﬁpX on X. Using suitable singular chains with coefficients in one obtains

where the latter group is the ¢-th cosheaf homology of ﬁzzf( .

It may seem like a natural principle that sheaves are used for cohomology while
cosheaves are used for homology. This is, however, not necessarily the case. First of all,
the appearance of sheaves, most notably local systems, as coefficients in homology is
ubiquitous [8,9]. Secondly, the homology theory of cosheaves does not allow to account
for different support families. For example, since H;i‘;g (X) is isomorphic to a homology

group of ﬁ;;x , one might expect Hzl)]fq(X ) to be isomorphic to a homology group of
ﬂ;{ with compact supports, but homology groups with compact supports are undefined

for cosheaves. Finally, the definitions of H3"8(X) and H}f (X) make use of the fact
that ﬁf is constructible and use a stratification of X. While the resulting homology
groups are independent of the chosen stratification, using a stratification in the definition
cannot be avoided. In particular, the definition of singular tropical homology groups does
not generalize to a homology theory for arbitrary cosheaves, whereas there are singular
homology groups with coefficients in any given sheaf [8,9].

As mentioned, our main objects of interest are the locally-finite tropical homology
groups Hlljffq(X ), since those are the target of the tropical cycle class map (for p = q).
As noted above, there is no notion of cosheaf homology that expresses Hzl){tq(X ) as a
cosheaf homology group. Therefore, one needs to work with locally-finite tropical chains.
Again as noted above, tropical chains are defined with respect to a suitable stratification
of the base space X. This makes it impossible to simply apply standard results from
algebraic topology, but one needs to be careful to always respect the stratification, as
for example in the development of singular intersection homology [15,13]. As the acyclic
model theorem does not apply to tropical homology groups either, proving identities like
the Kiinneth theorem for tropical homology gets quite involved, even for finite chains.
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1.4. Other related work

We are hopeful that our sheaf-theoretic approach to tropical homology can be applied
to spaces that are not necessarily rational polyhedral, but possibly have singularities
in their affine structures. The resulting notion is also strongly related to the invariants
of integral affine manifolds appearing in the context of mirror symmetry [16,34,33], as
recently shown in [42]. We also hope that our point of view on the tropical cycle class map
could provide a new perspective for the cycle class map on non-Archimedean spaces [26].
This is, in turn, closely related to the study of tropical and non-Archimedean analogues
of the Hodge conjecture [44,30,2,3]

1.5. Structure of the paper

In sections 2 and 3 we recall the definitions of the objects and operations needed in
the main part of the paper. We try to follow the literature [29,32,20,22,36,5,7] as closely
as possible, but will provide a new perspective on some things. Most notably, we deviate
from the literature in our definition of tropical p-forms in section 2, and our treatment
of tropical cycles in section 3 has an emphasis on working locally and highlighting their
functorial properties.

In section 4 we introduce tropical Borel-Moore homology and study its functorial
behavior. We define proper push-forwards, cross products, cup products, and cap prod-
ucts, and will prove Theorem B. Finally, we compare our theory with the on obtained
via locally finite tropical chains by proving Theorem A.

In section 5 we will define the tropical cycle class map and show that it is compat-
ible with proper push-forwards, cross-products, and intersections with Cartier divisors,
proving Theorem C. Furthermore, we show that our tropical cycle class map coincides
with the one introduced in [32,22] if we are given a (global) face structure.

Section 6 is devoted to prove Theorem D.

The main ingredients of our proof of Theorem A are of an entirely topological nature,
dealing mostly with certain sheaves of singular chains on conically stratified spaces. As
these results are of a very different flavor, and potentially of independent interest, we
decided to put them in Appendix A.

Acknowledgment. We would like to thank Philipp Jell, Amit Patel, Johannes Rau, and
Kris Shaw for helpful discussions and conversations. We also thank the anonymous referee
for encouraging us to include Theorem D. AG was supported by the ERC Starting Grant
MOTZETA (project 306610) of the European Research Council (PI: Johannes Nicaise)
during parts of this project. F'S was partially supported by the Danish National Research
Foundation through the Centre for Symmetry and Deformation (DNRF92) and by NSF
CAREER grant DMS-2044564.

Conventions. The natural numbers N include 0. All homology and cohomology groups
in this paper, whether classical or tropical, will be considered with integer coefficients.
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2. Rational polyhedral spaces and tropical forms

In this section we recall and further develop the notion of rational polyhedral spaces
and tropical p-forms. Varying incarnations of rational polyhedral spaces (for example,
the tropical varieties from [29]) have been fundamental to the development of tropical
geometry since its inception. Our definition of rational polyhedral spaces follows the one
recently given in [22]. Tropical p-forms have been introduced in the context of tropical
(co)homology and our definition is a variation of the one given in [32].

2.1. Rational polyhedral spaces

We denote T := R U {+oco} and consider it with the order topology. For n € N, the
n-fold product T™ has a natural stratification T" = |_|;c(1,.. 3 Tf', where the stratum

T7 = {(xi)1<i<n | ; = oo if and only iff i € I'}

is naturally identified with R”~/I. Recall that a (rational) polyhedron in R™ is a finite
intersection of half-spaces of the form {z € R™ | (m,z) < a} with m € (Z™)* and
a € R, where (-, ) denotes the evaluation pairing. By a polyhedron in T™ we mean any
set occurring as the closure of a polyhedron in some stratum T;. Note that for any
polyhedron o in R™ and subset I C {1,...,n}, the intersection & N T} is a polyhedron
in Tp. A polyhedral set in T™ is a finite union of polyhedra.

An integral affine linear function on a subset X C T" is a continuous function f: X —
R that is of the form z — (m, z) + a for some m € (Z™)* and a € R locally around every
point in X. Here, we use the convention that 0-(co) = 0, and that (m, ) is only defined
if for all ¢ such that the coordinate m; is nonzero, we have z; # oco. In particular, if f
is integral affine linear on X and f(z) = (m,z) +a for x € X N T}, then m; = 0 for
i € 1. For every subset X C T™, the integral affine linear functions on open subsets of
X define a sheaf of abelian groups on X, denoted by Affx.

Example 2.1. Consider the polyhedral set
X = dconv{(0,0),(1,0),(0,1),(1,1)}

in R?, which is the boundary of a square with sides of length one. Consider the function
on X that is given by 0 on the top and right edge of the square, and by —1+x1 42 on the
bottom and left edge of the square. This function is continuous and locally the restriction
of an integral affine linear function on R2. In fact, it coincides with the restriction of
an integral affine linear function on the union of any two adjacent edges of the square.
However, it is not equal to the restriction of a single integral affine linear function on R?
everywhere because it has different slopes on parallel edges.
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Definition 2.2 (see [22, Definition 2.1]). A rational polyhedral space is a second-countable
Hausdorff topological space X, together with a sheaf Affx of continuous functions such
that for every x € X there exists an open neighborhood U C X, an open subset V of a
polyhedral subset of T™ for some n € N, and a homeomorphism ¢: U — V that induces
an isomorphism ¢! Affy, — Affy; via the pullback of functions. The data of U,V and
@ is called a chart.

Definition 2.3. A morphism between two rational polyhedral spaces X and Y is a con-
tinuous map f: X — Y that induces a morphism f~!Affy — Affx via the pullback
of functions. A morphism is proper, if it is proper as a continuous map of topological
spaces, that is if the preimages of compact subsets of Y are compact.

Definition 2.4 (see [22, Definition 2.2]). Let X be a rational polyhedral space.

(a) A polyhedron in X is a closed subset P C X such that there exists a chart X D
U % V C T" such that P C U and ©(P) C T™ is a polyhedron. The faces of P are
the preimages under ¢ of the (finite or infinite) faces of @(P). The relative interior
relint(P) of P is the complement in P of the union of its proper faces.

(b) A local face structure at a point € X is a finite set ¥ of polyhedra in X that
is closed under taking faces and intersections (that is if 7 is a face of ¢ € X, then
T€X,and o Nd € X for all 0,6 € ), such that z is contained in the (topological)
interior of || = |J, ¢y, 0, there exists a chart X DU — V C T™ with [X| C U, and
such that x € ¢ for all inclusion-maximal o € 3.

(¢c) A (global) face structure on X is a set ¥ of polyhedra in X that is closed under
taking faces and intersections such that X = J .y, o, and for every 2 € X the set
of all faces of polyhedra in ¥ that contain z is a local face structure at x.

(d) We say that a closed subset S C X is locally polyhedral if at every point x € X
there is a local face structure ¥ and a subset ¥’ C 3 such that SN [X| = J,¢5 0.

2.2. Tangent spaces

As constant functions are integral affine linear, there is an inclusion Rx <« Affx,
where Ry denotes the constant sheaf associated to R. Following [31], we denote the
quotient sheaf Affx /Rx by Q% and call it the cotangent sheaf. The sections of Q% are
called tropical 1-forms. The reason for this is that the cotangent space at a point should
consist of linear approximations of functions, and linear functions are simply affine linear
ones modulo constants. For x € X we denote by

TZX := Homg (QX ,,Z) and

T,X :=Homg(Q ,,R)
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the (integral) tangent space of X at z. It follows immediately from the definitions that
a morphism f: X — Y of rational polyhedral spaces induces a morphism

ooy - ok,

and hence morphisms of stalks Q3, Fx) Qﬁ( , for all z € X. These dualize to a mor-
phisms

dof : TEX — TH,)Y

between the integral tangent spaces. If Y = R, that is if f is an affine function on X, the
germ at z of the image of f in I'(X, Q%) under the quotient morphism Aff x — Q% defines
a morphism TfX — Z which coincides with d,f modulo the natural identification
T%(m)R = 7. For this reason, we use the notation df for the image of f in I'(X,QY).

Unfortunately, there is no known interpretation of TZZX or T, X as the set of equiva-
lence classes of “smooth” paths through x as in differential geometry. There is, however,
an interpretation of a subset T2 X as germs of functions (R>g,0) — (X, x). Recall that
such a germ is a morphism [0,¢) — X for some € > 0 that sends 0 to x, up the equiva-
lence relation that allows to shrink the interval, i.e. restricting to [0,¢’) for &’ < ¢ does
not change the germ. To every germ v: (R>0,0) — (X, z) we can associate the tangent
vector d,y(1) € TZX, where we identify TZ(R>q) with Z in the natural way. In fact,
since affine linear functions on R>( are completely determined by the value and slope at
0, the germ ~ is uniquely determined by d,7v(1). We define the local cone of X at x as
the subset of T, X given by

LC: X == {A-dov(1) | A € Rx0, 7: (R>0,0) = (X, z) a germ}

Proposition 2.5. Let X be a rational polyhedral space, and let x € X. Then LC, X is a
rational polyhedral subspace of T, X with tangent space

To(LC, X) =T, X
at the origin. Furthermore, there exists a unique morphism of germs
(LC, X,0) = (X, 2)
such that the induced map T, X = To(LC, X) — T, X is the identity.
Proof. Since the definition of the local cone is local, we may assume that X is a polyhe-
dral subset of T"™ for some n € N, and © = (x1,...,x,). After a change of coordinates,

we may further assume that there exists a 0 < k < n such that € {oo}* x R*k,
For every connected open subset Y of a polyhedral set in R™, every morphism Y — T"
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whose image contains x has to map entirely into {oo}* x R"~*. This applies in particu-
lar to open neighborhoods of 0 in R>( or LC, X, so both the local cone and the set of
germs of morphisms (LC, X,0) — (X, z) only depend on X N ({oc}* x R"~*). The affine
functions defined on a neighborhood of z are, after potentially shrinking the neighbor-
hood, precisely those that are pullbacks of affine functions on T™~* under the projection
X — T™* onto the last n — k coordinates. Therefore, the tangent space of X at z only
depends on X N ({oo}* x R™7k) as well. After replacing X by X N ({co}* x R"7%), we
may thus assume that z € R"~%, In this case, the local cone at z is easily seen to be
equal to the set

{veR" |2 +[0,e)v C X for some & > 0} ,

which is well-known to be a finite union of polyhedral cones, and in particular a poly-
hedral set. In this case, it is equally well known that x has a neighborhood in X that is
isomorphic to a neighborhood of 0 in LC, X, so for the last part of the proof we may
assume that = 0 and X = LC, X. It follows immediately that T, X = Ty(LC, X) and
that the identity map defines a germ of maps (LC, X,0) — (X, z) inducing the identity
on tangent spaces. Since such a germ is determined by the associated map on tangent
spaces, this finishes the proof. O

Corollary 2.6. Let X be a rational polyhedral space, and let x € X. Then the local cone
LC, X spans the tangent space T, X .

Proof. Because LC, X is invariant under scaling, a linear function on 7, X vanishes on
a neighborhood of 0 if and only if it vanishes on all of LC, X, which is true if and only
if it vanishes on the span of LC, X. But by definition of the tangent space, a linear
function on T, X vanishes on a neighborhood of 0 in LCx X if and only if it vanishes on
To(LC, X). By Proposition 2.5, this shows that LC, X spans T, X = To(LC, X). O

To define sheaves of tropical p-forms, one would like to take the p-th exterior power
of QL. Unfortunately, even for very well-behaved rational polyhedral spaces, A” Q%
might very well be nontrivial for some p > dim(X). This is remedied with the following
definition.

Definition 2.7. For a rational polyhedral space X we denote by X™#* the set of points in
X that has a neighborhood isomorphic to an open set in R™. By definition, X™** is an
open subset of X. Let ¢: X™?* < X denote the inclusion. Then one defines the sheaf of
graded rings Q% as the image of A" Q% in ¢, (A" Q% |xmax). Sections of Q% are called
tropical p-forms.

Note that Q% — 1,Q%|xmax is a monomorphism, so that the definition of QY is
unambiguous. Also note that for p € X™?* the rank of Qk’p equals the local dimension
at p. Therefore, Q% = 0 for p > dim X.
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Remark 2.8. The sheaf Q% of tropical p-forms is closely related to the sheaf .Z% consid-
ered in [32]: given a point z € X and a local face structure ¥ at z, the stalk Z% _ is the
dual of the sublattice ;5 = 3> AP T%(0) of A" T2 X, where T%(c) denotes the integral
tangent space of o at any point in its relative interior, considered as a sublattice of TwZX .
On the other hand, Q% _ is the sublattice of A" Q% , = A" Hom(T”X,Z) consisting of
all p-forms vanishing on ﬁ;{“. One concludes that QI)](;E is the dual of the saturation of
ﬁzf(’”“' in AP TZX and thus that Qg(’m has finite index in ﬁgz. In particular, one has
Ty p = Q% if F57 s saturated in AP TZX which happens, for example, if X is the
tropical linear space associated to a loopless matroid (in this case, Z )’}T is equal to the
projective Orlik-Solomon algebra of a matroid [43]). In general, however, .# g’;@ and Qé’(w
do not coincide, not even for p = 1. A simple example where this happens is given by

x=r(})ur().

1 : : ol
where ) X0 has index 2 in # X0 because

Z7X,0 _ 1 1
FX0_g <1> +z (1>
has index 2 in TOZX—Z2

We use the sheaves Q% rather than the sheaves .Z7 because it is Q% rather than .7

that appears in the tropical exponential sequence
O%RxﬂAﬁ‘X*}Q&v—)O

We chose the notation Q% because it is clearly distinguishable from .74 and also because
it stresses the analogy to algebraic geometry. It should be noted that our sheaves Q% do
coincide with the sheaves .7} defined in the post-published version of [22].

Example 2.9. Let
X =R>0(1,0) UR5¢(0,1) UR>o(—1,—1) C R?

be the standard tropical line, depicted in Fig. 1. Then the stalk Q%{,o of the sheaf of
tropical 1-forms at the origin is isomorphic to the space of integer linear functions on
R2, which we can identify with Z2. For every z € X not equal to 0, the stalk Q}(x
is isomorphic to Z. The set X™* is the complement of the origin, and the restriction
QL | xmax is locally free of rank 1. In particular, A\" (Qk‘xmf“) =0 for all n > 1, and
hence Q% = 0 for n > 1. On the other hand, we have

</\QX) = N\ o= \ 22 £0.
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Z2/((1,0)) = Z —

Z2/((0,1)) = Z

Z2%/((-1,1)) = Z

Fig. 1. The standard tropical line and the stalks of its sheaf of tropical 1-forms.

Finally, note that an integral linear function on R? is completely determined by its slopes
in the directions (1,0) and (0, 1), and hence the natural morphism Qko — (1. Q% | xmax )0,
where ¢: X™* — X is the inclusion, is an embedding.

Example 2.10. Let N be the lattice generated by elements ey, ..., es subject to the re-
lation Y e, = 0, and let X be the union of the three half-planes in N ®z R given by
H; = Reg + R>pe;, where i € {1,2,3}. Let ey, ef, e5 € Hom(N, Z) be the dual basis to
€0, €1, €e2. Then /\2 Q%{,o is freely generated by e A €], ef A es, and e] A e5. As both e}
and e vanish on eq, the restrictions of e] A €5 to the interiors of all three half planes
H; vanish. On the other hand, no linear combination of ej A e] and efj A e3 vanishes on
the interiors of all three half planes. Since X™?* = | J H;, we conclude that Q%{,o is the
quotient of A Q%o by Z(ef Ne3).

Tropical p-forms can be pulled back along morphisms, as shown in the following
proposition.

Proposition 2.11. Let f: X — Y be a morphism of rational polyhedral spaces. Then the
pullback

£ 1) - 0k
induces a pull-back
179 - 0%
which we again denote by ft.
Proof. It is immediate that f* induces a morphism
N AL = Aok

To see that this induces a morphism on the quotients f~1Q3% — Q% we need to show
that if U C Y is open and we are given a section w € I'(U, A" Q1) that restricts to zero
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on UNY™a then A f*(w) vanishes on f~1U N XM, Let x € f~1U N X™% and let ¥
and A be local face structures around = and f(z), respectively, such that f(o) € A for
all o € ¥. Because /\ f¥(w) is constant on a neighborhood of x, it suffices to show that it
vanishes on a maximal cell o € 3. We may thus replace X by o, in which case f factors
through the rational polyhedral space f(o). Since f(o) € A, there exists a maximal cell
0 € A containing f(o). As f factors through ¢ by construction, it then suffices to show
that the pullback of w to A"} vanishes. But as we assumed that the restriction of w
to the interior 4 of § vanishes, this follows from the fact that the sheaf \* Q} on 4§ is
constant. O

3. Tropical cycles on rational polyhedral spaces

In this section we recall several well-known constructions from tropical intersection
theory [29,5,14]. Since we will be working with the defining formulae for each construc-
tion, we will review them in some detail, both to establish notation and for the readers
convenience.

3.1. Tropical cycles

To define tropical cycles on rational polyhedral spaces, we first need to recall their
definition on affine space.

Definition 3.1. Let N be a lattice. A tropical fan k-cycle on Ng = N ®z R is an integer
valued function A: Ng — Z such that

(1) For every A € Ry and z € Ng we have A(Az) = A(x),

(2) The support |A| = {x € Ng | A(x) # 0} of A is the support of a rational polyhedral
fan in Ng of pure dimension k,

(3) A is locally constant on the open subset |A|™2* of |A| and 0 on |A]|\ |A|™®*,

(4) A satisfies the so-called balancing condition: if ¥ is a face structure on |A| such
that every ¢ € ¥ is a cone, then A is constant on the relative interiors of the

inclusion-maximal cells of 3. Therefore, A and ¥ define a weighted fan in the sense
of Allermann and Rau [5]. We ask that this weighted fan satisfies the so-called
balancing condition (see Remark 3.3), that is that it is a tropical fan in the sense of
[5]. By [5, Lemma 2.11] this is independent of the choice of ¥.

Remark 3.2. It is immediate from the definition that every tropical fan cycle in the
sense above defines a tropical fan cycle in the sense of [5]. If, conversely, A = [(£, w)]
is a tropical fan cycle in the sense of [5], where we use their notation here, then w
defines a locally constant integer-valued function on the subset of |A|™®* consisting of
the union of the relative interiors of all inclusion-maximal cones of . This function can
be extended uniquely to a locally constant function on all of |A|™2* that is independent
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of the representative (3, w) and, if extended by 0 to all of Ng, is a tropical fan cycle in
the sense of Definition 3.1.

Remark 3.3. We will rarely use the balancing-condition, but let us briefly recall its defi-
nition for the sake of being self-contained. If ¢ is a cone in Ng and 7 is a codimension-1
face of o, then a lattice normal vector for o with respect to 7 is an element n € c N N
such that the morphism

dim(7 dim(o
/\ ()TZ(T)—>/\ ()TZ(U),U»—)n/\n

is an isomorphism, where the tangent spaces T% (o) and T%(7) are taken at any point
of the respective cones, and we consider them as sublattices of N. If ¥ is a purely k-
dimensional rational polyhedral fan in Ng, and w: X (k) — Z gives integer weights to its
maximal cones, then (X, w) satisfies the balancing condition if for every 7 € X(k —1) we
have

> wlo)ng, € TH(7)

o: 7CoeXx(k)

for any, and hence every, choice of lattice normal vectors n, /. of o with respect to 7.

Tropical fan k-cycles on Ng form an Abelian group. We remark that the sum of
two such tropical cycles ¢ and d is not simply the sum as integer-valued functions. This
does hold, however, if we consider integer-valued functions modulo those functions whose
support is a polyhedral set of dimension at most k — 1.

Definition 3.4. Let X be a rational polyhedral space. We say that a function A: X — Z
is locally constructible if for every x € X there exists a local face structure ¥ at = such
that the restrictions Alieling(») are constant for all o € X.

Every integer-valued function A: X — Z on a rational polyhedral space X induces,
at every x € X, a function germ at the origin of the local cone LC, X C T, X via
Proposition 2.5. If A is locally constructible, then for every v € LC, X the value A(ev)
is independent of £ > 0, if chosen sufficiently small. This can be used to extend the germ
to an Ry g-invariant function LC, X — Z, which we extend by 0 to a function

LC,(A): T,X — 7 .

Definition 3.5. Let X be a rational polyhedral space. A tropical k-cycle on X is a locally
constructible function A: X — Z such that LC,(A) is a tropical fan k-cycle on T, X for
all z € X. The support of a tropical cycle A on X is the set |A| = {x € X | A(z) # 0}.

The addition for tropical fan k-cycles induces an addition for tropical k-cycles on a
rational polyhedral space X so that there is an abelian group Zx(X) of tropical k-cycles.
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Similarly as for tropical fan cycles, the sum ¢ + d of two tropical k-cycles agrees with
the sum of A and B as integer-valued functions up to an integer-valued function whose
support is a locally polyhedral subset of X of dimension at most k — 1. As both the
definition of tropical k-cycles and the definition of the addition are local, the assignment
U — Z;,(U) on open sets of X, with the obvious restriction morphisms, defines a sheaf
2% of tropical k-cycles on X.

3.2. Proper push-forward of tropical cycles

Definition 3.6. Let A be a tropical k-cycle on a k-dimensional rational polyhedral space
X,and let f: X — Y be a proper and surjective morphism of rational polyhedral spaces.
Then for ever y € Y which is not an element of the at most (k — 1)-dimensional locally
polyhedral subset

FANXT)U (YY)

of Y, we define the push-forward of A along f as

FAW) = Y [TEX: dof(TEX))A)
zef~Hy}

where we consider the lattice index as 0 if it is not finite. We extend this function by 0
to a function on Y. Note that the sum over f~!{y} is in fact finite, since we can only get
a nonzero contribution for isolated points of f~*{y}, of which there can only be finitely
many because f is proper.

In the general case, where X is not necessarily k-dimensional and f is not necessarily
surjective (but still proper), we consider the (co)restriction f: |A| — f|A| of f and define
f+A as the extension to Y by 0 of f*A.

If f: X — Y is a proper morphism of rational polyhedral spaces, and A € Z(X),
then it follows immediately from the construction that f.A is locally constructible. It is
usually not a tropical cycle in the sense of Definition 3.5, but there is a unique tropical
k-cycle B on Y such that f.A and B coincide away from a locally polyhedral subset of
dimension at most (k — 1). The uniqueness is clear, and for the existence part one only
needs to show balancing, which can be proven locally and thus follows exactly as in [14,
Proposition 2.25]. From this it is clear that the push-forward induces a morphism

Zk(X) — Zk(Y)

of groups of tropical k-cycles, which, by abuse of notation, we denote by f, as well.
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3.8. Cross products of tropical cycles

Given two tropical cycles on two rational polyhedral spaces, one gets a tropical cycle
on the product space by taking their cross-product [5].

Definition 3.7. Let X and Y be rational polyhedral spaces, and let A € Z;(X) and
B € Z)(X). Then we define the cross-product of A and B as the function

AxXxB: X XY = Z, (z,y) = A(z) - B(y) .

It is straightforward to check that this is a tropical (k + {)-cycle on X x Y, and it is
evident from the definition that the cross-product defines a bilinear map

Zk(X) X Zl(Y) — Zk;Jrl(X X Y) .
3.4. Tropical Cartier divisors

Definition 3.8 (see [22, Definition 4.1]). Let X be a rational polyhedral space. A con-
tinuous function ¢: X — R is tropically rational if at every x in X there exists a local
face structure ¥ such that ¢|, € I'(g, Aff,) for all ¢ € . Sums of tropically rational
functions are rational. We denote the group of tropically rational functions on X by

M (X).

Remark 3.9. Tropically rational functions on a rational polyhedral space X are precisely
the piecewise linear function on X with integral slopes. The terminology “rational” comes
from the analogy with algebraic varieties, where the tropically rational functions play a
similar role in the definition of divisors.

The condition on a function on a rational polyhedral space X to be tropically rational
is a local condition. Therefore, the presheaf U — .#(U) on X is in fact a sheaf, which
we denote by .# x. Every affine linear function on X is rational, so there is an inclusion
Aff x — # x. Its quotient is the sheaf Z..x of Cartier divisors, that is Z: x is defined
as the unique sheaf fitting into a short exact sequence

0= Affx - M x - Dox —0.
Definition 3.10. Let X be a rational polyhedral space. The group
Div(X) =T(X, Zux)

is the group of Cartier divisors on X. The support |D| of D € Div(X) is defined in the
sheaf-theoretic sense as the support of D considered as a global section of Z: x.
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If f: X — Y is a morphism of rational polyhedral spaces, then it is straightforward
to check that for every tropically rational function ¢ on Y, the pull-back f*¢ = po f is
a tropically rational function on X. Since the pull-back of tropically rational functions is
compatible with the pull-back of affine linear functions, we obtain a pull-back morphism

f*: Div(Y) — Div(X)

for Cartier divisors.
There is an intersection pairing

Div(X) x Zi(X) = Zy_1(X)

on every rational polyhedral space X due to Allermann and Rau [5]. Let us briefly recall
its construction. To define the product D - A of a divisor D with a tropical k-cycle A,
we first pull back D to |A], after which we can assume that X = |A|. We can then work
locally around a point z € X and replace X by its local cone LC, X. This allows us to
assume that X = |X| for some rational polyhedral cone ¥ in R™, that A is represented by
a balanced weight function on the k-dimensional cones of ¥, and that D is represented
by a piecewise linear function ¢ whose restrictions to the cones of ¥ are linear. The
intersection D - A is then represented by the weight X(k — 1) — Z that assigns to
7 € X(k — 1) the integer

S o=l ng)A0)

o: 7Coex(k)

which is independent of the choice of lattice normal vectors n, /. (see Remark 3.3) and
an integer linear function I, on R™ with I,|, = ¢|,.

Remark 3.11. Note that tropically rational functions on compact rational polyhedral
spaces are bounded by continuity. If one allows tropically rational functions to obtain
the value co, one obtains a less restrictive notion of tropical Cartier divisors, for which one
should still be able to define the intersection pairing with tropical cycles, at least under
some mild assumptions on the underlying rational polyhedral space. In the prototypical
example of tropical toric varieties this has been done in [28].

3.5. Tropical line bundles

Following [31], we work with the following definition of tropical line bundles:
Definition 3.12. A tropical line bundle on a rational polyhedral space X is a morphism
Y — X of rational polyhedral spaces such that locally on X there are identifications

Y =2 T x X of spaces over X. Two tropical line bundles are isomorphic if they are
isomorphic as rational polyhedral spaces over X.
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Note that the only automorphisms of T are the ones of the form =z — A 4+ x for
some \ € R. Therefore, the automorphism group of T X U is naturally isomorphic to
I'(U, Affy) for any rational polyhedral space U. Using standard arguments involving Cech
cohomology, this leads to the following description of the set of isomorphism classes of
tropical line bundles on a rational polyhedral space:

Proposition 3.13 (c¢f. [31]). Let X be a rational polyhedral space. Then there is a natural
bijection between the set of all isomorphism classes of tropical line bundles on X and the
cohomology group HY(X, Affx). In particular, the set of isomorphism classes of tropical
line bundles on X is a group.

If X is a rational polyhedral space, then the first boundary map in the long exact
cohomology sequence associated to the short exact sequence

0= Affx - Mx = Dox —0
associates to every Cartier divisor D € H°(X, % x) a tropical line bundle
Z(D) e H' (X, Affx) .

Remark 3.14. Tt follows from [22, Lemma 4.5] that every tropical line bundle is of this
form if X admits a face structure. We expect this to remain true even in the absence of
face structures, but will neither prove nor use this fact in the remainder of this paper.

If f: X — Y is a morphism between rational polyhedral spaces, then applying H' to
the pull-back morphism f#: f~! Affy — Affx induces a pull-back morphism

[ HY(Y, Affy) — HY (X, Aff )
for tropical line bundles.

Proposition 3.15. Let f: X — Y be a morphism between rational polyhedral spaces, and
let D € Div(Y) be a Cartier divisor on'Y. Then we have

[ Z(D)=2(f"D) .

Proof. This follows immediately from the commutativity of the diagram

HO(Y, Bivy) H\(Y, Affy)

5 5

HO(X,f71 _@é/y) Hl(X,fil Aﬁy)

[ [

H()(X,@@X) HI(X,Aﬂx) N
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where the horizontal morphisms are the first boundary maps in the long exact cohomol-
ogy sequences associated to the short exact sequences

0 Affy My Doy 0o ,
0— f1Affy — f ' My — f 1 Doy — 0 , and
0 Aff x M x Dovx 0 ,

respectively. 0O
4. Tropical (co)homology and its functorial properties

This section is devoted to giving a sheaf-theoretic definition of the tropical homology
groups of [20,32,22] and using our understanding of sheaves to study the functorial
behavior of tropical homology. In Theorem 4.20 we show that our definition of tropical
homology agrees with that of [22].

Notation and general references. We will denote the constant sheaf associated to an
abelian group A on a topological space X by Ax. If .% is any sheaf on X and S C X
is a locally closed subset, we will denote Fg = 1t '.%, where ¢: S — X denotes the
inclusion. For an abelian group A, we will sometimes denote (Ax)s by Ag if X is clear
from the context. We will denote the group of morphisms between two Z x-modules
(sheaves of abelian groups on X, that is) .# and ¢ by Homgz, (#,¥), where we will
omit the subscript Zx if X is clear from the context. The bounded derived category
of Z x-modules will be denoted by D(Zx), and we will omit the subscript X if X is
a point, that is D(Z) denotes the bounded derived category of abelian groups. If €*
and 2° are two cochain complexes of Z x-modules, then Hompz ,)(%*, 2°*) denotes the
group of morphisms between them in D(Zx). As usual Hom®(%¢*, 2°) denotes the Hom-
complex and RHom®(¢*, 2°*) the derived Hom-complex, and similarly for the internal
hom #2». The i-th cohomology sheaf of ¢* will be denoted by H?(4¢*), whereas the
i-th hypercohomology will be denoted by H'(%*).

A family of supports on a topological space X is a set ® of closed subsets of X that
is closed under taking closed subsets and finite unions.

For background on sheaf theory and Verdier duality we refer the reader to [6,9,21,24]

4.1. Tropical cohomology

Tropical cohomology groups are defined in analogy to Dolbeault cohomology groups
in algebraic geometry.

Definition 4.1. Let X be a rational polyhedral space, let p,q € Z, and let ® be a family
of supports. Then the (p, q)-th tropical cohomology group with supports in ® is defined
as
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Hy®(X) = Hg(X, ) -

If ® consists of all closed subsets of X we usually omit it. If ® consists of all compact
subsets of X we also denote the cohomology group by HP*?(X), and if ® consists of all
closed subsets of a given closed subset Z of X we also denote the cohomology group by
HYY(X).

Remark 4.2. We will frequently use the isomorphism

Hg*(X) = lim Hompz ) (Zz, ¥%[q])
Zed

and thus represent a tropical (p, g)-cohomology class o € Hy?(X) by an arrow Zz ~»
0% [g] in D(Zx) for some Z € ®.

4.2. Tropical Borel-Moore homology

Similarly to the definition of the classical (i.e. non-tropical) Borel-Moore homology,
our definition of tropical Borel-Moore homology will utilize the dualizing complex.

The dualizing complex Dx of a rational polyhedral space X is an element of D(Zx)
representing the functor

D(Zx) — D(Z): A Hompz)(RT.A,Z) ,

where RT'. is the (total) right derived functor of taking global sections with compact
support, and Z is considered as a complex concentrated in degree 0. The universal
element of the representation, that is the image of idp, under the isomorphism

Homp(z,)(Dx, Dx) = Homp(z)(R[Dx,Z) ,
is called the trace map and we will denote it by [,

Definition 4.3. Let X be a rational polyhedral space, let p,q € Z, and let ® be a family
of supports. We define the (p, q)-th (integral) tropical homology with supports in @ as

HY (X) = H}R Hom® (0% [q], Dx) -

If ® contains all closed subsets of X we also denote the homology group by Hféw (X),
where the superscript stands for Borel-Moore. Moreover, if ® consists of all compact
subsets of X we usually omit ® from the notation of the homology group, and if ®
consists of all closed subsets of a given closed subset Z of X we denote the homology
group by HpZ7q(X).
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Remark 4.4. We will often represent Borel-Moore homology classes by morphisms in the
derived category. To do so, we use the identification

HY R e (W [q), Dx) = H'RHom® (9% ) z[q], Dx) = Homp(z (%) z[q], Dx)

that allows us to represent an element a € Hy, (X) = lim, g, HZ (X) by a morphism
(Q%)z[g) = Dx for some Z € ®.

Remark 4.5. Using Verdier duality, one obtains an identification
HM (X) = HOR Ao * (% [4], Dx) =
=~ H'RHom"*(Q%[q],Dx) = H RHom® (Rl .Q%,Z) .

The dualizing complex D x on a rational polyhedral space can be described explicitly
in terms of sheaves of singular chains.

Definition 4.6 (see [40, §VI], [9]). Let X be a rational polyhedral space.
(a) For i € N, let A% denote the sheafification of the presheaf
Us C_y(X, X \U) ,
where C;(A, B) denotes the group of relative singular j-chains with Z-coefficients of
the pair A O B. With the usual (co)boundary maps we obtain a cochain complex

A%
(b) The i-th homology sheaf & .= H~*(A%) is the sheafification of the presheaf

U— H(X,X\U),
whose stalk at € X is canonically identified with H;(X, X \ {z}).

The complex A% is homotopically fine [40, VI, Proposition 7], which implies that the
natural morphism

I, A% — RT.A®

is a quasi-isomorphism. The global sections with compact support of A}i are naturally
identified with C;(X), so the natural augmentation C(X) — Z defined by taking degrees
of O-chains defines a morphism A% — Dx in the derived category (using the universal
property of Dx), which is well-known to be an isomorphism. In particular, we have
A= H™(Dy). This is one way of seeing that H*(Dx) = 0 for i < — dim(X).
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Remark 4.7. If X is a rational polyhedral space with a face structure ¥, the dualizing
complex has a completely combinatorial description due to Shepard [38]. More precisely,
Dx is quasi-isomorphic to the complex which is given by ®UEZ( k) Z in degree —k, where
3 (k) denotes the set of all k-dimensional polyhedra in ¥. To define the differentials, one
needs to pick orientations on all ¢ € ¥. Having done this, the differential is given by the
homomorphism

b z.- P z.

oex(k) TeX(k—1)

that is given by 0 between the components Z, and Z, if 7 ¢ o, and otherwise by
multiplication by &, /., where

1 , if the orientations on o and 7 agree
o/ =

—1 , else.
Lemma 4.8.

(a) The classical q-th (non-tropical) Borel-Moore homology group of X is isomorphic to
HEM (X),

(b) Let Z be a locally polyhedral subset of dimension d, and let v: Z — X denote the
inclusion. Then for all p € N we have

HZ(X) = Homg (%, t.75) .
In particular, the presheaf U — HgdﬁZ(U) on X is a sheaf on X.
Proof. For (a) we use the fact that Q% = Zx and the natural isomorphisms
HPM(X)=H°RHom®(Zx|[q],Dx) = H ‘RI'Dx = H ‘D .
By definition, H™ D x is the ¢-th classical Borel-Moore homology group of X (as intro-
duced in [8]).

For part (b) we can use Remark 4.4 and the universal property of the dualizing
complex, to obtain the isomorphism

HY 4(X) 2 Hompz,) (%) z[d], Dx) = Hompz,,) (2| z[d], Dz) -

Since d = dim(Z), the cohomology groups H*(Dz) vanish for i < —d. Therefore, Dy is
quasi-isomorphic to a complex of injectives that is 0 in degrees < —d. It follows that

Hom p(z,,) (9% |z[d],Dz) = Homz, (0% |z, H *(Dyz)) ,
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which equals Homg,, (% | 7, 74) by definition of 4. This in turn is isomorphic to
Homg (%, L*%;). For the “in particular’-statement we note that for every open subset
U C X we have Dy = Dx|y. Therefore, the presheaf U — HgQZ(U) is isomorphic to the
presheaf U — Homg,, (% v, s 545 |), which equals the sheaf sz, (O, 1.508). O

4.3. Pull-backs

Let f: X — Y be a morphism of rational polyhedral spaces. Recall from Proposi-
tion 2.11 that pulling back tropical forms defines a morphism of graded sheaves of rings

AR A O 0 s

Let (Zy = Q% [q]) € HP9(Y) be a tropical (p, q)-cohomology class. As the pull-back f~!
of sheaves of abelian groups defines an exact functor, it induces a functor f~1: D(Zy) —
D(Zx). Applying this functor to ¢ and composing the resulting arrow with f# defines
the pull-back

free HM(X) .

In other words, f*c is represented by the composite

710 -~ #
Zx = 12y 15 1 (g 215 0n g

The map f*: HP4(Y) — HP9(X) is a morphism of abelian groups. If V is a closed
subset of Y, then f~1Zy = Z -1y . So the pull-back morphism can be refined to a
morphism H(Y) — H ?quW(X ). More generally, if ¥ is a family of supports on Y and
we denote by f~1(¥) the family of supports on X consisting of all closed subsets of sets
of the form f~'W for some W € W, then there is a pull-back morphism

[FHPUY) — H;’ﬂq,(X) .
4.4. Proper push-forwards

If f: X — Y is a proper morphism of rational polyhedral spaces, then precomposing
the trace fX : RT'.Dx — Z with the natural isomorphism RI'.o Rf,(Dx) =N RI'.Dx de-
fines a morphism RI'.(Rf.Dx) — Z. By the universal property of the dualizing complex
Dy, this corresponds to a morphism

Rf*DX — Dy . (41)
Together with the composite

QY — f.9% — Rf.O% (4.2)
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obtained by pulling back tropical p-forms, this defines a push-forward on tropical Borel-
Moore homology:

Definition 4.9. Let f: X — Y be a proper morphism of rational polyhedral spaces, and
let p,q € N. The pushforward map

BM BM
fer Hy (X)) — H 2 (Y)
associated to f is the composite of the morphism

Homp(z ) (% [¢],Dx) = Hompz, ) (Rf.Q%[q], Rf«Dx)

obtained by taking the derived push-forward and the morphism

Homp(z,)(Rf.%[q], Rf-Dx) — Hompz, (4 [¢], Dy)

defined via composition with the natural morphisms Q) — Rf.Q% in (4.2) and
Rf*ID)X — ID)Y in (41)

For every closed subset Z of X, the morphism Qf. — f.Q% induces a morphism
() 52y = fo((%)z). Therefore, the push-forward map can be refined to respect
supports; there is a push-forward morphism HZ (X) — H]J:,(qx)(Y). More generally, if
® and U are families of supports on X and Y, respectively, such that ® C f~'W¥, then

there is a push-forward morphism
for HY (X) = H) (V) .

It follows immediately from the functoriality of the derived push-forward and the
pull-back of tropical forms that the push-forward on tropical Borel-Moore homology is
functorial, that is (f o g)« = f« 0 g« whenever f and g are composable proper morphisms
of rational polyhedral spaces.

For a better understanding of the push-forward we will need the following lemma:

Lemma 4.10. Let f: X — Y be a proper morphisms of rational polyhedral spaces, and let
n =dim X. Then the morphism

FIOD — A

induced by the natural morphism Rf.Dx — Dy in (4.1) is induced by the push-forwards
H, (X, X\ f~U) — H,(Y,U) of relative singular cycles for open subsets U CY.

Proof. We will describe the morphism Rf,A% — A3 induced by the natural morphism
Rf.Dx — Dy explicitly. To do so, we will first need to describe Rf.A%. Note that the
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barycentric subdivision defines an endomorphism on A% Let % = limy A% denote the
direct limit obtained by allowing repeated barycentric subdivision, and define .y simi-
larly. The natural morphism A% — .#% is a quasi-isomorphisms since taking homology
commutes with direct limits and the barycentric subdivision is a quasi-isomorphism. In
particular, Rf A% = Rf.."%. By [9, Prop. V-1.8 and Thm. V-12.14], % is a complex
of soft sheaves, so the natural morphisms f..”y — Rf.”% and I'.y — RI'..”% are
quasi-isomorphisms.

Next, we will show that the push-forward of relative singular cycles induces a mor-
phism f,.7% — 2. If #2"*" denotes the presheaf U lim C—i(X, X \ U) on
X, and P"%" the analogous presheaf on Y, the push-forwards of relative chains
Ci(X,X \ fU) —» Ci(Y,Y \U) for U C Y open and i € Z induce a morphism
2RO — AP by the functoriality of the barycentric subdivision. Note that this
does not automatically induce a morphism of complexes of sheaves f..”y — .y because
push-forward does a priori not commute with sheafification. However using [9, V-Lemma
1.7] one sees that the presheaves .#2"" have the property that for every compact set
K C X there is an equality

lim SYNU) = lim A4 (U) = S5 (K)

KCU KCU
where the direct limits are taken over all open subsets containing K (note that the second
equality holds for every sheaf). Applying this to the fibers of f we obtain isomorphisms
of stalks (f,.?2"*"), = ZL(f~Hy}) = (f..%), for all y, and hence sheafification
commutes with push-forwards for the presheaves y)’?e’i. Consequently, the push-forward
of relative singular cycles does in fact induce a morphism f,.y — .#y. To show that
this coincides with the natural morphism Rf.Dyxy — Dy we apply RI'. and obtain a
morphism

Iy =T fo’% = Ty,

which is the one induced by pushing forward singular chains. In particular, in degree 0
it is the morphism

Co(X) — Co(Y)

that pushes forward points along f. This commutes with the degree morphisms to Z,
which are the traces defining the isomorphisms /% = Dx and .y = DY. So by the
definition of the natural morphism Rf.Dx — Dy it must agree with the morphism
f«% — Sy obtained by pushing forward relative chains. From this description it is
clear that the morphism

[ = Ay

is induced by the push-forwards of relative singular cycles as well. O
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4.5. Cross products and the Kiinneth theorem

In this section we study the tropical homology group on a product X x Y of two
rational polyhedral spaces X and Y. Let px: X XY — X and py: X x Y — Y denote
the projections. In what follows we will use the notation

FRY =py'F Qzx.y Py Y
for sheaves .% on X and ¢4 on Y, and
%o |ZL go — p;(lcgo ®%XXY p;lgo

for complexes of sheaves €* on X and 2° on Y, where @ denotes the derived tensor
product.

To define the cross-product in tropical homology, we first need to relate the dualizing
complex of X X Y the dualizing complexes of the factors X and Y. The trace maps
fX: RI'.Dx — Z and fY: RT'.Dy — Z induce a morphism

RT.Dx ® RU.Dy - Z @5 Z =17 .

By the Kiinneth formula [21, VII-2.7], R[.Dx ®% RI.Dy is naturally isomorphic to
RT.(Dx XL Dy ), so by the universal property of Dxxy there is an induced morphism
Dx X Dy — Dxyxy. Indeed, this is an isomorphism by [6, V, 10.26].

It will be convenient for us later to have an explicit description of this isomorphism
in terms of sheaves of singular chains.

Lemma 4.11. Let X and Y be rational polyhedral spaces. Then for all i,7 € N, the
morphism

HER AL — A

defined via the natural isomorphism Dx XL Dy =z Dxxy is the one induced by the
relative cross products

H(X,X\U)oz H; Y,Y\V) = Hi;(X xY, (X xY)\ (U xV))
for open subsets U C X and V C Y.
Proof. The Eilenberg-Zilber map defines a morphism
Co(X)®z Co(Y) = Co(X xY)

that induces morphisms
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Co(X, X\U) @z Co(Y, Y\ V) 5 Co(X x Y, (X x Y)\ (U x V)

for all pairs of open subsets U C X and V' C Y. Since the products U x V for U C X
and V C Y open form a basis for X x Y, we obtain a morphism

AYXRAY — Axyy
after sheafifying. By construction, the morphisms % Xﬁfg — %”;{;jy induced by this is
defined by relative cross products. It thus suffices to show that this morphism describes
the natural morphism Dx XY Dy — Dxyy.
Since A% and A}, are complexes of flat sheaves, the natural isomorphisms A§ — Dy

and A}, =N Dy define an isomorphism
AYRAY S Dy K- Dy .

To finish the proof, we must show that the diagram

A% TA?/ ATY
]D)X |ZL ]D)Y DXXY

is commutative. By the universal property of D x «y, we can apply RI'. and need to show
that the two morphisms C_¢(X) ®z C_e(Y) — Z in the diagram

C_o(X) @7 C_o(Y) —— RT(AY BAY) —— C_o(X x V)

AT A

RI'.Dx ®% RT Dy —— RT.(Dx X' Dy) —— RT.(Dxxy) —— Z ,

where the leftmost horizontal isomorphisms use the Kiinneth formula [21, VII-2.7]. Note
that the left square of the diagram is commutative by the functoriality of the Kiinneth
formula, coincide. By construction, the composite of the two morphisms in the top row is
the Eilenberg-Zilber map. In particular the morphism C_o(X)®z C_o(Y) — Z obtained
by moving clockwise through the diagram assigns 1 to a pure tensor [z]®[y] € Co(X)®@z
Co(Y) of 0-simplices (i.e. a point in X x Y). On the other hand, by the definition of
the natural morphism Dy X Dy — Dxxy, the composite of the three morphisms in
the lower row is the tensor product of the traces on X and Y. By the definition of
the morphisms A% — Dx and A}, — Dy it follows that the morphism C_.(X) ®z
C_+(Y) — Z obtained by moving counterclockwise through the diagram is the tensor
product of the two augmentations C_¢(X) — Z and C_(Y) — Z defined by the degree
of 0-cycles. This product also assigns to 1 to any pure tensor [z] ® [y] € Co(X) ® Co(Y).
This finishes the proof O
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Remark 4.12. In the proof of Lemma 4.11, we did not use the fact that the Eilenberg-
Zilber map Co(X) ® Co(Y) — Co(X x Y) is a chain homotopy equivalence. If one
incorporates this into the proof of the lemma carefully, then it also shows that the
natural morphism Dy K% Dy — Dyxy is an isomorphism.

To construct the tropical cross product we also need to relate the sheaves of tropical
forms on X x Y with the sheaves of tropical forms on the factors. The projections px
and py induce morphisms

Poipx' Q% = Uy o P py 00 = Oy
of sheaves of skew-commutative graded rings. These morphisms induce a morphism
Py ®p QX RO = Uy

of sheaves of skew-commutative graded rings, where we view Q% X QF as the skew
tensor product (i.e. the usual tensor product of Z-algebras with a slightly modified
multiplication to make it skew-symmetric (cf. [11, p. 571])) of p)_(-lQ} and p;lQ;.

Lemma 4.13. The morphism
P @y Q% KO = Oy
is an isomorphism.

Proof. This is obvious in degree 1: working in charts this comes down to the facts that
the linear span of a product is the product of the linear spans and that the dual of a
direct sum of lattices is the direct sum of the duals. Because the exterior product of a
sum is the skew tensor product of the exterior products of the summands, and everything
commutes with pullbacks, we obtain an isomorphism

A kBA QS A Oy

induced by px and py. What is left to show is that if a X 8 vanishes on (X x Y™,
then either « vanishes on X™2* or ( vanishes on Y™2* Assume the opposite. Then
there exists a point x € X™** at which « is nonzero and a point y € Y™* at which £
is nonzero. But since the stalks of A" Q% are all free, this implies that o X 3 is nonzero
an (z,y), which is a point in (X x Y)™** a contradiction. O

Since pAﬁX ® pgf is an isomorphism, we obtain a canonical splitting of the inclusion
Q% MY — Q&P for every p,p’ € N. Having established this we are ready to define
the cross-product in tropical Borel-Moore homology.
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Definition 4.14. Let X and Y be rational polyhedral spaces, and let a € H]féw (X) and
Be Hﬁf‘(;f,(Y). Then the composite

/ 7 a&Lﬁ ~
Q8P (g + ¢ = Q% la] KO [¢] = Dx ®F Dy = Dxyy ,

where the leftmost morphism is the natural splitting of QX X Qf,, — QZ;;;?;/, defines an
element a x 3 € Hf+ﬂg,7q+q,(X x YY), the cross product of o and S. This defines a graded
bilinear morphism

x: HPM(X) @ HPM(Y) - HPM(X xY) .

By construction, the cross-product can be refined to respect supports; if ® and ¥ are
families of supports on X and Y, respectively, and ® x ¥ denotes the family of supports
on X X Y consisting of closed subsets of sets of the form V x W, where V € ® and
W € U, there exists a bilinear map

x: HY (X)@ H! (V) = HY XY (X xY)

As both the identification Dy KX Dy = Dxyy and the pull-back of tropical forms
is functorial, the same is true for cross-products. In other words, if f: X — X’ and
g: Y — Y’ are proper morphisms of rational polyhedral spaces, then

fil@) x g.(B) = (f x g)«(a x B)

for all o € HPM(X) and g € HEM(Y).

We now turn our attention to a tropical Kiinneth formula. To prove it, we rely on
results from [6] and need to make the mild assumption of the spaces involved being
compactifiable. To state this assumption we note that every rational polyhedral space

X has a natural filtration
2 X = Xaim(x) 2 Xaimx)-1 2 -+ 2 Xo

where X; is obtained from X;;; by removing the (i 4+ 1)-dimensional components of
(Xiy1)™*. With this stratification X is an unrestricted pseudomanifold in the sense of

[6]-

Definition 4.15. A family of supports ® on a rational polyhedral space X is compactifiable
if for every V € ® there exists W € ® containing V' and a refinement 2™ of the natural
stratification on X such that (X, 2") is a pseudomanifold, the set W is a union of strata
of (X,2"”), and (X, 2") is compactifiable in the sense of [6]: there exists a compact
pseudomanifold (Y, %) containing (X, Z”') as a dense open sub-pseudomanifold. We say
that X is compactifiable if the family of closed supports on X is compactifiable.
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Theorem 4.16 (Tropical Kinneth theorem). Let X and Y be rational polyhedral spaces
and let ® and ¥ be compactifiable families of supports on X and Y, respectively. Then
for every p,q € N, there is a natural decomposition H;,Ijq(X xY) = @iﬂ:p A;jq, and
for each i,j € N there is a short exact sequence

0 P HE(X) 0z HYY(Y) = Aijg— @ Tol (H5(X), H(Y)) =0
k+l=q k+l=q—1

Proof. By Lemma 4.13, there is a decomposition

R o (W oy Dxxy ) & @ R (Q% RO, Dxxy) -

t+j=p
We denote
A g =Hg? (R Am*(Qy KO Dxxy))
and for V € ® and W € ¥ we denote

AVIY = H (R Ao (U RO, Dx o)) -

2,79

Then we obtain a splitting

DX W
HYX (X xY)= P Aijq
i+j=p

and we can write the summands as direct limits via

s V,W
Aijg = h_HH i5,q °
V,W

Moreover, the sheaves Q% (resp. Q) are 2 -cc (resp. 2 '-cc) in the sense of [6]. In
particular, we may apply the results of [27]' to X and Y and obtain that the natural
morphism

R (D, Dx) B R o (U, Dy) — R (Qy RO, Dxxy)

is in fact an isomorphism [27, Corollary 2.8]. Furthermore, since we may assume that
Zy is Z'-cc for some refinement 27 of the canonical stratification 2" with (X, Z”)
compactifiable, and similarly for Zyy, for any pair of 2 -cc (resp. #-cc) complexes &
and 4°® on X and Y the natural morphism

! The results in [27] are stated over C, but their proofs only use identities from [6] that also hold over Z.
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RTy.7* @5 RTw%* = RHom®(Zy, #*) % RHom®(Zw,94°*) —
— RHom®*(Zy R Zy, F* K- 4°) = RTy o (F* RE9°)

is an isomorphism by [27, Corollary 4.2] (this is where the compactifiable condition is
needed). Applying this to .F* = R #2,»°(Q%,Dx) and ¥°* = R 2" (Q,,Dy), we
obtain

ALY = Hy %y (R Ao * (@, D) BE R Horn® (O, Dy)) =
= H_q(RFV f%pa/m.( fXa]DX) X RFW %W.(Q&,Dy)) .

Now the Kiinneth theorem for complexes [41, Theorem 3.6.3] yields a short exact se-
quence

0= P H W (X)oz HY(Y) = ALY » P Torl (H)(X), HY (V) =0,

4,3,4 gl
k+l=q k+l=q—1

and taking the direct limit over all pairs (V, W) completes the proof. O

Corollary 4.17. Let X and Y be compactifiable rational polyhedral spaces such that either
HEM(X) or HEM(Y') is torsion free. Then the cross-product

HPM(X) @z HIM(Y) — HIM (X < Y)
s an isomorphism.

Proof. This follows immediately from Theorem 4.16 and the fact that the groups
Tor? (kaM(X), HflM(Y)) all vanish. O

4.6. Cup and cap products

Let X be a rational polyhedral space. Since 0% is a sheaf of rings, its cohomology
group has a ring structure again, the multiplication being the so-called cup product. If

(Zy & Q% [q)) € HYI(X) , and
d / / ’
(Zw % 9%1¢) € BT (X)

where p,p’, ¢, q¢' are integers and V and W are locally polyhedral subsets of X, then their
cup product

¢ —de Hyf R (X)

is represented by the composite
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o~ c®d / 4
Zyvow — Ly @z Ly 25 08 @z, O lq+q) — B g+ .

Here, the last morphism is the product on Q%, and the morphism in the middle can be
obtained using the fact that Q% ©z, Q% = OF ©F OF because Q% is flat and the
functoriality of the derived tensor product.

The cup product is clearly compatible with supports, so if & and ¥ are two families
of supports, then the cup product defines a bilinear map

HE(X) x HY 7 (X) — HEHT(X)

It follows directly from the associativity property of the sheaf of rings (2% that the cup
product on H**(X) is associative. It is also unital, the unity being represented by the
identity map on Zx — Zx = Q%. It is clear from the construction that the restriction
of the cup product to H%*(X) is the classical cup product on the cohomology of X (cf.
Lemma 4.8 (a) and [21][I1.9.9]).

Proposition 4.18. Let f: X — Y be a morphism of rational polyhedral spaces. Then the
pull-back (defined in §4.3)

o HY(Y) > H*(X)
is a Ting homomorphism.

Proof. Examining the definitions of cup products and pull-backs, we see that this directly
follows from the fact that the pull-back f#: f 101 — % of tropical forms is a morphism
of sheaves of graded rings. O

Similarly as the cup product, the cap product also generalizes from the classical to the
tropical setting. To define it, let

(Zv % QL)) € B (X) , and
(@)wld] = Dx) € HY(X) ,

where p, q, 1,7 are integers and V' and W are closed subsets of X. Then the cap product

a~cé€ H;Tif}g_j(X)

is represented by the composite

(B Yvawls — 1] = Zv @z, (% Hwlg — i1 <2 Q% 9z, (% Hwlg —

— (% )wlql = Dx ,
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where the second arrow can be defined using the functoriality of the derived tensor
product, and the third morphism is the product on Q%. This construction clearly is
compatible with supports, so whenever ¥ and ® are families of supports, we obtain a
bilinear map

HY (X) x Hg'(X) — HYO% (X)) .

pP—i,q—J

By the associativity property of the sheaf of rings 0%, the cap product makes H fiw (X)
a right H**(X)-module. It is clear from the construction that the restriction

HPM(X) x HY*(X) —» HPM(X)

of the cap product is the cap product in classical Borel-Moore homology (cf. Lemma 4.8
(a) and [21, IX.3]).

Proposition 4.19 (Projection formula). Let f: X — Y be a proper morphism of rational
polyhedral spaces, let V. C X and W C Y be closed subsets let o € HXq(X) and ¢ €
Hy(Y). Then we have the equality

fila~ ffc) = fua ~ ¢

. VINW
mn Hgfi,)qu (Y).

Proof. Both sides of the equation correspond to a morphism

(sz;/_i)f(\/)mw[q —j] = Dy .

More precisely, the left side of the equation corresponds to the morphism obtained by
moving counterclockwise along the square in the diagram below, whereas the right side
of the equation corresponds to the morphism obtained by moving clockwise along the
square.

i . c®id i i
(B rovynwly — j] ————— Q% @z, (8) jonlg) —— (%) s [d]

J

RE(QE Yyvnp-1wla — J]
lRf*(f‘lceaid)

RE(f71Q) @z, (O v)lg] — RA(Qx @z, (] v)lg) ——— Rf(Q%)v(d]

Rf.«

Rf.Dx Dy
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It thus suffices to show that the square commutes. Using the fact that f~! and Rf, are
adjoints, this boils down to the fact that f¥: I3 — Q% is a morphism of sheaves of
rings. O

4.7. Comparison with singular tropical homology

In this section we show that our sheaf-theoretically defined tropical Borel-Moore ho-
mology groups Hféw (X) are naturally isomorphic to the locally finite tropical homology
groups Hll,fq(X ) of X that are used in [22]. The analogous statement for tropical cohomol-
ogy groups has been proven in [23], where the authors show that H?(X, Q%) is isomorphic
to the singular cohomology group Hg’r?g (X). It should be noted that if the tropical coho-
mology groups of X are finitely generated, the isomorphism HEY (X) = HI(X, Q%) from
[23], combined with the universal coefficient theorem, implies that the tropical homology
group with compact support H, ,(X) is isomorphic to the singular tropical homology
group H;fgg(X ). However, the isomorphism obtained this way is, a priori, not compati-
ble with the cycle class map. More importantly, the isomorphism of tropical cohomology
groups does not imply that HZM(X) is isomorphic to Hzl,fq(X)

Similar to the cohomological case treated in [23], the idea to prove HFM(X) =
Hilij(X ) is to follow closely the classical argument (see [9]) in the case p = 0. How-
ever, there is a problem with that: the classical argument uses that the complex A%
is homotopically fine and therefore its cohomology (i.e. H*(Ax) = H* Hom®*(Z x,A%))
agrees with its hypercohomology (i.e. H*(A%) = Ext*(Zx,A%)). It does not follow
directly from the homotopical fineness that for p > 0 the analogous statement holds,
that is that H* Hom®(Q%, A%) = Ext™(Q%, A% ). To solve this we prove a more general
statement (Proposition A.9) on conically stratified spaces, building on work of Friedman
[13,12]

Let X be a rational polyhedral space, and let ¥ be a face structure on X. We say
that a singular simplex o: A? — X (where A? denotes the standard ¢-simplex) respects
the face structure 3 if for every face © C A9 there exists a polyhedron P € ¥ such
that o(relint(©)) C P. A tropical (p,q)-simplex (with respect to X), is a pair (o, s),
where o: A? — X is a singular ¢-simplex respecting the face structure ¥ and s €
Hom (Q%|,(a0), Zo(aqy). We denote by Cj 4(X;X) the free abelian group generated by
tropical (p, ¢)-simplices (w.r.t. X). If (o, s) is a tropical (p, ¢)-simplex, then pulling back
(0, s) along the i-th face morphism §%%: A9~1 — A¢ yields a tropical (p,q — 1)-simplex
Op,q,i(0,8) = (0069, 5|, (50.i(aa-1))). Extending 9, 4 ; by linearity and taking alternating
sums, one defines the differentials

q
Op,q = Z(_l)lapﬂz,i

=0

and obtains a chain complexes Cp o(X;%). We call their homology groups
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Hy 08 (X5 3) = Hy(Cp.o(X; )

the singular tropical homology groups of X (with respect to ). They agree with the
tropical homology groups introduced in [20]. It is well-known that they do not depend
on Y, which will also follow from Theorem 4.20.

Allowing locally finite chains, that is infinite sums of tropical simplices such that every
point has a neighborhood intersecting only finitely many of them, instead of only finite
chains we obtain chain complexes C’Zl,{c «(X; %) whose homology groups

HY (X;%) = Hy(Cl,(X; %))

are the locally finite tropical homology groups of X (with respect to ). They agree with
tropical homology groups studied in [22]. Again, it will follow from Theorem 4.20 that
they are independent of the face structure X.

Theorem 4.20. Let X be a rational polyhedral space equipped with a face structure .
Then there are natural isomorphisms

If (v.5) ~ p7BM
HJ(X58) = H, S (X) , and
HyT8 (X5 %) = Hy 4(X) .
Proof. The face structure ¥ defines an admissible stratification on the space X in the
sense of Definition A.3. By Proposition A.5, the subcomplex Ai" of A% consisting
of chains respecting ¥ (we refer to Appendix A for a precise definition of Ai") is

quasi-isomorphic to A%. Furthermore, by Proposition A.9, there is a natural quasi-
isomorphism

Homn® (W, AT®) =5 R Hon® (0, Dx) .
Taking hypercohomology with closed/compact supports we obtain natural isomorphisms

H™ Ao (W, AY) = HIR How* (0, Dx) = HPM (X) |, and

o

H_ 9 e ® (5, AY) = H, IR Ao * (Q%,Dx) = Hp o(X) .

Since A%* is homotopically fine, the same is true for #2..* (%, A%*®). Tt follows that
the natural morphisms

H™ 1 %W/Z.(Qgc, A§7.) — H¢ %W/@‘(ng Ai’.) and
H O Ao (W, AR®) — H T Ao (W5, AR®)

are isomorphisms. Note that for each ¢ € N there is a morphism
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@ ZO-(Ai) — AX R
o

where the sum is taken over all singular i-simplices o: A* — X respecting 3, that sends
the generator of Z, (i) to the global section represented by o € C3(X; %) = C;(X, X \
X; %) (see (A.1)). This morphism is in fact an isomorphism: the stalk of both @, Z, (a1
and Ai’_i at © € X is isomorphic to the free abelian group on singular i-simplices that
respect ¥ and contain x in their image. Therefore, if we write 1, : 0(A?) — X for the

inclusion, we have

o (Q&,Ai’—i) > Ao <Q§(,@ZG(N)> o

= @%m (Q&,ZJ(AQ) = @(LU)* o (Qg(la-(Ai),Zg(Ai)) s

led

where the direct sum commutes with - because QF is constructible. The group of
global sections of this last sheaf is precisely Cll){i(X ;23), and the group of its global sections
with compact support is precisely C,, ;(X; 3). Leaving the straightforward check that this
identification commutes with the differentials to the reader, we obtain an isomorphism

P (Ao (%, A%)) 2 C_(X;%) and

Do (Ao (95, AF)) 2 Gy o(X3 %)

of cochain complexes of abelian groups. Taking their (—¢)-th cohomology finishes the
proof. O

5. The tropical cycle class map
In this section we define the cycle class maps
cye: Zp(X) — HEY(X)

on a rational polyhedral space X in our framework. These have been defined before in
[32] in the case of compact supports and in [22] for closed supports. Our framework
naturally allows to include families of supports, that is we show that the cycle class
A € Zi,(X) actually lives in H ,LA,J (X). Moreover, our construction is local in the sense
that we do not make any assumption on the existence of global face structures. If a global
face structure does exist, we show in Theorem 5.13 that our definition of the cycle class
map agrees with that in [22].
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5.1. Conventions for orientations

To define the tropical cycle class map one needs to make a choice regarding orienta-
tions. There are two ways of defining an orientation for R™ that are relevant for us, one
being the choice of a generator for A" TOZ]R" =~ A" 7", the other being the choice of a
generator for H,(R™ R™\ {0}). For the construction of the tropical cycle class map we
need to choose, once and for all, an isomorphism

N TFR™ = H, (R, R™\ {0})

that allows us to compare these two notions of orientation, and our choice will be
the one that sends e; A ... A e, to class of the (linearly embedded) singular simplex
[€n,€n—1,...,€1,€0], where e1,..., e, is any basis for Z™ and eg = — >, €;.

Suppose that ¢ is a k-dimensional polyhedron in R™ and assume we have chosen
an orientation 7, € /\k TZ (o). Choosing an embedding f: o — R¥, the orientation 7,
induces an element in A" R* and hence a class [o] in

H(R",R*\ {0}) = H(f(0), f(0) \ {f(2)}) = H" (0, 00)

for every choice of a point © € o \ do of which [o] is independent. The class [o] does
not depend on f either; if the orientation of f is flipped, then the signs in both the
identifications A" TZ(c) = A"R* and H' (0,00) = H(R* ,RF \ {0}) are flipped, that
is a change of orientation of f flips the sign of the class we are defining exactly twice.
Now let 7 C o be a face of o of codimension 1 and assume we have also chosen an
orientation 7, € /\k*1 TZ(7). Then with our convention in place we also obtain a class
[r] € H,if_ 1(7,07). If 0, denotes the composite

H,if(m do) — H,if_l(ﬁo) — H,if_l(aa, 0o \ relint(7)) = Hlif_l(T, or),
and n,/r € TZ(U) is any lattice normal vector of ¢ with respect to 7, the equalities

Or[o] = [r] and 1, = n; A n,/; are equivalent. In this case, we say that the chosen
orientations on ¢ and 7 are compatible.

5.2. Tropical cycles as sheaf hom

The following crucial observation, together with Lemma 4.8 (b), will allow us define
the tropical cycle class map.

Proposition 5.1. Let X be an n-dimensional rational polyhedral space. Then there is a
natural isomorphism of sheaves

L= Ao (U, A
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Proof. We will first define the isomorphism locally around a point x € X. Let X be
a local face structure at x. After potentially shrinking 3, we may assume that |X| is
compact, in which case ¥ gives a CW- complex structure to the neighborhood |X| of x.

dim(

After choosing orientations 7, € A (@) pz (o) for all 0 € X, cellular homology provides
a description of Jy . = H,(X, X \ {z}) as a subgroup of the free group on ¥(n), where
% (i) denotes the set of i-dimensional cells of 3. Namely, it is the group of all weights

w: X(n) — Z such that for every (n — 1)-dimensional cell 7 € ¥ containing z we have

Z £o/7w(0) =0, (5.1)

o: 7CoeX(n)

where €,/ is either 1 or —1, depending on whether the chosen orientations on o and 7
agree or not. If y is a point in the interior of |X|, then the set

y = {0 € X| there exists 7 € ¥ so that c C 7 and y € 7}

is a local face structure at y, so with the same reasoning we conclude that ¢  is the
group of weights w: X, (n) — Z satisfying the condition displayed in (5.1) for all (n 1)-
dimensional cells 7 € ¥ containing y. This description is continuous in the sense that we
obtain an exact sequence

03— P z2.—- Pz

oceX(n) T:wETEX(n—1)

on the interior of |X|, where the map to the right is determined by the condition (5.1).
Note that this is precisely the description of % one obtains from Shepard’s com-
binatorial description of the dualizing complex mentioned in Remark 4.7. Applying
Ao (%, —) to the sequence, we obtain an exact sequence

0= Hom (W, ) = D tow Mo (W0 L) > P trw Mo (Vx|7, L)

oc€eX(n) Tiz€TEN(n—1)

where 15: 0 — X denotes the inclusion for every § € ¥. By Lemma A.8, for every § € X
we have an isomorphism

o

%M(QX|57Z5) — ( 5)*’%m(ﬂ}helint(é%Zrelint(é))a

where k;: relint(0) — § denotes the inclusion, and the latter sheaf is in turn naturally
isomorphic to the constant sheaf

(A7),

on ¢. Here, we denote ngX = [(relint(4), Q% |relint(5)) "> which is naturally isomorphic to
TZX for any x € relint(d). If ¢ € ¥(n), then TZX is isomorphic to Z, and is generated
by 7,. We thus obtain an exact sequence
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0= Hom (U, 2 = P Zo—» P (/\"TTZX)T,

oceX(n) T:wETEX(n—1)

where the component of the rightmost morphism going from Z, to (/\n T2 (7'))7_ is 0
if 7 is a face of o at infinity, and sends the generator 1 of Z, to n; A n,/, else, where
Ng/r € TZ (o) is any lattice normal vector of o relative to 7. This effectively yields a
presentation of Jos. (0%, S¢) on a neighborhood of x as the sheaf of locally constant
functions A on X™»* such that for every codimension-1 face 7 € X(n — 1) we have

N A Z A(U)nzr/'r =01,
c€X,(n)

where ¥, (n) denotes the subset of 3(n) consisting of cells that have 7 as a finite face.
This equality holds if and only if

> A(o)ng € T%(r),

c€X,(n)

which is precisely the balancing condition (see Remark 3.3). In other words, we obtain
an isomorphism 2% & 2., (0%, #7%) in a neighborhood of z.

To show that these local isomorphisms glue to a global isomorphism, we essentially
need to show that the local isomorphisms are independent of all choices. The choices
we made were the local face structure and the orientations on them. We used the same
orientations to pick generators for \" T% (o) and H,, (0, dc), so if we picked the opposite
orientation on one of the cells o, we would change signs twice and hence obtain the same
isomorphism. It remains to show that a different local face structure would also provide
the same isomorphism. But to compare two different choices of local face structures one
can always pass to a common refinement, and it is clear that the construction of the
isomorphism is compatible with refinements. O

Remark 5.2. Going through the proof of Proposition 5.1 we obtain the following descrip-
tion of the isomorphism 27X 22 2., (Q%, #) locally around a point x using a local
face structure X at z and orientations 1, € A" T% (o) on each of its maximal cells o € X.
The description of the morphisms Q% — % corresponding to A € Z,(X) uses three
ingredients:

(1) Using the orientations and cellular homology, we can choose for each facet o € X(n)
of dimension n a chain [o] supported on o such that 3 is, locally around z,
isomorphic to the subsheaf of A" generated by the [o], 0 € X.

(2) Whenever w € T'(U, %) is a tropical n-form defined on an open subset of the interior
of |X|, we can pair it with 1, to obtain a locally constant, integer-valued function
(w,ne) on UNo.
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(3) If A is a tropical n-cycle defined on the interior of |X|, then it defines a multiplicity
A(o) on every o € X(n).

With notation as in (1), (2), and (3), the morphism Q% — S5 that A is mapped to
by the isomorphism can now be described by the rule

wHZA Ww,ne) o] -

oeXx(n)

5.8. The tropical cycle class map

We can now define the tropical cycle class map. We do this in two steps, first for
top-dimensional tropical cycles and then in general.

Definition 5.3. Let X be an n-dimensional rational polyhedral space. We define the trop-
ical cycle class map on n-dimensional tropical cycles

cyex: Zn(X) = H T (X)
as the composite of the canonical map
Zn(X) — Hom(Q%, %)
and the canonical identification
Hom(Q%, #%) = Hompx) (% [n], Dx) = HF} (X)),
where the first equality holds since H 7 (Dy) = %”;? =0 for j > n.

To define the tropical cycle class map in the remaining dimensions we use push-
forwards:

Definition 5.4. Let X be an n-dimensional rational polyhedral space. For a tropical cycle
A€ Z;(X), i€ N, we define its tropical cycle class by

cyex (A) = tu(cye 4(A)) € HZM(X),
where ¢: |A| = X is the inclusion map. Note that cyc| 4(A) is defined, since i = dim |A|.

Remark 5.5. It is also possible to define a refined cycle class that respects supports.
Namely, we can view the tropical cycle class of A € Z;(X) as an element of H, ‘A‘(X )

For top-dimensional tropical cycles, we now have two ways to take their tropical cycle
classes which are a priori different: one by applying cyc and one by applying cyc. As
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a byproduct of the compatibility with push-forwards we will see that they agree (see
Corollary 5.7).

5.4. Compatibility with push-forwards

As we have seen, both tropical cycle groups and tropical Borel-Moore homology groups
are functorial with respect to proper morphisms. We will now show that the tropical cycle
class map respects push-forwards, that is that it defines a natural transformation between
tropical cycle groups and tropical homology groups.

Proposition 5.6. Let f: X — Y be a proper morphism of n-dimensional rational poly-
hedral spaces. Then the tropical cycle class map cyc commutes with push-forwards. In
other words, the diagram

I
Zn(X) Z,(Y)
| e |,
HEM(x) —L s B (y)

is commutative.

Proof. Inspecting the definitions of ¢ycy, ¢ycy, and the push-forward in homology, we
see that the statement boils down purely formally to proving the commutativity of the
diagram

Zo(X) " Z,(Y)

l |

Hom(Q%, s¢) —— Hom(Q%, 547 ,

where the vertical maps are induced by the natural isomorphisms of Proposition 5.1, and
the lower horizontal map sends a morphism Q% — S to the composite

Qy = Ly = Lol = A,

where the rightmost morphism is the (—n)-th cohomology of the natural morphism
Rf.Dx — Dy. By Lemma 4.10, this morphism is induced by the push-forward mor-
phisms H, (X, X \ f~1U) — H,(Y,U) between the singular relative homology groups.
Solet A € Z,,(X). We will compare the two morphisms in Hom(Qy,, #") obtained from
A. Since tropical n-cycles on Y are determined by their restriction to a dense open subset
of Y™, it suffices to do this locally at a point y € Y™*\ f(X \ X™*). Let p € Qy. .
To compute the image of ¢ under the morphism obtained from A by moving along the
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square counterclockwise, we first take its image f*¢ in (f.Q%), = D(f~*{y}, Q%). We
note that the support of f*p only consists of isolated points of f~*{y}. Indeed, f*¢
is nonzero at x € f~'{y}, if and only if d,f: TZX — TyZY is injective, which is the
case if and only if f is injective on a neighborhood of z. In particular, we see that f*¢
is supported on finitely many points, call them 1, ..., 2y, because f~1{y} is compact.
Now we take the image of f*¢ under the morphism

(fe2%)e = T(fH{y}, Q%) = Ty}, %) = (FHX)y

induced by A. To understand it we use the explicit description of the canonical morphism
Zn(X) — Hom(Q%, 5¢) given in Remark 5.2, which is particularly simple here because
we are working on X™** 'We pick an orientation 7, € A" TyZ Y, which induces orienta-
tions 7, € A" T2 X for all 1 < i < k. These orientations define generators [0,,] € KR 4,
and [0] € #47,. The image of f*¢ in T(f~'{y}, /%) is then represented by

k

=1

We observe that

<f*§0777xi> = [TyZY: dmif(Tz,%X)]<90a77y> .

So when we finally apply the morphism

(fHR)y = T(f~Hyh, AR) = A,

we see that

k
(Z[TfY: dzif(TxZiX)]A(zi)> 2

i=1

is the image of ¢. Looking back at Definition 3.6, we see that this is precisely the image
of ¢ under the morphism 2y, — J4", induced by fA. O

Corollary 5.7. Let X be an n-dimensional rational polyhedral space. Then the two mor-
phisms ¢ycx, cycy : Zn(X) — HEM(X) coincide.

Proof. Let A € Z,(X), and let ¢: |A| — X be the inclusion. The statement is trivially
true for A = 0, so we may assume that |A| is an n-dimensional rational polyhedral
subspace of X. By definition of cycy, we have cycy(A) = t.(cyc 4(A4)), which equals
cycy (1« A) by Proposition 5.6. As 1, A = A, this finishes the proof. 0O
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Corollary 5.8. Let f: X — Y be a proper morphism of rational polyhedral spaces. Then
the tropical cycle class map cyc commutes with push-forwards. In other words, the dia-
gram

f

Z(X) Z(Y)
lcycX chw
HEM(X) —L s gBM(y)

is commutative for all i € N.

Proof. By definition of the tropical cycle class map, the assertion holds if X is a rational
polyhedral subspace of Y and f is the inclusion. Now assume f is general and A € Z;(X).
Using the result for inclusions and the fact that push-forwards are functorial for both
tropical homology classes and tropical cycles, we reduce to the case where X = |A|,
Y = f(JA]), and dim(X) = i. If dim(Y) < dim(X), then HZM (Y') = 0 and the statement
is trivial, so we may assume ¢ = dim(Y’) = dim(X). In this case, the result follow from
Proposition 5.1 and Corollary 5.7. O

5.5. Compatibility with cross products
Given tropical cycles A and B on locally polyhedral spaces X and Y, we have defined
their cross-product (§3.3) and the cross-product of their tropical cycle classes (§4.5). We

now show that the tropical cycle class of the former equals the latter.

Proposition 5.9. Let X, Y be rational polyhedral spaces, and leti,j € N. Then the tropical
cycle class map takes cross products to cross products. In other words, the diagram

ZZ(X) X7z Z](Y) ZH_]‘(X X Y)
cycx ®cycy JCyCXXY
X
HZ%M(X) Rz HfJM(Y) Hﬁg{Hj(X xY)

is commutative.

Proof. Let A € Z,(X) and B € Z;(Y). By the functoriality of the cross-product we may
assume that X = |A] is purely i-dimensional, and Y = |B| is purely j-dimensional. In
this case, both morphisms

cye(A) x eye(B): Qxyli+j] = Dxxy , and
cyc(A x B): Q57 i+ j] = Dxxy
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are completely determined by the morphisms Qz)?iy — %”;(H they induce by taking
cohomology in degree —(i+7). By Proposition 5.1, it suffices to compare these morphisms
locally at a point z = (z,y) € (X x V)™, Then x € X™® and y € Y™ Let
n. be a generator of A\'TZX and 7, a generator of A’ TyZY7 and let [o;] and [o,]

be the corresponding generator of %”)1( and L%ﬂ}iy Then as explained in Remark 5.2,

the morphism QY% , — % , defined by X is given by w — (w,7,)A(x)[0,], and the
morphism Q{,y — Jf}ﬁy defined by B is given by w — (w,n,)B(y)[oy]. By definition
of the cross product and Lemma 4.11, the morphism Q?in — f%”;{;]YZ induced by

cyc(A) x cyc(B) takes w @ W' € O, © Q{,y = Q?iy,z to

(w, e ) (@', my ) A(2) B(y) o] x [oy].

Here [0,] x [0y] denotes the classical cross-product, which equals the generator [o.] of
A, corresponding to the generator 7, = 17, ® 1, of AN TZ(X x Y). Therefore, the
expression above for the image of w ® w’ equals

(w®w',ne @1y) (A x B)(2)[0:]

which is precisely the image of w ® w’ under the morphism Q;:{Y’z — %;;JYZ induced
by cycxy (A x B). O

5.6. The first Chern class of a divisor

Let X be a rational polyhedral space. As explained in §3.5, the set of isomor-
phism classes of tropical line bundles on X is an abelian group, naturally isomorphic
to HI(X, Affx)

Definition 5.10 (see [31, Section 5] and [22, Definition 3.6]). Let X be a rational poly-
hedral space, and let d: Affx — Q% be the quotient map. Then the first Chern class is
defined as the morphism

cy = Hl(d): HI(X,AHX) — Hl(ngk) = HI’I(X) .

If . is a tropical line bundle on X, corresponding to o € H'(X, Affx), then the first
Chern class of .Z is ¢1 (&) = c1(a).

Proposition 5.11. Let f: X — Y be a morphism of rational polyhedral spaces, and let £
be a tropical line bundle on Y. Then

a(f*Z) = f(a(®)) .

Proof. This follows immediately from the commutativity of the diagram
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H(X, [0}
lHl(f”) JHl(f“)
HY(X,0%)

where the horizontal morphisms are induced by the quotient morphisms Aff — Q'. O

Also recall from §3.4 that there is a sheaf of tropical Cartier divisors %: x which fits
into a short exact sequence

0>Affx > M x = Dox — 0, (5.2)

the first connecting homomorphism of whose associated long exact cohomology sequence
is the map

Div(X) = H(X, %ux) — H' (X, Affx), D+~ Z(D) .
Composing this with the first Chern class defines a map
Div(X) = H"(X), D+ c1(£(D))

that assigns a (1,1)-cohomology class to every Cartier divisor. We will need to work
with a factorization of this map. A Cartier divisor D € Div(X) is, by definition, a global
section of %: x whose support is, again by definition, equal to |D|. Therefore, it defines a
morphism Zp| — %#x . Composing this with the morphism %..x — Affx[1] defined by
(5.2) and the projection morphism Aff x[1] — QX [1] defines a morphism Zp| — QX [1],
and hence an element in Hllj’jl| (X) (see Remark 4.2), the image of which in HV1(X) is
c1(Z(D)). We can thus view ¢ (£ (D)) as an element in H‘ll’)l‘ (X).

We will now show that taking the cap product with the first Chern class ¢;(Z (D))
corresponds to intersecting with D. This is a generalization of [22, Theorem 4.15], where
the statement is shown without supports. As our setup does not assume a global face
structure to exist, the main difficulty is to reduce to a local computation where one
can use a local face structure. In principle, this local computation should be a straight-
forward computation in a suitable exterior algebra. Yet obtaining the correct sign is
surprisingly subtle. One only obtains the correct sign if the cap product and the inter-
section product are defined in a way compatible with the orientation convention chosen
in §5.1.

Proposition 5.12. Let X be a rational polyhedral space. Then for every tropical Cartier
divisor D € Div(X) and for every tropical cycle A € Z;(X) we have
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cycx (D - A) = CYCX(A) - CI(X(D))
i HIP 1A (X).

Proof. First we reduce to the case X = |A|. Let ¢: |A| — X be the inclusion map. Then
by definition of the intersection pairing, and by Corollary 5.8, we have

cyex (D - A) = cyey (e (t"D - A)) = ticye 4 ("D - A)

in H Z‘ﬂﬂllﬂ (X). On the other hand, by the projection formula (Proposition 4.19) we have

cyex(A) ~ er(Z(D)) = v cyci 4 (A)er(Z(D)) = a(cye 4 (A) ~ ¥ (er(Z(D))))

in HzlfDmfAl‘(X), which equals t.(cyc4(A) —~ e1(L(¢*D))) by Propositions 3.15 and
5.11. It thus suffices to show that

cyc‘A‘(L*D CA) = cyc‘A‘(A) ~c1(Z (D))

in HPY, | (| DJ), which allows us to assume X = |A|. In this case, we will interpret
c1(Z (D)) as an element of Hllbll (X) and show that the equality holds in HELFI(X).
Since |D| is at most (i — 1)-dimensional, the presheaf

U BT (0)

on X is a sheaf by Lemma 4.8 (b). We can thus work locally around a point z € X,
where we can use a local face structure ¥. After potentially shrinking and refining ¥, we
can assume that the divisor D is principal, say D = div(p), and that ¢|, € I'(o, Aff,)
for all o € 3. As usual, we choose an orientation on each ¢ € ¥ in form of a generator

- c /\dimUTZ(O-)7

and these orientations define classes [0] € T'(X, Ax%™7) supported on ¢ for all o € X.
The tropically rational function ¢ defines a morphism Z,p| — %:-x, and, by definition,
the first Chern class ¢ (£ (D)) € H|1bl| (X) is the composite of this morphism with
the composite % x — Affx[1] — Q%[1], where the first morphism comes from the
exact sequence (5.2). These are morphisms in the derived category D(Zx) that are not
represented by morphisms between the complexes involved. To remedy this, we note that

the exact sequence (5.2) yields an isomorphism between %.-x and the complex

o2 0= AMffx > M x —0— L
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where . x sits in degree 0, and that the short exact sequence
0—=2Zy —2Zx —Zp—0,
where U = X \ |D|, yields an isomorphism between Zp| and the complex
.= 02Zy -2Zx —-0— ...,

where Z x sits in degree 0. The first Chern class ¢1(-Z (D)) is then represented by the
diagram

Zx M x 0 0
T |
Ty Aff x Aff Q%{ ,

where each column represents an element in D(Zx) and the minus sign in the middle
morphism in the lower row is there by convention. Tensoring with Q’XTI[@ — 1] from
the right and composing with the multiplication morphism Qé;l ®z Q% — Q%, and
the morphism Q% [i] — A% representing cycy (4), we see that cyc(A) —~ ¢1(ZL (D)) is
represented by the morphism ((Q5 ')y — Q%)) — A%, where the former complex sits
in degrees —i and —(i — 1), that is given by

QX = A we — Z (d(ele) ANwls,na)Alo)lo]
oceX(i)

in degree —i and 0 in every other degree. The morphism in degree —i extends to a
morphism Qi);l — A;(i, defining a chain homotopy between the morphism of cochain

complexes just defined, and the morphism that is given by
Ot 5 ATV wea | Y (dlelo) Awne)A()o]
oceX(1)

in degree —(i — 1) and is 0 in all other degrees. To simplify the expression on degree
—(i — 1) we pick for every finite codimension-1 face 7 of a cone o € X(i) a lattice
normal vector ny/,, and we set €, equal to 1 if the chosen orientations on o and 7 are
compatible, and to —1 otherwise. Recall that this means that

€o/mNo = T A Neg/r -

We now compute that
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o 3 (lplo) Awsn) Al)lo] | =

oeX (i)

= > ) d@le) Aw,oyrnr Agsr)A(0)eq (7] =

rEX(i—1) 0€S, (i)

Z Z (WwAd(@lo),No/r A1e)A(o)[T]

TEX(i—1) c€X,(3)

where 3, (7) denotes the set of cells o € ¥(7) that have 7 as a finite face. Note that we
only need to consider finite faces because if w is defined at a point of an infinite face of
o, then (d(¢|s) Aw,n,) = 0. Let I, be an affine linear function on a neighborhood of |%|
such that I;|; = ¢|-. Then we can rewrite the coefficient of [7] in the expression above
as

3 (<w Ad(lo) = dir)ng e A )YA(G) + (w Adly, g e A m)A(a)) -

oc€X (1)

Z <w 777' : ) dl 7nU/T>A(U)+

€Y, (1)

+<w/\le, > Alo)ng, /\777>.

ceX (1)

By the balancing condition and the fact that A’ T%(r) = 0, the second summand of the
last expression vanishes and we see that the coefficient of [7] is given by

<w7777'> Z <(d(§0|0—) - le)7nU/T>A(U)

o€, (1)

But this is precisely the coefficient of [7] one gets in cycy (D - A) (compare the coefficient
with the weights of D - A described in §3.4), finishing the proof. O

5.7. Compatibility with the singular cycle class map

Let X be a locally polyhedral space, equipped with a face structure X whose cells are
compact, and let A € Z;(X) be a tropical k-cycle on X. There exists a face structure %’
on |A| such that every cell of ¥/ is contained in a cell of ¥. For each o € ¥/(k) we choose
an orientation 7, € A" T% (o), which give rise to chains [o] € T'(X, AY") supported on
o via cellular homology. The locally finite cycle class of A, as considered in [22, Section
4] (also see [32, Section 4]) is defined as

cyc (A Z Afo) - [o] @10

oesy (k)
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where [0] ® 1, is the locally finite tropical (k, k)-chain defined by [o] and 7,, and A(o)
is the constant value that A has on o. Since any two face structures have a common
refinement, this is independent of the choice of ¥’ and defines a morphism

ey Zp(X) = HY, (X:2) .

Theorem 5.13. Let X be a rational polyhedral space, equipped with a face structure %
with compact cells. Then the natural isomorphism (Theorem 4.20)

1 =
Hk{k(X§E) — Hk,i,‘w(X)
is compatible with the two tropical cycle class maps. In other words, the diagram

Zi(X)

cycx CyCx

1s commutative.

Proof. Let A € Z;,(X), and let ¥’ be a face structure on |A| whose cells are contained in
cells of . Choose orientations 7, € A* T%(c) for all o € X', and let [0] € T'(X, A%F) be
the chain supported on ¢ obtained from 7, via cellular homology. Using the face structure
¥/, the morphism cycy (A4): Q% [k] — Dx in D(Zx) can actually be represented as a
morphism of complexes Q’)‘( [k] — Ai", namely as the morphism whose component in
degree —k is given by

Q3w S Al0)- (w,mo)lo] € AT TF.
ocex! (k)

This corresponds to the locally finite tropical (k, k)-chain

> A(o)-[o]®n, € CL(X;X)
ey (k)

under the isomorphism Hom(Qﬁ(,Ai’*k) = C,ifk(X;E) used in the proof of Theo-
rem 4.20. Noting that this tropical chain represents cycy (A) by definition finishes the
proof. O
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6. Poincaré-Verdier duality

In this section we study when a rational polyhedral space satisfies Poincaré-Verdier
duality. Our goal is to prove that this is the case if and only if they are smooth in the
sense of [4,1]. Note that the most commonly used example of smoothness for rational
polyhedral spaces in the literature is being locally matroidal. By the results of [22],
locally matroidal rational polyhedral spaces are smooth in the sense of [4,1].

6.1. Smoothness

Let X be a rational polyhedral space of dimension n. We say that X admits a funda-
mental class if it is pure-dimensional and the constant function with value 1 defines an
element [X] € Z,(X). By the definition of balancing, if X admits a fundamental class,
then the same is true for the local cones LC,(X) for all z € X.

We say that X is reqular at infinity if every point of X has a neighborhood isomorphic
to an open subset of |F| x T™ for some fan F' and some n € Z. This notion is equivalent
to the one introduced in [32].

Following [22], we say that an n-dimensional rational polyhedral space X admitting
a fundamental class satisfies Poincaré duality if for all p, ¢ € Z the morphism

HP(X) = HPM  (X), a— [X] ~a
is an isomorphism.

Following [4] and [1] we make the following definition.

Definition 6.1. Let X be a rational polyhedral space. We say that X is smooth if it is
regular at infinity, admits a fundamental class, and LC, X satisfies Poincaré duality for
all x € X.

Remark 6.2.

a) If ¥ is a fan, then a local cone LC, |X| only depends on the unique cone o of ¥
containing x in its relative interior. It coincides with what is sometimes called the
star of ¥ at o. Aksnes follows this convention on stars in [1] and it follows that
Definition 6.1 agrees with the definition of what Aksnes calls “local Poincaré duality
space” as that condition is precisely that all stars of a fan should satisfy Poincaré
duality. Amini and Piquerez [4] use the same condition, namely that all stars should
satisfy Poincaré duality, for what they call “smooth” fans, but they use the other
common convention on stars: for them, the star of ¥ at o is the image of LC, |X| in
the quotient Span |X|/Spano (where we still assume x € relint(o)). As Aksnes has
pointed out [1, page 24], the Kiinneth formula (Theorem 4.16) implies that a fan,
and hence any rational polyhedral space, is a “Poincaré duality space” in the sense
of Aksnes if and only if it is “smooth” in the sense of Amini-Piquerez.
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b) While we follow Amini-Piquerez in their usage of the adjective “smooth”, tropically
smooth spaces are analogous to classical smooth spaces only in that they locally
satisfy Poincaré duality. Classically, there is the much larger class of orientable ho-
mology manifolds that also satisfy Poincaré duality locally but are not considered
smooth. Prior to the work of Amini-Piquerez and Aksnes, the adjective “smooth”
had been reserved for tropical manifolds, which are connected rational polyhedral
spaces that are regular at infinity and whose local cones are Bergman fans of ma-
troids [35,32]. It was shown in [22] that tropical manifolds are smooth in the sense
of Definition 6.1.

Lemma 6.3. Let X be a rational polyhedral space. If X is smooth, then so is LC, X for
all x € X. In particular X is smooth if an only if it is pure-dimensional and every
point of X is isomorphic to an open subset of ' x T™ for some smooth fan F' and some
nonnegative integer n.

Proof. For every y € LC, X there exists z € X close to z with LC, X = LC,(LC, X).
Therefore, smoothness of X implies smoothness of LC, X.

The “in particular” statement follows from the fact that X is regular at infinity if and
only if every x € X has a neighborhood isomorphic to an open subset of LC, X x T"
for some nonnegative integer n. O

6.2. Poincaré-Verdier duality

We now study the Verdier dual of the sheaf of tropical p-forms on a smooth rational
polyhedral space X. Recall that, for any complex €* € D(Zx), its Verdier dual is defined
as

@((g.) = R%W/b‘(%‘,DX) .

It is immediate from this definition that 2(Zx) = Dx. What is less obvious is that for
a constructible complex €* € D(Zx) there is a natural isomorphism 2(2(%°)) = ¢°,
justifying the terminology “dual”.

If X is purely n-dimensional and admits a fundamental class, then there is a duality
morphism

dp: Qx "[n] = 2(0%)
defined as the composite
Ox Pn] = Ao (U, Uk [0]) = R Az (U, Ok [n]) = R A" (U, Dx) = ()
[X)

where the last morphism is the composition with the morphism Q% [n] — Dx given by
the fundamental class.
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Definition 6.4. We say that a rational polyhedral space X admitting a fundamental
class satisfies Poincaré-Verdier duality if for all p € N the duality morphism J, is an
isomorphism.

Note that J,, being an isomorphism, and hence satisfying Poincaré-Verdier duality, is
a local condition.

Lemma 6.5. Let X be an n-dimensional rational polyhedral space admitting a fundamental
class and satisfying Poincaré-Verdier duality. Furthermore, let ® be a family of supports
on an open subset U C X. Then for all p,q € Z, the cap product with the fundamental
class [U] of U induces an isomorphism

Hgfp,nfq(U) _ [Ul~(-)

Hy,(U) .

Proof. Since satisfying Poincaré-Verdier duality is a local condition, U satisfies Poincaré-
Verdier duality and we may assume U = X. Applying hypercohomolgy with supports is
functorial, so X satisfying Poincaré-Verdier duality implies that d, induces isomorphisms
on hypercohomology. Applying hypercohomolgy with supports in ® in degree —gq to J,
we thus obtain an isomorphism

n—pn— gy HgOplx) oy
Hg P"9(X) = Hg (2 Pln]) ——= Hp"(2(0%)) = Hyo(X) .
By definition of ¢, this is precisely the cap product with the fundamental class [X]. O

Proposition 6.6. Let X be an n-dimensional rational polyhedral space admitting a funda-
mental class. Then the following are equivalent:

a) X satisfies Poincaré-Verdier duality.
b) Every open subset of X satisfies Poincaré duality.
¢) Every point of X has a neighborhood basis of open subsets satisfying Poincaré duality.

Proof. That a) implies b) is precisely the content of Lemma 6.5 when one takes as
the family of supports all closes subsets. Clearly, b) implies c¢). Now assume c¢) holds,
let x € X, and let % be a neighborhood basis for = consisting of open subsets of X
satisfying Poincaré duality. As observed above, the morphism

H™9QY P[n]lv) = H-U(2(0%)|v)

induced by 9, is given by the cap product with the fundamental class, and therefore is
an isomorphism for all U € % by assumption. It follows that the morphism
AU ), = limg H9(Q P nllo) = lim H-(2(Q)lu) = 2~ (D(QR).

-
ve% Ue%
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induced by ¢, is an isomorphism. Since z, p, and ¢ were arbitrary, this implies that all
duality morphisms are isomorphisms, implying a). O

Theorem 6.7. Let X be an n-dimensional rational polyhedral space that is regular at
infinity and admits a fundamental class. Then X satisfies Poincaré-Verdier duality if
and only if X is smooth.

Proof. Let x € X. By Proposition 6.6 it suffices to show that LC, X satisfies Poincaré
duality if any only if  has a neighborhood basis consisting of open sets satisfying Poincaré
duality. We first prove this in the case where X = L x T* for some fan L and k € Z >y,
and z is the unique point of {0} x {oo}*. In this case, X satisfies Poincaré duality if and
only if L = LC, X satisfies Poincaré duality by [22, Lemma 5.8]. It is left to show that
there exist sufficiently many neighborhoods of = in X that satisfy Poincaré duality. While
x does not have enough neighborhoods that are isomorphic to X as rational polyhedral
spaces, it is easy to construct neighborhoods V of x that are homeomorphic to X in a
way respecting any fan structure of L, and this is enough to conclude that V' satisfies
Poincaré duality if and only if X does. We now provide the details of this argument: the
point x has a neighborhood basis consisting of sets of the form

(UNL)x (a,oo]k ,

for sufficiently small balls U in 7T,X and sufficiently large a € R. Let V' be such a
neighborhood. There exists a homeomorphism

flzL—>UﬂL

such that fi(v) is a positive multiple of v for all v € L and a strictly increasing homeo-
morphism fo: T — (o, 00]. Let f = f; x f¥: X — V be the induced homeomorphism.
By construction, the homeomorphism f maps each stratum of X into itself. Therefore,
for each p € Z>( the sheaves f~'Q}, and Q% have isomorphic stalks. Since both sheaves
are locally constant on the strata of X and these locally constant sheaves are glued iden-
tically, they are in fact isomorphic. As f is a homeomorphism we also have f~'Dy = Dy
and f induces isomorphisms

£l HPY(V) S HPA(X) | and

o~

ST HPY (V) = HPM(X)
If cither V or X satisfies Poincaré duality, then HPM (V) = HPBM(X) = Z. Therefore,
f7'V] = +£[X], which in turn implies that f~'6)" = +f~'5X. We conclude that V
satisfies Poincaré duality if and only if X satisfies Poincaré duality. As already explained,
this happens if and only if L = LC, X satisfies Poincaré duality.
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If X is a general polyhedral space, then x has a neighborhood isomorphic to LC, X x
TF for some k € Z>¢ in a way that = corresponds to the unique point of {0} x {oo}*.
The assertion is thus reduced to the case treated above. O

Corollary 6.8. Let X be a smooth n-dimensional rational polyhedral space. Then there is
a natural isomorphism Dx = Q% [n].

Proof. The dualizing complex Dy is canonically isomorphic to Z(Zx). Since Zx = Q%,
we obtain

Dx = 2(Zx) = 2(Q%) = Qx[n]
by applying Theorem 6.7. O

Another immediate consequence of Theorem 6.7 is that smooth rational polyhedral
spaces satisfy Poincaré duality with respect to arbitrary families of supports. As already
mentioned in the introduction, for compact and closed supports this has also been proved
in [4,1] building on the Mayer-Vietoris argument given for tropical manifolds in [22]. To
apply the result in practice, one first needs to show that the rational polyhedral space X
in question is smooth. For this one can use [22], where it is proved that tropical manifolds
are smooth, or the results of [4] about shellable fans.

Corollary 6.9. Let X be a smooth rational polyhedral space of dimension n. Then for
every p,q € Z and every family of supports ® the morphism

Hy P UX) = HY (X), a—[X] ~«
is an isomorphism.
Proof. This follows directly from Lemma 6.5 and Theorem 6.7. O
Data availability
No data was used for the research described in the article.
Appendix A. Complexes of singular chains on CS sets

The goal of this appendix is to construct an explicit complex Af" quasi-isomorphic
to Dx on a rational polyhedral space X such that

Hom® (0%, A7) = RHom® (0%, A%"*)

for all p € N. To prove this result, we generalize it to a result about constructible
sheaves on conically stratified spaces, which are well-studied in the context of intersection
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cohomology. We refer to [6] for an early definition of conically stratified spaces and the
classical study of their intersection cohomology (which is sheaf theoretic), and to [13] for
a treatment with a focus on singular intersection homology, which is particular relevant
in this appendix.

Definition A.1 (see [13, Definition 2.2.16]). Let X be a topological space. A stratification
of X is a collection ./ of disjoint locally closed subsets of X such that X = Jgc o S,
each S € .¥ is a pure-dimensional topological manifold, and such that for every S € .
the closure S is a union of strata of dimension less than dim(S).

Next we recall the definition of conically stratified spaces. If L is a stratified space, we
will use the notation ¢(L) for the open cone over L, that for the space (T x L)/({oco} x L).
The open cone ¢(L) has an induced stratification, with the cone point being the unique
0-dimensional stratum, and all other strata being of the form R x S, where S is a stratum
of L.

Definition A.2 (see [13, Definition 2.3.1]). Let X be a topological space, equipped with
a stratification .. We say that X is conically stratified, or a CS set for short, if for all
S € . and x € & there exist a neighborhood U of x in S, a neighborhood V' of z in
X, and a compact stratified space L such that V is homeomorphic to U x ¢(L) in a way
respecting the stratification.

Definition A.3. We say that a stratification . of a topological space X is admissible, if
the stratified space (X,.7) is conically stratified and for every stratum S € .% the pair
(S, S) is homeomorphic to a pair (U, D”), where D" is the open unit disc in R™ and U
is an open subset of the closed unit disc D™ that contains Dr.

Example A.4. If X is a rational polyhedral space with a face structure X, then the relative
interiors of the polyhedra in ¥ stratify X, and this stratification is admissible.

Let X be a topological space equipped with a stratification .. Exactly as for face
structures (see §4.7), we say that a singular simplex o: A7 — X (where A? denotes
the standard ¢-simplex) respects the stratification . if the relative interior of any face
of A? is mapped into a stratum of .. For every open set U C X and i € Z we
denote by C;(U;.#) the free abelian group on all singular i-simplices in U respecting
the stratification .. Since faces of simplices respecting the stratification respect the
stratification again, we obtain a chain complex C,(U,.¥), and a quotient

Co(X,U;.) = Cu(X;.7)/Cu(U;.%) (A1)

of relative chains that respect the stratification. We denote the i-th homology of these
complexes by
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H;(U; %) = H;(Ce(U;.7)) , and

For every k we denote by Af:’_k the sheafification of the presheaf U +— Cy(X, X \U;.%).
The differentials on the complexes of relative chains that respect the stratification induce
a differential that makes A7
of A%.

a cochain complex. By definition, Af:" is a subcomplex

Proposition A.5. Let X be a conically stratified space with stratification .. Then the
inclusion map

AT = A%
is a quasi-isomorphism.
Proof. For the purpose of this proof we will denote
HE" (X)) = H (X;.9)
for a conically stratified space X with stratification .&.
We need to show that H‘i(Af:") — H7'(A%) is an isomorphism of sheaves for
all i € Z. At a point & € X, the stalks of these sheaves are H;(X, X \ {z};.%) and

H;(X, X\ {z}), respectively, so using the long exact sequence for relative homology and
the five lemma, it suffices to show that the natural morphisms

HE™(U) — H.(U)

are isomorphisms for all open subsets U C X. This follows from [13, Theorem 5.1.4] once
we show that the four hypothesis of the theorem are satisfied.

(1) Since the barycentric subdivision restricts to an equivalence of complexes Co(X;.%)
— Co(X;.), there are compatible Mayer-Vietoris sequences for H"" and H,.
(2) If {U,} is an increasing collection of open subsets of a CS set X such that

H" (Ua) = H.(Ua)

is an isomorphism for each «, then

() )

(03

is also an isomorphism because
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strat : strat
H? (U Ua> = lim H5"*(U,) and
o [e3

H, (U Ua> = lim H, (U,) -

(3) The statement is true if X is a point. It is also true if X is homeomorphic to R™ x é(L)
in a way respecting the stratification for some n € N and some CS set L, because
in this case X can be contracted to a point in a way that respects the stratification,
reducing to the case where X is a point.

(4) If X only has a single stratum, then C5"*(X) = C(X) and therefore the statement
is true for X. O

The following Proposition is inspired by [12, Proposition 3.7].

Proposition A.6. Let X be a conically stratified space with stratification %, and let U C
X be an open subset. Then the inclusion

Agmy,- - A?’WU 7
where U N7 is the induced stratification on U, is an equivalence of complexes
Proof. For every open subset V C U with V' C U the inclusion
Co(U,U\V;.7) = Co(X, X\ V;.7)

is an equivalence by the excision theorem (see [19, Section 2.1]). To show that this stays
an equivalence when sheafifying, we need to make sure that the homotopy inverses are
compatible with restrictions. Let S: Co(X;.) — Co(X;.%) be the barycentric subdivi-
sion (see [19, Section 2.1]) and let T': id = S be a (functorial) chain homotopy between
the identity and S. We use T to define a new chain homotopy Ty whose action on
singular n-simplices is given by

0, if o(A™) C U,
TUO' =
To, else.

By the functoriality of T, this induces morphisms
Ck(XaX \Va y) - Ok-‘rl(XvX \Vv y)

for all K € N and open subsets V' C X, which are compatible with restrictions. Therefore,
they induce morphism A% ™* — A7 *~! of sheaves for all k € Z, whose restrictions to
U we denote by ¢*: A‘f:’kh] — Af’k_lhj. Let f = id —(dy + ¥d). We claim that the
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sequence (f*); of powers of f converges to a morphism £ in the sense that for every
section s € I'(V, A‘;)’k), where V' C U is open, there exists a covering V = |J, Vi such
that the sequence f(s)|y, converges to f°°(s)|y, in the discrete topology on I'(Vy, Afk)
(that is the sequence is eventually constant). As the open subsets V C U with V C U
form a basis for the topology of U, it suffices to show that the sequence (fi(s)); is
eventually constant for every s € C_(X, X \ V;.#) for such an open subset V of U. By
linearity, we may even assume that s is represented by a single singular (—k)-simplex o.
We have

floy=0—(0Y+vd)o=0— (0T +T0)o + (AT —Ty) + (T — Ty)d)o =
=S(o)+ (T —-Ty)+ (T —Ty)d)o .

Note that for any singular j-simplex ¢ we have

(T —Ti)() = {Té, if §(AT) C U
0, else.

In particular, (T' — Ty )c is a linear combination of simplices contained in U for every
chain c. Therefore, f(o)— So is represented by a linear combination of singular simplices
that are contained in U. As f is the identity on simplices that are contained in U, we
see inductively that f?(o) — Sio is represented by a linear combination of simplices that
are contained in U for all i € N. Since we assumed that V C U, the space X is the
union of U and X \ V. Thus, for i large enough the chain S’c will be represented by a
linear combination of simplices that are either contained in U or in X \ V. The latter
are 0 in C_1(X, X \ V;.%), so fi(o) is represented by a linear combination of simplices
that are contained in U. It follows immediately that the sequence (fi(c)); is eventually
constant, and we conclude that f*° is well-defined. It also follows that f°°(o) is contained
in C_1,(U,U\ V;.#). This shows that £ maps into the subcomplex Agmy” of A}S:"|U.

It is clear from the definitions that f°° respects the differentials, so we have con-
structed a morphism A | — AJ 0 T AT — AT*|p; denotes the inclusion,
then f°° 0. = id by construction. The construction of f*° also provides a chain homotopy
id = ¢ o f°°, namely the limit

> ouft
1=0

This converges in the same sense as before, because once fi(s) in Agmy" we have
¥(f(s)) = 0 by definition. We conclude that ¢ is an equivalence of complexes. O

Proposition A.7. Let X be a conically stratified space with stratification ., and let A C X
be a locally closed subset of X that is a union of strata. Then the morphism
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Hom®(Z 4, A% *) — RHom®(Z 4, Dx)

that is induced by the inclusion Af" — A% and the natural identification A% = Dx,
is an isomorphism in D(Z).
In particular, the natural morphism

Hom* (L, AN%) = R Hom® (L4, Dx)
is an isomorphism in D(Zx).

Proof. By Proposition A.5, we need to show that if Af" — #° is an injective resolution,
then the induced morphism

Hom®(Z 4, AY"*) — Hom®(Z 4,.7*)

is a quasi-isomorphism. Let U C X be an open subset such that A is closed in U. Then
the morphism above is a quasi-isomorphism if and only if the morphism

Hom®(Z 4, A% *|v) — Hom®(Z 4, .7°*|v)

is a quasi-isomorphism. Since the natural morphism Agﬂy" — Af:"|U is a chain equiv-
alence by A.6, the induced morphism

Hom®(Z a, Agﬂy") — Hom®(Z a, Af"|U)
is a quasi-isomorphism as well, so it suffices to show that the morphism
Hom*(Z 4, AY"7*) = Hom®*(Z 4, .7*|v)

that is induced by the composite Agny” — A§7.|U — #°*|y is a quasi-isomorphism. As

UNn,e
AU

this composite is an injective resolution of we may replace X by U and assume

that A is closed in X.
Let i: A — X be the inclusion. Since i' is right-adjoint to i, it suffices to show that
the morphism

Da(X,AF) = Hom* (Za.' (AF)) = Hom® (Z4,1'.9*) = [(A4.1'5%)

is a quasi-isomorphism. The natural morphism Aﬁm‘y" — i!(Af") defined by push-
forwards of chains along ¢ defines an isomorphism

T(A, A7) 2 Ta(X, A7)

on global sections because both sides are the chain complexes of locally finite chains in
A that respect the stratification. It thus suffices to show that the morphism
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[(A,A477*) = T(A,i'7*) (A.2)

induced by the composite A;my" — i'A7* — i'.7* is a quasi-isomorphism. By con-
struction, there is a commutative diagram

i!].

F F

Dy ——i'Dx

AN e
AA

in D(Z 4) whose vertical arrows are isomorphism. Since we defined the upper horizontal
morphism via the push-forward of singular cycles, which is, of course, compatible with the
trace morphisms, the lower horizontal morphism is the natural isomorphism D4 = i'D .
We conclude that the upper horizontal morphism is an isomorphism in D(Z 4) as well.
Because i' is the right-adjoint of the exact functor i,, the upper horizontal morphism in
the diagram is in fact an injective resolution. That the morphism displayed in (A.2) is
a quasi-isomorphism now follows from the fact that Aﬁm‘y" is homotopically fine and
from [9, IV Theorem 2.2}, finishing the proof of the main statement.

For the “in particular” statement we note that
Hom®(Zyna, AS™*) = RHom®(Zyna, Dy)

is a quasi-isomorphism for every open subset U C X by the main statement. Together
with Proposition A.6 we see that

Hom®(Z alv, A% ®|v) = RHom®(Z |y, Dx|vr)
is a quasi-isomorphism for all open subsets U of X, which directly implies the claim. O
Lemma A.8. Let Y be a subset of the closed unit disc D™ C R™ such that its intersection
Z =Y ND" with the open unit disc Dn is nonempty and connected. Furthermore, let F
be sheaf of abelian groups on D™ such that the restriction F |y, is constant. Then the

restriction maps

Hom(Z| pn, Z pyn) — Hom(F |z, Z7) , and
Hom(ﬁ\y, Zy) — Hom(ﬁ|z, Zz)

are isomorphisms.
Proof. The fact that

Hom(Z|p, Z pyn) — Hom(F |z, Z z)
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is an isomorphism follows immediately from the fact that .7|p, is constant and Z is
connected. For the second map we consider the short exact sequence

0= Fz = Fy = Fy\z —0
of sheaves on Y. Applying Hom(—, Zy ) we obtain an exact sequence
0 — Hom(Fy\ 7, Zy) — Hom(Fy, Zy ) — Hom(Fz, Zy) — Ext' (Fy\ 7, Zy) .
As Zy does not have any sections supported on a proper closed subset of Y, we have
Hom(#y\z,Zy) =0 .

Furthermore, there is a natural isomorphism

Hom(%#z,Zy) = Hom(%|z,Zz) .
We conclude that the restriction

Hom(Z|y,Zy) — Hom(F|z,Zz)
is injective. To show that it is surjective as well we consider the commutative square

Hom(.#, Zpn) — Hom(F | jyn, Z pn)

| g

Hom(ﬂ\y, Zy) — Hom(ﬁ\z, Zz) .

From the discussion above we know that the vertical arrow on the right is an isomor-
phism, and that the horizontal arrows are injective (set Y = D™ in the discussion above
for the top arrow). So, to finish the proof, it suffices to show that the top horizontal
arrow is surjective. In other words, it suffices to prove the result for Y = D", that is to
show the surjectivity of

Hom(%#,Zp») — Hom(F | g, Z gy ) -
In the exact sequence from above we can see that this map is surjective if and only if
Ext!(Fgn-1,Zpn) = 0, where S~ = D™\ D™. Let i: S"~! — D™ be the inclusion. By
Verdier duality for i we see that

Eth(gSn—l7ZDn) = Ext1(§|5n_1,i!ZDn) .

For k € N, the k-th cohomology sheaf H*(i'Z p») is the restriction to S™~! of the sheaf
associated to the presheaf
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U — H*(U,UND")

on D™ (cf. [18, pp. 14-15] for a closely related example). As the pair (D™, D™) is locally
homeomorphic to the pair given by an open half-space in R™ and its closure, these sheaves
are all zero and hence i'Z p» = 0, finishing the proof. 0O

Proposition A.9. Let X be a conically stratified space with an admissible stratification
<, and let F be a sheaf of abelian groups on X such that F|g is locally free of finite
rank for every stratum S € .. Then the natural morphism

Homn® (F,AN%) = R Ao (F,Dx)

is an isomorphism in D(Zx). In particular, the natural morphism
Hom®(.#,A%) — RHom®(Z,Dx)

is an isomorphism in D(Z).

Proof. The statement is local on X, so we may assume that the stratification . is finite.
We do induction on the number of strata on which .% is nontrivial. If this number is 0,
then .# = 0 and the statement is trivial. So let us assume there is a stratum on which .7
is nontrivial, and let S € . be maximal with that property. The stratum S is an open
subset of the support supp(.#), so if A = supp(.#) \ S we obtain an exact sequence

0= Fs—>F = Fa—0.
We can use this to obtain a commutative diagram

Hoom* (Fa, AL ) ——— Hom* (F,AY) ——— Hom*(Fs, A

R%m'(ﬁ}l, A)y(}) — R%?}@.(j, A;) — R%Mn.(gs, A;) —
where the lower row is an exact triangle. Note that the vertical arrow on the left is
an isomorphism by the induction hypothesis. Since Fg is locally free and S is simply
connected, the sheaf #g is isomorphic to a finite sum of several copies of Zg. So by
Proposition A.7, the right arrow is an isomorphism as well. If we can show that the
morphisms of complexes in the upper row of the diagram defines a short exact sequence

in every degree, the statement follows from the five lemma. We recall from the proof of
Theorem 4.20 that for every ¢ € Z there is an isomorphism

AT 2P Loy
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where the direct sum is over all singular i-simplices o: A’ — X respecting the stratifi-
cation. Consequentially, for every sheaf of Abelian groups ¢ that is locally free of finite
rank when restricted to any stratum in .%, we have

:%m(g, Af’ii) = Hom |9, @Zg(Ai) = @jfﬂm(g, ZU(Ai)) ,

where the last equality holds because ¢ is constructible. If for a simplex o appearing in
the direct sum we denote by T, € . the unique stratum into which the relative interior
of A" maps, there is an isomorphism

%@m(g, ZO-(Ai)) = (Hom(g|T6, ZTU))U(AL')

induced by restricting sections by Lemma A.8. So, to finish the proof, it suffices to show
that for every stratum T € . the sequence

0— Hom((ﬂAﬂT, ZT) — Hom(9|T, ZT) — Hom((ﬁs)\qﬂ, ZT) —0

is exact. If T'= S, this is the case because the second morphism is an isomorphism and
the first group is trivial, whereas if T' ## S this is the case because the first morphism is
an isomorphism and the last group is trivial.

For the “in particular” statement we apply RI" to the isomorphism

Hoomn* (T, AL ) = R Hom® (F, D)
and note that the natural morphism
Hom®(Z,A%*) = D(om* (F,A%°)) = RU o (T, A%°)

is an isomorphism because Af", and hence #2:»°(F, Af"), is homotopically fine [9,
IV Theorem 2.2]. O
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