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ON TORSOR STRUCTURES ON SPANNING TREES\ast 

FARBOD SHOKRIEH\dagger AND CAMERON WRIGHT\dagger 

Abstract. We study two actions of the (degree 0) Picard group on the set of the spanning trees
of a finite ribbon graph. It is known that these two actions, denoted \beta q and \rho q , respectively, are
independent of the base vertex q if and only if the ribbon graph is planar. Baker and Wang [Int.
Math. Res. Not. IMRN , 16 (2018), pp. 5120--5147] conjectured that in a nonplanar ribbon graph
without multiple edges, there always exists a vertex q for which \rho q \not = \beta q . We prove the conjecture and
extend it to a class of ribbon graphs with multiple edges. We also give explicit examples exploring
the relationship between the two torsor structures in the nonplanar case.

Key words. graphs and ribbon graphs, spanning trees, divisors, surfaces, torsors, critical group

MSC codes. 05C10, 05C25
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1. Introduction. The number of spanning trees of a finite loopless graph G is
equal to the determinant of the reduced combinatorial Laplacian of G; this is the
celebrated Kirchhoff matrix-tree theorem. In addition to counting spanning trees,
this determinant also counts the number of elements of a certain group, known as the
(degree 0) Picard group, critical group, or sandpile group of the graph. This group,
denoted Pic0(G), is defined as the additive group of chip-firing equivalence classes on
the collection of divisors on the graph.

In addition to equality in cardinality of the set \scrT (G) of spanning trees of G
and the Picard group Pic0(G), it is known that \scrT (G) admits at least two distinct
torsor structures for the Picard group; the Picard group of a graph acts simply and
transitively on the set \scrT (G). Two such actions, namely, the Bernardi action \beta q and
the rotor-routing action \rho q, have been the subject of study in recent years [5, 3] (see
also [10, 13, 8]). To define these torsors, we work with graphs endowed with a ribbon
structure, a cyclic ordering of the edges incident to each vertex. By giving a ribbon
structure to a finite graph, we determine an orientable surface in which the graph can
be considered as embedded; for this reason, ribbon structures were originally termed
``combinatorial embeddings"" of graphs [4].

After fixing a ribbon structure on a graph G, the Bernardi torsor \beta q and the
rotor-routing torsor \rho q rely on the choice of a base vertex vertex q of the graph.
Chan, Church, and Grochow prove that the torsor \rho q is independent of the initial
data q if and only if the ribbon graph is planar [5]. Separately, Baker and Wang
prove that the Bernardi torsor \beta q is also independent of the initial data q if and only
if the ribbon graph is planar. Moreover, Baker and Wang prove in [3] that in the
case of a planar ribbon graph, the two torsor structures coincide; the Bernardi and
rotor-routing processes produce the same simply transitive group action. Baker and
Wang include the following conjecture:
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ON TORSOR STRUCTURES ON SPANNING TREES 2127

Conjecture 1.1 (Baker and Wang [3]). Given a nonplanar ribbon graph G with
no multiple edges and no loops, there exists a vertex q for which \rho q \not = \beta q.

We resolve this conjecture and extend the result to a class of graphs having
multiple edges but no loops. In particular, it is proven here that any nonplanar graph
with or without multiple edges admits a vertex q for which \rho q \not = \beta q when endowed
with any ribbon structure. The criterion for the presence of such a vertex q in a
nonplanar ribbon graph with multiple edges is the presence of what we call a proper
witness pair. In Theorem 6.2, we prove that the presence of a proper witness pair
in a nonplanar ribbon graph is sufficient to ensure the presence of a vertex q for
which \rho q \not = \beta q. Further, we show in Proposition 3.3 that any nonplanar graph, when
endowed with any ribbon structure, must contain a proper witness pair. In particular,
any nonplanar graph endowed with any ribbon structure contains a vertex at which
the torsor structures disagree. We prove Theorem 7.1, the Baker--Wang conjecture
for loopless nonplanar ribbon graphs with no multiple edges admitting no proper
witness pair. Finally, we consider two examples and some associated computations;
in particular, we exhibit a nonplanar ribbon graph having distinct vertices p and q
such that \rho p = \beta p while \rho q \not = \beta q.

In an independent work, Changxin Ding [7] also resolves this conjecture. As in
the current paper, Ding considers multiple cases, but the approach taken there utilizes
decompositions of graphs to facilitate study of the difference between the two torsors.
In the present document, we work instead with classes of graphs depending on the
presence or absence of certain subgraphs, referred to here as witness pairs.

2. Background and terminology. By a graph, we mean a finite connected
multigraph with no loops; for a graph G, we denote by V (G) its vertex set and by
E(G) its collection of edges, given as unordered pairs of vertices. Occasionally, we use
V and E to denote the vertices and edges of a graph G when the graph is unambiguous.
Unless otherwise specified, multiple parallel edges are allowed. A ribbon graph is a
finite graph together with a cyclic ordering of the edges around each vertex, referred
to as a ribbon structure. Note that a ribbon structure on a graph induces a natural
ribbon structure on any graph minor. Given two edges e0, e1 incident to a given vertex
v, we will write e0 \prec e1 if e1 immediately succeeds e0 in the order around v. If a vertex
v has two edges e0 and e1, the interval [e0, e1] between e0 and e1 is the collection of
edges \{ e0, f1, . . . , fk, e1\} , where

e0 \prec f1 \prec \cdot \cdot \cdot \prec fk \prec e1.

Analogously, we define the open interval (e0, e1) = \{ f2, . . . , fk\} . The length of an
interval is its cardinality as a set.

A finite ribbon graph is equivalent to an embedding of the underlying graph into
a closed oriented surface such that the ribbon structure agrees with the orientation
of the surface (see, e.g., [15, Theorem 3.7]). In all figures in this paper, the ribbon
structure is assumed to be given by the counterclockwise orientation of the underlying
surface.

A path P in a ribbon graph G is the image of a mapping Pk \rightarrow G of the length-k
path into G that is injective on edges but not necessarily on vertices. A cycle in G is
the image of a mapping Ck \rightarrow G of the length-k cycle into G that is injective on both
edges and vertices. We sometimes refer to paths and cycles as sets of edges rather
than as subgraphs. Let C be a cycle, and endow C with an orientation. A vertex v
of C is incident to precisely two edges of C, ein and eout, where the labeling of these
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2128 FARBOD SHOKRIEH AND CAMERON WRIGHT

edges agrees with the orientation of C. An edge e incident to v is said to be to the
left of C if e\in (eout, ein) and to the right of C if e\in (ein, eout).

Given a group \Gamma , we consider a group action of \Gamma on a set X as a function

\Gamma \times X  - \rightarrow X .

We say that a group action is regular if for every \gamma \in \Gamma and every x\in X, the restricted
mappings \{ \gamma \} \times X \rightarrow X and \Gamma \times \{ x\} \rightarrow X are isomorphisms of sets. Stated differently,
an action of \Gamma onX is regular if \Gamma acts simply and transitively on X. IfX = \{ 1, . . . ,N\} ,
we can consider a group action as a homomorphism from \Gamma to the symmetric group on
N symbols \Gamma \rightarrow SN . We therefore sometimes work with the image of such a mapping,
representing group elements as permutations. All multiplication of permutations will
be from right to left, so that, for example, we have (123)(34) = (1234).

3. Cycles and witnesses. Here we are concerned in particular with nonplanar
graphs. Following [5], we discuss planarity and nonplanarity of ribbon graphs in terms
of the absence or presence of nonseparating cycles.

Definition 3.1. A cycle C is nonseparating if for any orientation of C, there
exists a path P that intersects C only in the endpoints of P such that the first edge
of P is on the left of C and the last edge of P is on the right of C. We will call P a
witness for the nonseparating cycle C and refer to the ordered pair (C,P ) as a witness
pair.

Definition 3.2. Given a nonseparating cycle C, we will say that a witness P for
C is a proper witness if the endpoints of P are distinct vertices of C. In this case, we
call the pair (C,P ) a proper witness pair (see Figure 3.1).

We say that a connected ribbon graph G is nonplanar if and only if it contains a
nonseparating cycle. Note that this definition of nonplanarity is not equivalent to the
underlying graph G being nonplanar in the typical sense, but all nonplanar graphs
yield nonplanar ribbon graphs when endowed with any ribbon structure. A planar
graph G can be endowed with a ribbon structure such that the resulting ribbon graph
is nonplanar.

We have the following structural property of nonplanar graphs endowed with a
ribbon structure.

Proposition 3.3. A connected nonplanar graph G endowed with any ribbon
structure admits a proper witness pair.

Proof. Starting from an arbitrary ribbon graph G, first note that the operations
of edge deletion and edge contraction cannot create a proper witness in G. Thus, by

Fig. 3.1. Nonseparating cycles (thickened) in two nonplanar ribbon graphs on the torus. The
left image portrays a proper witness, while the right image portrays an improper witness.
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ON TORSOR STRUCTURES ON SPANNING TREES 2129

Fig. 3.2. The construction of a proper witness in K5 as described in the proof of Proposition
3.3. At the left, we see a thickened cycle of length 3 with an improper witness with edges in red and
blue. After replacing the red edge (extra thickened), we have a proper witness in blue, depicted at
the right.

Fig. 3.3. Two torus embeddings of K3,3, each admitting proper witness pairs. In each, the
two partition classes of vertices are represented by circles and squares. At the left, the thickened
nonseparating cycle contains all 6 vertices; on the right, the thickened cycle contains only 4. Again,
in each case, the embedding admits a proper witness pair.

Kuratowski's theorem, it is enough to illustrate that K5 and K3,3 necessarily admit
a proper witness pair when endowed with any ribbon structure.

Given any ribbon structure on K5, there necessarily exists a nonseparating cycle
C; if some witness path P is of length 1, then the fact that K5 is loopless ensures
that P must be proper since the endpoints of P in C are distinct. Further, if P is of
length 2, then the fact that K5 has no multiple edges ensures that P must be proper.
Now, C either includes all vertices or excludes at least one vertex. In the case that C
includes all vertices, any witness path must be of length 1 and so must be proper.

Suppose then that C excludes at least one vertex and that all witness paths have
length greater than 1. Then, since C is necessarily of length 3 or 4, any witness path
has length either 2 or 3. Let P be some such witness path. If P is proper, we are done.
If P is improper, then P has length 3, and we can write P = \{ \{ a, b\} ,\{ b, c\} ,\{ c, a\} \} 
and C = \{ \{ a, d\} ,\{ d, e\} ,\{ e, a\} \} . Suppose without loss of generality that \{ a, b\} is on
the left of C. Then either the edges \{ d, b\} ,\{ e, b\} ,\{ d, c\} , and \{ e, c\} are on the left
of C or one is on the right. In the former case, we have a proper witness P \prime =
\{ \{ d, b\} ,\{ b, c\} ,\{ c, a\} \} , and in the latter, we have some proper witness P \prime by replacing
either \{ c, a\} or \{ b, c\} ,\{ c, a\} with the edge on the right of C (see Figure 3.2).

Consider now K3,3. Since K3,3 is nonplanar, any ribbon structure admits a non-
separating cycle C. In the case that C contains all vertices, the fact that K3,3 contains
no loops ensures that any witness path P is a proper witness. Suppose C excludes
at least one vertex. Since all cycles in bipartite graphs are of even length, any wit-
ness path P must have length 2. But since there are no multiple edges in K3,3, the
endpoints of P in C must be distinct; hence, P is proper (see Figure 3.3).

We next prove a similar result describing ribbon graphs admitting K4 as a minor
in such a way that the inherited ribbon structure is nonplanar.
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2130 FARBOD SHOKRIEH AND CAMERON WRIGHT

Fig. 3.4. Two ribbon structures on K4 yielding a nonplanar ribbon graph.

Proposition 3.4. Suppose that G is a graph containing the complete graph K4

as a minor. If G is endowed with a ribbon structure making the K4 minor with the
induced ribbon structure nonplanar, then G admits a proper witness pair.

Proof. As in the proof of Proposition 3.3, we begin with the observation that the
presence of a nonseparating cycle with proper witness in the graph K4 is sufficient to
guarantee the presence of such a cycle with proper witness in any graph G containing
K4 as a minor. It is therefore sufficient to show that each nonplanar ribbon structure
on K4 admits a proper witness pair.

Since each vertex in K4 is of degree 3, there are only two choices of cyclic ordering
of the edges around each vertex (see Figure 3.4). In particular, we can fix a planar
embedding of K4 and enumerate all ribbon structures by choosing either a clockwise
or a counterclockwise orientation of edges about each vertex.

Moreover, by symmetry, we only need to consider the number of vertices oriented
in either direction rather than their relative positions. We refer to the ribbon structure
in which i vertices are oriented clockwise and j are oriented counterclockwise as being
of type (i, j). By reversing the orientation of the plane, it is clear that the presence
of a proper witness pair in the ribbon structure of type (i, j) ensures the presence of
such a pair in the structure of type (j, i). Now, since the ribbon structures of type
(4,0) and (0,4) give rise to planar ribbon graph structures, we have only two choices
of ribbon structures yielding a nonplanar ribbon graph K4, arising, respectively, from
the pairs in types (3,1) and (2,2). For each of these two ribbon structures, one can
directly find the associated surface of minimal genus and verify that there exists a
proper witness (see Figure 3.5).

In the case of a nonplanar ribbon graph which does not admit a proper witness
pair, there is another kind of witness pair which will be of use to us.

Definition 3.5. Let G be a nonplanar ribbon graph that does not admit a proper
witness pair. Suppose that G admits a witness pair (C,P ) in G such that C and P
share a unique vertex z. We say that (C,P ) is a tight witness pair if the edges e and
f incident to z in C are such that the interval [e, f ] in the ribbon structure about z
has minimal length among all cycles C passing through z that have P as a witness
path.

The tightness of a witness pair (C,P ) ensures that there are relatively few edges
incident to z on one side of C. More precisely, this property means that for an oriented
cycle C, the number of edges containing z on one side of C is as small possible. This
definition is used in particular in the proof of Theorem 7.

Every finite nonplanar ribbon graph having no proper witness pair has at least
one tight witness pair. This follows from the fact that G is a finite graph, and so we
are taking a minimum over a finite collection of witness pairs.
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ON TORSOR STRUCTURES ON SPANNING TREES 2131

Fig. 3.5. Proper witness pairs (C,P ) in each of the nonplanar ribbon structures on K4. In
each case, the cycle C and its proper witness P are given.

4. Divisors on graphs. In this section, we review the basic notions of the
divisor theory of graphs, providing a setting in which to discuss the Picard group of
a graph as the group of chip-firing equivalence classes. Alternative presentations of
this material can be found in Chapter 4 of [12] or in Chapter 2 of [6]. Given a graph
G, let Div(G) denote the free abelian group with formal generators corresponding to
the vertices of G. Elements of Div(G) are called divisors on G; a given divisor D has
the form

D=
\sum 
v\in V

av(v) ,

where av \in Z for all v \in V and (v) is the formal generator corresponding to v. It is
often convenient to think of a divisor as an arrangement of chips placed at the vertices
of the graph G. The degree of a divisor D is the sum

\sum 
v\in V av. The collection of

degree d divisors is denoted by Divd(G). Note that, given any vertex q of G, the
group Div0(G) is generated by the divisors \{ (v) - (q) : v \in V \} .

Denote by \scrM (G) the collection of functions f : V \rightarrow Z. The combinatorial
Laplacian on G is the mapping \Delta :\scrM (G)\rightarrow Div0(G) given by

\Delta f :=
\sum 

v\in V (G)

\biggl( \sum 
e=\{ v,w\} 

[f(v) - f(w)]

\biggr) 
(v) .

The image of \Delta is the set of principal divisors on G; such divisors form a subgroup
Prin(G) of Div0(G). We say that two divisors D and D\prime are linearly equivalent if they
differ by a principal divisor, so that D\prime =D +\Delta f for some f \in \scrM (G). The (degree
0) Picard group of G is the quotient group

Pic0(G) =
Div0(G)

Prin(G)
.
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2132 FARBOD SHOKRIEH AND CAMERON WRIGHT

In general, we write Picd(G) =Divd(G)/Prin(G); this is the collection of linear equiv-
alence classes of degree-d divisors. Pic0(G) admits a regular action on Picd(G) for
any d given by addition of divisor classes. It is known that the cardinality of the
Picard group of G is equal to the number of spanning trees of the graph G (see [2]
and references therein).

For a graph G, the genus of G is the first Betti number g= | E(G)|  - | V (G)| +1;
any spanning tree of G has exactly | E(G)|  - g edges. Given a spanning tree T \in \scrT (G)
excluding edges e1, . . . eg, a divisor B \in Divg(G) is referred to as a break divisor for T
if B is of the form B =

\sum g
i=1 s(ei), where s(ei) is one vertex of the edge ei. Note that

there are many possible distinct break divisors associated to a given tree. We have
the following property of break divisors.

Proposition 4.1 (Theorem 1.1 of [1]). Each divisor class of Picg(G) contains a
unique break divisor.

Consequently, we can use break divisors as canonical representatives of the equiv-
alence classes in Picg(G).

5. Bernardi and rotor-routing torsors. In addition to having the same car-
dinality as \scrT (G), the Picard group Pic0(G) also admits at least two regular group
actions, or torsor structures, on \scrT (G). One is derived from a process due to Bernardi,
and the other arises from a process referred to as rotor-routing [4], [10]. We deal with
torsor structures that depend on a choice of base vertex in the graph G. We remark
that K\'alm\'an, Lee, and T\'othm\'er\'esz have recently shown in [11] that, using the ma-
chinery of planar trinities, it is possible to give a canonical definition of the Bernardi
action on planar graphs without an initial choice of a base vertex. Moreover, this
work extends these results to the situation of balanced plane digraphs.

5.1. Bernardi torsor. The first torsor structure considered in this work arises
from a family of combinatorial maps, collectively referred to as the Bernardi process.
As mentioned above, Pic0(G) is in bijective correspondence with the set of spanning
trees \scrT (G). The works of Bernardi and Baker and Wang establish a family of bijec-
tions \beta (q,e) : \scrT (G) \rightarrow Picg(G) witnessing this correspondence by mapping spanning
trees to break divisors [4], [3]. These maps are parametrized by pairs (q, e) consisting
of a vertex q and an edge e incident to q.

The Bernardi process uses the data (q, e) and a spanning tree T to perform a tour
\tau (q,e)(T ) of the graph G. This tour can be thought of as a special walk in G beginning
and ending at q, traversing each edge of T twice, and excluding each edge outside T .
More specifically, the tour \tau (q,e)(T ) takes the form \tau (q,e)(T ) = (v0, e1, v1, . . . , ek, vk),
where v0 = vk = q and e= e1 = \{ v0, v1\} .

Given ei and vi, the edge ei+1 is chosen to be the first edge of T succeeding ei
in the ribbon structure about vi; the process can be thought of as originating with
the edge e0 immediately preceding e in the ribbon structure about q. We think of
this process as starting with the initial data, traversing each edge of T to the other
endpoint, and cycling through the ribbon structure until finding another edge of T ,
ignoring each edge f not included in T . In such a tour, we ignore g many edges
f1, . . . , fg /\in T , each being passed over two distinct times, once from each endpoint.

In performing such a tour of G, we construct a divisor on G by placing a chip at
our feet the first time we ignore a given edge f /\in T . In this case, we say that f is cut
at the first endpoint, from which we ignore it. The divisor obtained in this fashion is
necessarily a break divisor for the tree T . The mapping \beta (q,e) : \scrT (G)\rightarrow B(G) is given
by mapping a spanning tree T to the resulting break divisor.
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ON TORSOR STRUCTURES ON SPANNING TREES 2133

Fig. 5.1. Bernardi tours and break divisors associated to two spanning trees of the given graph.
Spanning trees are denoted by thickened edges. In each case, the initial data (q, e) are represented
by a boxed vertex and an arrow along the initial edge.

The process of deriving the break divisor \beta (q,e)(T ) from T is illustrated graphically
in Figure 5.1. Since, by Proposition 4.1, each divisor class of Picg(G) contains a
unique break divisor, it follows that the maps \beta (q,e) induce explicit combinatorial
bijections between spanning trees and divisor classes of degree g.

From these bijections, Baker and Wang define a group action \beta q : Pic0(G) \times 
\scrT (G) \rightarrow \scrT (G) using the natural action of Pic0(G) on Picg(G) [3]. Fix initial data
(q, e). Given any divisor class [D]\in Pic0(G), define

(5.1) \beta q([D], T ) := \beta  - 1
(q,e)([D] + [\beta (q,e)(T )]) .

A central result of the paper of Baker and Wang states that the action (5.1) is
in fact independent of the chosen edge e used in defining the bijection \beta (q,e) (see [3,
Theorem 4.1]). As a result of this, one can define a group action of Pic0(G) on \scrT (G)
after fixing only a vertex of G, the base vertex of the action.

5.2. Rotor-routing torsor. Another regular action is derived from the rotor-
routing process on G, introduced in [14] and studied further in [10] and [9]. The
rotor-routing process is a discrete-time dynamical system derived from G. The state
space consists of rotor configurations on G: pairs (\sigma , v), where v is a vertex of G,
interpreted as the location of a chip, and \sigma : V (G)\rightarrow E(G), a rotor function assigning
to each vertex w of G an edge \sigma (w) containing w. The edge \sigma (w) is referred to as the
rotor at w.

A single step of the rotor-routing process takes the rotor configuration (\sigma , v) to
(\sigma \prime ,w), where \sigma \prime is the rotor configuration for which \sigma \prime (u) = \sigma (u) for all u \not = v, \sigma \prime (v)
is the successor of \sigma (v) in the ribbon structure about v, and w is the other vertex
of \sigma \prime (v). Informally, we move the rotor at v once according to the ribbon structure
about v and move the chip along the new edge to its other vertex w.

For the purposes of defining the action of Pic0(G) on \scrT (G), we choose a vertex
q of G as a sink of the system and ignore the rotor at q. Given a spanning tree T of
G and a vertex q of G, we can obtain a rotor function \sigma T such that \sigma T (v) is the first
edge on the unique path in T from v to q. Conversely, given a rotor function \sigma , we
can obtain a subgraph H\sigma of G whose only edges are the rotors of \sigma .

Given any vertex q of G and any spanning tree T of G, iterating the rotor-routing
process from any configuration (\sigma T , v) will eventually yield a configuration (\tau , q); the
chip will necessarily reach the vertex q [9, Lemma 3.6]. Moreover, it can be shown
that the graph H\tau derived from \tau will be a spanning tree of G [9, Lemma 3.10].

Using this observation, we can construct a group action \rho q of Div0(G) on \scrT (G)
by defining the action of generators \{ (v)  - (q) : v \in V (G)\} and extending linearly.
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2134 FARBOD SHOKRIEH AND CAMERON WRIGHT

Fig. 5.2. Rotor-routing process applied to a spanning tree of K4. The original spanning tree T ,
indicated at the left by thickened edges, is mapped to the rightmost spanning tree \rho q([(v) - (q)])(T ).
At each stage, the location of the chip is indicated by a filled vertex.

Beginning from the rotor configuration (\sigma T , v), iterate the process until reaching some
(\tau , q), and let T \prime be the spanning tree given by the final rotor function. This action
is trivial on any divisor in Prin(G) and so descends to an action by Pic0(G). The
rotor-routing action \rho q : Pic

0(G)\times \scrT (G)\rightarrow \scrT (G) is then given by setting

(5.2) \rho q([(v) - (q)], T ) = T \prime .

See Figure 5.2 for an illustration of the rotor-routing action. In the investigation of
[5], the following definition is of crucial use to establish the main findings.

Definition 5.1. A rotor configuration (\sigma , v) is called a unicycle if the image of
the rotor function \sigma contains a unique directed cycle and v is a vertex of this cycle or
if v has some neighbor w such that \sigma (v) = \sigma (w).

This definition will be of particular use to us due to the interaction between the
rotor-routing action and unicycles.

Lemma 5.2 (Lemma 4.9 of [10]). Let (\sigma , v) be a unicycle on a graph with m
edges. Then, in iterating the rotor-routing process 2m times from (\sigma , v), the chip
traverses each edge of G exactly once in each direction, each rotor makes exactly one
full rotation, and the final state is again (\sigma , v).

The following lemma is an easy consequence of Lemma 5.2.

Lemma 5.3. Suppose that G is a ribbon graph, (\sigma ,w) a unicycle on G, and z
a vertex satisfying \sigma (z) = \{ z,w\} . Then, for all neighbors v \not = w of z satisfying
\sigma (v) = \{ v, z\} , the rotor at z reaches \{ z, v\} before the rotor at v completes a full
rotation.

Proof. Let v be a neighbor of z such that \sigma (v) = \{ v, z\} . Suppose for the sake
of contradiction that in iterating the rotor-routing process from (\sigma , z), the rotor at v
completes a full rotation before the rotor at z reaches \{ z, v\} . Then, in order for the
rotor at z to complete a full rotation, we pass through some rotor configuration (\rho , v)
such that \rho (z) = \{ z, v\} . Then, iterating the rotor-routing process one additional time,
the rotor at v has completed more than one full turn before the rotor at z returns to
its starting position, contradicting Lemma 5.2.

5.3. Comparison of torsor structures. The rotor-routing and Bernardi pro-
cesses described in the previous subsections give rise to regular group actions of
Pic0(G) on \scrT (G), yielding two torsor structures on \scrT (G) via (5.1) and (5.2). Each of
the two structures is dependent on a choice of some vertex of G as base vertex for the
action. These torsor structures have been the subject of much study in recent years
[3, 5, 13, 11].
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ON TORSOR STRUCTURES ON SPANNING TREES 2135

Fix some vertex q \in V (G), and consider \rho q and \beta q. To see that the two homo-
morphisms \rho q and \beta q agree, we must have that

\rho q([D], T ) = \beta q([D], T )

for each T \in \scrT (G) for each divisor class [D]\in Pic0(G). In particular, since divisors of
the form (v) - (q) generate Div0(G), by (5.1) and (5.2), it is sufficient to verify that
for each v \in V (G), we have the equality

\beta (q,e)(\rho q([(v) - (q)], T )) = [(v) - (q)] + \beta (q,e)(T ) .

In contrast, to show that \rho q \not = \beta q we need only find a single tree T \in \scrT for which the
above equality does not hold; doing so immediately yields that, as permutations of
\scrT (G),

\rho q([(v) - (q)], \cdot ) \not = \beta q([(v) - (q)], \cdot ),

and therefore \rho q and \beta q cannot be equal.
We have the following theorem about the rotor-routing torsor structure on \scrT (G).

Theorem 5.4 (Theorem 2 of [5]). Let G be a connected ribbon graph. The action
\rho q of Pic0(G) on \scrT (G) is independent of the base vertex q if and only if G is a planar
ribbon graph.

The work of Baker and Wang established an analogous result for the torsor struc-
ture derived from the Bernardi process.

Theorem 5.5 (Theorems 5.1 and 5.4 of [3]). Let G be a connected ribbon graph.
The action \beta q of Pic0(G) on \scrT (G) is independent of the base vertex q if and only if
G is a planar ribbon graph.

In the case of a planar ribbon graph G, neither the rotor-routing action nor the
Bernardi action is dependent on the choice of base vertex; both actions are in this
sense canonical.

Theorem 5.6 (Theorem 7.1 of [3]). For a planar ribbon graph G, the Bernardi
and rotor-routing processes define the same Pic0(G)-torsor structure on \scrT (G).

However, in the case of a nonplanar G, the situation was not as clear. The work
[3] concludes with the following conjecture.

Conjecture 5.7 (Conjecture 7.2 of [3]). Let G be a nonplanar ribbon graph with
no multiple edges and no loops. Then there exists a vertex q of G such that \rho q \not = \beta q.

6. Baker--Wang conjecture and proper witnesses. We now prove the Baker--
Wang conjecture in the case that the graph G admits a proper witness pair. This will
be done by first proving the conjecture in a more restricted situation.

Lemma 6.1. Suppose that G is a ribbon graph with proper witness pair (C,P )
such that P has endpoints x and z. If the two edges e0 and e1 of C incident to z
satisfy e0 \prec e1, then there exists a vertex q of G such that \rho q \not = \beta q.

Proof. Suppose that e1 = \{ z, q\} , so that q is the other vertex of e1 in C. Now let
e\prime = \{ u, v\} be an edge of P , and extend the collection of edges (C \setminus e1)\cup (P \setminus e\prime ) to a
spanning tree T of G. We will show that

\rho q([(z) - (q)], T ) \not = \beta q([(z) - (q)], T ) .
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2136 FARBOD SHOKRIEH AND CAMERON WRIGHT

Fig. 6.1. Rotor-routing process applied to the spanning tree T , thickened at the left, as in the
proof of Lemma 6.1. After one step, the chip is moved from z to q, and the process is terminated,
yielding the thickened tree T \prime at the right.

In particular, denoting by T \prime the spanning tree \rho q([(z)  - (q)], T ), we show that the
divisor classes [(z) - (q)] + [\beta q,e1(T )] and [\beta q,e1(T

\prime )] have distinct break divisor rep-
resentatives. By the definition of the Bernardi action \beta q, we immediately obtain
\rho q \not = \beta q.

Acting on T with \rho q([(z)  - (q)]) entails only a single step of the rotor-routing
process: changing the rotor at z from e0 to e1 and moving the chip to q, terminating
the process. As a result, the spanning trees T and T \prime differ only by a single edge. In
particular, T \prime = (T \setminus e0)\cup e1. This situation is depicted in Figure 6.1.

Consider the divisors (z) - (q)+\beta (q,e1)(T ) and \beta (q,e1)(T
\prime ). By the definition of the

Bernardi bijection, we know that \beta (q,e1)(T
\prime ) is a break divisor for T \prime . On the other

hand, the divisor (z)  - (q) + \beta (q,e1)(T ) is also a break divisor for T \prime , distinct from
\beta (q,e1)(T

\prime ). Since a break divisor for a spanning tree is a formal sum of endpoints of
edges outside that tree, we can see the following:

(z) - (q) + \beta (q,e1)(T ) = (z) - (q) + (q) +
\sum 
e/\in T
e\not =e1

s(e) = (z) +
\sum 
e/\in T \prime 

e\not =e0

s(e) .

Recall from section 4 that s(e) denotes either endpoint of the edge e. Since z is an
endpoint of e0, this shows that (z) - (q) + \beta (q,e1)(T ) is a break divisor for T \prime .

We are reduced to showing that (z) - (q) + \beta (q,e1)(T ) and \beta (q,e1)(T
\prime ) are distinct

break divisors. By the construction of T , the collection of edges P \cap T consists of two
connected components Pz and Px, containing z and x, respectively. In the Bernardi
tour of T , Px is traversed before Pz, while the opposite is true for the tour of T

\prime . This
results in different placement of the chip associated to the edge e\prime in the two tours:
Without loss of generality, the T tour places a chip at v, while the T \prime tour places a
chip at u; this difference is depicted in Figure 6.2.

It now remains to show that the difference in placement of the chip associated to
e\prime yields a difference between (z) - (q)+\beta (q,e1)(T ) and \beta (q,e1)(T

\prime ) as divisors. Suppose
for the sake of contradiction that they are the same despite their difference in choice
of s(e\prime ). Since e\prime is cut at v in the tour of T , the equality of (z) - (q)+\beta (q,e1)(T ) and
\beta (q,e1)(T

\prime ) at u implies that there must be some other edge f0 = \{ u,w1\} , excluded
from both T and T \prime , which is cut at u in the tour of T and at its other endpoint w1

in the tour of T \prime . Similarly, for (z) - (q) + \beta (q,e1)(T ) and \beta (q,e1)(T
\prime ) to agree at w1,
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ON TORSOR STRUCTURES ON SPANNING TREES 2137

Fig. 6.2. Bernardi process with initial data (q, e1) applied to the spanning trees T and T \prime as in
the proof. For simplicity, only the relevant parts of the tours are included in the figure. At the left,
the tour cuts e\prime at u, while at the right, e\prime is cut at v.

Fig. 6.3. A depiction of the cycle D mentioned in the proof of Lemma 6.1. Here, the arcs
surrounding vertices indicate that for this cycle, all edges are cut at their heads, in accordance with
the described tour of the tree T \prime . The depicted edges outside the cycle are the edges of T \prime incident
to u and v.

we see that there must be some other edge f1 = \{ w1,w2\} , excluded from both T and
T \prime , which is cut at w1 in the tour of T and is cut at its other endpoint w2 in the tour
of T \prime .

Continuing in this fashion, we see that there must exist a cycle D in G having
vertices u=w0,w1, . . . ,wm = v and edges f0, . . . , fm - 1, e

\prime , where fi = \{ wi,wi+1\} , such
that all edges fi are excluded from both trees T and T \prime . Moreover, orienting D such
that e\prime is oriented from v to u, we see that in the tour of T , each edge of D must be
cut at its tail, while in the tour of T \prime , each edge of D must be cut at its head. This
situation is depicted in Figure 6.3.

We show that the existence of such a cycle D with edges being cut in this way is
impossible. To see this, we orient the cycle C in a fixed direction and partition the
vertices wi of D into two classes L and R according to whether the first edge outside
C on the unique path in T from z to wi falls on the left or right of the cycle C. Since
T and T \prime are trees, if some vertex wi \in L is visited in the tour of T before some other
vertex wj \in R (or vice versa), then all edges outside T incident to wi will be cut before
the tour visits wj .
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2138 FARBOD SHOKRIEH AND CAMERON WRIGHT

Consider now the tour of T . Since v is visited before u in this tour, e\prime is cut at its
tail, and the edge fm - 1 must be cut before u is visited. Thus, to avoid contradiction,
it must be that wm - 1 is in the same partition class as v and that fm - 1 is cut at its
tail wm - 1. Now, applying the same reasoning, it must be that wm - 2 is in the same
partition class as wm - 1 and that fm - 2 is cut at its tail wm - 2. Following this pattern
around the cycle D, it must be that w0 = u is in the same class as w1 and that the
edge f0 is cut at its tail w0 = u. But this is impossible since, by construction, u and
v cannot be in the same partition class.

Thus, it cannot be that (z)  - (q) + \beta (q,e1)(T ) = \beta (q,e1)(T
\prime ). Since the divisors

(z) - (q)+\beta (q,e1)(T ) and \beta (q,e1)(T
\prime ) are necessarily distinct break divisors, they cannot

be representative of the same element of Picg(G), and so \rho q \not = \beta q.

For a ribbon graph G admitting a proper witness pair, either we have z, e0, and
e1, as in Lemma 6.1 above, or there are some edges f1, . . . , fk incident to z such that

e0 \prec f1 \prec \cdot \cdot \cdot \prec fk \prec e1 .

We now prove that in the latter case, we can still find vertices q\prime and z\prime and an
edge e for which the break divisors \beta (q\prime ,e)(T

\prime ) and (z\prime ) - (q\prime )+\beta (q\prime ,e)(T ) still differ as
described.

Theorem 6.2. For any nonplanar ribbon graph G admitting a proper witness pair
(C,P ), there exists a vertex q for which \rho q \not = \beta q.

Proof. Suppose that the proper witness pair (C,P ) is such that the path P in-
tersects C in vertices x and z. If this witness pair satisfies e0 \prec e1 in the ribbon
structure about z, then we are finished. Suppose also that the pair (C,P ) fails to
meet the conditions of Lemma 6.1. In particular, there exists an edge f = \{ z, v\} such
that f \in [e0, e1] and f \not = e0, e1. Let G

\prime be the subgraph of G obtained by deleting the
vertex z and all edges to which it is incident. Denote by F the connected component
of the subgraph G\prime containing v. See Figure 6.4. Note in particular that F may
intersect the cycle C or the path P .

If the component F meets neither C nor P , then one can ignore the edge f ,
applying the same reasoning as in Lemma 6.1: The rotor-routing process carried out

Fig. 6.4. Proper witness pair (C,P ) in a graph embedded on a surface of positive genus. Sup-
posing that there is an edge f incident to z with e0 \prec f \prec e1, we can identify the component F of
G \setminus z and consider its possible intersection with the cycle C and the path P . Wavy lines represent
paths that may contain additional vertices and edges.
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ON TORSOR STRUCTURES ON SPANNING TREES 2139

Fig. 6.5. Situation in the proof of Theorem 6.2 where the intruding edge f leads to a path to
P . The new proper witness pair (C\prime , P ) is shown in the right figure.

in the subgraph F will not influence the rotors on the path P , so the break divisors
(z) - (q)+\beta q,e1(T ) and \beta q,e1(T

\prime ) will still differ as described in the proof. We therefore
assume that there is no such edge f with F \cap C and F \cap P empty.

Suppose that the interval (e0, e1) about z contains some positive number of edges
f . We illustrate a method of finding a new witness pair (C \prime , P \prime ) and reassigning the
roles of e0, e1, z, and q such that the new interval I serving as the replacement of
(e0, e1) has strictly fewer edges than before. This means that we can eventually find
a witness pair (C \prime \prime , P \prime \prime ) such that the interval between the two edges of C \prime \prime incident
to z is empty, and therefore Lemma 6.1 can be applied.

Suppose that there is some edge in (e0, e1) that can be extended to a path from
z to a vertex of P . Let f be the maximal such edge, and suppose it is extended to a
path from Qz,x\prime through F connecting z to some vertex x\prime \in V (P ). Then, necessarily,
there is a path Cz,x from z to x in C which does not contain q, and there is a path
Px,x\prime from x to x\prime in P . In this case, we replace the nonseparating cycle C by the new
cycle C \prime = (C \setminus Cz,x\prime )\cup Qz,x\prime \cup Px,x\prime and the path P by the new path P \prime = P \setminus Px,x\prime .
Following this, we repeat this process, replacing e0 with f and replacing x with x\prime .
Doing so, we see that the new interval (f, e1) has cardinality strictly less than that of
the original interval (e0, e1). This process can be seen in Figure 6.5.

Suppose that there is some edge in (e0, e1) that can be extended to a path from
z to a vertex of C. Let f be the minimal such edge, and suppose it is extended to a
path Qz,c through F connecting z to some vertex c \in V (C). We have the following
two cases:

\bullet If c = x or if c lies on the path from z to x in C, denote by Cz,c the path
from z to c in C which avoids q. Replace the nonseparating cycle C by the
new cycle C \prime = (C \setminus Cz,c) \cup Qz,c, and leave the path P unchanged. We now
let f fill the role of e0 and see that the interval (f, e1) has cardinality strictly
less than that of (e0, e1).

\bullet If the vertex c lies on the path from z to x in C which passes through q
or if c = q, let Cz,c denote the path from z to c in C passing through (or
stopping at) q. Replace the nonseparating cycle C by the new cycle C \prime =
(C \setminus Cz,c)\cup Qz,c, and leave the path P unchanged. We now let f fill the role
of e1 and see that the interval (e0, f) has cardinality strictly less than that of
(e0, e1). This process can be seen in Figure 6.6.
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2140 FARBOD SHOKRIEH AND CAMERON WRIGHT

Fig. 6.6. Situation in the proof of Theorem 6.2 where the intruding edge f leads to a path to
C. The new proper witness pair (C\prime , P ) is shown in the image at the right.

Using the above approaches, it follows that in the presence of a proper witness
pair (C,P ) in G, we can always recover a witness pair (C \prime \prime , P \prime \prime ) which either satisfies
the conditions of Lemma 6.1 or is such that no edges incident to z inhibit the proof
of Lemma 6.1. Thus, we conclude that if G is a nonplanar ribbon graph admitting a
proper witness pair, then there is some vertex q of G such that \rho q \not = \beta q.

Considering Proposition 3.3 alongside Theorem 6.2, we immediately obtain the
following corollary.

Corollary 6.3. For a nonplanar graph G endowed with any ribbon structure,
there exists some vertex q of G such that \rho q \not = \beta q.

7. Simple graphs without proper witnesses. We next show that for non-
planar ribbon graphs G without multiple edges or loops that do not contain a proper
witness pair, there is some vertex q for which \rho q \not = \beta q. This completes the proof of
the Baker--Wang conjecture.

Theorem 7.1. Let G denote a nonplanar ribbon graph with no multiple edges and
no loops such that G does not admit a proper witness pair. Then there is some vertex
q of G such that \rho q \not = \beta q.

Proof. As in the proof of Lemma 6.1, we will construct a spanning tree T such
that the Bernardi and rotor-routing torsors disagree on T .

In order to do so, we must first fix some terminology regarding our construction.
It is recommended that the reader reference Figure 7.1 while we introduce the required
terminology.

1. Since G is a nonplanar ribbon graph with no proper witness pair, there exists
at least one tight witness pair (Definition 3.5). Suppose that (C,P ) is one
such pair and that z is the unique vertex in the intersection of P and C.

2. Suppose that q is a neighbor of z in C. Orient \{ z, q\} from q to z, and extend
this orientation to all of C. We may assume that the interval on the left of
C is the minimal interval described in the definition of a tight witness pair.
Let e be the edge \{ z, q\} , and let e\prime be the edge immediately succeeding e in
the ribbon structure about q.

3. Partition all neighbors y of z outside the cycle C into two classes L and R
so that y \in L if and only if \{ y, z\} is on the left of C and y \in R if and only if
\{ y, z\} is on the right of C.
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Fig. 7.1. The situation in the proof of Theorem 7.1. The tree T is indicated with thickened
edges, while the subgraph H of G is indicated using a dashed line. The vertex sets LH and RH are
shown within the dotted regions within H. For simplicity, we have depicted the edge e\prime as an edge
of the cycle C.

4. Let H be the subgraph of G induced by all witness paths for C that intersect
C at z. Further, let LH \subseteq L and RH \subseteq R denote the vertices of H which lie
in L and R, respectively.

5. Let Z \subseteq E(G) denote the collection of edges incident to z with endpoints in
L or R. We can extend the collection of edges C \cup Z \setminus \{ e\} to a spanning tree
T so that all edges incident to z except e are included in the tree T and such
that all vertices in RH have degree 1 in the subgraph T \cap H. This is because,
by definition, all neighbors of z in RH lie on paths connecting to z through
vertices of LH . Note that the vertices in RH may have degree greater than 1
in T , but this situation arises only when there are other vertices of G whose
only path to z passes through a vertex of RH .

6. Let w0 denote the vertex in LH such that \{ z,w0\} is the first edge in H to the
left of C. Likewise, let v0 denote the vertex in RH such that \{ z, v0\} is the
first edge to the right of C.

7. Consider the vertices of w \in L \setminus LH . As in the proof of Theorem 6.2, let G\prime 

denote the subgraph of G obtained by removing the vertex z and all edges
incident to z. Let W denote the connected component of G\prime containing w.
Since (C,P ) is a tight witness pair, W does not intersect the cycle C. Indeed,
if W intersects C, then there are some vertices w,w\prime \in W and c \in C with
c \not = z such that \{ w,z\} and \{ w\prime , c\} are edges in G. In this case, we may form a
new cycle C \prime which agrees with C on the (oriented) path from z to c in C but
which contains the edges \{ w,z\} an \{ w\prime , c\} . Doing so then yields a witness
pair (C \prime , P ) such that the length of the ribbon structure interval about z on
the left of C \prime is strictly less than the length of the ribbon structure interval
about z on the left of C. This is precisely what the tightness of the witness
pair (C,P ) prohibits, and so such a situation is impossible.

Consider the rotor-routing process taking T to T \prime := \rho q([(z) - (q)], T ). At some
point, the rotor at z shifts to the edge \{ z,w0\} , forming a unique cycle in the subgraph
of H defined by the rotors at vertices of H. Restricting the rotor configuration to the
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2142 FARBOD SHOKRIEH AND CAMERON WRIGHT

graph H, we obtain a unicycle U = (\sigma , z) in H. Further, by the assumption that G
has no proper witness, we see that all paths from any vertex of H other than z to
any vertex on the path C must pass through z. In particular, combining this with
the fact that (C,P ) is a tight witness pair ensures that no rotors outside of H or the
subgraphs W will move until the rotor at z shifts to e.

Consider now the rotor-routing process in the graph H beginning from starting
configuration U . By Lemma 5.3, for all neighbors v of z in RH , the rotor at z shifts
to \{ z, v\} before the rotor at any v \in RH completes a full rotation. Considering the
implication of this statement in the graph G, we see that the rotor at z must shift
to e before the rotors at any v \in RH complete a full rotation, and so the entire
rotor-routing process taking T to T \prime terminates before the rotor of any vertex in RH

completes a full rotation.
Now, either the rotor-routing process associated to \rho q([(z)  - (q)], T ) never de-

posited a chip at any vertex in RH , and so all edges from z to vertices in RH lie in
the tree T \prime , or this rotor-routing process deposited a chip at some vertex of RH , and
so the edge joining z to this vertex lies outside the tree T \prime .

In the former case, since no v \in RH received a chip, all vertices of RH have
degree 1 in the subgraph T \prime \cap H. This means in particular that on the Bernardi tour
associated to T \prime , all vertices of RH receive at least one chip from their neighbors
in H in addition to whatever chips they receive from edges to neighbors outside H.
However, on the Bernardi tour associated to T , all edges of H incident to vertices
in RH will be cut at their other endpoint. Therefore, no vertex of RH will receive
any chips from neighbors in H on this tour, while each such vertex receives the
same number of chips as in the tour of T \prime from neighbors outside H. This means
in particular that the break divisors \beta (q,e)(T

\prime ) and (z)  - (q) + \beta (q,e)(T ) differ at all
vertices of RH and so cannot be representative of the same element of Picg(G).

In the latter case, suppose that the rotor-routing process on T deposited a chip
at the vertex v, and so \{ z, v\} lies outside T \prime . Then, in this case, the chip must
have returned to z across an edge connecting z to some vertex \ell in LH . Indeed, all
edges incident to z on the right of C are included in the tree T , so in order for the
chip to return to z across an edge connecting z to a vertex in RH , the rotor at that
vertex must complete a full rotation, which is impossible by Lemma 5.3. Further, by
appealing to this same lemma, we also see that the edge \{ \ell , z\} across which the chip
returned to z must be contained in T \prime . This follows from the fact that \{ \ell , z\} is in the
tree T by construction, and so 5.3 ensures that the rotor at z reaches \{ \ell , z\} before the
chip returns across this edge. In particular, the rotor at z continues to the next edge
in the ribbon structure at z, and so the rotor at \ell remains \{ \ell , z\} at the termination
of the process.

Thus, for all v \in RH which received a chip during the rotor-routing process, the
unique path from v to z in T \prime passes through a vertex of LH . Note in particular that
this need not be the case if G has multiple edges. Indeed, in the event that there is
some v \in RH such that there are parallel edges between z and v, v may receive a chip
in the rotor-routing process and eventually terminate in a configuration such that one
of the edges \{ v, z\} is still in the tree T \prime .

This means that in the Bernardi tour associated to T \prime , the edge \{ z, v\} will be
cut at z, and so z will receive a chip from an edge to at least one neighbor in RH .
Considering also that z receives a chip from an edge in the cycle C, we see that z
must have a coefficient of at least 2 in the break divisor \beta (q,e)(T

\prime ). On the other
hand, all edges incident to z except for e are included in T , so that in the divisor
\beta (q,e)(T ), the vertex z has coefficient 0. Thus, the break divisors (z) - (q) + \beta (q,e)(T )
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and \beta (q,e)(T
\prime ) necessarily differ at z and cannot be representative of the same element

of Picg(G).
Combining the above, we conclude that in either case, the rotor-routing and

Bernardi torsors disagree on the tree T , so that \rho q \not = \beta q.

In view of Theorems 6.2 and 7.1 we obtain the following corollary, verifying the
Baker--Wang conjecture.

Corollary 7.2 (Baker--Wang conjecture). Given a nonplanar ribbon graph with
no multiple edges and no loops, there exists a vertex q for which \rho q \not = \beta q.

8. Examples. We conclude with two examples to address the following ques-
tions:

1. Is the assumption of no multiple edges necessary for the Baker--Wang conjec-
ture?

2. For nonplanar ribbon graphs, is the difference between the two torsor struc-
tures independent of the base vertex?

Our examples show that the answer to question (1 is yes, while the answer to question
2 is no.

Fix a labeling of the N spanning trees of the underlying graph and consider the
actions \rho q and \beta q as homomorphisms:

\rho q : Pic
0(G) - \rightarrow SN ,

\beta q : Pic
0(G) - \rightarrow SN .

The difference between the two torsors on a given divisor class [D] can be computed as
\rho q([D]) - 1\beta q([D])\in SN . The difference between the two torsor structures is dependent
on the base vertex if there exist two vertices p and q and a divisor class [D] such that

\rho p([D]) - 1\beta p([D]) \not = \rho q([D]) - 1\beta q([D]) .

Example 8.1. Consider the graph depicted in Figure 8.1, which we call the rounded
bowtie graph. For the rounded bowtie graph, we have that \rho q = \beta q for all vertices q.

We compute all Bernardi and rotor-routing torsor structures on the graph. This
graph has only four spanning trees, yielding a particularly straightforward collection
of computations.

For a given spanning tree T and a given choice of vertex q and incident edge
e= \{ v, q\} , we first compute the rotor-routing action, yielding a permutation \rho q([(v) - 
(q)]) \in Sn. Following this, we calculate the permutation associated to the Bernardi
action by computing break divisors \beta (q,e)(T ) for all spanning trees T . Break di-
visors will be written as row vectors with coordinates in the order (a, b, c). With

Fig. 8.1. Rounded bowtie graph with the relevant torus embedding. As in prior figures, the
ribbon structure is given by the counterclockwise orientation of the torus.
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2144 FARBOD SHOKRIEH AND CAMERON WRIGHT

Fig. 8.2. Bernardi and rotor-routing actions on spanning trees of the rounded bowtie graph.
The spanning trees Ti are indicated in each of the figures (1) through (4) with thickened edges. The
Bernardi tours depicted are associated to the bijection \beta (c,e), where e= \{ a, c\} . The associated break
divisors \beta (c,e)(Ti) are given below each tree.

these in hand, we translate the break divisors by the divisor (v) - (q), yielding new
divisors,

(8.1) (v) - (q) + \beta (q,e)(T )

for each spanning tree T . Finally, we can check for linear equivalence between these di-
visors and the other break divisors \beta (q,e)(S) for other spanning trees S. In particular,
if some pair of spanning trees S and T satisfy

(v) - (q) + \beta (q,e)(T )\sim \beta (q,e)(S) ,

then the permutation \beta q([(v) - (q)]) sends the spanning tree T to S. Calculating these
divisors (8.1) and performing these comparisons for all spanning trees then yields a
permutation representation for \beta q([(v) - (q)]).

In order to verify that \rho q = \beta q for all vertices q of the graph in Figure 8.1,
we perform this process for all choices of vertices q and v of the graph in order to
understand the action of divisor classes of Div0(G) generators on the trees. There are
three nonequivalent choices for q and v: one in which the target vertex q has degree
4 and the vertex v has degree 2, one in which q and v both have degree 2, and one in
which q has degree 2 and v has degree 4. In Figure 8.2, we have included a depiction
of the four spanning trees of the rounded bowtie graph, together with their associated
Bernardi tours and break divisors for this choice of q= c and v= a.

In calculating the Bernardi action, we make use of the Bernardi bijection \beta (c,e),
where e = \{ c, a\} . Consider the divisor (a)  - (c) + \beta (c,e)(T1) = (1,1,0). This is the
break divisor \beta (c,e)(T3), so we conclude that \beta c([(a) - (c)]) maps T1 to T3. Similarly,
we see

(a) - (c) + \beta (c,e)(T3) = (2,1, - 1)\sim (0,1,1) = \beta (c,e)(T1) ,

(a) - (c) + \beta (c,e)(T2) = (1,0,1) = \beta (c,e)(T4) ,

(a) - (c) + \beta (c,e)(T4) = (2,0,0)\sim (0,0,2) = \beta (c,e)(T2) .

Together, this implies that we have a permutation representation \beta c([(a) - (c)]) =
(13)(24). Likewise, checking the rotor-routing action \rho c([(a) - (c)]) yields that \rho c([(a) - 
(c)]) = (13)(24) = \beta c([(a) - (c)]). By the symmetry of the rounded bowtie graph, it
follows that \rho c = \beta c. Other cases follow similarly, and so the associated work is not
included.
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ON TORSOR STRUCTURES ON SPANNING TREES 2145

Fig. 8.3. Pointed bowtie graph with the relevant torus embedding. Vertices are labeled a, b, c, p, q,
and edges e, f are relevant in Example 8.2.

We now turn to the issue of the discrepancy between base vertices, illustrating in
particular a graph, depicted in Figure 8.3, having vertices p and q such that \rho p = \beta p

while \rho q \not = \beta q.

Example 8.2. Consider the graph depicted in Figure 8.3, which we call the pointed
bowtie graph. For the pointed bowtie graph and the two indicated vertices p and q,
we have \rho p = \beta p while \rho q \not = \beta q.

We deal with divisor classes of the form [(z) - (q)] for the sake of their simplicity.
In Figure 8.3, all vertices are labeled, and in addition, we have included all spanning
trees of the graph, together with the labeling to be used in the cycle representation
of our actions. We will show that

\rho q([(a) - (p)]) - 1\beta q([(a) - (p)]) \not = \rho p([(a) - (p)]) - 1\beta p([(a) - (p)]).

Before proceeding, note that by Theorem 7.1, we are guaranteed that \rho q \not = \beta q for
this choice of q. We compute now the action of the divisor [(a) - (p)] on each spanning
tree using the actions \rho q and \beta q. Since the base vertex of these actions is q and not p,
we must first rewrite [(a) - (p)] = [(a) - (q)] - [(p) - (q)], after which one can compute
the actions of [(a) - (q)] and [(p) - (q)] under both \rho q and \beta q. Finally,

\rho q([(a) - (p)]) = \rho q([(a) - (q)]
\bigl[ 
\rho q([(p) - (q)])

\bigr]  - 1
,

\beta q([(a) - (p)]) = \beta q([(a) - (q)]
\bigl[ 
\beta q([(p) - (q)])

\bigr]  - 1
.

With these permutations in hand, we are able to form the product \rho q([(a)  - 
(p)] - 1\beta q([(a) - (p)]). To start this process, we have produced in Figure 8.4 the Bernardi
tours and break divisors associated to each of the spanning trees. For this example,
break divisors will be written as row vectors with coordinates in the order (a, b, p, c, q).
With these in hand, we can now compute the cycle representation of the permutation
\beta q([(p) - (q)]) using the Bernardi bijection \beta (q,e), where e is the edge \{ p, q\} .

Beginning from the spanning tree T1, computation of the translates [(p) - (q)] +
[\beta (q,e)(Ti)] and their break divisor representatives yields that the permutation \beta q([(p) - 
(q)]) has cycle representation (193)(278)(456). On the other hand, it can be ver-
ified from performing rotor-routing on the trees T1, . . . , T9 that \rho q([(p)  - (q)]) =
(123)(459)(678). We have

\beta q([(p) - (q)]) = (193)(278)(456) ,

\rho q([(p) - (q)]) = (123)(459)(678) .
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2146 FARBOD SHOKRIEH AND CAMERON WRIGHT

Fig. 8.4. Bernardi and rotor-routing actions on spanning trees of the pointed bowtie graph. The
spanning trees Ti are indicated in each of the figures in red. Denoting e= \{ p, q\} , the break divisors
\beta (q,e)(Ti) are given below the corresponding tree with the vertex ordering (a, b, p, c, q).

Following this same reasoning, we can obtain cycle representations

\beta q([(a) - (q)]) = (139)(287)(465) ,

\rho q([(a) - (q)]) = (132)(495)(687) .

Combining the above expressions, it follows that

\rho q([(a) - (p)]) - 1\beta q([(a) - (p)]) = (158)(269) .

It remains to see that the torsor actions of \beta p([(a) - (p)]) and \rho p([(a) - (p)]) coincide.
This is most easily done by taking the same approach as above, utilizing the Bernardi
bijection \beta (p,f). These computations are more straightforward than those above, so
we leave the work as an exercise. One obtains

\beta p([(a) - (p)]) = (163)(245)(789) ,

\rho p([(a) - (p)]) = (163)(245)(789) .

In particular, \rho p([(a)  - (p)]) = \beta p([(a)  - (p)]). Now note that by the symmetry of
the pointed bowtie graph, the coincidence of \rho p and \beta p on [(a)  - (p)] ensures their
coincidence on all generators of Div0(G). We now have \rho q \not = \beta q while \rho p = \beta p.
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