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JUMPS IN THE HEIGHT OF THE CERESA CYCLE

ROBIN DE JONG & FARBOD SHOKRIEH*

Abstract

We study the jumps in the archimedean height of the Ceresa
cycle, as introduced by R. Hain in his work on normal functions
on moduli spaces of curves, and as further analyzed by P. Bros-
nan and G. Pearlstein in terms of asymptotic Hodge theory. Our
work is based on a study of the asymptotic behavior of the Hain-
Reed beta-invariant in degenerating families of curves. We show
that the height jump of the Ceresa cycle at a given stable curve
is equal to the so-called “slope” of the dual graph of the curve,
and we characterize those stable curves for which the height jump
vanishes. We also obtain an analytic formula for the height of the
Ceresa cycle for a curve over a function field over the complex
numbers, and characterize in analytic terms when the height of
the Ceresa cycle vanishes.

1. Introduction

1.1. Motivation and background. The central object of study in
this paper is the so-called Hain-Reed line bundle B on the moduli space
of curves M, where g > 2 is an integer. The line bundle B is introduced
in [18] and comes equipped with a canonical smooth hermitian metric
| - llg. The curvature form of the metric || - ||z is semi-positive, and
the metric gives rise to the archimedean contributions in computing the
Arakelov height of the Ceresa cycle C'—C™ in the Jacobian of a genus g
curve C.

A natural question, which forms the point of departure of [18], is to
what extent the canonical metric || - ||z extends over M, the Deligne-
Mumford compactification of M,. Let Ay denote the component of
the boundary divisor A of ﬂg whose generic point corresponds to an
irreducible stable curve with one node. In their paper, R. Hain and
D. Reed show that the metric || - |5 extends in a smooth manner over

My = M, \ Ap, the moduli space of curves of compact type, and that
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the metric || - |3 extends continuously over any holomorphic arc in M,
that meets the component A, transversally.
Given this result it is reasonable to ask whether the metric || - ||

extends continuously over the entire ﬂg. In the follow-up paper [17]
Hain shows, by means of an example, that this is not the case. In order
to probe the singularities of the metric || - || 3 near the points of A, Hain
introduces in [17] what he calls the height jump of the metric || - ||s.

1.2. The jump in the height of the Ceresa cycle. When p € M,
is a point, Hain’s height jump at p is a certain homogeneous weight one
element j(p) € Q(z; |i € Z), where 7 is a set indexing the local branches
of the boundary divisor A at p. The height jump j(p) at p vanishes if
the metric || - ||g extends continuously in an open neighborhood of p;
thus, to give a counterexample to the continuous extendability of the
metric || - ||, it suffices to find a point p € M, where the height jump
j(p) is non-trivial.

The height jump j(p) is locally constant, and specializes upon gen-
eralization, on the strata of ﬂg determined by the normal crossings
divisor A. In particular, the subset of ﬂg where the height jump van-
ishes is closed under generalization and determines a canonical open
subset MZ of M. The result by Hain and Reed shows that MZ con-

tains ﬂg \ A8, where A" denotes the singular locus of Ag. One aim
of the present paper is to give a characterization of MZ in geometrical
and combinatorial terms, see Theorem B.

In [17] Hain stated two conjectures regarding the asymptotic behavior
of the metric on the line bundle B. One is that for each (m;)iez € ng
the rational number j(p; (m;);ez) is nonnegative; the other is that for all
smooth connected complex curves T with projective completion T and
all morphisms f: T"— My, the first Chern form c¢;(f*B) extends as a
semi-positive (1, 1)-current over T. Both conjectures have been proved;
by P. Brosnan and G. Pearlstein in [9] and independently by J. Burgos
Gil, D. Holmes and the first named author in [10].

1.3. The work of Brosnan and Pearlstein. In [9], Brosnan and
Pearlstein analyze the height jump phenomenon in a broader setting. In
fact they study the singularities of the heights of biextension variations
of mized Hodge structure in complete generality and relate the general
height jump to a canonical pairing, called the asymptotic height pairing,
on the local intersection cohomology groups of the underlying variations
of pure Hodge structure.

Specializing the general results of [9] to the setting of the line bundle
B we find, among many other things, the following improvements of the
extension results of Hain and Reed mentioned above.

(i) The line bundle B extends uniquely to a hermitian line bundle B*
with a continuous metric over M, \ Ay™¢;
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(ii) The line bundle B* extends uniquely to a hermitian line bundle B
with plurisubharmonic local potentials over ﬂg;

(iii) Let p € M, be a point and let j(p) € Q(z;|i € Z) be the jump in
the height of the Ceresa cycle at p. The following two assertions
are equivalent:

— the height jump j(p) vanishes;
— the plurisubharmonic metric on B has bounded local potentials
near p.

Note that item (iii) shows once more that the locus of M, where the
height jump vanishes is an open set. Item (ii) immediately leads to a
proof of the second conjecture of Hain mentioned above.

1.4. Aim of this paper. Let p € ﬂg be any point. The main aim of
this paper is to give an explicit combinatorial expression for the height
jump j(p) at p in terms of the dual graph of the stable curve C corre-
sponding to p. In very brief terms, we show that the height jump equals
the so-called slope of the dual graph of C' — see Theorem A.

The slope is a certain invariant of polarized graphs which appears
implicitly in fundamental work of S. Zhang [36] and Z. Cinkir [12] on
the height of the canonical Gross-Schoen cycle for curves over global
fields.

In order to define the slope we first need to introduce the A-invariant
of a polarized graph.

1.5. The A-invariant of a polarized graph. For the notions of po-
larized graphs and weighted graphs we refer to §2. We will use the
letter G to refer to graphs but also to weighted graphs if the underlying
edge lengths are clear. We use the notation G = (G, q) for polarized
(weighted) graphs.

When G is a connected (unweighted) graph and q a polarization of
G, then the polarized graph G = (G, q) has associated to it a genus
9(G) € Zso. For example, the dual graph of a stable curve of genus
g > 2 is naturally a connected polarized graph of genus g.

When S is a connected Dedekind scheme, and 7: X' — S is a stable
curve of genus g > 2 with smooth generic fiber, and s is a closed point of
S, then the dual graph of the fiber X of X at s has a natural structure
of a connected polarized weighted graph of genus g. Here, the lengths
of the edges are determined by the “thicknesses” of the singular points
of X on the surface X.

Now let G be a connected weighted graph with length function m,
and let q be a polarization of G. Let G = (G, q) denote the resulting
polarized weighted graph. Then to G Zhang associates in [36, Sec-
tion 1.4] a real-valued invariant A(G). From the definition of \(G) it is
not difficult to see that when (G, q) is a connected polarized unweighted
graph with edge set F, the map that assigns to each element m € REO
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the real number (G, q;m) is represented by a homogeneous weight one
element A\(G,q) € Q(z. |e € E).

It follows that we can also talk about the A-invariant of a connected

polarized graph, treating the edge lengths as variables.
1.6. Height of the Ceresa cycle in the function field case. We
will not give the precise definition of Zhang’s A-invariant here in the
introduction as it is a little involved, but instead we mention its connec-
tion to the computation of the height of the Ceresa cycle in the function
field case, following Zhang’s paper [36].

Let S be a smooth projective geometrically connected curve over a
field k. Let m: X — S be a stable curve of genus g > 2 with smooth
generic fiber. The generic fiber of X can be viewed as a smooth projec-
tive geometrically connected curve of genus ¢ over the function field of S.
As such it has a natural associated height of the Ceresa cycle c(X/S)
and height of the canonical Gross-Schoen cycle (A, A)(X/S). Both
heights are rational numbers, and it follows from [36, Theorem 1.5.6]
that the two heights are related by the simple relation

(1.1) (X /3) = §<A,A>(X/5).

For each closed point s € S we denote by G the polarized weighted
graph associated to the fiber of 7 at s as explained above. We write

(1.2) AX/5) = 3 A@)

s€lS|
This is a finite sum, as the A-invariant of a point graph is zero. Let
h(X/S) = deg det myw, /5 be the modular height of the stable curve 7.
A combination of (1.1) and [36, Equation (1.4.2)] leads to the funda-
mental relation
— 39 —3
(1.3) h(X/S) = 291
between the modular height h(X/S), the height of the Ceresa cycle
c(X/S) and the A-invariants of the closed fibers of 7.
1.7. The slope of a polarized graph. Let G = (G, q) be a connected
polarized weighted graph of genus g > 2. We denote by do(G) the total
length of the edges of G that do not disconnect the graph G upon
removal. For h € {1,...,[g/2]} we denote by 6,(G) the total length of
the edges of G whose removal from G results in the disjoint union of a
polarized graph of genus h and a polarized graph of genus g — h.

(X /S) + \(X/8)

Definition. We define the slope of the polarized weighted graph G =
(G, q) to be the real number
B l9/2]
(1.4) s(G) = (89 +4) MN(G) — gdo(G Z 4h(g — h) 5 (G).
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The terminology “slope” is explained by the following relation with
the celebrated “slope inequality” found by A. Moriwaki [28, Theo-
rem D].

1.8. Moriwaki’s slope inequality. As in §1.6 let S be a smooth pro-
jective geometrically connected curve over a field k, and let 7: X — S
be a stable curve of genus g > 2 with smooth generic fiber. Continuing
with the notation introduced in §1.6 we define

(1.5)
s(X/9) =Y s(Gy), 60(X/8) =" 60(Gs), n(X/S) =" 64(G)
s€lS| s€lS| s€lS|

for h =1,...,]¢g/2]. From (1.3) and (1.4) we immediately obtain the
following relation:

(1.6)
l9/2)

(89 + 4)h(X/S) — g (X /S) = Y "4h(g — ) 6,(X/S)
h=1

= 12(g — 1)e(X/S) + s(X/S).

We define m(X/S) to be the left hand side of (1.6). Assuming that
char(k) = 0, Moriwaki’s slope inequality states that

(1.7) m(X/8) > 0.

The following was conjectured by Zhang [36, Conjecture 1.4.5] and
proved by Cinkir [12, Theorem 2.13].

Theorem. For all connected polarized weighted graphs G of genus
g > 2 the slope s(G) is a nonnegative real number.

Cinkir’s theorem implies that the term s(X/S) in (1.6) is nonnega-
tive. Also, it can be proved (see, e.g. [37, Theorem 1] — still under
the assumption that char(k) = 0) that the height (A, A)(X'/S) of the
canonical Gross-Schoen cycle is nonnegative. Thus, by (1.1) we have
that the height c¢(X/S) of the Ceresa cycle is nonnegative. Combining
these two non-negativity results we see that (1.6) can be viewed as a
refinement of Moriwaki’s inequality, as was also observed by Zhang and
Cinkir in their work.

1.9. Main result. Similar to the A-invariant, when (G, q) is a con-
nected polarized unweighted graph, the map that assigns to each m €
REO the real number s(G, q; m) is represented by a homogeneous weight
one function s(G,q) € Q(xz.|e € E). It follows that we can also talk
about the slope of a connected polarized graph, treating the edge lengths
as variables. The slope will occur as such in our main result, to be dis-
cussed next.
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Let ¢ > 2 be an integer, and let p € ﬂg be a point. Let C be the
stable curve of genus g corresponding to p, and let (G, q) be the dual
graph of C, viewed as a connected polarized graph. Let Z be the set of
local branches of the boundary divisor A at p, and let E be the set of
edges of G. As is well known we have a canonical bijection Z = E.

Our main result is as follows.

Theorem A. The height jump of the Ceresa cycle at the moduli
point p equals the slope of the dual graph (G,q). More precisely, under
the canonical bijection T = E the elements j(p) € Q(x;|i € I) and
s(G,q) € Q(z, | e € E) coincide.

1.10. An example. As an illustration of Theorem A we consider the
case where C' consists of two smooth irreducible components of genera
h and g — h — 1 attached in two points. The stability of C' ensures that
(g—h—1)h > 0. In [9, Theorem 241] it is shown that the height jump
of the Ceresa cycle at the moduli point corresponding to C in M, is

equal to
4179

(1.8) i(p) (w1, 22) = P

In particular, the height jump is non-trivial in this case. This example
generalizes the example of a non-trivial height jump originally given by
Hain in [17].

Let (G,q) be the dual graph of C. Then G consists of two vertices
of genera h and g — h — 1, joined by two edges. From Example 2.8 it
follows that

4$1l‘2

(1.9) s(G )1, 22) = x1 + 2

Thus using Theorem A we are able to reproduce the result in (1.8).

The proof of (1.8) in [9] is based on an analysis of the asymptotic
height pairing in terms of a suitable partial Koszul complex computing
intersection cohomology together with an explicit computation featuring
Johnson’s homomorphism on the Torelli group. It seems not straight-
forward to us to generalize the strategy leading to [9, Theorem 241] to
handle other cases.

(9—h—1)h.

(g—h—1)h.

1.11. Vanishing of the height jump. Using Theorem A we can give
a complete characterization of when the height jump vanishes. As above
let p € My be a point and let C' be the corresponding stable curve.

Theorem B. The height jump of the Ceresa cycle at p vanishes if
and only if one of the following two conditions holds:

(a) the curve C consists of two smooth rational irreducible compo-
nents, joined in g + 1 points, or

(b) the curve C is tree-like, i.e., its irreducible components form a
tree.
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It is clear from Theorem A that proving Theorem B is a matter
of characterizing for which polarized weighted graphs (G, q) the slope
vanishes, and interpreting the result in geometric terms. This task will
be carried out in §3 (Theorem 3.2).

1.12. The Hain-Reed p-invariant. Our approach to Theorem A is
close in spirit to the original paper [18] of Hain and Reed and is based
on a study of a certain class of functions §: M, — R introduced in [18].
The jump in the height of the Ceresa cycle can be rewritten in terms of
the asymptotics of 8 near the boundary divisor A.

Let p: C; — M, be the universal Riemann surface. As is shown in
[18], the underlying line bundle of B is isomorphic to £5 9", where
L, = detp.we,/a, is the determinant of the Hodge bundle on M.
We recall that the line bundle £, is equipped with a natural smooth
hermitian metric || - ||ngg, the Hodge metric, derived from the inner
product given by («, ) +— % fCa A B on the space of holomorphic 1-
forms on a compact connected Riemann surface C.

As the only invertible holomorphic functions on M, are constants,
the set of isomorphisms ¢: B — Eff) 8914 ig a non-empty C*-torsor.
Picking such an isomorphism ¢ allows us to define an R-valued function

(1.10) s =toe (1)

* || - |Hag

on M,. Here and below, the function log is taken to be the natural
logarithm. Varying the isomorphism ¢ we obtain a class of functions on
M, modulo constants, which is the S-invariant of Hain and Reed.

Our main technical result is a result on the asymptotics of the (-
invariant in one-parameter families of degenerating compact Riemann
surfaces. We will work with a specific representative of the S-invariant,
which is given by a certain archimedean analogue of the combinatorial
A-invariant that we saw earlier. The archimedean A-invariant is also
defined in [36, Section 1.4]. It is shown in [19, Theorem 1.4] that, for a
suitable choice of the isomorphism ¢, one has the equality of functions

Bg = (8g +4)X on M.

1.13. Height of the Ceresa cycle in the number field case. We
will not give the precise definition of the archimedean A-invariant here
as it is again a little involved, but instead we mention its connection to
the computation of the height of the Ceresa cycle in the number field
setting. The discussion here is completely analogous to the one in §1.6
which deals with the function field setting.

Let k£ be a number field, and write S = Spec O where O, is the
ring of integers of k. Let m: X — S be a stable curve of genus g > 2
with smooth generic fiber. The generic fiber of X can be viewed as
a smooth projective geometrically connected curve of genus g over k.
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Using arithmetic intersection theory one associates to m the absolute
height of the Ceresa cycle ¢(X'/S) as well as the absolute height of the
canonical Gross-Schoen cycle (A, A)(X'/S).

Both heights are elements of R. By [36, Theorem 1.5.6] the two
heights are related by the simple formula

(1.11) o(X/S) = §<A,A>(X/S).

For each closed point s € S we denote by G the polarized weighted
graph determined by the geometric fiber of 7 at s, and for each complex
embedding v of k we denote by \(X,,) the arch1medean A-invariant of the
smooth projective complex curve X, = X ®, C. Let My denote the set
of closed points of .S, and write M, for the set of complex embeddings
of k. We write

(1.12) MX/S)= D" MGy logNs+ > X
s€ My vEMoo
where Ns denotes the cardinality of the residue field at s.

We write h(X'/S) = degdet m.wy g for the absolute Faltings height
of m. Here the line bundle det m.wy /s is to be viewed as carrying the
Hodge metric from §1.12 at the complex embeddings of k, and the degree
deg denotes the Arakelov degree. A combination of (1.11) and [36
Equation (1.4.2)] leads to the fundamental relation
39 —3
29 +1
between the absolute Faltings height, the absolute height of the Ceresa

cycle and the A-invariants at the non-archimedean and archimedean
places of k.

(1.13) h(X/S) =

c(X/S) + \X/8)

1.14. Asymptotics of the A-invariant. It follows from (1.13) that,
in the comparison between the absolute Faltings height and the abso-
lute height of the Ceresa cycle, the combinatorial A-invariant and the
archimedean A-invariant are placed on equal footing. Given this, our
main technical result Theorem C does not come as a surprise: in a
one-parameter family of compact Riemann surfaces with stable degen-
eration, the asymptotics of the archimedean A-invariant is essentially
controlled by the combinatorial A-invariant of the special fiber.

In order to give the precise statement we first introduce some nota-
tion, to be used throughout the paper.

Notation: We write D for the open unit disk in C, and write D* = D\{0}.
When f, g: D* — R are two continuous functions, we write f ~ g if the
difference f — g extends to a continuous function over D.

We consider a stable curve 7: X — I of genus g > 2 over D. We
assume that 7 is smooth over D*. Let G = (G, q) be the dual graph of
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the fiber & at the origin, viewed as a polarized weighted graph where
the lengths of the edges are determined by the “thicknesses” of the

singular points of Xy on the surface X'. Let A(G) be the A-invariant of
G as discussed in §1.5.

Theorem C. Write X = m~'D* and let £2(t) be the family of period
matrices on D* determined by a symplectic framing of R'm.Zx. One
has the asymptotics

— 1
(1.14) A(Xt) ~ =A(G)log |t] — §logdet Im £2(t)
ast — 0 over D*.

It follows from the non-negativity of the slope (see §1.8) that we have

A(G) > 0 when G is not a point. Thus, if Ap is not smooth we have that
—A(G)log|t| is the main term of the asymptotic (1.14). Indeed, if b is
the first Betti number of G then we have detIm §2(t) ~ ¢ - (—log |t|)®
for a suitable real number ¢ > 0. This follows from Remark 6.8.

Theorem C will be proved in §7. Our proof is based on a general
result on the asymptotics of the so-called I-invariant for degenerating
principally polarized complex abelian varieties, see Theorem 6.1. The
latter result was recently also obtained independently by R. Wilms [35,
Theorem 1.1].

1.15. Analytic expression for the height of the Ceresa cycle. We
will use Theorem C to prove Theorem A in §11. As a second application
of Theorem C we have the following analytic formula for the height of
the Ceresa cycle in the case of a function field over C.

Let S be a smooth projective connected complex curve, let D be an
effective reduced divisor on S, and write S = S\ D. Let 7: X — S
be a stable curve of genus g > 2, and assume that 7 is smooth over S.
The pull-back of the Hain-Reed line bundle B along the moduli map
S — M, yields a smooth hermitian line bundle Bs on S. By the work
of Brosnan and Pearlstein as discussed in §1.3, or alternatively by [10,
Corollary 2.13], we have that the first Chern form c¢;(Bg) extends as a
semi-positive (1,1)-current [c;(Bg)] over S.

As discussed in §1.6 we have associated to the stable curve 7: X — S
the height ¢(X'/S) of the Ceresa cycle of its generic fiber. We recall that
the height ¢(X/S) is a nonnegative rational number. Our next result
shows that ¢(X'/S) has a simple expression in terms of the semi-positive
(1,1)-current [c1(Bs)].

Theorem D. Let m: X — S be a stable curve of genus g > 2, and
assume that m is smooth over S. The equality

(1.15) 12(g — 1) e(X/5) = / c1(Bs)

S
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holds. In particular, the height c(X/S) of the Ceresa cycle vanishes if
and only if c1(Bs) =0 on S.

One situation in which the height ¢(X'/S) of the Ceresa cycle vanishes
is when the generic fiber of 7 is hyperelliptic. In fact, the restriction of
the Hain-Reed line bundle B to the hyperelliptic locus in M, is trivial
as a hermitian line bundle.

We will derive Theorem D from Theorem C in §9.

1.16. Overview of the paper. In §2 we review some basic notions
and results on polarized graphs. Among other things, we introduce
here the slope of a connected polarized weighted graph. In §3 we give a
complete classification of those connected polarized graphs (of genus at
least two) that have a vanishing slope. This classification leads to the
characterization given in Theorem B.

In §4 we discuss some preliminary material concerning tropical mo-
ments. In §5 we review some basic results on families of degenerating
polarized complex abelian varieties. In §6 we introduce the I-invariant
of a principally polarized complex abelian variety following [3] and prove
Theorem 6.1 on the asymptotics of the I-invariant in families of degen-
erating principally polarized complex abelian varieties. In §7 we deduce
from Theorem 6.1 our main technical result Theorem C on the asymp-
totics of the A-invariant.

In §8 we review some basics on the Hodge metric and its asymptotics
that we need in order to deduce Theorems A and D from Theorem C.
In §9 we give our proof of Theorem D. In §10 we review the notion of
height jumps as introduced by Hain in the setting of the Ceresa cycle,
and as further analyzed by Brosnan and Pearlstein in a much wider
setting. Finally in §11 we give our proof of Theorem A.

2. Graphs and slopes

2.1. Graphs and polarizations. In this paper, a graph consists of a
finite non-empty vertex set V and a finite (possibly empty) edge set
FE, with the usual incidence relations. Loops and multiple edges are
allowed.

When G = (V, E) is a graph with vertex set V and edge set FE, a
polarization of G is a function q: V — Zx>( with the property that for
each p € V the inequality v(p) — 2 + 2q(p) > 0 is satisfied. Here v(p)
is the valency of p, i.e., the number of emanating half-edges at p. For
p € V one usually calls q(p) the genus of the vertex p. Further, a divisor
on G is an element of Z". The degree of a divisor D = ZpGV ny-p is the
integer deg D = ZpGV ny. A divisor D = ZpGV ny - p is called effective
if for all p € V' the inequality n, > 0 is satisfied.

Given a polarized graph (G, q), the associated canonical divisor is
the effective divisor K € Z" given by setting K(p) = v(p) — 2 + 2q(p)
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for p € V. When G is connected, the integer

(2.1) 9(G,q) = (degK +2)=0(G) + Z alp
peV

is called the genus of (G, q). Here b1(G) € Z>¢ is the first Betti number
of G. Note that the genus of a connected polarized graph is an element
Of Z>0.

Definition 2.1. A connected polarized graph (G, q) is called stable
if its canonical divisor is strictly positive.

It follows from the definition of the canonical divisor that, in a sta-
ble graph (G, q), the polarization function q is strictly positive on all
vertices of valency 1 or 2. Further, it follows from (2.1) that a stable
graph has genus at least 2.

A bridge in a graph is an edge which, when removed, increases the
number of connected components. Let G be a connected graph. An
edge e € E is called of type 0 if it is not a bridge. Let q: V — Z>¢
be a polarization of G and let e € E be an edge. Write g = g(G, q).
If the removal of a bridge e from G results in the disjoint union of two
connected graphs, say G1 and Go with polarizations q; and qs, then it
is easy to see that g = g(G1,q1) + G(G2,q2). We call the bridge edge e
of type h, where h € {1,...,[g/2]}, if one of the two components G1, G2
has genus h and the other has genus g — h.

A length on a graph G = (V,E) is a map m: E — Rsg. A graph
equipped with a length function is called a weighted graph. We will
sometimes use the letter G to refer to weighted graphs, if the edge
lengths are given or clear from the context.

Let G = (G, q) be a connected polarized weighted graph with vertex
set V and edge set E. Let ¢ = g(G,q) be its genus, and let §(G) =
> ccr Mm(e) denote the total length of the edges of G. The total length of
the edges of G of type 0 is denoted by do(G), and for h € {1,...,[g/2]}
the total length of the edges of G of type h is denoted &, (G). We have
5(G) = 60(G) + 71 6@,

For the notion of (polarized) metric graph that we shall employ we
refer to either [12, §§3 and 4], [38, Appendix], or [36, §4]. A weighted
graph G naturally gives rise to a metric graph I" with a designated vertex
set V, and a polarized weighted graph G = (G, q) naturally gives rise
to a polarized metric graph I' = (I, q), that is, a metric graph I" with
designated vertex set V' and polarization q: V' — Z>g.

The notions of canonical divisor and genus readily generalize to the
setting of polarized metric graphs. Moreover, when I" = (I,q) is a
connected polarized metric graph, one naturally has its associated vol-
ume §(I") as well as the invariants do(I") and 8, (") for h =1,...,[g/2],
where g = g(I') is the genus of I
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2.2. Minimal models. Let I" = (I',q) be a polarized metric graph.
By a model of I we mean a polarized weighted graph G = (G, q) giving
rise to I

Definition 2.2. Let I' = (I',q) be a connected polarized metric
graph with canonical divisor K. Assume the genus of I is at least two.
The minimal model of T is the polarized weighted graph whose vertex
set V equals the support of K, and whose polarization is the restriction
of qto V.

In Definition 2.2, since the genus of I is assumed to be at least
two, V is non-empty. By definition q(p) = 0 for all p € I'\V and,
therefore, the minimal model has the same genus as I". Moreover, by
construction, the minimal model of I" is always a stable polarized graph
(see Definition 2.1).

2.3. 2-connected graphs and the ear decomposition. A metric
graph is called 2-connected if it cannot be disconnected by deleting a
single point. A weighted graph is called 2-connected if its associated
metric graph is 2-connected. Note that a weighted graph with two ver-
tices connected by a single edge (i.e. an ‘edge segment’) is not considered
2-connected with our definition.

Whitney’s theorem states that a graph G is 2-connected if and only
if it has an open ear decomposition (see [13, §3.1]): there exists graphs
Go, ..., Gy such that
e Gy is a cycle in G,

o Gk‘ - G7
e for 1 < i < k, the graph G; is obtained from G;_; by adding a path

with distinct ends in G;_1 and otherwise disjoint from G;_.

2.4. The j-function and effective resistance. Let I" be a connected
metric graph and fix two points y,z € I'. We recall that j!'(-,y) de-
notes the unique continuous piecewise affine real valued function on I
satisfying:

(i) A (71 (y) =8y — 6,

(i) 72 (2,9) =0.
Here A is the Laplacian operator in the sense of distributions.

The following result is well-known (see, e.g., [5, Lemma 2.17]).

Lemma 2.3. A metric graph I is 2-connected if and only if for all
z,y,2 € I' with z € {x,y} we have jL (x,y) > 0.

The effective resistance between two points z,y € I is defined as
r(x,y) = j{(x,a:). The effective resistance function r: I' x I' — R is a
distance function on I" (see, e.g., [24, §4.2]).

The Foster coefficient of an edge segment e with endpoints e*,e™ €
I'isF(e) =1—r(et,e”)/m(e). Tt is well-known that F(e) > 0. More-
over F(e) = 0 if and only if e is a bridge (see, e.g., [24, §7.4]).
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2.5. Invariants of polarized graphs. Let I' = (I',q) be a connected
polarized metric graph. We refer to [38] for the definition of the admis-
sible measure p on I associated to the polarization q, and the admissible
Green’s function g,: I' x I' — R. We will be interested in the following
invariants of I, all introduced by Zhang [36, 38]. Let K denote the
canonical divisor of I', and let g = g(I") denote its genus.
e The ¢-invariant, given by

— 1 1
22) o) = =380+ 1 [ ule. ) (109 + (o) = Bic(a).

e The e-invariant, given by

(2.3) «(T) = /F g 7) (20 — 2le) + 55 () -
e The M-invariant, given by
_ g—1 _

() + — (5() + e(T))

(2.4) AT) = >

629+ 1)7

From the above definitions, one naturally has the invariants ¢(G),
€(G), and A\(G) for polarized weighted graphs G = (G, q) as well. Note
that these are invariants of the underlying polarized metric graph.

The following two examples follow easily from [12, Proposition 4.9].

EXAMPLE 2.4. Assume that I" is a loop graph of genus ¢ based on a
single vertex. Then we have (8¢ + 4)A\(I') = g d(I).

EXAMPLE 2.5. Assume that I" is an edge segment with endpoints of
genera h and g — h. Then we have (8¢ + 4)\(I") = 4h(g — h) 6(I").

2.6. Slopes of polarized graphs.

Definition 2.6. The slope of a polarized metric graph I is given by

[9/2]
(2.5) s(T) = (8g +4) M(T') — g do(I" Z4h g—h)ou(T).

We also define the slope of a polarized weighted graph G = (G, q),
denoted by s(G), as the slope of the polarized metric graph modeled
by G.

EXAMPLE 2.7. Let I' = (I',q) be a bridgeless connected polarized
metric graph. Let r: I' x I' — R denote its effective resistance function.
Let G be any polarized weighted graph, with vertex set V and edge set
E, which is a model of . For a vertex p € V, we define

o)=Y _rpal@+ >, Jpete)Fle).

qeV e={et, e }€FE
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From [12, Proposition 4.6 and Proposition 4.15] we obtain an explicit
formula for the slope of I' as the o-weighted degree of the canonical
divisor:

s(T) =" (v(p) — 2+ 2q(p)) o (p).

peV

It follows immediately that for all bridgeless polarized metric graphs I"

one has s(I") > 0.

EXAMPLE 2.8. Let I be a polarized metric graph of genus ¢ consisting
of two vertices of genera h and ¢ — h — 1 and joined by two edges of
lengths m1, ms. Using Example 2.7, we compute

— 4m1 mo

s(I (g—h—1)h.

mi + mg

2.7. Block-tree decomposition of graphs. A separation of a con-
nected graph G is a decomposition into two connected subgraphs having
a unique common vertex v and disjoint nonempty edge sets. The com-
mon vertex v is called a separating vertex of G. A connected graph is
called inseparable if it does not have a separating vertex. A block of a
connected graph G is a maximal inseparable subgraph. If the edge set
of G is non-empty, then each block of G is either a loop, a bridge, or a
maximal 2-connected subgraph without loops.

Every graph is a union of its blocks. Any two distinct blocks of a
graph have at most one common vertex. Let B = {H;} denote the col-
lection of blocks of a connected graph G. Let C be the set of separating
vertices of G. Define a bipartite graph H with the vertex set BUC by
connecting H; € B to v; € C if v; € H;. Then H is a tree. This is the
famous block-tree decomposition theorem (see, e.g., 13, §3.1]).

Let G = (G, q) be a connected polarized weighted graph. Each block
H; of G is endowed with a natural structure of a polarized weighted
graph H;, with the induced polarization q; obtained from q by push-
forward along the natural projection G — H;. With this induced po-
larization, each H; has the same genus as G.

Lemma 2.9. Fvery block H; of a stable polarized graph G is again
a stable polarized graph.

Proof. Consider the block decomposition of G into its blocks H;. Let
p be a vertex of H;.

Assume p is a non-separating vertex of H;. The value of the canonical
divisor of H; at p is positive. This is because, in passing from G to H;,
both the valency and the genus at p are unchanged.

Now assume p is a separating vertex of H;. The valency at p in H;
is at least 1 by connectedness. The value of the induced polarization q;
at p is replaced by the genus of the entire subgraph of G that touches
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the block H; at p. This genus is at least one. It follows that the value
of the canonical divisor of H; at p is again positive. q.e.d.

The notions of blocks and block decomposition naturally extend to
connected metric graphs. Let I" = (I',q) be a connected polarized
metric graph. By [36, Theorem 4.3.2], each of the invariants ¢(I"), (T")
and \(I') is additive in the blocks of I". We conclude that also the slope
s(I") is additive in the blocks of I

It follows from Example 2.5 that the slope of an edge segment is
always zero. Therefore, if {I',} denotes the collection of 2-connected

blocks of I (with their induced pushedforward polarizations), we have

(2.6) s(I) =) s(Ta).

«

The following result follows immediately.

Proposition 2.10. We have s(I') = 0 if and only if we have s(I'y) =
0 for all 2-connected blocks 'y, of T.

3. Vanishing slope

In this section, we give a complete classification of connected polar-
ized metric graphs (of genus at least two) with vanishing slopes. Our
strategy is to use the block-tree decomposition theorem, and reduce the
classification problem to the study of blocks.

Theorem 3.1. Let I' = (I',q) be a bridgeless connected polarized
metric graph. Assume the genus of I is at least two and let G = (G, q)
be its minimal model. Let V be the vertex set of G.

(a) If |V| =1 then s(I') = 0.

(b) Assume |V|>2. If @ % 0 then s(I') > 0.

(c) Assume G is 2-connected. If |V| > 3 then s(I") > 0.

Proof. Since we are working with a bridgeless graph, we may use

Example 2.7 to compute s(I") as the o-weighted degree of the canonical
divisor:

s(T) = (v(p) — 2+ 2a(p)) o (p),

peV

o)=Y _rpal@+ >, dp (et e)Fle).

qeVv e={et,e " }€E

By construction G is stable, so v(p) — 2 + 2q(p) > 0 for all p € V.
Note also that all summands in the expression for o (p) are nonnegative.
Therefore:

e s(I') > 0 if and only if o(p) > 0 for some p € V.
e o(p) > 0 if and only if at least one of the summands in its expression
above is strictly positive.
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(a) Let V= {p}. Then r(p,p) = 0 and, for all edges e, we have
jpp\e(eﬁe*) = 0 because p = et = e~. It follows that o(p) = 0 and
s(I') =0.

(b) Let g € V' be such that q(¢q) > 0. Consider another vertex p # q.
Since the effective resistance function r is a distance function, we must
have r(p,q) > 0. It follows that r(p,q)q(q) > 0. We obtain o(p) > 0
and, therefore, s(I") > 0.

(c) By part (b) we may assume that q = 0. Since v(p)—2+2q(p) > 0,

for all p € V, we must also have v(p) > 3.
Claim 1. There exists an edge e such that G\ e remains 2-connected.

Proof of Claim 1. Consider Whitney’s construction of the 2-connected
graph G via an open ear decomposition, described in §2.3. The last path
added in the ear decomposition must be a single edge e. Otherwise, if
it is a path of length at least two, the graph will have a vertex of va-
lency 2. Removing this last edge e will result in a graph with an open ear
decomposition, so the remaining graph will still be 2-connected. q.e.d.

Claim 2. There exist a vertex p and an edge e = {e™, e} such that

i\ (et em) > 0.

Proof of Claim 2. Let e be as in Claim 1. Let p ¢ {e™,e”}, which
exists because |V| > 3. As I'\ e is 2-connected, Lemma 2.3 guarantees

j;;\e(eJr, e”)>0. q.e.d.

Since G is bridgeless we have F'(e) > 0 for any edge e € E. Let p e V
and e € F be as in Claim 2. Then j,l:\e(eﬂe*) F(e) > 0. We obtain
o(p) > 0 and, therefore, s(I") > 0. q.e.d.

Theorem 3.2. Let I' = (I',q) be a connected polarized metric graph.
Assume the genus ggff is at least two. Let G = (G, q) be its minimal

model. The slope s(I") vanishes if and only if one of the following two
conditions holds:

(a) @ =0 and G is the graph on two vertices joined by g+ 1 parallel
edges.

(b) The block-tree decomposition of G consists of (at most g) loops
and (an arbitrary number of) bridges.

Figure 1 illustrates the two possibilities. A graph of type (a) is some-
times called a banana graph. For a graph of type (b), after contracting
all the bridge edges, we obtain a graph with one vertex and multiple
loops. This is sometimes called a bouquet of circles or a rose graph.

Proof. Assume s(I') = 0. By Proposition 2.10, for each 2-connected
block H; of G, we must have s(H;) = 0. By Theorem 3.1 part (c), H;
cannot have more than two vertices. In the case that H; has precisely
two vertices, by Theorem 3.1 part (b), we must have q = 0.
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o & myy
mi Mg+41 mr '
. - O
> mi2
)2

(a) (b)

Figure 1. Polarized metric graphs with vanishing
slopes, represented by their minimal models (Theo-
rem 3.2). Vertices of the minimal model are denoted
by v; and the edge lengths are denoted by m;.

(a) The graph with g 4+ 1 parallel edges and q = 0.

(b) An example of a graph whose block-tree decompo-
sition consists of only loops and bridges. The sum of
q(v;)’s plus the number of loops is equal to g.

Claim. If G has a 2-connected block H; with precisely two vertices,
then G = H;.

Proof of the Claim. Assume G has more than one block. Let p be a
separating vertex of G in H;. The value of the induced polarization q;
at p is replaced by the genus of the entire subgraph of G that touches
the block H; at p. This genus is at least one. By Theorem 3.1 part (b)

we obtain s(H;) > 0, a contradiction. q.e.d.

The ‘only if’ part now follows from the block-tree decomposition the-
orem, described in §2.7. The ‘if’ part is an immediate consequence of
Proposition 2.10 and the explicit formula in Example 2.7. q.e.d.

We note that Theorem 3.2, together with Theorem A, proves Theo-
rem B.

4. Tropical moments

The purpose of this section is to define the tropical moment of a lat-
tice, of a positive definite matrix, and of a principally polarized tropical
abelian variety. This section serves as a preparation for the results and
proofs given in §6.

4.1. Tropical moment of a lattice. A lattice is the datum of a finitely
generated free abelian group A together with an inner product [-,-] on
the real vector space A ®@ R. Let (A, [, -]) be a lattice and denote by
| - || the resulting norm on the vector space V= A ® R. We define
the Voronoi region associated to (4, [-,-]) to be the symmetric, convex,
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compact subset
Vor(A) ={veV|VAe A ||| <|v-Al}

of V. The compact set Vor(A) is a fundamental domain of the lattice
Ain V, in the sense that the natural map Vor(A4) — V/A is surjective,
and injective on the interior of Vor(A).

Let ur, be a Lebesgue measure on V. We define the tropical moment
of the lattice (4, [-,]) to be the quotient

_ fVor(A) ”v||2duL
fVor(/l) d,U,L .

The real number (A) is independent of the choice of Lebesgue mea-
sure fir,.

(4.1) I(A)

4.2. Tropical moment of a positive definite matrix. Let g € Z>¢
and let Z € Mat(g x g,R) be a positive definite g x g matrix. Then we
denote by I(Z) the tropical moment of the lattice Z¢ in RY where the
inner product on RY is given by (a, 8) — a'Zp, i.e. the inner product
on RY that has Gram matrix Z on the standard basis. We refer to I(Z)
as the tropical moment of the positive definite matrix Z. It is easy to
see that I(Z) is the tropical moment of any lattice for which Z is a
Gram matrix on a basis.

We have the following explicit formula for I(Z). We write Vor(Z)
for the Voronoi region of the lattice (Z9, 7). The standard Lebesgue
measure on RY gives Vor(Z) volume one. Indeed, the unit box [0, 1]9
has volume one, both the unit box and Vor(Z) are fundamental domains
for Z9 in RY, and all fundamental domains for Z9 in RY have the same
volume. Formula (4.1) thus specializes to give

(4.2) 1(Z) = /ﬁev ” BZBdS.

We note that for 8 € RY, the condition that 8 € Vor(Z) can be written
as

1
(4.3) VneZl:nZp< inth.

It immediately follows that for all A € Rs we have Vor(AZ) = Vor(Z2).
By (4.2) we then find I(AZ) = AI(Z).

We will also work with the following slight generalization. Let V' C RY
be any compact set, and let Z € Mat(g x g, R) be any g x g matrix with
entries in R. Then we define

(4.4) vz = [ Bz8d3
pseV
Therefore, in particular, when Z is positive definite we have I(Z) =

Kor(z)(Z). We can view Iy as a linear functional on Mat(g x g, R).
The proof of the following lemma is left to the reader.
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Lemma 4.1. Let g € Z>o and let v € {0,...,g9}. Let A be a real
g X g matriz in block form

_[(Ag |0

with Ag positive definite and of size r X r. Let Z be a real g X g matrix

in block form
g (T | Ty

N \Zy—rs | Zg—rg—r)’
with Zg—y.qg—r positive definite and of size (g —r) x (g —r). Write

V' = Vor(Ap) x Vor(Zy—rg—r) CR" x RI™" =R,
Then V is a fundamental domain for Z9 in RI, and the equalities
Iy (A) = I1(Ao)

and

IV(Z) = IVor(Ao)(Zr,r) + I(Zg—r,g—r)
hold.

4.3. Tropical moment of a tropical abelian variety. For the pur-
poses of the present paper, a principally polarized tropical abelian vari-
ety consists of two finitely generated free abelian groups X, Y, together
with an isomorphism @: Y = X and a homomorphism b: Y — X* =
Hom(X,Z), with the property that the composite ®* ob: Y — Y™ is a
non-degenerate self-dual map that defines an inner product [-, -]y on Yg.

Let (X,Y,®,b) be a principally polarized tropical abelian variety.
Then we define the tropical moment of (X,Y,®,b) to be the tropical
moment of the lattice Y inside the inner product space (Yg, [, ]y ).

Let ¥ = Yr/Y; then we view X as a polarized real torus, with
inner product on its tangent space Yg given by [-,:]y. We will often
write (X)) for the tropical moment of the principally polarized tropical
abelian variety (X,Y, ®,0).

5. Degenerating abelian varieties

The purpose of this section is to briefly review some of the struc-
tures underlying families of degenerating principally polarized complex
abelian varieties. The material in this section expands on the discussion
in [15, Chapter I1.0].

5.1. Normal form. Let g € Z>(. For m1,ma,n1,n2 € Z9 we set
(5.1) E((my,mz), (n1,n2)) = ming — mhn;.

Thus E defines the standard symplectic form on the free abelian group
729. We write

(5.2) H, = {2 € Mat(g x g,C) | 2 = 2" and Im 2 > 0}
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for the Siegel upper half space in degree g. For each 2 € H, we have
a lattice Ap = Z9 + (279 inside CY9 and we write Ay for the complex
torus C9/Ag. The complex torus Ag has a natural structure of princi-
pally polarized complex abelian variety, where the associated symplectic
form Ap x Ap — 7Z is given by sending ((mi1 + 2ms), (n1 + 2n3)) to
E((mla m2)7 (n17 n2))

5.2. An equivalence of categories. Conversely, every principally po-
larized complex abelian variety (A,a: A = A?) is isomorphic to one of
the form Ap. We can make this statement more precise using the lan-
guage of Hodge structures. Namely, a polarized complex abelian variety
(Aja: A — A') can equivalently be thought of as a polarized Hodge
structure of type (—1,0), (0,—1).

Given a polarized complex abelian variety (A, a) the associated po-
larized Hodge structure is the free abelian group H = H;(A,7Z) with
FYHe = H°(A, 2')V and with polarization Hy(A,Z) — H1(A,Z)*(1) =
H1(AY,Z) given by a.. Vice versa, given a polarized Hodge structure
(H,F*, Q) of type (—1,0), (0,—1) the associated polarized complex
abelian variety has underlying torus given by the intermediate Jaco-
bian JH = Hc/(F°Hc + H) and polarization given by Q.

5.3. Period matrices. When the polarization Q: H — H*(1) is an
isomorphism, upon choosing a symplectic basis of H, the pair (H,Q)
can be identified with the standard symplectic space Z?9 with polar-
ization given by the form E as in (5.1). Under this identification, the
g-dimensional complex subspace FOH¢ C He corresponds to the row
space in C?9 of the matrix (Id, | £2) for a uniquely determined (2 € H,.

We call {2 the period matriz of (H, F*®,Q) on the chosen symplectic
basis. We see that the moduli space A, of principally polarized complex
abelian varieties of dimension g (viewed as an orbifold) is naturally
identified with Sp(2g, Z) \ Hy. The map C?¢ — CY given by (m1,ma)
—2m1 4+ my for m1, my € CY induces an isomorphism of the principally
polarized abelian variety JH = Hc/(FYHc + H) with the principally
polarized abelian variety Ap = C9/(Z9 + Q79).

5.4. The period map. Let S be a complex manifold, and let (f: A —
S,a) be a holomorphic family of polarized complex abelian varieties.
This datum can equivalently be thought of as a polarized variation of
pure Hodge structures H of type (—1,0), (0,—1) over S. Globalizing
the construction from §5.2, the equivalence is given by setting H =
R'f,7Z (1) and endowing the vector bundle H¢ ® Og with the natural
Hodge filtration determined by F° (Hc ® Og) = (f+ 9}4/5)\/.

Assume that S is connected and let H denote the fiber of H at a
chosen basepoint in S. The family a of polarizations translates into
a polarization Q: H — H*(1). We will assume throughout that the
polarizations « are principal; equivalently, we assume that the map @
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is an isomorphism. Let S — S be a universal covering space. The
variation H pulls back to S to give a trivial local system H with fiber
H and polarization Q: H = H*(1). As is customary to do, we choose
a symplectic basis of H and view it as a global basis of the pullback
variation H over S. By taking the associated period matrices as in §5.2
we obtain a holomorphic period map §2: S — H, that we often think of
as a multi-valued holomorphic map §2: S — H,.

In the next sections we assume that the base manifol~d S is the punc-
tured unit disk D* in C. We choose an identification S = H with uni-
versal covering map S — S given by u — exp(2miu). We shall assume
throughout that the variation H has unipotent monodromy around the
origin of . This means that the family f: A — D* extends to a holo-
morphic family of semiabelian varieties G — D.

5.5. Associated semiabelian variety. We denote by G = Gy the
complex semiabelian variety that results from taking the fiber of G at
the origin. We then have a canonical short exact sequence of complex
group varieties

(5.3) 1-T—-G—P—0,

with T the toric part of G, and P = G/T an abelian variety. We write
X = Hom(T, Gy,) for the character group of 7' and X* = Hom(X,Z) =
H,(T) for its co-character group.

The family f¢: A" — D* of dual abelian varieties similarly gives rise
to a complex semiabelian variety G?, fitting in a short exact sequence

1-T Gt — Pt =0,
with 7" the dual torus of T and P' = G'/T" the dual abelian variety of

P. The holomorphic family « of principal polarizations naturally gives
rise to an isomorphism of short exact sequences

(5.4) 1 T G P 0
1 T! Gt Pt 0.

We write Y for the character group of 7. Pulling back along the iso-
morphism 7' = T* in (5.4) we find an isomorphism &: Y = X of
abelian groups.

5.6. Associated limit mixed Hodge structure. The fiber H is
equipped with a natural limit mixed Hodge structure. Its weight fil-
tration can be defined over Z, and takes the form

0CW_oH=X"CW_1HCWy,H=H.

One may view H*(1) as the limit mixed Hodge structure of the family of
dual abelian varieties. Thus similarly H*(1) has a natural limit mixed
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Hodge structure, with weight filtration
0CW_oH (1) =Y"CW_1H"*(1) CWoH"(1) = H*(1).

We have identifications W_1 H = Hy(G) and W_1H*(1) = H(G"). Also
we have identifications of the weight graded pieces

GI‘_QH == X*, GI‘_lH == Hl(P), GI‘QH == }/,

where the identity GroH =Y can be seen from the fact that the weight
filtration of the dual H*(1) is identified with the dual of the weight
filtration of H.

The limit mixed Hodge structure H has a graded polarization induced
from the polarization ). For instance, the pure Hodge structure Gr_; H
corresponds to the abelian variety P; the natural induced polarization
P — P! coincides with the isomorphism given in (5.4) and is thus
principal. Also we obtain a commutative diagram

(5.5) H— 1+(1)
L)

o

where the vertical arrows are the natural inclusions.

5.7. Monodromy pairing. Let T: H = H denote the monodromy
operator determined by a positively oriented loop in m(D*) = Z, and
write N =T —idyg. The map N: H — H is nilpotent and descends to
give a natural map

b:Y = GrgH — Gr_oH = X*,

called the monodromy pairing. The free abelian groups X, Y together
with the homomorphisms @: Y = X and b: Y — X* form a principally
polarized tropical abelian variety (in the sense of §4.3) canonically asso-
ciated to the holomorphic family (f: A — D*, «) of principally polarized
complex abelian varieties.

We denote by [-, -]y the inner product on Yg coming from the homo-
morphism @*ob: Y — Y*. Let v»: H — Y = GroH denote the natural
projection map. Via the commutative diagram (5.5) and the relation
N = bo 1 we arrive at the equalities

[p(h), ¥(k)]y = (2" 0 b)(¥(R))(¥(K))
(5.6) = &*(Nh)(¥(k))
= Q(Nh, k)
for h,k € H.
Let r = dim T be the toric rank of the semi-abelian variety G. We

choose a symplectic basis of H and view it as a global basis of the
pullback variation H over the universal covering space H of D* as in
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§5.4. The symplectic basis may be chosen in such a way that the map
N: H — H is represented by a matrix

0|A
0[0)”

where A is a symmetric integral g X g matrix in block form

(A0
A‘(o o)’

with Ag positive definite and of size r x r.

(5.7) M =

Proposition 5.1. The matrixz Ay is a Gram matriz for the lattice Y
in the inner product space (YR, [, ]y).

Proof. Let hi,ho,ki1,ko € Z9. Denote by h, k the elements of H
corresponding to (hi,ha), (ki,ks) € Z?9. For m € Z9 we denote by
m{") € Z7 the first  coordinates of m. Using (5.1), (5.6) and (5.7) we
compute

W(h)W(k‘)]Y = Q(Nh7 k)
= E(M(hy, ha), (k1, k2))
(58) = E((Ahg,()), (kl,k‘Q))
— Wb Aks
— B Agky.

Let S C H be the subset corresponding to the set of elements (0, k3) €
729 with ko € 79 of the form (mg,0) with mso a standard basis vector
in Z". By (5.7) a basis of the free abelian group NH C X* is given by
the elements Nk where k runs through S. Since NH = b(Y'), and b is
injective, we conclude that a basis of the free abelian group Y = GroH
is given by the elements (k) with k running through S. The equalities
in (5.8) then yield the proposition. q.e.d.

5.8. Nilpotent Orbit Theorem. Asin §5.4 we let {2: H — H, denote
the period map associated to the family (f: A — D*, a) and our choice
of symplectic basis turning the nilpotent map N into the form (5.7).
The map H — Mat(g x g,C) given by u +— —Au+ 2(u) descends via
the universal covering map H — D* to give a map D* — Mat(g x g, C).
By the Nilpotent Orbit Theorem [32, Theorem 4.9] this map extends
to a holomorphic map B: D — Mat(g x g,C). We conclude that the
period map (2: H — H, can be written as the multi-valued map

1
(5.9) 2(t) = —Alogt+ B(t), teD",
2mi

with A € Mat(g x ¢g,Z) and B: D — Mat(g x g,C) as above.
For every t € D we denote by By_,. 4 (t) the lower right (g—r)x(g—7)
block of the matrix B(t). We have the following:
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(a) after possibly shrinking I the map By, 4—r: D — Mat((g — r) X
(g9 —r),C) factors through the Siegel upper half space Hy_,;

(b) the matrix By, 4—(0) € Hy—, is a period matrix of the principally
polarized complex abelian variety P = G /T that appears in (5.3).

6. The [-invariant and its asymptotics

As was announced in the introduction, our proof of Theorem C is
based on an analysis of the asymptotics of the so-called [-invariant of
principally polarized complex abelian varieties, introduced by Autissier
in [3]. In the first section below we introduce the I-invariant, and we
analyze its asymptotics in the follow-up sections.

6.1. The [-invariant. Let A be a complex abelian variety, endowed
with a principal polarization a: A = A’. Let L be a symmetric ample
line bundle on A determining the given polarization and let s be a non-
zero global section of L. Equip L with a cubical metric || - || (i.e., a
smooth metric whose curvature form is translation-invariant) and let
pg denote the Haar measure on A, normalized to give A volume one.
The [-invariant of (A, a) is then defined to be the real number

1
61 2(Aa)=~ [loglsldun + jlog [ Il dpn
A A

It can be verified that the real number I(A,a) is independent of the
choice of the symmetric ample line bundle L, the global section s and
the cubical metric || - ||. The Jensen inequality implies that I(A,a) > 0.

The I-invariant (6.1) can be written more explicitly using Riemann’s
theta function. Set g = dim(A). We recall from §5.1 that we can think
of (A,a) as the principally polarized complex abelian variety Agp =
C9/(Z9 + 279) for a suitable 2 € H,,.

The Riemann theta function is the function
(6.2) 0(z,02) = Z exp(min'Qn + 2rwin'z), 2 € CY.

nez9

We shall be working with the following normalized version (cf. [14,
p. 401))
(6.3)

10]|(z, £2) = (det Im 2)/* exp(—7(Im 2)*(Im 2) "} (Im 2))|6(z, £2)|.
It can be checked that the function ||0]|(z, 2) descends to the complex
torus Ag. In fact we can view the function ||f]| as giving the norm, in a
suitable cubical metric, of the standard global section 1 of the standard

symmetric ample line bundle L = O(div ) that realizes the principal
polarization of Ag.
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Let g denote the Haar measure on Ay, normalized to give Ap, unit
volume. Then by [6, Proposition 8.5.6] we have

(6.4) / 1012 d jugg = 27972,

Aq

From this we arrive at the explicit formula
(65) I40) =~ [ tog o] dpu —  log2
Ag

for the I-invariant of the principally polarized complex abelian variety
Ag.

6.2. Asymptotics of the [-invariant. As is suggested by [3, Propo-
sition 4.1], the invariant /: A; — Rso may be viewed as the minus
logarithm of a distance to the boundary of the moduli space of princi-
pally polarized abelian varieties. The purpose of this section is to make
this idea more precise.

In fact, we determine the asymptotics of the [-invariant in arbi-
trary one-parameter degenerations with unipotent monodromy, see The-
orem 6.1. This result was recently also obtained independently by
R. Wilms [35, Theorem 1.1]. Our proof is slightly different from Wilms’s
and yields, as a by-product, a simple expression for the implied limiting
value at zero — see §6.6.

We mention that a first hint as to why a result like Theorem 6.1
might be true can be derived from the comparison formula [23, Theorem
A] between the stable Faltings height and the Néron-Tate height of
a symmetric theta divisor on a principally polarized abelian variety
defined over a number field. In this formula, the I-invariant at the
archimedean places and the tropical moments of degenerations at the
non-archimedean places are put on the same footing.

Let (f: A — D* a) be a family of principally polarized complex
abelian varieties with unipotent monodromy around the origin. We
recall that this is equivalent to saying that the family f has semiabelian
reduction over ID. We let X' denote the polarized real torus determined
by the principally polarized tropical abelian variety associated to f as
in §5.7, and write I(X') for the tropical moment of X as in §4.3.

Theorem 6.1. Let (2(t) be the family of period matrices on D* de-
termined by a symplectic basis of a fiber of R f.Z 4. The asymptotics

1
(6.6) 21(As, ) ~ —I(X)log |t]| — 5 log det Im £2(¢)
holds as t — 0 over D*.

As we will see in Remark 6.8, the term —I(X') log|t| is the main term
in (6.6) if the family does not have good reduction over D.
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6.3. Preliminary observations. Before proving Theorem 6.1 we dis-
cuss some useful explicit formulas for computing the I-invariant of a
principally polarized complex abelian variety. Let g € Z>o and let
2 € Hy. Asin §5.1 let Ap denote the principally polarized complex
abelian variety CY9/(Z9 + §279) and let 6(z, {2) be the associated Rie-
mann theta function on C9.

Lemma 6.2. Let FF C CY9 be any fundamental domain for the lattice
79 + 279. Let ur denote the Lebesque measure on CI giving F volume
one. The formula

1
2I(AQ)+glog2+§logdetImQ

—27T/F(Imz)t(lm(2)_1(lmz)duF(z)—2 /Flog]Q(z,Q)]duF(z)
holds.

Proof. Let pp denote the Haar measure on Ap, giving A volume
one. Then by (6.3) and (6.5) we compute

1
2I(AQ)+%log2+ ilogdetImQ

1
= —2/ log ||0|| d pgr + = log det Im {2
Aq 2
=2 / (m(Im 2)"(Im 2) ' (Im 2) — log |6(z, £2)|) d pu(2)
Ao

= 277/ (Im 2)!(Im 2) "} (Im 2) d pp(2) — 2/ log |0(z, 2)|d pur(2).
F F
The lemma follows. q.e.d.

Definition 6.3. Let W be any fundamental domain for the lattice
79 in RY9. We define the set

11

(6.7) F(W, ) = {a+ 28 ac [—2,2

]g,ﬁew}c(cg.

It is easy to see that F(W,{2) is a fundamental domain for the lattice
79 + 279 in C9.

Lemma 6.4. Let pw,o denote the Lebesgue measure on C9 giving
F(W, ) volume one. The formula

/ (Tm 2)"(Tm 2) "1 (Im 2) d prw,0(2) = Iy (Im 2)
F(W,2)

holds. Here Iy (Im £2) is defined as in (4.4).
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Proof. The measure uyy, ¢ is the pushforward of the Lebesgue measure
on RY x RY onto CY along the R-linear isomorphism (a, 8) — a + 20.
This allows us to compute

/ (Im 2)"(Im 2) "} (Im 2) d pw 0 (2)
FW,2)

/ ' (Im 2)8dad B
ac[-1,119 Jpew

272

= IW (Im .Q)
The lemma, follows. q.e.d.

6.4. Proof of Theorem 6.1. We now return to the setting of Theo-
rem 6.1. Thus, we let (f: A — D*, «) be a family of principally polarized
complex abelian varieties over the punctured unit disk, with unipotent
monodromy around the origin. Let r be the toric rank of the fiber at the
origin of the family of semiabelian varieties determined by f, and let X
denote the polarized real torus determined by the principally polarized
tropical abelian variety associated to f.

As follows from §5.8 we may assume upon choosing a symplectic basis
of a fiber of R f,Z 4 that the A; are given as the principally polarized
abelian varieties Ag(;) with

1
. =—Alogt+ B(t teD*
(63) 0(t) = 5 -Alogt + B(t), teD"

where B: D — Mat(g x g, C) is a bounded holomorphic map and where
A is a symmetric integral g X g matrix in block form

(A0
A_%HO :

with Ag positive definite and of size r x r.

For every t € D we denote by By, 4—(t) the lower right (g — ) x
(g — r) block of the matrix B(t). By item (b) from §5.8 we have that
By _rg+(0) € H,_,.

Definition 6.5. We define
V = Vor(Ap) x Vor(Im By, 4—(0)) CR" x RI™" = RY.

It follows from Lemma 4.1 that V is a fundamental domain for the
lattice Z9 in RY.

The key to our proof of Theorem 6.1 is the following proposition.
Proposition 6.6. Let 2(t) be as in (6.8). The fiber integral

(6.9) / log [8(z, (1)) d py.0)(2)
F(V,02(t))

extends continuously over D. Here F(V, (2(t)) is defined as in (6.7), and
B, s the Lebesque measure on C9 giving F(V, £2(t)) volume one.
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Before giving the proof of Proposition 6.6 we first examine the result
in the case that ¢ = 1, and show how Theorem 6.1 follows from the
proposition.

EXAMPLE 6.7. Assume g = 1. For 2 € H and z € C we set t =
exp(2mif?) and w = exp(2miz). The Riemann theta function admits a
product expansion

(6.10) 0(z,02) = H (1—t% H (14 tFFY/ 2071y (1 4 R+ 2,
k=1 =
We have V = [—%, %] C R. A computation based on (6.10) gives

o
Hl—tk

The right hand side clearly extends continuously over ¢ = 0.

/ log |0(z, 2)| d pv,0(z) = log
F(V,0)

Assuming Proposition 6.6, Theorem 6.1 can be proved as follows.

Proof of Theorem 6.1. Combining Lemma 6.2 and Lemma 6.4 we have
(6.11)

21(Apw) + % log 2 + % log det Tm £2(t)
—2r [ () (m 2(0) 7 (2 d o 2)
(V,92(¢))
2 g8 20| d i (2
F(V,02(t))

2l (m ()~ 2 [ g |6, 2(0)] d g 2)
F(V,02(t))

As the map B: D — Mat(g x g,C) is bounded and holomorphic, we
have

2 Iy (Im £2(t)) = —Iy (A) log |t| 4+ 27 Iy (Im B(t))
~ Iy (A) log ],

By Lemma 4.1 and Proposition 5.1 we have

(6.12)

(6.13) Iy(A) =1(Ag) = I(X).
We conclude that
(6.14) 2 Iy (Im 2(t)) ~ —I1(X) log |t|.

By Proposition 6.6 we have that

(6.15) [ loglb(e ) i z) ~ 0
F(V,02(t))
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Combining (6.11), (6.14) and (6.15) gives that
1
21(Aqpwy) ~ —1(X)logt] — §log det Im £2(¢),
and the theorem is proven. q.e.d.

REMARK 6.8. From (6.8) we obtain that det Im 2(¢) ~ ¢- (—log [t])"
for a suitable real number ¢ > 0. This gives

r
21(Ag() ~ —1(2)log [t| — 5 log(—log|t]),
showing that —I(X') log|t| is the main term of the asymptotics if r > 0.

6.5. Proof of Proposition 6.6. We will deduce Proposition 6.6 from
the following lemmas.

Definition 6.9. For U C R" open we call f: U — C analytic (resp.
harmonic) if both the real and imaginary part of f are real analytic
(resp. harmonic).

Lemma 6.10. Let U C R™ be an open set. (i) Each harmonic func-
tion on U is analytic. (ii) Let D C U be a closed polar set. Then each
harmonic function on U\ D which is locally bounded on U extends to a
harmonic function on U.

Proof. Both statements follow directly from the corresponding prop-
erties of real-valued harmonic functions. For (i) we refer to [4, Theo-
rem 1.28], and for (ii) we refer to [8, Chapter 3, §2]. q.e.d.

The next lemma can be proved using the Weierstrass Preparation
Theorem for real analytic functions [27, Theorem 6.1.3] and continuity
of the roots of a polynomial. We refer to [7, Lemma 1.5.3] and [33,
Lemma 6.6] for similar statements in a holomorphic setting.

Lemma 6.11. Let U C R" be an open set and let M C R™ be a
bounded open set. Let f: M x U — C be a bounded analytic function
in the sense of Definition 6.9. Let uy denote the standard Lebesgque
measure on R™. Assume that, for all t € U, the function f(x,t) is not
identically zero in © € M. The fiber integral

| toglte )l dusle)

xeM

is a continuous function of t € U.

Proof of Proposition 6.6. For (a, ) € RY x RY and ¢t € D* we define
d(a, B,1) = 0(a+ £2(1)B, £2(1)).

Since 6 and {2 are holomorphic functions we find that ¢ is harmonic in
the sense of Definition 6.9. The measure uy, o) is the pushforward of
the standard Lebesgue measure on RY x RY onto CY along the R-linear
isomorphism (a, ) — a + 2(t)3, and for each t € D* the integral in
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(6.9) can be performed over the interior of F(V,2(t)) as well. Thus,
letting V'™ denote the interior of V, and letting fy denote the restriction

of ¢ to (—%, %)g x Vint 5 D* it follows that for t € D* the integral in

(6.9) is equal to the integral
/( ( . log‘fo(aaﬁ,t)!dadﬁ.

In order to prove Proposition 6.6 it suffices, by Lemma 6.11, to show
that:
(i) fo extends to a bounded analytic function f over (—%, %)g x Vit
D;
(ii) the restriction of f to the fiber at the origin is not identically zero.
For a vector n € RY we shall denote by n(") € R” the first r entries, and
by nl9=7) € RI~" the last g — r entries.

Proof of item (i). Using (6.8) and the definition of the Riemann theta
function in (6.2) we find for fo(«, 3,t) the formal series expansion

(6.16)

S P AT AT N e (rin B(t)n -+ 2min! (a -+ B(t)B)).
n(r)ezr nlo—r)ez9—r

By (4.3) we see that for all 8 € V" and n € Z9 the exponent
%nw Agn™ + n(t Ay 30

of the variable ¢ is nonnegative. By item (a) from §5.8 we may assume

Z exp(min'B(t)n + 2mint(a + B(t)8))| < exp(Cy||n||>+C)

nlo—m) eza—r

holds. By this estimate we may conclude that the series (6.16) converges
absolutely at each point of (—l l)g x Vit xD. We see that the function

272
fo is bounded on (—%, %)g x Vint « D* and extends to a bounded function
fon (=3,3)? xVint x D. As fo is harmonic, by Lemma 6.10(ii) we find

that the function f is harmonic. As harmonic functions are analytic by
Lemma 6.10(i) we are done.

Proof of item (ii). The restriction of f to the fiber at the origin is
given by (6.16), specialized to t = 0. For f € V™ and n(") € Z" we
have 2n(MtAon (™) + ("t AgB) > 0 unless n(") = 0. Taking only the
contributions with n(") = 0 in the series (6.16) we see that the restriction
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of f to the fiber at the origin equals

> exp(mint B,y (00 + 210 n ) o + B(0)3)0)
n(g*”> c79—T

= 0((a+ B(0)5)™"), By_r,g—+(0)).
This is not identically zero. q.e.d.

6.6. The constant term in the asymptotics of the /-invariant.
We finish this section by making the constant term implied by Theo-
rem 6.1 explicit. We think that our explicit expression for the constant
term may have further applications. The end result is written in (6.17).
The right hand side of (6.17) is manifestly a function of the limit mixed
Hodge structure associated to f, together with its monodromy action.
We refer to [9, Theorem 76] for a similar result in the setting of limits
of heights of biextensions.

We will write Q(t) = 2w Im B(t). Let P be the principally polarized
complex abelian variety of dimension g — r arising from the Gr_; of the
limit mixed Hodge structure associated to f. By item (b) from §5.8
the matrix By_, 4—,(0) is a period matrix of P. Looking at the various
steps in the proof of Theorem 6.1 we find

1
}in% [2 I( Ay, o) + 1(X) log [t + B log det Im £2(¢)
—

= —2log2 + Iv(Q(0))

2 / , | 001+ BORO. B,y (0] dard

Using Lemma 4.1 we can rewrite the right hand side as

ll
22

—g log 2 + I(Qg—r,g—r(o)) + Ivor (Ao) (QT »(0))

_ o o (-7 g ad 8.
2/[_ , [ 116+ BO)8)7. By (0 dara 5

We note that for a, 8 € RY

11
272

(a + B(O)/B)(gir) = a(ng) + Bg—r,r(o)/@(r) + Bg—r,g—r(o)ﬁ(gfr).

The double integral can therefore be written as a triple integral

/ /Vor(Ao /Vor(Qg rg— T(O)

-log |6((e + B(0)8)9™) By_y.g—r(0))|dal9= d g0 d gla—7).

ll
22
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In order to evaluate the triple integral we fix an element (") € Vor(Ag)
and perform the integration over a9=7), 39=7) first. We set

F(g(r)) - {a(g—r) + Bgfm(g)ﬁ(r) + Bgfr,gfr(())/@(g_r)

11
M“”ELaQ}’BWTEVw@gwrw»}c@”.

The set F(3(") is a fundamental domain for the lattice
297" + By g (0)Z5

in C97". Let pg(y denote the Lebesgue measure on C9™" giving F(B™)
volume one. Still keeping 5(") € Vor(Ay) fixed we find using Lemma, 6.2

2/ / .
[-3.3]"" /Vor(Qg—rg—r(0))

- log |0((a + B(O)B)(g_r)v Bgfr,gfr(om dals dﬁ(g_r)
=2 [ g |0, By (0) | d e ()
F(B™)

9

11
2°2

=2I(P)+ 10g2+ logdetImBg r.g—r(0)

-1
_QW/(B(T))<Imw) (Im By, g—(0)) " (Imw) d prgr) (w).

Now we note that
27 Im (a9 + By (0)8") + By_r g (0)597))
= Qg_w(())ﬁ(r) + Qg_r,g_r(O)/B(g*T).
This gives
m [ () (O By (0 () d g ()
(8™)

= 1(Qg—rg—(0)) +B(T)’thg—r(0) g— rg +(0)Qg—rr(0 )B( ).
For the triple integral we therefore find

/ /Vor(Ao) /Vor(Qg r,g—r(0))

~log |0((o + B(0)8)9™"), By_y g—(0))|d ™) d g d 9=

—21(P)+ 1=

ll
22

! log2 + % logdet Im By, g, (0)
- I(Qg—r,g—r(o)) - IVor(Ao)(Qr,g—r(O) g— Tg r( )Qg M‘( ))
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This leads to
1
7}irr(l) 21(As, o) + I(X)log [t] + 5 log det Im £2(¢)
-,

) 1
(6.17) - log2 +21(P) + B log det Im Bg—rg—r(o)

+IVor (Ap) (er( ) Qr,gfr(o) g— rg r( )Qg rr( ))

We note that Q;,;(0) — Qrg—r(0)Q Tg +(0)Qg—rr(0) is a Schur com-
plement of the matrix @Q(0). It would be interesting to further interpret
the term in (6.17) related to this Schur complement.

EXAMPLE 6.12. Assume that » = 1 and that the family A; is the
family of Jacobians associated to a family of compact Riemann surfaces
of genus g > 0, whose limit at ¢ = 0 is the stable curve obtained by
taking a compact Riemann surface M of genus g — 1 and identifying
two distinct points a,b € M. Then P = Jac M, and the vector By 41
represents the point in Jac M determined by the divisor a — b. Let
E(x,y) denote the Riemann prime form of M, and consider the real-
valued variant

F(x,y) = exp(=2mIm (z — y)' (Im By—1,4-1(0)) "' Im (& — y))|€ (=, y) |
as in [33, §2]. Following the proof of [33, Lemma 7.5] we have Q1,1(0) =
2log |€(a,b)| and hence we find for the Schur complement

Q1,1(0)—Q1,971(0) g— 1,g 1( )Qg 1 1( )

= 2log|&(a,b)| — 27 Tm (a — b)!(Tm B,—1,4-1(0))Tm (a — b)
= log |F'(a,b)|.

We have Vor(Ag) = [~1,1] C R and hence
1
Kor(ag) (Ql 1(0) = Q1,9-1(0)Q, 1 ;1 (0)Qg—1,1(0 )) = ﬁlog|F(a,b)|.

7. The archimedean M-invariant and its asymptotics

In this section we prove Theorem C. We will be brief here, as a very
similar reasoning is also applied in [35, §7]. In fact, Theorem 7.1 below
coincides with [35, Theorem 1.2].

7.1. The archimedean M-invariant. Let g € Z~(. Let C be a com-
pact and connected Riemann surface of genus g. Let dp(C) be the
Faltings delta-invariant of C' as defined in [14, p. 401] and let ¢(C') be
the Zhang-Kawazumi invariant of C' as defined in [36, §1.3]. Up to a
multiplicative constant, the invariant ¢(C') is the same as the invariant
a(C) introduced and studied independently by N. Kawazumi in [25, 26].
Put §(C) = dp(C) — 4glog(2m).
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Definition. The A-invariant A(C') of C is defined to be the real num-
ber

(7.1) ANC) =
see also [36, §1.4].

Let Jac C denote the Jacobian of C', seen as a principally polarized
complex abelian variety. From [34, Theorem 1.1] and (6.5) we arrive at
the identity

(7.2) 2¢(C) =6p(C) —241(Jac(C)) + 8¢ log(2m) — 6glog 2.

7.2. Invariants of polarized metric graphs. Let I" be a connected
metric graph as in §2. It is shown in [11, Theorem 2.11] that there
exists a unique measure e,y on I having total volume one, such that
Gpican (T, ) is a constant. Here g,: I' x I' — R is the Green’s function
determined by a measure u. We define 7(I") to be this constant. We
further let 6(I") denote the total length of I', and we write Jac(I") for
the tropical Jacobian of I'. In [22, Theorem B| we have shown the
equality

1 1
(7.3) I(Jac(I")) + §T(F) = §5(F).
Let I' = (I',q) be a polarized metric graph. Let ¢(I") be its e-invariant
(2.3). By [20, Proposition 9.2] we have

(7.4) 75 (6(0) + () =2(I) + %T(F) = é&(r).
By combining (7.3) and (7.4) we arrive at the equality
(7.5) 20() = 6(I') + e(T) — 12 1(Jac(I)).

7.3. Proof of Theorem C. Let 7: X — D be a stable curve of genus
g > 2 over the open unit disc D. We assume that 7 is smooth over D*.
Let G = (G, q) be the polarized weighted graph associated to 7 obtained
by taking as underlying polarized graph the dual graph of the special
fiber Xy and endowing the vertices with the arithmetic genera of the
corresponding irreducible components, and by letting the lengths of the
edges be given by the “thicknesses” of the corresponding singular points
of Xy on the total space X. Let I' = (I',q) be the polarized metric graph
associated to G = (G, q).

Write X = 7~ 'D*. Let f: J — D* denote the family of Jacobians
associated to the family of curves X — D*. Then J extends to a family
of semiabelian varieties over D. Let £2(¢) be the family of period matrices
determined by a symplectic basis of a fiber H of R'm,Zx = R'f.Z.
By [21, Theorem 1.1] we have the asymptotics

(7.6) 0p(Xt) ~ —(0(I") + (1)) log |t| — 61log det Im £2(¢)
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for the Faltings delta-invariants of the curves X; as t — 0.

Following for example [1, §3.2], the character group Y = GrgH from
the principally polarized tropical abelian variety (X,Y,®,b) associated
to the degenerating family J of principally polarized abelian varieties
is canonically identified with the first homology group Hi(I',7Z). More-
over, the associated inner product [-,-]y on Yg is identified with the
natural cycle pairing on H;(I,R), see [1, Proposition 3.4]. This gives
that the principally polarized real torus X' associated to (X,Y,®,b) is
canonically identified with the tropical Jacobian Jac(I") of I'.

Using this, Theorem 6.1 specializes to saying that

(7.7) 21(Jac X;) ~ —I(Jac(I"))log |t| — %log det Im £2(¢)

as t — 0. Combining (7.2), (7.5), (7.6) and (7.7) we obtain the following
asymptotics for the Zhang-Kawazumi invariant ¢ in the family Xj;.

Theorem 7.1. Let ¢(I") be Zhang’s @-invariant (2.2) of the polarized
metric graph I'. Then one has the asymptotics

(7.8) p(X1) ~ —¢(I) logt]
for the Zhang-Kawazumi invariants of the curves X; as t — 0 over D*.

The asymptotics for the archimedean A-invariant as displayed in The-
orem C follows upon combining Theorem 7.1 with (2.4), (7.1) and (7.6).

8. Hodge metric and its asymptotics

In our proofs of Theorem A and Theorem D we need a couple of well-
known facts about the Hodge metric on the determinant of the Hodge
bundle. We collect them here.

8.1. Determinant of the Hodge bundle on A,. Let

Ay =Sp(29,Z) \ Hy
be the moduli space of principally polarized complex abelian varieties,
viewed as an orbifold, with projection map ¢: Hy — Ay. Let f: U, —
Ay denote the universal abelian variety, and let £; = det f. szg /A, be

the determinant of the Hodge bundle on A,;. The line bundle ¢*L; is
trivialized by the frame w = (27mi)9(dz1 A --- A dzg), where (z1,. .., zg)
are the standard Euclidean coordinates on CY9. The Hodge metric on
q*Ly is given explicitly by the formula

(8.1) [dzg A -+ Adzy g (2) = (det Tm 2)Y2 2 € H,,.

The metric || - ||ndg descends along ¢ to give a smooth hermitian metric
on Ly that we also denote by || - [|[ugg. When h € Z and £ is a local

meromorphic section of the line bundle E?h over A, we set

(8.2) E=q (W™ = (2mi) " ¢ (€) (dz1 A+ Adzg)®



204 R. DE JONG & F. SHOKRIEH

We can view §N canonically as a local meromorphic function on H,,.

It follows from (8.1) that when (A, a) is a principally polarized com-
plex abelian variety, and & is a local meromorphic section of the line
bundle E?h near the moduli point of (4,a) in Ay, and {2 is a period
matrix of (A, a), we have the equality

(8.3) 1€l (A, @) = (27)9" [€]($2) (det Tm £2)"/2
in R.

8.2. Determinant of the Hodge bundle on M. Let p: C; —+ M,
denote the universal Riemann surface over M,. We denote by £, =
det p.we,/aq, the determinant of the Hodge bundle on M,. As was
discussed in the introduction the line bundle £, comes equipped with a
natural smooth hermitian metric derived from the inner product given
by (a, ) — % /. c a/AB on the space of holomorphic 1-forms on a compact
connected Riemann surface C.

Letting t: M, — A, denote the Torelli map, we have a canonical
isomorphism of holomorphic line bundles £, — t*L; on My, where
Ly is the determinant of the Hodge bundle on A, as in §8.1. This
isomorphism is an isometry when t*L; is equipped with the pullback of
the Hodge metric || - ||ndg-

8.3. Extension over the boundary. Let S be a smooth complex
algebraic variety, let D be a normal crossings divisor on S and write
S =S\ D. Let m: X — S be a stable curve of genus g > 2, and assume
that the map 7 is smooth over S. Let Lg be the pullback of the line
bundle £, from §8.2 along the moduli map S — M, equipped with the
pullback of the metric | - [[nag. Write Lg = detm.w,y 5 where wy 5 is

the relative dualizing sheaf of 7, and let X = 7—15.

Proposition 8.1. (i) The first Chern form c¢1(Ls) determines a cur-
rent [c1(Lg)] over S. (ii) In the case that S is projective, the cur-
rent [c1(Lg)] represents the cohomology class ¢1(Lg). (i) Assume that
S =D, and D = {0}. Let £ be a local generating section of Lp near 0.
Let 2(t) be the family of period matrices on D* determined by a sym-
plectic framing of R'm.Zx. The asymptotic

1
(84) log [[€]lnag ~ ordo (&, L) log [¢] +- 5 log det Im £2(1)

holds.

Proof. By [29, Theorem 3.1] the Hodge metric on the determinant £
of the Hodge bundle on A, is a good metric in the sense of Mumford.
This implies item (i) by [29, Proposition 1.1]. Also, by [29, Propo-
sition 1.3] the line bundle L£g has a canonical extension Lg uniquely
determined by the property that the norms of local generating sections

have at most logarithmic growth in any local coordinate system. By
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[15, p. 225] the canonical extension Lg is equal to Lg. Item (ii) then
follows upon applying [29, Theorem 1.4].

As to item (iii), by the results in §5.8 based on the Nilpotent Orbit
Theorem there exist ¢,r € Zx>o such that detIm 2(t) ~ c¢(—log|t])"
as t — 0. Combining with (8.1) we conclude that 2*(dz; A ... A dzg)
extends as a frame of the canonical extension Lp+ over ID. As we have
just seen, this canonical extension is equal to Lp. By (8.2) we therefore
obtain the equality ordg (&, Lp) = ordg(€). This leads to the asymptotic
log |€| ~ ordg(€, Lp)log |t| as t — 0. The asymptotic (8.4) follows from
combining this with (8.3). q.e.d.

8.4. Connection with the A-invariant. As was discussed in the in-
troduction, the Hain-Reed line bundle B and the line bundle £j 8914 on
M are isomorphic as holomorphic line bundles, and the set of isomor-
phisms ¢: B = L{?SQH is a C*-torsor. For each such isomorphism ¢
we have an R-valued function S, as in (1.10) on M,.

We recall that by [19, Theorem 1.4], for a suitable choice of the
isomorphism ¢, one has the equality of functions B, = (8¢ + 4)\ on
Mg, where \: M, — R is the archimedean A-invariant given in (7.1).
In the following we will fix this isomorphism ¢. We thus obtain from
(1.10) the useful identity

(8.5) (8¢ + 4)A = log <H”B>

¢*|| - [lHag

of functions on M.

9. Height of the Ceresa cycle in the function field case

In this section we derive Theorem D from Theorem C. We repeat the
setting: let S be a smooth projective connected complex curve, let D
be an effective reduced divisor on S, and let S = S\ D. We consider
a stable curve m: X — S of genus g > 2, smooth over S. Let Bg
denote the pullback of the Hain-Reed line bundle B along the moduli
map S — M,.

As in §8.3 let Lg be the pullback of the determinant of the Hodge
bundle along the moduli map S — Mg, equipped with the pullback of
the metric ||-[|zag. We write Lz = det f.wy 5 and let h(X/S) = deg Ly
be the modular height of f.

Proof of Theorem D. From (8.5) we obtain an equality of (1, 1)-forms

(9.1) (89 +4)c1(Ls) = c1(Bs) — (89 + 4)8—5_)\

T
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over S. By Proposition 8.1 the first Chern form ¢;(Lg) determines a
current [c1(Lg)] over S, and we have

9.2) h(x)B) = /S e1(Ls)]

For each s € S we denote by G the polarized weighted graph associated
to the fiber of m above s. Following the proof of [2, Lemma XI.9.17] or
[10, Lemma 2.11] we may deduce from the estimate (1.14) in Theorem C
that %)\ determines a current over S, and moreover for p € S a point

and for D = U with 0 — p a small coordinate neighborhood of p we
have that the residue

1_ _
. 1. _— = .
(9.3) lim | —9\=A@G)
Write
(9.4) AX/S) = ST NG,).
selS|

An application of Stokes’ theorem then yields
00 -
9.5) - / [A} — \X/3).
S
We recall from (1.3) that

(9.6) hX/S) = gg - i’c(X/S) +AX/3).
From (9.1) we find
00 Bo+a)lalCs)] = laBs)] - g+ 4 | 2.
We find the required equality
08) 12(g - ) e(¥/5) = [ la(Bs)
S
upon combining (9.2), (9.5), (9.6) and (9.7). q.e.d.

10. Jumps in the archimedean height

Before entering into the proof of Theorem A we review here briefly
the notion of height jumps as introduced by Hain in [17] in the setting of
the Ceresa cycle on the moduli space of curves, and as further analyzed
by Brosnan and Pearlstein in a general context in [9].
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10.1. Biextension metric and archimedean height. Let S be a
smooth complex algebraic variety. Let D be a normal crossings divisor
on S, and write S = S\ D. Let U be a weight —1 polarized variation of
Hodge structure over S, and let v be a normal function section of the
Griffiths intermediate Jacobian fibration J(U) of U over S. We recall
that to give such a normal function is to give an element of the group
of Yoneda extensions Ext!(Z,U) in the category of variations of mixed
Hodge structures over S.

As is explained in [16, §§6-7], there is a holomorphic line bundle B —
J (U) whose underlying G,-torsor classifies symmetric biextensions over
U. The line bundle B is equipped with a canonical smooth hermitian
metric, called the biextension metric. By pulling back along the normal
function v: S — J(U) we obtain a smooth hermitian line bundle B =
v*B on S. We denote by || - [|5 the induced metric on B. By [17,
Theorem 13.1] or [31, Theorem 8.2], the (1, 1)-form ¢1(B, || - ||5) is semi-
positive. For V a nowhere vanishing holomorphic local section of B, the
smooth plurisubharmonic (psh) function h(V) = —log||V||g is called
the archimedean height of V.

The height jump is a device to quantify the singularities of the metric
|| - ||5 near the points of the boundary divisor D of S in S. We suppose
throughout that the monodromy operators of U around the branches of
D are unipotent, and that the normal function v is admissible in the
sense of M. Saito. Normal functions that arise from families of algebraic
cycles over S by the Griffiths Abel-Jacobi construction — e.g., the normal
function on M, associated to the Ceresa cycle — are admissible.

10.2. General definition of the height jump. Let p € S be a point
and let n = dim S. Let U = D" with p ~ 0 be a small coordinate
neighborhood of p in S. Suppose that the normal crossings divisor D is
given by the equation ¢1 ---t, = 0 in U. As is shown in [9, Theorem 81],
we may assume that the set B*(U\ D) of nowhere vanishing holomorphic
sections of B over U \ D is non-empty. We choose an element V €
B*(U\ D).

As is shown in [30, Theorem 5.37], there exists a unique homoge-
neous weight one element u € Q(z1,...,z,) such that for all m =
(m1,...,m;) € ZL, and for all holomorphic arcs f: D — U with
f(0) = pand f(D*) C UNS and ordg f*t; = m; for i = 1,...,r,
the asymptotics

f*h<V) ~ _M(mla v 7mT) log ‘t‘

holdsast — 0. Fori=1,...,r we let D; denote the local branch of D at
p given by the equation t; = 0, and let f;: D — U be a holomorphic arc
that intersects the branch D; transversally and has empty intersection
with the other branches. Then similarly for all ¢ = 1,...,r there exists
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;i € Q such that the asymptotics

fih(V) ~ —pilog|t|
holds as t — 0.

Definition 10.1. The height jump at p is the rational function j(p)
in Q(z1,...,x,) uniquely determined by the equality

(10.1)

T
j(p;mh s )mr) = _M(mlu B 7m1”) + Zml/’L’H (m17 s )mr) € Zgo
=1

As is straightforward to check, the element j(p) € Q(z1,...,z,) is inde-
pendent of the choice of V € B*(U \ D). Moreover when viewing j(p)
as an element of Q(x; |7 € Z) with Z the set of local branches of D at
p, the height jump is independent of the choice of coordinate neighbor-
hood U of p as well. When viewed as an invariant of the points of S,
the height jump is locally constant on the natural combinatorial strata
of the normal crossings divisor D. Let D& denote the singular locus
of D. By construction, the height jump vanishes on S\ D&,

Following [9, equation (23)] we normalize the function h(V): U\ D —
R by putting

h(V) = h(V) + > pilog|ti].
=1

We have the following properties of the function h(V). Assume that all
i > 0. We can always arrange this upon multiplying V with a suitable
meromorphic function.

(i) The function h(V) extends to a continuous function h*(V) over
U\ D8 (cf. [9, Theorem 24]);

(ii) The function h*(V) extends to a psh function over U (cf. [9, The-
orem 27]).

10.3. The asymptotic height pairing. In the following we keep the
point p € S fixed. Let IH* () C H' (U \ D,U) be the local intersection
cohomology group of the variation ¢ at p. One of the main purposes of
[9] is to show that the height jump at p can be explained in terms of a
natural pairing, called the asymptotic height pairing, on IH'(U). More
precisely, for m = (mq,...,m,) € Q% let

h(ma,...,my): IHYU) x IH'(U) — Q

be the asymptotic height pairing associated to m as defined in [9, §6].
Let sing(v) € HY(U \ D,U) be the singularity of the normal function v,
i.e. the image of the normal function section v € HO(U\ D, J (i)) under
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the homomorphism H°(U \ D, J(U)) — H (U \ D,U) coming from the

natural short exact sequence
0—-U—-URL,O0s —TU)—0

of sheaves on S. Then sing(v) € IH(U) and, for all m = (my,...,m,) €
7%y, the equality

jp;ma,...,my) = h(ma,...,m,)(sing(v),sing(v))

holds. See [9, Theorem 22].

The connection with the asymptotic height pairing leads to the follow-
ing properties of the height jump (cf. [9, Proposition 140, Corollary 13
and the remarks at the end of §1.2]):

(iii) The function j(p) extends to a continuous function over RZ ;
(iv) For all m = (my,...,m,) € R, one has j(p;mi,...,m;) > 0;
(v) The following assertions are equivalent:
— the height jump j(p) vanishes identically;
— the singularity sing(v) of the normal function v vanishes in
IH'(U);
— the plurisubharmonic function from (ii) is locally bounded at p.
Item (iv) is proved independently in [10, Theorem 1.4] using different
techniques.

10.4. The Hain-Reed line bundle. The set-up as discussed above
generalizes in a straightforward manner to the setting of orbifolds. The
case that we are interested in this paper — and which is discussed at
length in [17] — arises as follows. The starting point is the tautological
variation of Hodge structures H of weight —1 on the moduli orbifold M,
of curves of genus g, where g > 2. The fiber of H at the moduli point
given by a smooth projective connected curve C of genus g is given by
the first homology group H;(C,Z), and the polarization is determined
by the intersection pairing.

Starting from H we form the weight —1 variation of Hodge struc-
ture A\ H(—1). The intersection pairing gives rise to a morphism of
variations H — A®H(—1), and we let U denote the cokernel of this
morphism. When applied to the Ceresa cycle C' — C™ in the Jacobian
of C', Griffiths’ generalization of the Abel-Jacobi map gives rise to a
normal function section v: My — J(U) of the Griffiths intermediate
Jacobian fibration J (U) of U over M,.

The Hain-Reed line bundle B is the smooth hermitian line bundle
v*B on M, that arises from pulling back the symmetric biextension line
bundle B over J (U) along the normal function v. The compactification
with normal crossings boundary divisor that we consider is the Deligne-
Mumford compactification Mg that arises by adding in the stable curves
of genus g.
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Items (i), (ii) and (v) above, when specialized to the setting of the
normal function determined by the Ceresa cycle, give rise to items (i)—
(iii) mentioned in §1.3.

When p is a point of ﬂg, represented by a stable curve C, in order
to study the height jump at p we will work with a versal analytic de-
formation space of C'. We think of such a versal analytic deformation
space as a coordinate neighborhood of p on the orbifold ﬂg.

11. Equality of height jump and slope

In this final section we derive Theorem A from Theorem C.

Proof of Theorem A. Let p € M, be a point. Let C be the stable
curve corresponding to p, and let (G, q) be the polarized (unweighted)
dual graph of C. We repeat that in reality, instead of working on the
orbifold M, we are working on a versal analytic deformation space U of
the stable curve C, which we view as an open coordinate neighborhood
of p on M,.

Let 7 denote the set of local branches of A at p and let E be the set
of edges of G. We fix an isomorphism U = D3973 with p — 0, where we
suppose that A is given by the equation ¢ - - - ¢, = 0. The isomorphism
U = D393 determines a bijection {1,...,7} = T and hence a bijection
{1,...,7} = E by composing with the canonical bijection Z = E. We
write D; for the i-th local branch in Z, and e; for the i-th edge in F.

Fori=1,...,rwelet f;: D — U be a holomorphic arc that intersects
the branch D; transversally and has empty intersection with the other
branches. We let (G, q;) denote the polarized dual graph associated to
the generic point of D;. For each i = 1,...,r we have that (G;,q;) is
the polarized graph obtained by contracting all edges in G except e;,
and endowing the resulting graph with the pushforward polarization.

Next we fix a tuple m = (mq,...,m,) € ZL,. Welet f: D — M,
be a holomorphic arc with f(0) = p and f(D*) C M, such that for
i = 1,...,r we have ordg f*(D;) = m;. Then endowing (G,q) with
edge lengths determined by m gives the polarized weighted dual graph
naturally associated to the stable curve over D obtained by pulling back
the universal family over U along the map f.

As was noted in §10, by [9, Theorem 81] the set B* (U \ A) of nowhere
vanishing holomorphic sections of B over U \ A is non-empty. We choose
an element V € B*(U \ A). Unwinding Definition 10.1 of the height
jump j(p) at p we obtain the asymptotic

(11.1) j(p)(ma,...,my)log [t| ~ = f* (log [ VIls) + Y mif; (log |[V|s)
=1

as t — 0 over D.
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Let £ be the determinant of the Hodge bundle on M, equipped with
its Hodge metric || - ||fag. Let m: Cg — M, be the universal stable curve
and let £ = det T, I, Let ¢: B = £98914 be the isomorphism of
holomorphic line bundles fixed in §8.4.

We consider the nowhere vanishing holomorphic section ¢.()) of

L8954 over U\ A. For each i = 1,...,r we let a; € Z denote the
vanishing multiplicity of ¢.()) along the branch D; when viewed as a
—~®8g+4

meromorphic section of £
the asymptotics

(112) £ (10g]|6-(V)lluag) ~ aslog [t] + (49 +2) log det Im ()
fori=1,...,r, and
(11.3)  f" (log||¢+(V)llag) ~ alog|t] + (4g 4 2)log det Im £2(t),

where a = >/, a;m;. Combining (11.2) and (11.3) leads to the asymp-
totic
(11.4)

—f* (10g [[¢«(V) lag) + D mif; (10g [[¢«(V) I 11ag)

=1

~ (49 +2) <—1 + Z mi> log det Im £2(¢).
i=1

over U. By Proposition 8.1(iii) we have

For u € U\ A we denote by X, the fiber above u in the universal family
over U. Combining (8.5), (11.1) and (11.4) we find

j(p)(mh SRE) m?“) log ‘t‘ ~

~ (8g+4) ()\(Xf(t)) + Z mi)‘(Xfi(t)))

(11.5) i=1

+ (49 + 2) <—1 + ZWM) log det Im £2(t).
i=1
Invoking Theorem C this leads to
(11.6)
j(p)(m17 s 7m7"> log |t| ~

~ (89 +4) ()\(G, Qqmi,...,m) = Y MG, Qi;mi)> log [¢].
i=1
We conclude that
(11.7)

Jj@)(ma,...,m,) = (8g +4) ()\(G, q;mi,...,my) — Z)\(Gi,%;mz’))
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Let i € {1,...,r}. The polarized graph (G;,q;) is a loop graph of

genus g based on a single vertex if f;(0) € Ap, and an edge segment

with vertices of genera h and g — h if f;(0) € Ay, for h € {1,...,[g/2]}.
By Examples 2.4 and 2.5 we find

(11.8) (89 + H)A(Gi,qi;m;) = gm;,  fi(0) € Ao,

and

(11.9)

(89 + HA(Gi,qi;m;) = 4h(g — h)my,  fi(0) € Ap, he{l,...,[g/2]}.
As for each i = 1,...,r the polarized graph (G;,q;) is the polarized

graph obtained by contracting all edges in G except e; and endowing

the resulting graph with the polarization induced from q, we conclude
that

(11.10)
(89+4) > ANGi, qima)
=1
l9/2]
= 950(G7 my,... 7m7“) + Z 4h(g - h) 6h(G’qa miy,... 7m7‘)'
h=1

Here do(G;mi,...,m,) denotes the total length of the edges of the
graph G, when weighted with edge lengths mq,..., m,, that do not
disconnect the graph G upon removal; and d,(G,q;mq,...,m,) for
h € {1,...,]g9/2]} denotes the total length of the edges of G, when
weighted with edge lengths my, ..., m,, whose removal from G results
in the disjoint union of a polarized graph of genus h and a polarized
graph of genus g — h.
Combining (11.7) and (11.10) we conclude that

jp)(my,....,m;) =s(G,q;mq,...,my).

Theorem A follows since, as homogeneous weight one rational functions
in Q(z1,...,2,), both j(p) and s(G,q) are determined by their values
on the elements of ZZ . q.e.d.
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