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communication and to become more resilient. Sensors at the
network infrastructure, sensors on the user equipment (UE),
and the sensing capability of the communication signal itself
provide a new source of data that connects the physical
and radio frequency (RF) environments. A wireless network
that harnesses all these sensing data can not only enable
additional sensing services but also become more resilient
to channel-dependent effects such as blockage and better
support adaptation in dynamic environments as networks
reconfigure. In this article, we provide a vision for integrated
sensing and communication (ISAC) networks and an overview
of how signal processing, optimization, and machine learning
(ML) techniques can be leveraged to make them a reality in
the context of 6G. We also include some examples of the per-
formance of several of these strategies when evaluated using
a simulation framework based on a combination of ray-tracing
measurements and mathematical models that mix the digital
and physical worlds.

KEYWORDS | Distributed joint sensing and communica-
tion (S&C); integrated sensing and communications (ISACs);
monostatic sensing; near-field ISAC; radio positioning; radio
localization and mapping (SLAM); reconfig-
urable intelligent surface (RIS)-aided localization; sensing-
aided communication.

simultaneous

LINTRODUCTION

Early work on integrated sensing and communication
(ISAC) targeted the development of cooperation strategies
to enable spectral coexistence between communication
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and sensing [1]. At the same time, there was also interest
in sharing hardware among radar and communication
systems to reduce cost, weight, and size, which motivated
the initial designs of joint sensing and communication
(S&C) systems [2]. Nowadays, the number of potential
avenues to integrating S&C and their related benefits have
exploded [3]. On the one hand, communication operation
at higher frequencies with large arrays and bandwidths
has led to waveforms and signal processing algorithms in
the transceiver, which are naturally well-suited for sensing.
On the other hand, the diversification and sophistication
of devices in the wireless network have resulted in the
creation of wireless networks where the communicating
devices are also sensing devices, which opens challenges
related to sensor and communication data fusion. Good
examples of sensing/communicating devices are the con-
nected vehicles to be supported by cellular networks
(already a use case in the 5G standard), equipped with a
wide variety of sensors, including cameras, radars, or lidar.
All these technological advancements bring new opportu-
nities for integrating S&C with motivations and benefits
that go beyond conventional ones. ISAC has emerged as
a renewed research area that aims to develop all these
opportunities by exploiting the similarities between the
required hardware, the waveforms, the signal processing
algorithms, and the machine learning (ML) strategies to
be exploited, or the S&C channels, and define new applica-
tions and frontiers for the future wireless communication
and sensing systems.

In the cellular industry, the 6G Roadmap elaborated
by the NextG Alliance (an industry initiative to advance
North American technology for future cellular networks)
considers joint S&C a key technology for 6G [4]. Similar
considerations are being made by the European coun-
terpart to NextG, the 6G Smart Networks and Services
Industry Association (6G-IA) [5]. Moreover, the Euro-
pean Telecommunications Standards Institute (ETSI) has
also launched an Industry Specification Group (ISG) for
ISAC, which is developing a roadmap and prioritization
of sensing types and ISAC use cases that can potentially
be covered in future 6G releases of the 3rd Genera-
tion Partnership Project (3GPP) [6]. The performance
requirements envisioned by the industry for some appli-
cation verticals are, however, stringent and can only
be met with continued research that develops advanced
solutions.

In this article, we describe different frameworks for
integrating S&Cs in future-generation cellular systems,
discuss the different features to be exploited at differ-
ent frequency bands, and present an overview of the
recent techniques and advances that can make ISAC
a reality in 6G. We focus on a communication-centric
perspective for ISAC with tight integration of waveform
and time and frequency resources for S&C, versus other
approaches where integration only appears at the site or
spectrum level [7]. In this communication-centric vision,
we also review how sensing can assist the network
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operation. Previous overview/tutorial papers do not clearly
focus on a communication-centric perspective of ISAC,
which includes a comprehensive survey of all the ISAC
techniques relevant to 6G and beyond. For example,
Hassanien et al. [8] described a radar-centric approach,
where only low-rate communication is considered by
embedding communication signals into radar waveforms.
The survey in [9] discusses radar and communication
waveforms for ISAC, without covering specific algorithms
in the transceiver to enable the different network sensing
modes. The work in [10] focuses on automotive applica-
tions, describing radar-centric and communication-centric
waveforms, but not covering the detailed description of
specific algorithms or learning strategies for sensing or
operation modes in the near field, to name some lim-
itations. The overview in [11] includes communication-
and radar-centric perspectives, but the study is not com-
prehensive and the level of detail is very limited; for
example, it does not include a treatment of positioning,
and relevant aspects in monostatic sensing, such as the
impact of self-interference (SI), are not described. Tech-
nologies for sensor-aided communication, a new form of
ISAC that may play a critical role in increasing resilience
and adaptability in 6G networks, are not discussed in
any of these surveys. Finally, work [3] includes a study
of performance limits and tradeoffs, aspects of waveform
design from a communication and radar perspective, and
only a one-page description of receiver (RX) algorithms for
ISAC. We can conclude that none of the previous works
provides a complete communication-centric overview with
emphasis on the techniques at the RX that enable network
sensing and sensor-aided communication, as this article
does. In addition, the role of ML tools in the design of the
physical layer of ISAC networks is hardly considered in the
previous surveys.

The structure of the technical sections in this article
is shown in Fig. 1. We start by describing our vision of
the ISAC network, potential sensing modes, the concept
of sensing-aided communication, and the status of ISAC
services—mainly positioning—developed within the most
recent standardization efforts in 3GPP. Then, we focus
on ongoing research, reviewing first approaches for joint
bistatic and multistatic S&C that provide the sensing infor-
mation directly from the fronthaul link, downlink (DL),
uplink (UL), or even sidelink signal, exploiting different
geometric transformations between some or all the chan-
nel parameters and the user’s position and orientation.
These approaches are especially relevant at millimeter-
wave (mmWave) and sub-terahertz (THz) bands, where
the large arrays and bandwidths provide good angular
and delay resolvability, and it is also easier to map the
channel parameters to the objects in the propagation envi-
ronment due to the channel sparsity. Next, we revisit joint
monostatic sensing and communication strategies, where
the exploitation of full duplex (FD) circuits that provide
appropriate isolation between the transmitter (TX) and RX
enables simultaneous transmission of the communication
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Fig. 1. Article’s outline, covering the technical sections.

signal and reception of the reflections on potential tar-
gets, which can be processed in a radar-like operation
to provide position and velocity information. In a dif-
ferent section, we also discuss how novel wide aperture
technologies, such as large reconfigurable intelligent sur-
face (RIS) and distributed MIMO, can provide a potential
avenue to further increase position estimation accuracy
by exploiting information from additional relevant paths.
To complete the perspective of the sensing capabilities of
the cellular network, we will describe several approaches
for radio simultaneous localization and mapping (SLAM),
the process of simultaneously locating the user and cre-
ating a map of the environment. Finally, we will describe
the opposite setting, sensor-aided communication, where
sensing information (e.g., user’s position) can be lever-
aged to enhance the network operation, for example,
significantly reducing the overhead associated with link
configuration and reconfiguration or enabling early block-
age detection. Throughout this article, we will make the
case that time is right for communication and sensing
to be considered together, and why communication and
sensing will likely be the defining physical-layer feature
of 6G.

II. VISION OF THE ISAC NETWORK
A. ISAC Infrastructure

The ISAC network provides an integrated combination
of S&C. It offers S&C as services to applications that are

run in, around, and by the network. A smart meter may
subscribe to communication as a means to send back
meter measurements, a bicycle commuter may subscribe
to sensing to enhance their situational awareness, while
an automated vehicle may subscribe to S&C as part of
an automated driving package. An ISAC network, and
pertinent components of infrastructure, is illustrated in
Fig. 2. We summarize the different components of the
infrastructure here.

The foundation of an ISAC network is a diverse and het-
erogeneous cellular communication infrastructure. There
is conventional terrestrial base station (BS) infrastructure
in the form of macro/micro/pico cells, which are typically
mounted on towers, rooftops, or lightpoles. To expand
coverage and increase sensing accuracy and probability of
target detection, important for higher frequencies such as
mmWave, there are low-power RISs to generate favorable
reflections between the BSs and the user equipment (UE).
There are also relays or BSs that connect to the cellular
infrastructure using the same spectrum as the network,
with integrated access and backhaul. The infrastructure
needs not to be terrestrial; ISAC also supports nonter-
restrial components where the BSs are untethered to the
ground in the form of satellites or unmanned aerial vehi-
cles (UAVs). Wired networks, typically realized via cable,
fiber, or point-to-point microwave links, form another piece
of infrastructure in the cellular network. These fixed com-
munication links are used as part of backhaul to network
BSs together with the core network and also to implement
front haul, where a BS is realized in two pieces as a remote
radio head connecting antennas to a distantly located
baseband unit.

The sensing part of an ISAC network is realized with
several infrastructural components. Sensors in the form
of cameras, radars, and lidars are present at some of the
UEs in the network. These sensors use a spectrum that is
different from the communication spectrum. However, the
sensors need not just be on the UEs as there is a compelling
case to co-locate sensing with the infrastructure to offer
a bird’s-eye view of the environment [12]. Sensing is
also facilitated by reusing the communication signal for
radio sensing. A network with ISAC reuses the existing
communication waveforms possibly with more capable
hardware (e.g., an FD BS to enable monostatic sensing)
and additional network components to fuse data collected
in the environment.

The learning portion of an ISAC network is realized
through the combination of data and computation. Data
refer to the storage of past sensor data and communication
performance data, which are collected over time. Compu-
tation refers to the training of ML models on the data, the
updating of models based on new data, and the execution
of inference operations using the trained models. As shown
in Fig. 2, the data and computation are distributed in
different components of the network, including the UE,
the BS (so-called network edge), and the core network.
The computation capabilities will vary significantly at these
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different components, as will the extent of data stored and
shared with other network components.

One aspect that makes ISAC networks interesting is
the vastly different communication, sensing, computation,
and learning capabilities of the devices in the network.
It includes devices that directly serve people such as
smart phones, watches, and glasses; low-capability con-
nected devices such as smart meters and location tags;
and high-capability connected devices such as automotive
vehicles, aerial vehicles, and robots.

Fundamentally, the ISAC network infrastructure is itself
smart. Many elements of the infrastructure and the net-
work itself can be driven by protocols and algorithms,
which exploit both models and data. The learning (shown
via data and computation in Fig. 2) should be viewed not
just as a sensing service provided to devices in the network
but also as a fundamental component of the network’s
self-optimization capability. For example, the artificial
intelligence (AI)-driven BS could use data to optimize how
it balances S&C needs with users in its coverage area.
The network central processor could use data to reconfig-
ure how all the different infrastructure components work
together to serve broader S&C functions over a larger
geographic area.

B. Spectrum and MIMO Technologies

In addition to the infrastructure, the ability to perform
sensing is strongly related to the resolution (i.e., the
ability to resolve multipath) provided in different dimen-
sions, in particular bandwidth (providing delay resolution)
and array aperture (providing angle resolution). For that
reason, in this section, we briefly review the different fre-
quency bands and multiple-input-multiple-output (MIMO)
architectures.

4 PROCEEDINGS OF THE IEEE

1) Spectrum Considerations: In 6G, there are several
bands under discussion. The combination of the frequency
band and the available bandwidth is important from the
sensing perspective.

1) Frequency range 1 (FRI1): This band spans from
around 400 MHz to 7 GHz. In this band, the band-
widths between 5 and 100 MHz can be supported.
The main benefits of the low carrier frequency are
a low path loss leading to large coverage, and small
Doppler frequencies, supporting high mobility. On the
other hand, the small bandwidth leads to poor delay
resolution. Moreover, the propagation tends to be less
geometric (i.e., the channel does not have a clear
geometric relation to the environment and is more
statistical in nature), due to weak shadowing and
complex multipath propagation.

2) Frequency range 2 (FR2): This band spans from
around 24 to 70 GHz, with supported bandwidths
ranging from 50 to 400 MHz. Due to the higher path
loss, the use of this band must be combined with
directional arrays. This implies that while resolution
is good, coverage is limited and only applications
with moderate mobility can be supported. In terms of
propagation, shadowing is more pronounced leading
to fewer propagation paths and a more geometric
channel.

3) Upper mid-band: This band lies between 7 and 24 GHz
and is sometimes referred to as the golden band or
even FR3. This band has not been studied extensively
but is expected to provide a good tradeoff between
data rate and wide coverage. Initial studies claim that
it is possible to maintain the same area coverage as
in FR1 while achieving a significant improvement in
throughput due to the exploitation of extremely large
arrays and increased bandwidth [13].
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4) Sub-THz: The sub-THz bands span from 100 to
300 GHz. This band is envisioned for extremely high
data rates in nearly static conditions. Because of
large bandwidths and large arrays for fine, high-gain
beams, resolution is expected to be high, but the
range is likely very short (tens of meters). The chan-
nel is characterized by diffusive, rather than specular
reflections, as the wavelength gets close to the rough-
ness of materials. This provides opportunities for
sub-THz for imaging and mapping applications.

In summary, each band features clear benefits and draw-
backs for sensing. Consequently, judicious selection and
aggregation of different bands will be important to support
a wide variety of sensing services. Multiband networks,
with the possibility to combine or switch between a variety
of bands (ranging from sub-6 GHz to THz and visible
light), are promising in this respect [14] but require further
study in terms of transceiver and antenna design, propaga-
tion, and resource allocation [15]. Finally, we emphasize
that geometric models will be needed to evaluate sensing
capabilities within and across the 6G bands, relying on ray
tracing or common databases, rather than conventional
stochastic channel models. Such a common dataset is
important not just for standardization but also for aca-
demic research.

2) MIMO Architectures: Multiantenna communication
is a distinctive feature in current cellular networks at
both FR1 and FR2. MIMO architectures are, however,
radically different at different frequency bands, due to
different hardware constraints, antenna scales, and chan-
nel bandwidths. At FR1, it is possible to operate with
small arrays and one RF chain per antenna element so
that all the signal processing operations are performed
digitally. At mmWave frequencies, power consumption
considerations and circuit technologies introduce differ-
ent hardware constraints [16], [17]. For example, space
limitations and excessive power consumption when oper-
ating with high-resolution converters prevent from using
an RF chain per antenna. This has led to specific MIMO
architectures to operate at mmWave, which include ana-
log beamforming, hybrid precoding and combining, and
low-resolution architectures that keep one RF chain per
antenna but significantly reduce the number of bits in
the analog-to-digital converters (ADCs) and/or digital-to-
analog converters (DACs). The MIMO architecture heavily
impacts the received signal model and the techniques
used to extract the channel parameters, later used for
localization or sensing. In addition, the design of precoders
and combiners for joint S&C purposes also depends on the
specific MIMO architecture.

In an analog architecture, beamforming is performed
in the analog domain by configuring a set of phase
shifters. Configuring these phases for analog beamforming
requires several stages of beam training at both sides of
the link. Assuming a number of Ny transmit antennas
and Ny receive antennas, the beamforming operation is

/@Eﬁ; \/@Eﬁg h

uplink
transmission

uplink
transmission

)

Fig. 3. Hlustration of different network sensing modes.

(a) Monostatic sensing: the TX and RX are co-located, share a
common clock, and are knowledge of the transmitted signal, so the
echoes can be processed in radar-like operation. It can be performed
by the BS or a mobile user. (b) Bistatic sensing: the TX and RX are
physically separated. It can be performed in the UL or the DL, and
the TX and RX can be two BSs, or one BS and one user.

represented by multiplication by a beamforming vector
f € FNt*1 at the TX and a weight beamforming vector w €
WHex1 at the RX, with F and W the sets of possible phases
at the TX and RX. The performance that can be achieved
with analog beamforming, both for communication and
sensing, is limited by the lack of amplitude tunability and
the number of bits used to quantize the phases. In general,
it is not a suitable approach for multistream, multiuser,
or multitarget scenarios. Moreover, the spatial processing
performed with analog beamforming is frequency flat since
the same set of phase shifters is used for the entire band.
The design of analog beamformers for joint S&C pur-
poses heavily depends on the sensing mode. For example,
Section V provides the details of an analog beamforming
design for monostatic network sensing that incorporates
S&C metrics in addition to the phase shifter constraints and
SI mitigation requirements.

A hybrid precoding architecture provides an interesting
performance/complexity tradeoff. In this case, the precod-
ing and combining operations are divided between the
analog and digital domains, with a number of RF chains
much lower than the number of antennas. In other words,
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Nre,r < Nr and Ngrg,r < Ng. In this way, the precoding
matrix can be represented by F = FgrgFpg, where Frp
is the analog precoding matrix and Fpp is the digital or
baseband precoding matrix. Analogously, W = WgrrWgp,
with Wgr the analog combiner and Wgp the digital com-
biner. The additional digital precoding/combining stage
enables frequency-selective spatial processing. Moreover,
the higher number of degrees of freedom (DoFs) in a
hybrid design allows mutibeam solutions, making it suit-
able for multistream, multiuser, or multitarget scenarios.
The S&C performance provided by hybrid designs is close
to that obtained with all-digital solutions. However, the
hardware constraints of the analog counterparts compli-
cate the channel parameter estimation process and the
optimization problems to be solved to design the hybrid
precoders and combiners.

An alternative to the analog and hybrid architectures is
the low-resolution architecture. It is a fully digital architec-
ture where low-resolution DACs and ADCs are employed
to reduce power consumption and cost. Performance is
compromised because of high quantization noise. The
investigation of specific designs and their performance in
the context of ISAC systems is very limited [18], [19] and
will not be further discussed in this article.

Operation in the upper mid-band will likely be driven
by BSs equipped with extremely large arrays and a
hybrid MIMO architecture with a very high number of
RF chains [13]. MIMO configurations will likely vary
within this band, to accommodate different channel fea-
tures and bandwidths as moving from lower to higher
carrier frequencies. Multiband array designs will integrate
different types of antenna arrays for each band [20]. Open
challenges include multiband array configuration both for
communication and sensing.

C. Network Sensing Modes

The purpose of this section is to clarify the different
types of sensing and relate them to other concepts used
throughout this article.

1) Sensing, Positioning, and Localization: Sensing in 6G
networks is a highly overloaded term. Sensing comprises
receiving a radio signal or a set of radio signals and
processing these radio signals to extract information rel-
evant to a service. The received radio signals in general
depend on the geometric state of the TX, RX, and the
environment (e.g., radar sensing), though not all sensing
services rely on this geometry (e.g., pollution monitoring).
Hence, localization of connected users and passive objects
relies on sensing information. In 3GPP, positioning refers
to localizing UEs from UL, DL, or sidelink transmissions.
Localization then extends positioning to also include the
estimation of the position of a passive object/target (as in
device-free localization), which includes also the detection
of the presence of these objects. In this article, we will use
localization and positioning interchangeably, and when we
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refer to sensing, we intend radar-like sensing, whereby we
detect objects and determine their state.

Sensing measurements and information derived from
them can be fused with sensors external to 6G, such
as cameras, lidar, or radar to provide a more detailed
or complementary view. For example, the cellular system
could provide additional sensing information to automo-
tive sensors, allowing vehicles to see around corners.

2) Monostatic, Bistatic, and Multistatic Sensing: Sensing
is conventionally broken down intro three types, though
many other forms of sensing exist, which are not covered
in this article.

1) Monostatic sensing: As illustrated in Fig. 3(a), the TX
and RX are co-located, share a common clock, and are
knowledge of the transmitted signal. Hence, sensing
can be based on pilot or data signals. The sensing
measurements (e.g., time-of-arrival (ToA), angle-of-
arrival (AoA), and corresponding detected objects)
are in relation to the coordinate system of the TX.
Hence, the TX may be a BS or a mobile UE. In the
former case, sensed objects are tracked, based on
DL transmissions, in the frame of reference of the
static BS. In the latter case, the sensed objects are
tracked, based on up/sidelink transmissions, in the
frame of reference of the mobile UE. In this case, the
UE can over time build a map of the environment,
with respect to its original position and orientation,
a process known as SLAM.

2) Bistatic sensing: The TX and RX are physically sepa-
rate, as shown in Fig. 3(b). If the TX or RX is a UE,
no synchronization can be assumed and sensing is
based on pilot signals. Also, sensing measurements
must account for the unknown location of the UE,
leading to an SLAM problem in a global coordinate
system. If both TX and RX are BSs, time or even
phase synchronization may be assumed, as well as
knowledge of the transmitted data. In case such syn-
chronization is not available, the line-of-sight (LoS)
path can serve as a reference for all later multipath
components.

3) Multistatic sensing: There are several TXs and/or sev-
eral RXs, all physically separated. Pilot signals or
some form of multiplexing is needed in case there
are several TXs, to avoid interference. As in bistatic
sensing, different levels of synchronization may be
available (time or phase synchronization), leading
to different ways to fuse measurements from the
different RXs.

D. Sensing Services

1) Evolution From Positioning to Sensing—A Standardiza-
tion Perspective: Positioning a UE has been standardized
over multiple 3GPP releases. Fig. 4 shows the history of
3GPP positioning radio access network (RAN) standardiza-
tion and evolution of foreseeable sensing standardization
in 3GPP As can be seen from the figure, specification for
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estimating UE’s location has been built over many years.
One aspect of this evolution is the change in the accuracy
requirement. It started with positioning in release 9 long
term evolution (LTE) networks, with the aim of meeting
the regulatory requirement of 50-m accuracy in positioning
a UE. The regulatory requirement was the mainstay for
building the positioning specifications in nearly all LTE
releases. Positioning signals, measurements, procedures,
and architectures were specified to meet this requirement.
The new radio (NR) in 5G supports a larger bandwidth
than LTE. The increase in bandwidth in 5G NR also
improved positioning accuracy requirements in 5G NR
releases. The first 5G NR release had positioning require-
ments down to 3 m for indoor use cases, which tightened
further to 1 m in release 17 for industrial indoor Internet
of Things (IoT) use cases [21].

As a location estimation problem, sensing seems to be
an evolution of the positioning with objective of locating a
passive scatterer. However, the protocol and architectural
landscape of sensing will be significantly different and may
not be seen as an evolution of positioning. New signals
for sensing may be standardized in 6G releases of 3GPP
if existing signals in specifications do not meet sensing
requirements.

2) Wireless Network-Based Use Cases and Requirements:
3GPP has begun the standardization of sensing with a
study on use cases [22] and subsequently building spec-
ification on the requirements [23]. Network sensing can
enable new services and use cases for various verticals,
including smart homes, smart factories, or vehicle-to-
everything (V2X). There are 32 use cases proposed in [22].
In the initial phases of standardization, selective use cases
will be prioritized. A possible prioritization of use cases can
be the following.

1) Smart home/building intrusion detection: Intrusion
detection in buildings or surroundings of smart home.
2) Transport use cases: Examples include intrusion detec-
tion of animal/human on highway, sensing-aided

automotive maneuvering and navigation, parking
space determination, or blind spot detection.

3) Industry use cases: Detection and tracking
of autonomous ground vehicles in factories,
autonomous mobile robot collision avoidance,

or integrated sensing and positioning in a factory hall.

4) UAV use cases: Some examples include UAV flight
trajectory tracking and UAV detection near smart grid
equipment.

3) 3GPP Propagation Modeling for Sensing: The current
version of channel models in 38.901 does not support
sensing evaluation in detail and sensing specific parame-
ters and aspects need to be added to the channel models.
For example, modeling of sensing targets in terms of their
physical scattering surface as radar cross section (RCS)
and modeling the mobility of the sensing targets has
to be included in a new channel model that supports
sensing. In addition, realizations of the current 3GPP
channel model never generate reflections fulfilling the
geometric relationships imposed by the laws of physics, yet
these relationships are generally exploited for localization
or sensing. Finally, the possibility of tracking an object
requires a spatially consistent channel model depicting
movement of the object consistently with respect to the
evolution of multipath, phases of the signals, and so on.
Recent work has started to address these challenges [24],
[25], but the number of contributions is still scarce.

E. Network Operation Assisted by Sensing

Networks can sense their surroundings to provide sens-
ing data interesting for the users, the cities, or the road
infrastructure for example. Moreover, an ISAC network can
also exploit these sensing data to become more resilient.
A wireless network that harnesses such data can improve
its adaptability to changes in the propagation environment
and become more resilient to channel-dependent effects
such as blockage [12], [26]. The huge amount of informa-
tion that this type of network can collect is the basis for
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exploiting ML algorithms to assist communication. ML can
help in creating representations of the environment that
fuse sensing data with digital maps and models for the
communication system. Moreover, ML can also provide
intelligent recommendations that exploit sensing data for
network adaptation to a dynamic environment [27], [28],
[29], [30].

8 PROCEEDINGS OF THE IEEE

We envision a network that can create a joint map that
combines measurements of both the physical world and
the radio world, which we call an ISAC map. Radio maps
have been used extensively for cell network planning based
on propagation simulation tools and drive testing [31].
Those maps normally only capture average received signal
strength or signal-to-interference radio (SIR) as a function
of location for the purpose of network configuration and
densification. The ISAC map we envision goes well beyond
the idea of radio maps, capturing the distribution of objects
in the real world and their inferred properties such as type,
size, and trajectory. This could be obtained using the radio
localization and sensing capabilities of the network itself or
the wealth of data that can be obtained with conventional
sensors on the UE and/or on the infrastructure [12], [32],
for example, on lamp poles [33]. The ISAC map will
include all sensing information relevant to network oper-
ation: location of users, speed and position of blockers,
information about static scatterers of the environment,
and so on. This information can be superimposed on a
digital map of the network coverage area to also leverage
information about landmarks in the digital map relevant
for wireless propagation. Conceptually, an ISAC map is a
semantic representation of the propagation environment
useful for network operation. In addition, past configu-
rations of the network that provided good performance,
for example, a reduced beam codebook associated with
a given location, can also be fused with the ISAC map.
An example of the ISAC map for the urban scenario in
Fig. 5(a) is illustrated in Fig. 5(b)—including the technol-
ogy used to obtain the sensing data—while Fig. 5(c) shows
some use cases that exploit the ISAC map for enhancing
communication operation. For example, the location of
user 1 can be used to create a beam codebook adapted
to the statistical behavior of the propagation environment
around that location [28]. In addition, information about
the moving target 1 can be exploited to predict the block-
age that user 1 experiences, so the network can proactively
find an alternative path and mitigate its impact. Finally, the
automotive radar signal created at user 2 can be tracked by
the radar RX deployed at the BS, and the information about
the radar channel can be exploited as a prior to reduc-
ing the training overhead of establishing the link between
user 2 and the BS. In Section VII, we consider in detail two
particular aspects of the network operation that can greatly
benefit from the exploitation of sensing data in the ISAC
map: the configuration of the antenna arrays required for
directional communication, and blockage prediction and
management.

III. WAVEFORMS, RESOURCE
ALLOCATION, AND CHANNEL
PARAMETER ESTIMATION IN
ISAC NETWORKS
A. Multicarrier Waveforms for ISAC

1) Fundamentals: Multicarrier modulation forms
the basis for the physical-layer waveform in various
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contemporary and emerging wireless systems. Good
examples are wireless local area network (WLAN)/Wi-Fi
networks, digital video broadcasting systems, and the
latest generations of mobile cellular networks, i.e., 4G
LTE/LTE-Advanced and 5G NR [34]. While there are many
alternative multicarrier modulation schemes [35], [36],
the so-called orthogonal frequency-division multiplexing
(OFDM) principle [37] is by far the most commonly
adopted approach—including all the previously noted
commercial systems. Powered by the involved subchannel
or subcarrier structure, multicarrier modulation—and
OFDM in particular—allows for efficient mitigation of
channel time dispersion in the form of computationally
efficient channel equalizers. In general, OFDM enables
a flexible and reconfigurable physical layer, in terms
of multicarrier symbol durations while supporting also
backward compatibility and coexistence of LTE and NR.
Complementary filtering and windowing [38], [39] can
also be added, either at the TX or the RX or both, in an
essentially transparent manner [40], to enhance the
waveform spectral containment. In addition, OFDM and
its multiple access variant called orthogonal frequency-
division multiple access (OFDMA) are particularly
well-suited for MIMO communications, facilitating
efficient frequency-dependent precoding or beamforming.
OFDMA also allows for harnessing efficiently the channel
state information (CSI) available at the TX, in the form of
channel fading responses and interference levels, for link
adaptation and scheduling in adaptive modulation and
coding-based multiuser systems, while rate adaptation
in power domain through, e.g., water filling is also
technically feasible.

OFDM/OFDMA has also its challenges and limita-
tions. One particular implementation concern is related to
the highly dynamic envelope of the transmit waveform,
commonly quantified through the crest factor (CF) or
the peak-to-average power ratio (PAPR). Such a highly
dynamic envelope is problematic from the power ampli-
fier (PA) point of view, as the PA power efficiency
is commonly improved if operating closer toward the
saturating region. Such operation point, however, also
implies highly nonlinear PA behavior, and thus, efficient
PA linearization through digital predistortion (DPD) is
commonly needed—especially in cellular BSs. There exist
also different precoded OFDM schemes, most notably
the discrete Fourier transform (DFT)-spread OFDM (DFT-
s-OFDM), where the precoding across the subcarriers
helps to reduce the PAPR—especially with contiguous
spectrum allocations. Such a DFT-s-OFDM approach is
supported in the UL of LTE/LTE-Advanced and NR.
OFDM is also known to be sensitive to oscillator phase
noise (PN), carrier frequency offsets (CFOs), and the
Doppler spread of the mobile radio channel—all primarily
because of the long symbol duration of the multicarrier
system. These hold particularly when interpreted from
the data communications and the related demodulation
and decoding perspectives. An alternative multicarrier
scheme called orthogonal time—frequency-space (OTFS)

modulation offers increased robustness, by design, against
the Doppler phenomenon [41].

When it comes to sensing and localization in the
spirit of ISAC, multicarrier waveforms and MIMO-OFDM,
in particular, are attractive for several reasons. In gen-
eral, multicarrier waveforms allow for flexible injection
of known reference signals in time, frequency, and space,
to facilitate efficient channel parameter estimation. Such
one is the key aspect, both from the communications
RX and the sensing RX perspectives. In addition, while
the ordinary RX implementations build commonly on
OFDM symbol-wise fast Fourier transform (FFT) process-
ing, extending this to 2-D FFT/inverse FFT (IFFT) pairs
over multiple symbol durations provides the basis for accu-
rate delay/range and Doppler/velocity estimation. Such
processing leads to the basic delay and Doppler resolutions
of the form Ar = N/Af and Afp = Af/M, respec-
tively, where N and M refer to the transform sizes in
frequency and time, respectively, while Af refers to the
subcarrier spacing. One may also straightforwardly, e.g.,
combine the individual range profiles obtained for the
different consecutive OFDM symbols. Importantly, wider
bandwidths improve the delay estimation and thereon
ranging capability, while longer observation intervals
in time allow for improved Doppler and thus velocity
estimation.

Especially in the basic 2-D transform-based implementa-
tions, the involved cyclic prefix (CP) length limits directly
the sensing range such that all the involved target reflec-
tions and dominant scattering components are within the
CP duration. With 30-kHz subcarrier spacing adopted com-
monly in the current C-band (3.5 GHz) 5G NR networks,
this still leads to target distances in the order of 350 m.
However, when the networks evolve toward mmWave
bands, the symbol durations and the corresponding CP
lengths are reduced, and thus, this may become a more
obvious limitation if not properly handled. In addition,
the long symbol durations of OFDM waveforms may easily
lead to intercarrier interference (ICI), calling for attention
to devising OFDM-based ISAC and sensing systems. When
properly handled, such a phenomenon can also be turned
from a foe to a fried, and described and demonstrated later
in Section V.

The ambiguity function of multicarrier waveforms,
measuring the capability to separate multiple coexisting
targets, e.g., in range or velocity domains, is impacted by
the sidelobes stemming from the FFT processing together
with the involved CP In addition, for example, the fre-
quency sparsity of certain known reference signals, such as
the positioning reference signal (PRS) allowing for simul-
taneous yet orthogonal transmission from multiple nodes,
may impose further ambiguity challenges. The ambiguity
as well as the ultimate target parameter estimation perfor-
mance can be impacted through waveform optimization,
for which the subcarrier structure of MIMO-OFDM forms
an excellent basis. Representative example works are, e.g.,
[42], [43], [44], [45]. These aspects are also discussed
further in Section III-C.
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2) Unified Communication/Localization/Sensing Signal
Model With MIMO-OFDM: In this section, we provide the
unified MIMO-OFDM receive signal model that covers
communications, localization, and sensing (including both
monostatic and bistatic configurations), to be employed
throughout the rest of this article. Extending the model
in [46] to the case of time-varying channels, the received
signal y,, ,, € C"w=*! at subcarrier n and symbol m can
be written as'

yn,m = WEFHTL,’VTLFRFFBB [’I’l, m] Xn,m + Zn,m (1)

where z,, .., is the additive white Gaussian noise (AWGN),
Xn,m € CMe*! contains the transmit symbols of N,
data streams at subcarrier n and symbol m, Fgg[n,m] €
CNre1xNs g the digital baseband precoder at subcarrier n
and symbol m, Frg € CV1*Nre.T is the analog RF precoding
matrix applied in the time domain for the entire band-
width, Wgr € CM*Meer denotes the analog combining
matrix at the RX, and H,,,, € CY**"7 js the channel at
subcarrier n and symbol m, given by?

L—1
Hn,m — Z 05467]‘27"”Af7-[€j2ﬂ"mnymuz ag (ﬁbﬁ) a%" (9() (2)
£=0

where ar(8) € CV™! and agr(¢) € CM**! denote the
array steering vectors at the TX and RX, respectively; and
Qu, To, Ve, Qo = [Paze, Gel o], and Oy = [0q,0, 601 denote
the complex channel gain, delay (including clock offset),
Doppler shift (including CFO), AOA, and AOD of the ¢th
path/target, respectively. For localization, we assume that
¢ = 0 indicates the LOS path, implying that «( involves
the impact of one-way attenuation of the LOS path, while
ay for £ > 0 includes the combined attenuation of the
first and second legs of the ¢th reflected/scattered path
and the corresponding reflection/scattering coefficient. For
sensing, «, covers the RCS of the /th target and the
two-way attenuation in monostatic sensing (bistatic RCS
of the /th target and the combined attenuation of the first
and second legs associated with the ¢th target, in bistatic
sensing).

We note that for communications, H,, ,, in (2) can be
usually modeled as frequency selective yet time-invariant
(i.e., not doubly selective as in localization and sensing)
since the channel coherence time is such that the impact
of Doppler can be neglected [47]. For localization and

IThe SI term in monostatic sensing is omitted from (1) for ease of
exposition, yet it will be duly considered in (30).

2To provide a more generic channel model, it is possible to account
for the impact of filters involved in pulse shaping, analog-to-digital
(A/D) conversion, and matched filtering (MF) through the incorporation
of complex coefficients on a per-subcarrier, per-path basis, as shown
in [46, eq. (4)]. Nevertheless, in some practical implementations, sub-
carriers located within the roll-off region of the combined filter in the
frequency domain may be left unused. This approach ensures that the
frequency response of the filter remains flat over the active subcarriers
and justifies the adoption of the simplification in (2).
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sensing, high-mobility applications might necessitate even
more comprehensive Doppler modeling that accounts for
not only slow-time (i.e., intersymbol) phase shifts repre-
sented by e/2"™Tsm¥e but also fast-time (i.e., intrasymbol)
phase progressions. Although fast-time effects can be
neglected in low- and medium-mobility scenarios (e.g.,
target/UE radial velocities below 30 m/s) with standard
5G NR FR2 parameters [48], they can lead to ICI in high-
mobility scenarios [49] and must be considered explicitly
(see (37) for further details).

B. Channel Estimation

1) Why Channel Estimation for Localization or Sensing Is
Different: Technologies for both positioning and sensing
usually involve the estimation and exploitation of some
or all of the multipath channel parameters described
in (2). Channel estimation is more challenging, however,
when the estimated parameters are used for localiza-
tion or sensing. First, the required estimation accuracy
is higher than that required when the only objective is
the design of the communication system. For example,
the precoder or combiner designs for communications
based on channel estimates are relatively robust to small
variations in the AoA or angle of departure (AoD), while
a high-accuracy localization algorithm exploiting angular
measurements will require very precise estimations (as
an example, if we target a localization error of 1 m
for a user 50 m away from a BS, the angle estimation
accuracy should be approximately 1°). This pushes the
limits of the estimation algorithms, increasing complexity
and length of the training sequence, which impacts the
overall overhead of the system. Second, while for com-
munications, channel estimation is usually performed in
the frequency domain without need of explicitly extracting
the delays, these are key parameters for localization and
sensing; moreover, many localization/sensing techniques
need precise estimation of the absolute delays, which
requires the consideration of an additional parameter in
the estimation process, the clock offset between the TX
and RX [50]. Third, for communication, it can be assumed
that the channel is not varying within the coherence time
T. = 1/op, with op the Doppler spread, so the doubly
selective channel model in (2) can be simplified to a
time-invariant frequency-selective channel model, where
the impact of the Doppler frequencies can be neglected,
ie., opTym < 1, with op the Doppler spread [50].
In contrast, for sensing, the channel has to be observed
over a longer period of time, so the Doppler shifts can
also be estimated and exploited for velocity estimation.
The joint estimation of these space-time—frequency param-
eters leads to higher computational complexity solutions
than the usual channel estimator for communications-only
systems. Finally, an additional element to be considered
in some practical systems during the channel estimation
process is the impact of pulse shaping, low-pass filtering
after downconversion, and ME In this case, the channel
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model in (2) has to be modified to introduce a time-
domain function, which represents all the filtering stages
that impact the baseband equivalent model [46]. This
function contributes to the entanglement of the channel
parameters and complicates its estimation. In summary,
the channel estimation for joint S&C requires very high
resolution and accuracy, which increases complexity and
training overhead.

2) Techniques for Channel Estimation: Recent work
on channel estimation has attempted to provide low-
complexity solutions, very-high-resolution parameter esti-
mation, or both. Different frequency bands and system
architectures lead to different features and structures in
the MIMO channel matrices, and many of the chan-
nel estimation algorithms have been specifically designed
to exploit particular features. Most of the techniques
share, however, a common process to sound the chan-
nel. First, a number of pilot sequences are transmitted
using a given number of training precoders and com-
biners as spatial filters, and the corresponding received
sequences, which follow (1), are collected. These train-
ing precoders/combiners have to be designed to sound
the channel in the spatial dimension. The collected
measurements are later exploited in the estimation pro-
cess to extract the multipath parameters. The estimation
techniques considered in the literature on MIMO commu-
nication or MIMO joint S&C can be classified into three
main categories: based on maximum-likelihood estima-
tion [51], [52], [53], [54], [55], exploiting compressed
sensing [46], [56], [57], [58], or subspace-based estima-
tors. Some types of techniques might be more suitable for a
particular frequency band than others, as discussed in the
following.

When operating at sub-6 GHz or with relatively small
or moderate-size antenna arrays, techniques that exploit
the idea of maximum-likelihood estimation become a
solution that can provide high resolution. The con-
ventional ML estimator is optimal [51] but results
in high complexity. Alternative techniques based on
expectation-maximization (EM) are also effective to pro-
vide high-accuracy channel estimates, but their complexity
is still high [52]. In contrast, the space-alternating gener-
alized expectation-maximization (SAGE) algorithm [53]
and its variations—such as in [54], [55]—can provide
super-resolution at a moderate complexity.

Channel estimation at mmWave is more challenging
than at low frequencies [16]. First, channel estimation is
usually performed before array configuration. Since the
precoders and combiners at this stage have not been
adapted to the channel yet, the directional beam patterns
of the TX and RX are not aligned, and the estimation
has to be performed at low or very low signal-to-noise
ratio (SNR). Second, since a hybrid MIMO architecture
is commonly used at mmWave, the channel is observed
through the lens of the analog combiner, without direct
access to the outputs of every antenna. In this way, the

vectorized
channel vector

received . X
signal sensing matrix
|
= [ L

values of the
complex gains

atoms of the dictionary that correspond to
the AoA, AoD and delay of the channel paths

Fig. 6. Illustration of the channel estimation algorithms exploiting
sparsity. The MIMO channel matrices are expanded in terms of a
sparsifying dictionary and vectorized to create the sparse vector to
be estimated. Identifying the AoD/AoA and delay boils down to the
selection of the columns (atoms) in the dictionary, which represents
the sparse vector.

analog combiner acts as a compression stage for the
receive signal. Finally, the large antenna arrays used at
both ends of the link heavily increase the dimensional-
ity of the channel matrices, making unfeasible many of
the techniques used at lower frequencies or with smaller
arrays. Literature on channel estimation at mmWave
exploits the sparse nature of the channel to develop suit-
able solutions at this frequency band. These solutions
assume a frequency-selective channel model and may pro-
vide sufficient information for localization as a byproduct
of communication. Different compressed sensing-based
techniques—including greedy sparse recovery and nuclear
norm or atomic norm minimization—have been proposed
in the recent literature [46], [56], [57], [58]. For example,
greedy solutions considering frequency-selective channels
can operate either in the time domain or the frequency
domain. In both cases, the channel estimation problem can
be formulated as the recovery of a sparse vector. For the
frequency domain approaches, the dictionaries are built
as a Kronecker product of the array steering vectors at
the TX and at the RX evaluated on a grid for the AoD
and the AoA [57]. In the time-domain approaches, the
delay domain also has to be considered when building the
dictionary. In this case, and assuming uniform linear arrays
(ULAs) at both ends, the received signal for the kth training
frame can be written as [46]

Y. = q:'is) (I ® Atx ® Arx) 1-‘hvec + Z (3)

where hy is the sparse vector containing the time-domain
complex channel gains after vectorization of the channel
matrix; @ES) is the sensing matrix built from the kth
training precoder, the kth training combiner, and the pilot
symbols; A, is the conjugate of the dictionary for the AoD,
which contains the transmit steering vectors evaluated on
a grid of potential AoDs; A,y is the dictionary for the AoA,
containing the receive steering vectors evaluated on a grid
of potential AoAs; and T" is a dictionary that represents the
sparsity in the delay domain. The observation stacking all
the measurements for a number K of training frames can
be denoted y, ;, while the overall sensing matrix that stacks
<I>E§) for all k£ is denoted as ®.4. The overall sparsifying
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dictionary is defined as
‘Ptd = (I ® Atx & Arx) T. (4)

Each column in ¥4 corresponds to a given combination
of AoD, AoA, and delay. Estimating these parameters is
equivalent to identifying the support of the sparse vector-
ized channel, as illustrated in Fig. 6. Finding the support
and the gains in hyec is equivalent to solving the following
problem:

min ||h\/ec||l such that HYtd — {)td‘I/tdhveC”Q <e (®))

which is the ¢; relaxation of a spare recovery problem. For
both frequency- and time-domain estimations, highly over-
complete dictionaries for the angular and delay domains
have to be exploited to achieve high resolution [46], [57],
making some of the approaches proposed for commu-
nications impractical for sensing or localization. This is
because a more stringent resolution requirement results
in a larger dictionary, which may lead to prohibitive com-
putational complexity or memory requirements. In this
context, to reduce complexity, new greedy solutions have
been recently proposed to operate with a multidimen-
sional dictionary built as the product of independent and
smaller dictionaries instead of a large dictionary based on a
Kronecker product [50], [59].

Subspace-based techniques have been proposed to esti-
mate the doubly selective MIMO channel with high resolu-
tion at different frequency bands, providing Doppler shifts
information in addition to delays and angles to enable
sensing applications beyond localization. For example,
ESPRIT-based channel estimation [60], [61], [62] provides
good resolution for localization and sensing at moderate
complexity. The main limitation of state-of-the-art tech-
niques based on ESPRIT for channel parameter estimation
is that they can only operate when the channel model
does not include any filtering effect as in (2). An alterna-
tive approach that combines the strengths of beamspace
ESPRIT for angular estimation with a dictionary-based
sparse recovery solution that targets delay estimation, and
can operate when the channel model includes the filtering
effect, has been proposed in [63].

3) Spatial Designs for Channel Estimation: The training
precoders and combiners used to sound the channel and
build the observations for channel estimation could be
directly created from the beam codebooks used in the
communication network. However, an enhanced design
for training can help to reduce the overhead of channel
estimation or to increase the accuracy of the estimation.
For example, to reduce the number of measurements when
estimating the channel by exploiting a sparse recovery
algorithm, it is interesting to design the training precoders
and combiners—that lead to a specific ®;q—so that the
product ®:qP.q exhibits a low mutual coherence [64],
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[65]. It is also possible to consider the accuracy of the
estimation as the metric that drives the design of the
spatial filters. For example, the works in [66], [67], [68]
design a new codebook for accurate angle estimation in
a DL localization scenario. The following example shows
the significantly better performance provided by the new
design.

Example 1: We consider a 5G/6G DL localization sce-
nario with the parameters f. = 28 GHz, Af = 120kHz,
N = 1024, and M = 20. For ease of illustration, we con-
sider a DL multiple-input-single-output (MISO) scenario
with LOS-only propagation in a 2-D setup, where Ny = 16
and Nr = 1. In this case, using (1) and (2), the received
signal at the single-antenna UE is given by

Ynm = e I2AIT B2 o T (0VE Gy ()

where f,, € CV*! is the RF beamformer at the BS, with
controllable amplitude and phase per antenna (i.e., analog
active phased array [69]), and z, ., ~ CN(0,0?%) denotes
the additive noise. The BS transmits unit-amplitude pilots
Zn,m over N subcarriers and M symbols, and the UE aims
to estimate the AoD 6 from y,, ,»,, in (6). The goal herein
is to design the precoder F = [fy ... fy;_1] € CYVr>*M
that maximizes the accuracy of AoD estimation under an
a priori knowledge on @ (i.e., how to optimally allocate the
pilot resources over time to achieve the highest accuracy
in AoD estimation). This a priori knowledge is quantified
by an AoD uncertainty interval & = [0 — A6, § + Af].
We evaluate the performance of two codebooks used to
construct F.

1) Conventional codebook: Conventional directional
codebook employed in 5G NR mmWave systems [21],
[70] given by

F" = [ar (61), ... ,ar (620)]" . @)

2) New codebook: Recently proposed directional/
derivative codebook [66], [67], [68] (similar to
sum/difference beams used in monopulse radar [71])
given by

Fdir/der:[aT 61), ...,ar(0c), ar(61), ... ar (6c)]".

®)

Here, ar(0) = dar(0)/06 and {0,}2%, represent uniformly
sampled grid points from ¢/, and each column of F¥' and
Fdirider is normalized to have unit norm.

Fig. 7 showcases the beampatterns of both directional
and derivative beams. The incorporation of derivative
beams ar(f) alongside standard directional beams ar(6)
is motivated by the need for the UE to detect subtle
deviations around the intended direction 6 and also sup-
ported by the theoretical Cramér-Rao lower bound (CRLB)
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Fig. 7. 16-element ULA beampatterns of directional ar(6) and
derivative ar(6) beams for the UE located at an AoD 6 = 20° with
respect to the BS. The directional beam ensures the necessary SNR
for AoD estimation, whereas the derivative beam assists the UE in
detecting subtle deviations from the targeted direction 6,

as indicated by its pronounced curvature around 6. The combined
use of directional and derivative beams allows for high-accuracy
tracking of the UE in 5G/6G mmWave scenarios.

analysis [66], [67]. The sharp curvature around 6 in
the beampattern of ar(f) ensures that slight perturba-
tions in angle result in significant changes in amplitude,
which enables precise mapping of angles based on com-
plex amplitude measurements. Hence, high-accuracy AoD
estimation and localization in 5G/6G systems can be
achieved by a judicious combination of directional and
derivative beams. It is worth emphasizing that these
localization-optimal beams are different from those used
in communications [i.e., directional beams for sweeping
an angular region of interest as in (7)].

To evaluate the AoD estimation performance of the
codebooks in (7) and (8), we construct F in (6) by selecting
its columns from these codebooks. The time sharing of the
columns of F4" over M symbols follows a uniform strategy,
while that of FU"®r is optimized based on the CRLB cri-
terion [66]. Fig. 8 shows the AoD root-mean-square error
(RMSE) performances with respect to the AoD of the UE
for A = 1° at SNR = |af>Ny/o? = 0 dB, using the
maximume-likelihood estimator [68, eq. (11)]. We observe
substantial improvements in AoD estimation accuracy with
the use of FUi"¥r compared to the traditional 5G codebook
F' suggesting significant potential for achieving extreme
location accuracy in 6G through innovative beam designs
and resource allocation.

C. Resource Allocation

1) Fundamentals: In the ISAC architecture, the S&C
functions are simultaneously performed based on the uni-
fied waveforms to improve the spectrum efficiency as well
as reduce the hardware costs, where the radio resources
are allocated to achieve the optimal tradeoff between
the S&C performances. Therefore, the design of resource
allocation schemes is evaluated and guided by the perfor-
mance metrics of the dual functions in ISAC systems, which
are discussed in detail as follows.

The communication performance of the ISAC system
is usually measured by the maximum achievable rate of
reliable information transmission over the channel, i.e.,
the channel capacity, which can be further represented
by the maximum mutual information between the unified
waveform and the communication symbols, or simply the
signal-to-noise-plus-interference ratio (SINR) based on the
Shannon formula. As for the sensing performance, while
it can be evaluated from the detection perspective where
the existence of the target is determined based on the
received signals, we refer sensing to recover the target
information from the noisy measurements in this section.
Then, the sensing performance can be measured by the
estimation error of target states, which is characterized
via the Fisher information analysis in the literature [72].
Namely, let § denote the unbiased estimator of the actual
target state vector s, which may include the position p, the
orientation 1), the velocity v, and other states of interest.
Then, according to the information inequality, there exists

E{(é—s) (é—s)T}iJ’l(s) )

where J(s) denotes the Fisher information matrix (FIM)
given by

s9 =61 [2nseo] [Amrms] | a0

and the likelihood function f(y;s) is determined by the
signal model (1). When the target position p is concerned,
the squared position error bound (SPEB) can be applied to
measure the sensing performance in ISAC systems, which
is given by

Sp) =u{J'(p)}. (1n

The notation J.(p) denotes the equivalent Fisher informa-
tion matrix (EFIM) for p, which is obtained by calculating

10° O 9

= Frdir/der

AoD RMSE [°]
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Fig. 8. AoD estimation performance with respect to the AoD of the
UE, achieved by the considered codebooks in (7) and (8).
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the Schur complement of submatrix in the original
FIM J(s) [73].

2) Problem Formulations: Note that it remains an open
challenge to establish a universal theoretical framework to
jointly evaluate the performance of dual functions in ISAC
systems, which can integrate the classical results derived
from information theory and estimation theory. As a con-
sequence, the resource allocation in ISAC no longer follows
a unified problem formulation as in localization networks.
In particular, the wireless resources, including time, fre-
quency, space, power, and code, are allocated to solve
the optimization problems with various objective func-
tions, which can be mainly classified into three categories
in the literature, i.e., the sensing-oriented formulation,
the communication-oriented formulation, and the joint
formulation.

1) For the sensing-oriented formulations, the power,
space, and other kinds of resources are allocated to
optimize the objective functions derived based on
sensing metrics, such as the SPEB and the detection
probability. For example, the sensing-oriented joint
waveform, precoding, and combining design in mono-
static ISAC systems with signal model (1) can be
modeled as

minimize
p(X),W¢,Ws Frr,Fap
s. t. he (x, We, Frg, Feg) > ~c
f(x,W.,W,,Fgr,Fpg) <0

Ex {S (p; W, Frr, FgB) |x}

12)

where the objective function denotes the average
SPEB conditioned on the random transmitted symbols
Xn,m [74]; the function h. denotes the communi-
cation constraints, e.g., the communication SINR or
the sum rate; and p(x) denotes the distribution for
transmitted symbols. The functions f still denote the
power and structure constraints for the symbols x,
the precoding matrices Frr and Fgp at the TX, and
the combining matrices W, and W, at the com-
munication and sensing RXs. Note that the joint
problem (12) is hard to solve due to the nonconvexity
and tight coupling among optimization variables. The
semi-definite relaxation (SDR) and successive convex
approximation (SCA) methods are applied to provide
high-quality solutions with acceptable computation
costs [75], [76], [77]. In addition, the above formu-
lation reduces the resource allocation in localization
and sensing networks with the communication con-
straints h. removed, where more theoretical insights
and efficient schemes are provided in this scenario.
For example, the sparsity property of power alloca-
tion has been revealed in the localization networks,
indicating that an optimal power allocation strategy
requires only three anchor points to localize an agent
[78]. Furthermore, robust strategies are incorporated
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2)

3)

in both power allocation and spatial design to account
for the uncertainties associated with network param-
eters essential for the design of resource allocation
schemes [79], [80].

In the communication-oriented resource allocation
for ISAC, the communication metrics, such as the
mutual information and the network throughput, are
maximized through efficient resource management
strategies, including power allocation and beamform-
ing design, i.e.,

maximize T (y%X)
p(X),We,Ws ,Frr,Fpp

s.t. h (x, W,,Frr, Fgg) < s

f(x,W.,W,,Frg,Fgg) <0 (13)

where the objective function I(y°;x) denotes the
mutual information between the received communi-
cation signals y;, ,,, and the transmitted symbols X;, i,
which can be calculated by the Shannon formula
based on the precoding matrices Frr and Fpg and
the combining matrix W.. The functions h, denote
the sensing constraints, e.g., the sensing accuracy
or the deviation of the actual sensing beam from an
ideal sensing beam pattern [81], [82]. To solve (13),
auxiliary variables are introduced to decompose the
original problem, after which the convex relaxation
techniques can be applied to provide efficient subop-
timal solutions [83], [84]. Furthermore, the twofold
tradeoff consisting of the subspace tradeoff and the
deterministic-random tradeoff is revealed in terms of
the communication-oriented waveform design with
optimal sensing performance constraint, which pro-
vides insights for the design and analysis of practical
systems [85].

In contrast to the above discussions, the S&C requests
hold equal status in the joint formulation of resource
allocation for ISAC. For example, the objective func-
tion can be designed to involve both S&C performance
measures, in which sense the optimization problem
can be modeled as

maximize  wcR. + wsRs

p(x),Wc, Wy Frr,Fp

s.t. f(x, W, Wy, Frg,Fpg) <0 (14)

where the estimation rate R is introduced as an ana-
log to the communication rate R., which measures
the reduction in entropy of the target states after
estimation [86]; and w. and ws denote the weights
for S&C performance. The concept termed value of
service (VoS) can also be applied to design a proper
objective function for (14), where the communication
and sensing VoS is defined based on the classical S&C
metrics, e.g., sensing CRLB and communication SINR.
Then, the radio resources are allocated to optimize

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 10,2024 at 23:39:07 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gonzalez-Prelcic et al.: ISAC Revolution for 6G: Vision, Techniques, and Applications

the weighted sum of VoS from the S&C functions
[87]. In addition, the objective function can refer to
the total resource consumption of the ISAC system in
the joint formulation, where the S&C performance is
guaranteed by certain constraints [88].

IV.TECHNOLOGIES FOR JOINT
BISTATIC AND MULTISTATIC
SENSING AND COMMUNICATION
A. Introduction

In this section, we will cover sensing scenarios where
the TXs and RXs are separated. Sensing where TX and
RX are co-located will be treated in Section V. When
sensing is based on one TX and one RX, it is called
bistatic [89], while sensing based on several TXs or RXs
is called multistatic sensing. Since bistatic sensing can
be readily implemented in communication systems, it has
been covered extensively in the literature. In contrast,
multistatic sensing has received rather limited treatment
so far in communications [90], [91] but is a classic topic
in the radar community [92].

Bistatic sensing itself is a rich and multifaceted field.
Before we delve into the technical aspects, we first provide
a brief overview of the key concepts, as summarized in
Fig. 9. First, the most important use of bistatic sensing
is positioning, whereby a UE performs bistatic sensing
with several BSs, based on which the UE location can be
inferred. The positioning topic will be treated in detail
in Section IV-B. Second, bistatic sensing and multistatic
sensing, which will be covered in Section IV-C, involve TXs
and RXs with known locations (e.g., BSs, but possibly also
UEs), to detect and localize objects in the environment,
such as vehicles, pedestrians, or buildings. Third, there
is the combination of sensing and positioning, known as
SLAM, which will be covered in Section IV-D involving a
UE determining its position while detecting and localizing
objects, based on signals to/from BSs. We note that more
traditional SLAM, where the UE localizes itself and maps
the environment based only on sensed backscattered sig-
nals, is deferred to Section V-E.

B. Radio Positioning

1) Fundamentals of Position and Orientation Estimation:
At its core, radio positioning aims to estimate the 3-D
location of the UE in a global coordinate system, based on
signals to or from one or more BSs, each of the form (1)
[93], [94]. The BSs are assumed to have known positions
and orientations. Positioning is thus often a two-stage
process, whereby first the channel parameters, i.e., the
AoA, AoD, ToA, and Doppler of the LoS path with respect
to each BS, are estimated, and in a second stage, the UE
location is estimated from the channel parameters. If the
LoS path is blocked, dedicated non-line-of-sight (NLoS)
detection routines can detect this phenomenon and discard
the corresponding measurements [95] or the NLoS paths
can be used to solve the positioning problem [96].

Positioning is generally based on dedicated pilot sig-
nals, rather than on unknown data, as this facilitates
the channel parameter estimation process and provides
more control to improve the resolution and accuracy
(see Section III-C) [21]. Once the LoS channel parameter
estimates are available, they can be related to the UE
location. This relation is generally affected by nuisance
parameters, e.g., the LoS ToA in (1) say 79, assuming that
this LoS path is not blocked, is of the form

70 = |[Pur — Pasll/¢ — Toias (15)

where p is the UE position, pgg is the BS position, c is
the speed of light, and 7, is the clock bias of the UE with
respect to the same BS [97]. Similarly, the Doppler mea-
surements are affected by the CFO between the UE and BS,
and the angles at the UE side (i.e., AoA in DL or AoD in UL)
depend on the unknown user orientation, which is a 3-D
unknown. This implies that when certain measurements
are used for localizing the user, the corresponding nuisance
parameters must also be estimated. On the positive side,
this means that there are possibilities to jointly estimate
the UE location while synchronizing it to the network (due
to the estimation of the clock bias and CFO) [98] and
estimating the complete 6D UE pose [99], [100].

Mathematically, the UE positioning problem is of the
form [94]

f (Xstate) +n (16)

Ymeas =

where y, ... comprises the estimated angles, delays, and
Dopplers; Xsae comprises the 3-D UE location as well
as any nuisance parameters (clock bias, CFO, and 3-D
UE orientation); and f(-) is a known nonlinear mapping
[e.g., containing components of the form (15)], which
depends on the known locations and orientations of the
BSs. Recovering X from (16) can be done by, e.g., a least
squares or maximume-likelihood approach [101]. These
problems are generally nonconvex, due to the nonlinear
relation between the measurements and the UE state,
so heuristics/approximations/relaxations are employed to
find the global optimum [102]. Alternatively, prior infor-
mation about the UE state can be utilized to infer Xguae,
e.g., when applying tracking filters [103].

2) Minimal Problems: While communication to a UE in
principle requires connection to only a single BS, the same
does not hold for positioning, which generally needs a
much larger number of connected BSs, especially when
some of them may have a blocked LoS path to the UE.
For that reason, understanding the minimal infrastructure
needs for positioning and the design of new positioning
methods or technologies that can reduce the reliance on
infrastructure is of great interest. These cases are called
minimal problems/minimal solvers [104], in the sense that
if measurements or technologies are removed, the problem
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Fig. 9. Breakdown of bistatic and multistatic sensing. Operation is
shown in DL but can equivalently occur in UL.

can no longer be solved (e.g., in the sense of leading to an
infinite number of solutions), which also facilitate outlier
detection using RANSAC [105].

Example 2: Consider a scenario with four synchronized
single-antenna BSs and a single-antenna UE, in LoS to
all the BSs. This scenario is visualized in Fig. 9. Based
on DL pilots, the UE estimated the ToA from each BS,
which provides four observations of the form (15). These
delay measurements are sufficient to determine the 3-D UE
location and the 1-D clock bias

pUE? Toigs = arg_min f (PUE7Tbus) (17

PuE > Thias

f (Pugs Thias) = Z % 2| 0.i — IPug — Pas, ll/ ¢+ Toias |

i=1
(18)

where o; is the standard deviation of the LoS ToA mea-
surement 7o ; with respect to BS 4, with location pgq ;.
This problem can be solved iteratively from an initial
guess [106]. This clock bias can also be removed by com-
puting three (correlated) time-difference-of-arrival (TDoA)
measurements.

From this example, the reliance of several BSs becomes
apparent. This reliance can be reduced in a number of
ways.

1) Additional measurements: For instance, when aug-
menting ToA measurements with DL AoD measure-
ments, the number of BS can be reduced, but at the
cost of more complex multiantenna BSs and possibly
longer transmission times to support beam sweep-
ing [21]. Such measurements are further discussed in
Sections IV-B3 and IV-B4. In addition, carrier phase
measurements (i.e., the phase of a,) can provide
extremely precise, but ambiguous location informa-
tion [107], [108], as discussed in Section IV-B9.

2) Multipath exploitation: So far, we have considered the
LoS path for positioning. While this provides the most
direct position information [see again (15)], the NLoS
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paths also provide information, provided that they
can be resolved. In particular, single-bounce NLoS
paths are characterized by a single 3-D incidence
point (IP). While this IP is unknown, the cardinality of
the measurements provided by the path (e.g., delays
and angles) can outweigh the unknowns and thus
improve positioning [96], [100], as will be discussed
in Section IV-B4. Even when the measurements are
few, multipath can be leveraged by considering the
user at different time instances, see Section IV-D
[109], [110].

3) New technologies: Since positioning relies on pilot
signals, there is in principle no need for using
full-fledged BSs. Instead, simple beacons may be suffi-
cient [111]. Alternatively, low-cost hardware, such as
RISs, can be deployed to provide additional controlled
multipath components [112], [113]. More on RISs is
shown in Section IV-B8.

4) New signals: Conventional UL and DL signals can
be complemented with direct links between UEs, so-
called sidelinks [114]. Such links not only provide
additional measurements but also support coopera-
tive, peer-to-peer positioning. These are described in
Section IV-B7.

5) New methods: In cases where the channel is com-
plex and the LoS cannot easily be extracted,
data-driven methods can learn patterns that are
beyond the realm of model-based signal processing,
see Section IV-B6 [115]. Complementary to data-
driven methods, advances in SLAM have provided
means to perform positioning with reduced infras-
tructure [116], see Section IV-D.

Example 3: Consider a case with two BSs, each
equipped with a planar array, transmitting DL pilots to a
UE. From the DL signals, the UE can estimate the 2D-AoD
from each BS, i.e., the azimuth and elevation angle. Under
noise-free measurements, these angles constrain the UE
to lie on the intersection of two lines in 3-D, which is a
unique point (see the left of Fig. 10). If now, the UE is
equipped with a planar array as well, it can estimate the
2D-AoA from each BS, again in azimuth and elevation. This
determines two lines in 3-D away from the UE. Since the

Each 2D-AoD ‘F Each 2D-A0A
determines a line in 3D determines a line in 3D/
*.. away from each BS 7 \ away from the UE

3D location can be
estimated

Fig. 10. Left: example of how a UE 3-D position can be estimated

3D orientation can 1
be estimated vy

based on the 2D-AoD from two multiantenna BSs. Right: once the
3-D UE location is known, a multiantenna UE can use the 2D-A0A to
determine its 3-D orientation.
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Localization Problem Without A Priori Knowledge of IP Locations

Approach 3D location 3D orientation 6D pose
2 BS and
4 BS (TOA) or 3
single-antenna 4‘1.3S (o jend 2D7_AOA o BS (2D-AOA at
BS single-antenna multi-antenna multi-antenna
UE UE, known
! UE)
location
2 BS and
2D-AOA at 2 BS (2D-AOD)
multi-antenna BS 2 BS (2D-AOD) multi-antenna and 2D-AOA at
UE, known multi-antenna UE
location
multi-antenna BS 1 BS (2D-AOD, 1 BS (2D-AOD, 1 BS (2D-AOD,
with multipath TOA), 1 IP, TOA), 1 IP, TOA), 1 IP,
exploitation multi-antenna UE | multi-antenna UE | multi-antenna UE
(2D-AOA) (2D-AOA) (2D-AOA)
j 1 BS (TOA,
single-antenna } ]EIS (okand QECICR 00 2D-AOA) and 1
BS with RIS S0 tand andggRIs RIS (TOA,
2D-A0OD) (2D-AOA) 2D-AOA)

two lines are parameterized by four parameters and the UE
orientation has only three DoFs, the UE orientation can be
uniquely determined (see the right of Fig. 10).

These examples show the ability of different types of
measurement to provide complementary information to
the TDoA measurements described in Example 2. A set
of additional examples is provided in Table 1. The table
provides, in particular, a more detailed look at the role of
uncontrolled and controlled multipath.

3) Positioning in Sub-6 GHz: Before the introduction of
5G, cellular positioning was focused exclusively on the
sub-6-GHz band, so-called FR1. This band has several
characteristics of relevance for positioning.

1) Limited bandwidth: In FR1, bandwidths on the order
of 5-20 MHz are available, which limits the distance
resolution of delay-based measurements to around
15-60 m [117]. Hence, if NLoS paths arrive within
15 m of the LoS path, these paths will merge and
appear as one path to standard signal processing
methods. This means that delay-based positioning is
expected to be poor in cluttered environments (on the
order of tens of meters error).

2) Limited array sizes: At the UE side, arrays are gen-
erally very small, which means that there is limited
angle resolution and thus no possibility to accurately
estimate the UE orientation. At the BSs, since the
introduction of massive MIMO in 5G, larger arrays
have been considered with on the order of 64-128
antenna elements. These can provide some amount
of angle resolution, provided that paths are well sepa-
rated in the angle domain, as seen from the BS [118].

3) Rich channel: The challenge of limited resolution in
delay and angle is further exacerbated by the richness
of the channel [119]. This means that the channel
matrix H, ,, comprises many clusters of paths, com-
ing from many directions, and these clusters may
be affected by shadowing, diffraction, multibounce
reflection, and scattering. From a communication
perspective, these effects are combined in statistical
models, giving rise to Rayleigh, Rician, or Nakagami

fading, which have only a weak relation to the under-
lying geometry. From a positioning perspective, such
models are questionable, not only because they mask
the relation to the geometry but also because they
cannot capture the site-specific nature of the channel,
which is of direct importance to positioning [120].

Due to these characteristics in FR1, conventional meth-
ods, e.g., based on FFTs or correlations, often perform
relatively poorly. To overcome this poor performance, two
directions have been pursued. The first is based on ML (see
Section IV-B6), e.g., in the form of fingerprinting, where
the richness of the channel is considered a benefit [115].
Such methods can bring down location errors below the
10-m mark but come at a cost of training complexity,
as labeled training data ([fingerprint, location] pairs) must
be collected. The second track is based on super-resolution
methods [121]. These methods are based on the principle
that even if paths differ only to a very small extent, they
can be resolved if the SNR is sufficiently high.

4) Positioning in mmWave: At mmWave bands, the
situation is significantly easier from a positioning perspec-
tive. Let us reconsider the characteristics from FR1 and
evaluate them from the FR2 24-70 GHz) and sub-THz
(100-300 GHz) perspective [122], [123].

1) Large bandwidth: At FR2, significantly large band-
widths are available, up to 400 MHz, which corre-
sponds to a distance resolution of less than 1 m.
Hence, delay-based positioning becomes possible
in complex and relatively cluttered environments.
At sub-THz, the trend is expected to continue, with
bandwidths on the order of 1 or more GHz becom-
ing available, with corresponding distance resolution
below 30 cm. On the other hand, the ability to pro-
vide better accuracy also means that synchronization
requirements among BSs become more strict and thus
more challenging.

2) Large arrays (normalized to the wavelength): At the
UE side, even modest arrays of 16-32 elements can
provide good angle resolution, not only providing a
path toward orientation estimation but also provid-
ing an additional dimension to improve resolution.
At the BS, arrays with 64 or more elements are not
exceptions, supporting superior angle resolution at
both ends of the link. Note that for a given physi-
cal footprint, about 25 times more elements can be
packed at FR2 compared to FR1 [124]. These large
arrays come at a cost of shifting from digital arrays at
FR1 to analog or hybrid arrays in FR2 and even sim-
pler arrays-of-subarrays in the sub-THz regime [123].
These arrays not only constrain the signals that can
be transmitted (thus affecting AoD performance) but
also imply that AoA estimation should be performed
in a lower dimensional beamspace. In addition, due
to hardware impairments and lack of per-device
calibration, the generated beams (precoders for trans-
mission and combiners for reception) may deviate
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significantly from the idealized designs. While this has
little or no impact on communication (as long as the
beam has a main lobe more or less in the correct
direction), this precludes the use of sophisticated
methods that rely on knowledge of the complex beam
responses [125], [126].

3) Sparse channel: Further complementing the large
bandwidths and large array sizes are the favorable
characteristics of the channel. At FR2, the chan-
nel becomes sparse, with few clusters surviving the
propagation between TX and RX, in part because
shadowing is so severe [127]. Multibounce reflections
become rarer, but due to the reduced wavelength,
objects appear more rough, leading to increased dif-
fuse scattering and fewer reflections. Overall, the
sparsity of the channel is beneficial since there will
be a reduced requirement for multipath resolvability.
At sub-THz, these effects are even more pronounced,
leading to an even sparser channel, but much more
sensitive to blockages, e.g., even due to foliage (at
FR2) or rainy weather (at sub-THz) [128].

The compound effect of these characteristics makes
positioning at mmWave attractive in support of challenging
use cases, such as in the automotive industry. Due to
these same factors, relatively low-complexity methods can
be employed, e.g., based on FFTs, which facilitates real-
time implementation. Another important consideration at
mmWave is that due to the sparse channels and the need to
form narrow beams to achieve sufficient SNR: 1) commu-
nication and positioning are more closely intertwined and
2) it is hard for a UE to connect to several mmWave BSs
simultaneously. The first consideration has given rise to
the concept of location-aided or context-aware communi-
cation, the most prolific example of which is location-based
beam training. The second consideration is more serious
and relates closely to the discussions on minimal problems
in Section IV-B2. This consideration also gives rise to the
topic of single-BS positioning, which also avoids the need
for inter-BS synchronization [96], [99], [100].

Example 4 (Single-BS Positioning): Consider a 2-D sce-
nario shown in Fig. 11, with a BS that defines the
coordinate system, a UE with unknown 2-D location p,
1-D clock bias miss, and 1-D orientation oyg, and a scatter
point with unknown 2D location pgp. From UL signals,
the BS determines the estimates of the AoA for the LoS
path (say ¢o), the AoA of the reflected path (say ¢1), the
corresponding estimates of the delays (7 and 1), as well
as the corresponding estimates of the AoD (6 and ;). The
example is visualized in Fig. 11. We see immediately that
¢o = oug + 0o + m, from which the UE orientation oug
can be solved. We also immediately find that the angle
Y =m— (¢1 — ¢o) — (01 — ). All the remaining angles
follow the law of sines.

A direct closed-form solution can then be obtained as
follows. Let us introduce unit vectors at the BS (u; from
the AoA) and the UE (v; from the AoD) so that the RX
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Fig. 11. Illustrative example of mmWave positioning with one BS
by exploiting the uncontrolled multipath via a scatter point with
unknown location.

position can be defined as

Pug = Pps + diviti —di (1 — %) v (19)

where d; = ¢(7; — Tvias) denotes the propagation distance
and v; € [0, 1] represents the fraction of the propagation
distance along u;. We can rearrange (19) as

Pug—CTbiasVi = Wi + Vidiv; (20)

where p; = pgg—cmivs and v; = u; + v;. Next, we solve for

~; and substitute it back to (20), which yields the following
cost function:

1
2
I (Pugs Toias) = Z HHiXUE — pi — 0 (HiXUE — pi) Ui

=0

2

where H; = [I, —cvi], XU = [P{g, Tbias] > and o; =
U;/||7;:]]. Now, the closed-form solution can be obtained
by setting the cost function’s gradient to zero and solving
for xye. It is important to note that for the LOS path
(¢ = 0), we have ug = —vg and g = 0. This estimate
will be affected by measurement noise but can be utilized
as a coarse estimate for further refinement, e.g., based on
maximum likelihood.

A nonexhaustive list of examples of single-BS posi-
tioning is provided in Table 2, one based on controlled
multipath (from an RIS), one based on uncontrolled
multipath, and one without any multipath. Two of the
approaches are also visualized in Fig. 12. Note that meth-
ods that rely on multipath (with or without RIS) are
limited by the strength of the multipath, while methods
that rely on angle information suffer from large positioning
errors when the UE is far away from the multiantenna BS
or RIS. Note also that the examples in Table 2 consider far-
field propagation. As we will see in Section VI, the reliance
on infrastructure can be further reduced when harnessing
wavefront curvature.

5) Positioning in Sub-6 GHz Versus mmWave: Performance
Analysis via Ray-Tracing Data: In this section, we carry
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out a comparative performance analysis of positioning in
sub-6 GHz and mmWave bands using realistic ray-tracing
data obtained through the REMCOM Wireless InSite® ray
tracer [129]. In the ray tracer, we consider an urban
intersection scenario involving: 1) a mobile UE (corre-
sponding to a vehicle) crossing the intersection; 2) a BS
(corresponding to a road-side unit (RSU) in vehicular set-
tings [130]) located at the center of the intersection; and
3) four buildings with 30 m in height, located at the corners
of the intersection. The UE (with antenna height 1.5m)
moves on a straight line starting from —70 m and ending
at 70 m, while the BS (with antenna height 10 m) is located
at Om (please see [131, Sec. V-B] for further details on the
simulation environment). At each scenario instance (101
in total), the output of the ray tracer consists of channel
gains, delays, AOAs, and AODs of the paths between the
BS and the UE. To evaluate the positioning performance at
sub-6 GHz and mmWave, we utilize the ray-tracer output
to generate the channel matrix in (2) and the received
signal in (1). For a fair comparison between sub-6 GHz
and mmWave, we keep the same physical aperture size at
the BS, resulting in more ULA elements at mmWave.

We consider a single-BS positioning scenario via an RTT
approach, as illustrated in Fig. 12, where the goal is to
extract the parameters of the LOS path (i.e., the delay 7

Table 2 Examples of Minimal Configurations for Single-BS Positioning
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Fig. 13. PDPs at sub-6 GHz and mmWave, obtained from the
ray-tracing data at two different instances of the single-BS
positioning scenario in an urban intersection. (a) UE located at
—60m, leading to a rich multipath environment due to surrounding
buildings. (b) UE located at 5m, leading to a small number of
dominant paths.

and the azimuth/elevation A0AS ¢4z0, ¢e10) using (1) and
estimate the UE position assuming known UE height. For
channel estimation from (1), we employ two algorithms
[131, Sec. IV-B]: 1) an MF-based method that performs cor-
relation processing across frequency and spatial domains
and 2) an ESPRIT-based super-resolution method.

We first investigate power delay profiles (PDPs) at sub-6
GHz and mmWave to provide an illustration of chan-
nel characteristics discussed in Sections IV-B3 and IV-B4.
Fig. 13 shows the path gains with respect to the range
at two distinct scenario instances, representing a rich and
a sparse scattering environment (which arises from the
presence or absence of large reflectors, such as buildings,
between the BS and the UE). As expected, higher path
gains are observed at sub-6 GHz. Furthermore, when the
UE is located at a considerable distance from the BS,
a more diverse multipath channel is formed due to reflec-
tions from surrounding buildings.

Fig. 14 demonstrates the positioning performances
using the considered algorithms at sub-6 GHz and
mmWave, considering two different bandwidths at
mmWave. It is observed that ESPRIT significantly out-
performs MF at both frequency bands and using dif-
ferent bandwidths, through its ability to resolve closely
spaced paths, especially in dense multipath environments
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Fig. 14. Positioning performances of the MF and ESPRIT
algorithms at sub-6 GHz and mmWave under different bandwidths,
evaluated using the ray-tracing data. The parameters at sub-6 GHz
are fc =5.9GHz, Af=60kHz, M =12, and the BS array configuration
1 x 2 (2.54 cm), while the parameters at mmWave are fc = 28 GHz,
Af=120kHz, M = 24, and the BS array configuration 1 x 6 (2.68cm).
The common parameters are set as follows: transmit power 10 dBm,
the UE array configuration 1 x 1, the noise PSD —174 dBm/Hz,

and the noise figure 8dB.

illustrated in Fig. 13. Moreover, under the same bandwidth
utilization, both algorithms perform better at mmWave
than at sub-6 GHz (despite larger path loss at mmWave).
This can be attributed to the use of electrically large
arrays at mmWave in the same physical footprint, leading
to higher angular resolution and improved path resolv-
ability. Increasing the bandwidth further enhances the
performance, which indicates the suitability and attrac-
tiveness of mmWave bands for positioning (in the sense
of manifestation of the geometric nature of the channel
via the use of electrically large arrays and access to large
bandwidths). Therefore, in alignment with the explana-
tions in Section IV-B3 and IV-B4, two key takeaways can
be deduced from the ray-tracing-based simulation results:
1) mmWave induces favorable channel characteristics for
positioning and 2) MF or correlation-based processing
suffers from poor resolution, leading to more than an
order-of-magnitude degradation in accuracy compared to
super-resolution approaches.

6) ML for Positioning: Positioning exploiting channel
parameters and the geometry of the environment suffers
from performance degradation in all types of scenarios and
frequency bands. At sub-6-GHz frequencies, NLOS multi-
path acts as an interference that degrades the geometric
localization performance in both indoor and outdoor urban
environments. At mmWave frequencies, strategies, such as
trilateration and triangulation, are often not practical since
links to several BSs are required. Although, at mmWave,
it is possible to estimate the position from the CSI of a
single-BS-UE link by exploiting the sparsity of the channel
and the large arrays and bandwidths, high-accuracy local-
ization requires very accurate channel estimates, which
come at the cost of high pilot transmission overhead and
high complexity. In addition, the sensitivity of geometric
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localization to channel estimation errors and impairments,
such as PN, residual clock offsets, array calibration errors,
or beam squint, may reduce the accuracy that can be
achieved in practice.

CSI-fingerprinting positioning is an alternative to geo-
metric approaches that can provide enhanced performance
in LOS and NLOS scenarios [132], [133], [134]. Although
it was initially proposed for indoor environments and
WLANSs [135], it has been successfully extended to out-
door scenarios and cellular networks [136]. It requires
an offline phase to create a database of fingerprints
(one or more parameters associated with the propagation
channel such as RSS or full CSI) and their associ-
ated locations. In conventional fingerprinting, the online
phase is used to compare the fingerprint obtained in
real time with the stored ones and infer the location
exploiting algorithms such as K nearest neighbors [137],
Horus [138], or RADAR [135] for example. Mathemati-
cally, this approach can be written as

g:F—pug (22)

where ¢ is a mapping operation from the fingerprint F to
the user position pyg. The drawbacks of conventional fin-
gerprinting come from: 1) the requirement of permanently
storing a large database and updating it periodically as
the environment changes [139] and 2) the complexity of
searching the whole database for every new position to be
predicted.

ML-based fingerprinting can overcome these limitations.
A large database will be collected for training the network
offline, but it does not need to be stored or searched
during online operation. During training, the network will
learn the mapping ¢ in (22), while in the online phase,
it will perform a regression operation to compute the
position given the fingerprint. RSS is the most commonly
used fingerprint in conventional designs, but it can only
capture coarse channel information, is highly dependent
on the device, and suffers from a high variability due
to multipath. Recent works on ML-based fingerprinting
for massive MIMO at sub-6 GHz and mmWave MIMO
exploit richer fingerprints based on the CSI, which provide
enhanced performance: the angle-delay domain channel
power matrix [140], [141], a weighted average of CSI
values over multiple antennas [142], the CSI per sub-
carrier [143], [144], or a decimated delay-domain CSI
representation followed by autocorrelation to extract fea-
tures invariant to the system impairments [145], to name
a few. Alternatively, other recent works avoid the design
of specific features by introducing the full CSI in time or
frequency as the input to the deep network. In this way,
the first stage of the network itself extracts a suitable
feature using the attention mechanisms in Transformer
networks [146], [147], [148].

Most of the deep networks that have been designed for
fingerprinting-based positioning approach the problem as
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a regression task. Designs based on convolutional neural
network (CNN) architectures leverage image-like inputs
and exploit convolutional layers’ ability to extract fea-
tures and relationships among adjacent data points [141],
[1431, [1441, [149], [150], [151], [152], [153], [154].
Long short-term memory (LSTM) networks have also
been proposed to explore the correlation of CSI at
different subcarriers [155]. To tackle the problem of out-
dated network weights in a dynamic environment, it is
possible to use transfer learning [156], which enables
the reconstruction of the fingerprinting database using
outdated fingerprints and a small number of new mea-
surements. Hybrid approaches [100], [146] that combine
model-based geometric localization and deep networks
exploiting site-specific data can provide very high accuracy
even with small training datasets, as shown in Example 4.

Position tracking can also be implemented to exploit
ML. An obvious extension to the previously described
approaches is to include a tracking stage that uses some
kind of Bayesian filter (Kalman or extended Kalman for
example) on the results of an ML-based fingerprinting
approach [157]. However, recent designs replace the
Bayesian filtering stage by a deep network specialized in
tracking, so there is no need to build a mathematical
evolution model—which may not hold in practice—
to be exploited by the Bayesian filter. LSTM networks
are common choices to implement tracking [158], but
newer designs exploiting transformers and their attention
mechanisms exhibit enhanced performance. For exam-
ple, Chen et al. [147] proposed V-ChATNet for position
tracking, an attention network that exploits the series
of previous channel and position estimates to build the
estimation for the new position. This design keeps the
location error below 20 cm for 95% of the time when
evaluated with realistic vehicular channels generated by
ray tracing.

Example 5 (ML-Based Positioning): Consider an
mmWave vehicular communication system operating
with a hybrid MIMO architecture and uniform planar
arrays (UPAs) at both ends. During initial access, the
frequency-selective mmWave channel between a vehicle
and a single-BS is estimated using multidimensional
orthogonal pursuit matching (MOMP) [50] and
some training symbols. The hybrid data/model-driven
positioning system proposed in [100] and [146] localizes
the vehicles on the road exploiting three stages: 1)
PathNet, a fully connected network that classifies the
estimated channel paths as LOS, first NLOS, or higher
order; 2) a geometric localization algorithm that accounts
for the clock offset and exploits the parameters of
the LOS and first order paths extracted by PathNet to
obtain an initial position estimation; and 3) ChanFormer,
a Transformer network that exploits the concept of
“attention” to evaluate which estimated paths are
more credible and formulates the problem of position
refinement as a classification task, by computing the
probability of corresponding to the true location for a
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Fig. 15. Performance of the positioning strategies based on
attention networks—ChanFormer for the initial access scenario and
V-ChATNet for the tracking case—compared to positioning based
only on channel parameter estimation and exploitation of the
geometry of the environment (MOMP + GeolLoc) evaluated using the
ray-tracing setup described in [146] and [147]. (a) Results for the
initial access and position estimation scenario, where only one
snapshot of the channel is estimated and leveraged for positioning.
(b) Results for the tracking scenario, where a series of channel and
position estimates is exploited by both a Kalman filter (KF) and
V-ChATNet, while MOMP+GeolLoc only exploits previous channel
estimates to reduce computational complexity in the channel
parameter estimation stage.

grid of points built around the initial position estimation.
As illustrated in Fig. 15(a), the system achieves submeter
accuracy localization for 95% of the users in channels with
a LoS path when evaluated with ray-tracing channels.
In addition, the system provides submeter accuracy
localization for 50% of the users in NLoS channels.
During the tracking stage, a different attention network,
V-ChATNet [147], further reduces the localization error,
achieving 20-cm accuracy for 95% of the users in a
combination of LOS and NLOS channels, significantly
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outperforming Kalman filtering-based tracking, as shown
in Fig. 15(b).

7) Sidelink Positioning: Sidelink positioning is a tech-
nique that exploits sidelinks between UEs to transmit
signals and perform measurements to enhance the posi-
tioning performance for V2X.

During the sidelink positioning process, the target UE
aims to determine its own position under the assistance of
the anchor UEs, which is further divided into three stages:
the configuration stage, the signal transmission and mea-
surement stage, and the position calculation stage [159].
First, in the configuration stage, the target UE and anchor
UEs are scheduled to form the sidelink positioning group
for the following operations. Then, in the signal trans-
mission and measurement stage, the measurements are
acquired by sending the PRSs over the sidelinks between
UEs. Finally, in the position calculation stage, the ToA
and the AoA information obtained from link-level mea-
surements are fused to calculate the absolute or relative
position of the target UE, which can be performed either at
the network location server or at the UE itself.

As sidelink positioning emerges as a promising tech-
nique to complement the traditional methods, e.g., global
navigation satellite system (GNSS), in V2X, there has
been extensive research in this area. Liu et al. [114]
described basic system architectures and key technologies
for high-accuracy sidelink positioning. Ge et al. [160]
presented the analysis of V2X sidelink positioning in sub-
6 GHz, where a novel performance bound is derived to
predict the positioning performance in the presence of
severe multipath. In addition, the sidelinks in V2X are
exploited for near-field localization in [161], where the
fundamental positioning limits are determined in order to
assess the possibility of the proposed scheme.

Furthermore, sidelink positioning can be viewed as
the special case of the general cooperative localization
paradigm, in which the unknown positions of multiple
UEs are jointly inferred from the network measurements,
and the performance gain comes from the exploitation of
the relative position information provided by the UE-UE
measurement links. Compared with conventional local-
ization techniques, cooperative localization demonstrates
significant advantages in harsh propagation environments
such as indoors and urban canyons, which attracts great
attention from the research society in both theoretical
and algorithmic aspects. As for the theoretical basis, the
fundamental limits of localization accuracy in cooperative
networks have been derived in [162] and [163], where
the structure of EFIM is revealed to characterize the
information gain brought by UE cooperation. Then, the
spatiotemporal information coupling is investigated to
quantify the cooperation efficiency, where the asymp-
totic error propagation laws are determined to provide
guidelines for large-scale networks [164], [165], [166].
As for the operation strategies, efficient resource allocation
schemes are developed from the perspectives of convex
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programming and game theory, which can provide practi-
cal solutions for high-accuracy cooperative localization in
both centralized and distributed schemes [167], [168].

8) RIS-Aided Positioning: An RIS is a programmable
surface that can be used to control the reflection of radio
waves by changing the electric and magnetic properties of
the surface, in either a continuous or discrete way [169].
While there are different RIS technologies, their distinction
is irrelevant for our purposes. RISs were originally devised
to overcome LoS blockages, especially at FR2, by creating
an additional path with high SNR. The most common kind
of an RIS is a so-called passive reflective RIS, which creates
an additional channel (in its more simple form)

RIS RIS —j27nAfmRS jormTymRS RIS\ 7T (RIS
Hn,m:am € jzmn AT 6] T my ar (;b ar 0

(23)

where the only difference lies in oX, which is of the
form [170]

alﬁs = aT'RISaRIS'RagIS (9) Qmagis () 24)

in which o™ denotes the channel from TX to RIS;
of®SR is the channel from RIS to RX; agis(¢) is the RIS
steering vector as a function of the AoA ¢ (from the RX)
and AoD ¥ (to the TX); and €2,, denotes the diagonal
RIS control matrix, which represents the time-varying
state of the RIS. The entries of ,, have at most unit
amplitude (since a passive RIS cannot amplify) and con-
trollable phase. In communications, €2,, can be set so that
alis(9)Qnaris(p) — M, where M is the number of RIS
elements, thereby providing an SNR scaling of up to M?2.
The value of M can be increased by making the RIS larger
(leading to more power illuminated on the RIS, but also
wavefront curvature effects appear (see Section VI-E) or by
making the RIS denser (though the power illuminated on
the RIS is constant and mutual coupling will play an impor-
tant role). In addition to the considered passive reflective
RIS, there are many other RIS variants, such as amplifying
RIS (sometimes called active RIS), sensing RIS (sometimes
called hybrid RIS), RISs that can simultaneously transmit
(in the sense of passing through) and reflect (called simul-
taneous transmit-and-receive (STAR)-RIS) [171], and RISs
that allow nondiagonal control €2,,, [172].

The role of RIS for positioning lies in the ability to
provide: 1) an additional position reference, similar to a
BS; 2) additional measurements as any other path [e.g.,
the AoA, AoD, delay, and Doppler in (23)]; and 3) unique
measurements of the AoA or AoD in (24) [173]. While the
AoA and AoD in (24) are not jointly identifiable, typically
one of the two angles is known since either the TX or
the RX is a BS. This leads to two practical issues: how
can we know the RIS location and orientation [174] and
how can the RX separate the signal from the RIS with
respect to all the uncontrolled multipath, including the LoS
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path? To address the first issue, RIS calibration methods
have been devised, based either on transmissions between
BSs or while simultaneously localizing the user. To address
the second issue, which is especially relevant in a multi-
RIS scenario, dedicated RIS control sequences have been
designed that allow separation, e.g., such that >~ Q. =
0, so that under zero Doppler, the uncontrolled multipath
can be recovered by adding the signals over time, for each
transmit beam.

Example 6: Consider a  point-to-point  RIS-aided
mmWave communication system where both the BS and
the UE are equipped with planar arrays. In this case, the
received signal at the UE contains contributions of the
paths from two sources, i.e., from the environment and
through the RIS, which can be expressed as

Yﬁsm = WH (Hn,'m + H%[frn) FRFFBB [n7 m] Xn,m + Zp,m-
(25)

In [175], it is shown that the sparse channel parameters
from both sources can be simultaneously estimated by
using a slightly modified version of the low-complexity
MOMP algorithm proposed in [50], which estimates the
parameters by using their own individual dictionaries
instead of a Kronecker product of them. Note that the
work in [175] considers the pulse shaping effects and
clock offset and estimates the time-domain channel while
assuming that the LoS path between the BS and the RIS
has been preestimated in the RIS calibration stage. The
positioning stage contains two different cases: 1) LoS path
from the BS and RIS exists and 2) LoS path from either BS
or RIS exists. The first case can be solved with a simple
linear equation, whereas the second case can be solved
via a linear system of equations constructed with LoS and
NLoS paths of one source (i.e., BS or RIS) by leveraging
the reflection properties of the indoor environment [50],
[175]. Positioning error results with the described method
obtained via ray-tracing-based simulations for an indoor
environment are given in Fig. 16. It can be seen that highly
accurate positioning can be achieved when the LoS path
exists for both BS and RIS. Specifically, 80% of the users
have positioning error below 20 cm with a 32 x 32 RIS.

9) Carrier Phase Positioning: In general, the carrier
phase of the incoming received signal depends explicitly on
the propagation delay, as shown in Fig. 17. Hence, measur-
ing carrier phase accurately, relative to a reference, allows
carrying out delay estimation and thereon ranging with
accuracies that are fractions of a wavelength. Especially
in mmWave networks, using carrier phase measurements
can thus enable ranging accuracies in the order of few
millimeters, while in C-band networks, a centimeter-level
ranging accuracy is feasible.

In the context of localization and positioning, car-
rier phase-based methods are conceptually known and
broadly utilized in GNSS systems, particularly the
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Fig. 16. RIS-aided 3-D positioning performance with an 8 x 8 BS.
Evaluated using the ray-tracing data from a smart factory
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GNSS-RTK approach, see, e.g., [176] and the references
therein. In addition, and importantly, the utilization of
carrier phase measurements is also recently considered
in 3GPP cellular network standardization—particularly in
the context of 5G-Advanced and corresponding enhanced
positioning capabilities [177], [178].

One of the most prominent technical challenges related
to the use of carrier phase measurements is the so-called
integer ambiguity problem [108], [179], [180]. This refers
to the fact that the carrier phase is immune to any integer
multiple of the wavelength, i.e., the amount of full wave-
lengths in the distance between the TX and RX entities
cannot be directly measured. Practical ways to solve or
relax the integer ambiguity problem stem from differential
and/or double-differential measurements that build on the
concept of a reference device. In the cellular network
context, a UE with a known and fixed reference position
could serve such a purpose.

An example of recent works in this area in the cellular
system context covers, e.g., [181] and [182] focusing on
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Fig. 17. carrier phase positioning provides accurate distance
information, but is subject to ambiguities equal to the wavelength.
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much more involved than for positioning.

estimation, synchronization, and positioning algorithms
for different use cases. In addition, Talvitie et al. [108]
described the methods of how cellular carrier phase mea-
surements combined with appropriate Bayesian filtering
can facilitate super-resolution and low-latency 6DoF track-
ing of 5G-empowered XR headsets without any additional
Sensors.

C. Bistatic and Multistatic Sensing of
Nonconnected Objects

In contrast to positioning, which involves determining
the state of connected users, in this section, we will focus
on sensing (detecting and localizing) nonconnected objects
(sometimes also called landmarks or targets, depending on
the context). We refer back to Fig. 9.

1) Fundamentals of Mapping and Target Tracking: Mul-
tisite Processing: First, it is necessary to clarify the
terminology. When the objects of interest are static, they
are called landmarks. The corresponding sensing problem
is called mapping. When the objects of interest are moving,
they are called targets and the corresponding sensing prob-
lem is called multitarget tracking (MTT). The reference
to “objects of interest” is due to there being other objects
(e.g., ground reflections when tracking a moving vehicle),
which generate measurements, but are not of interest to
the application.

To separate positioning from mapping and MTT, let
us first describe the commonalities (see Fig. 18). In both
cases, processing involves two stages, wherein the first
stage radio signals are sent and received, based on which
LoS and NLoS paths are extracted, with associated channel
parameters (delays, angles, and Dopplers); and in the sec-
ond stage, those parameters are converted to a geometric
state of the user/object. In terms of the differences, the first
stage for positioning is generally focused on extracting the
LoS path parameters, while in mapping and MTT, the LoS
path only serves as a reference path, while the NLoS paths
relate to the nonconnected objects. The main difference
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lies in the subsequent processing, as visualized in Fig. 18.
The reasons are given as follows [183].

1) Unknown number of objects: The sensing system does
not know a priori how many objects there are. This
means that objects need to be first detected before
they can be localized. This problem is also affected by
background clutter, which is present but not of inter-
est. Hence, sensing involves both detection (involving
false alarms and missed detections) and estimation
problem.

2) Complicated object states: In contrast to positioning,
where the goal is to estimate the UE 3-D position,
objects are characterized by a much more complicated
state definition, which may include the velocity, the
extent/shape of the object, and even the material
type. Objects may also give rise to more than one
measurement [184].

3) Unknown data association: Another fundamental dif-
ference compared to positioning is that the measure-
ments carry no information about the object. Hence,
measurements taken at some time ¢ should be associ-
ated with objects detected at some earlier time ' < ¢.
This type of combinatorial problem lies at the heart
of all mapping and MTT methods. As time progresses,
the number of data associations grows quickly, which
requires dedicated routines to mitigate computational
complexity [185].

4) Multisensor fusion: When several RXs are processing
the signals from one or more TXs, some form of
fusion is needed to provide a consistent view of the
landmarks or targets. The type of fusion depends
on the level of coherence between the different BSs.
When the receiving BSs are phase coherent, this
can be interpreted as one large distributed sensor
and processing can be performed on the aggregated
received waveforms, as in distributed MIMO radar.
Such processing involves sharing raw I/Q data with
a central processing unit. In contrast, when the
receiving BSs are not phase-synchronized, they act as
independent observers, and fusion should occur after
local channel parameter estimation. The different
field-of-view (FOV) of the different RXs makes this
challenging [186].

The problems of an unknown number of objects, com-

plicated object states, and unknown data association are
visualized in Fig. 19 for a bistatic scenario.

D. Radio SLAM in Bistatic Scenarios

In this section, we will focus on bistatic radio SLAM,
which combines aspects of positioning (see Section IV-B)
and sensing (see Section IV-C), and it involves an UE
determining its position while simultaneously detecting
and localizing landmarks based on signals to/from the BSs.
The radio SLAM problem has gained widespread attention
in the research field over the past years (see [55], [96],
[187], and [188]) since it is closely related to the minimal

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 10,2024 at 23:39:07 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gonzélez-Prelcic et al.: ISAC Revolution for 6G: Vision, Techniques, and Applications

Channel 3 paths, LoS
parameter reference, so 2
estimation objects
% %
= | ae o
L
o
>
range [m]
Channel 4 paths, LoS
I parameter reference, so 3
% """""""""""""""""""""" % estimation objects
z %
E o
| % Lae
I~ S

©

. >

time step 2
range [m]

Fig. 19. Each measurement gives rise to a potential object. Objects
may generate 0, 1, or several measurements at each time. Objects
detected at time step 1 should be associated with measurements at
time step 2.

problems discussed in Section IV-B2 and solving it provides
three important benefits. First, the NLoS paths provide
additional information and can enhance positioning accu-
racy. Second, reliance on infrastructure can be reduced,
enabling, for example, single-BS positioning in mmWave.
Third, localization is possible in mixed LoS/NLoS condi-
tions, even in the absence of LoS.

The processing pipeline of radio SLAM is similar to that
of positioning/sensing (see Fig. 18). The key difference is
that in the second stage, the channel parameter estimates
are converted to a geometric state of both the UE and
landmarks. Since radio SLAM has many commonalities
to positioning and sensing, we will first introduce the
mapping problem, which is closely related to the sensing
problem, and thereafter, we will present the overall radio
SLAM problem. In the following, mapping is used to refer
to positioning M landmarks, mj.,,, and a map is defined
asm=[my, my, ..., my] .

The mapping problem, commonly referred to as map-
ping with known poses in SLAM literature [189], aims
to estimate the map posterior, p(m | X1.;,y;.,), using the
sequence of UE poses x;.; and measurements y; ,. Since
the UE trajectory is known, the landmarks are independent
and the map posterior can be factorized as [189]

M
p(m|Xie,y;,) = Hp(mz | X1:6, Y1) -

i=1

(26)

The map posterior can be computed, for example, using
Bayesian filtering, and if the landmark density is approxi-
mated using a Gaussian, (26) can be efficiently estimated
using M extended Kalman filters (EKFs) in parallel, one
for each landmark. Landmark-based mapping approaches

commonly decompose the physical environmental land-
marks such as reflecting surfaces and scattering objects
into parametric representations such as a point [187].

The objective of SLAM is to compute the joint posterior
density of the UE trajectory and map, p(X1.,m | y;.,),
given the measurements up to time ¢. An important char-
acteristic of the SLAM problem is that by conditioning,
the map to the UE trajectory renders the landmark esti-
mates conditionally independent. Exploiting this feature,
the joint SLAM density can be factorized as [190]

p X, m|y,,) =pXi | yy,)p (M| X126, ¥,,) (27

in which p(x1.: | y;.,) and p(m | Xi1.4,y;,) are poste-
rior of the UE and map, respectively. This factorization
makes it natural to apply Rao-Blackwellized particle filter
(RBPF) solutions, in which a particle filter (PF) is used to
approximate p(Xi.; | ¥;.,) and computing p(m | X1.¢,y;.,) is
equivalent to solving (26). It is important to note that each
particle represents a single UE trajectory and a unique map
is associated with every particle. In radio SLAM, the UE
state consists of the pose and clock. The pose represents
the position and orientation of the UE, whereas the clock
represents the required parameters needed to synchronize
the local clock of the UE to the network clock.

In literature, a large variety of solutions to SLAM are
available and these can be classified as snapshot, filter-
ing, and smoothing approaches. The concrete difference
between the approaches is the time horizon. Snapshot
SLAM only considers observations at time ¢’ for estimating
p(x¢,m |y, ), filtering approaches utilize measurements
up to time ¢ for approximating p(x, m | y;.,), and smooth-
ing approaches perform batch processing to estimate the
full SLAM posterior p(Xi.r,m | y;.p) in which T > ¢.
The early works in conventional SLAM mainly considered
the filtering problem, but due to inconsistency issues, the
majority of the works nowadays consider the smoothing
problem [191]. In bistatic radio SLAM, the smoothing
problem is yet unexplored and the other two approaches
have been considered instead. The main differentiator of
bistatic radio SLAM is that the UE state is estimated in
a global reference system that is defined with respect to
the BS, whereas in conventional SLAM, the estimation is
typically performed in the local frame of the sensor (see
also Section V-E). This has significant ramifications to the
bistatic radio SLAM problem and two prominent examples
include: 1) it is possible to estimate the UE state with
respect to a global reference system just from single snap-
shot observation as presented in Section IV-B and 2) filter
divergence can be identified by comparing the filtering
solution to the snapshot solution. It is important to note
that both snapshot and filtering approaches are relevant
in bistatic radio SLAM and the preferred choice depends
on the overall system and application scenario. Snapshot
SLAM is fundamentally important as it serves as a baseline
for what can be done with radio signals alone, while
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Fig. 20. Example bistatic radio SLAM performance obtained using
an RBPF-PHD filtering solution. The TX position is illustrated with
(V), UE trajectory using (—), and estimated UE path and landmark
locations with (X) and (+), respectively.

filtering-based SLAM methods are expected to improve the
accuracy. The snapshot approach can be solved, for exam-
ple, using numerical optimization methods [55], [192],
whereas the filtering problem is commonly solved using
Bayesian filtering [187], [188] or belief propagation on
factor graphs [96], [109].

Example 7: In this example, we consider an indoor
bistatic SLAM scenario composed of a single BS that trans-
mits PRSs that are received by the UE to jointly estimate
its pose and map the surrounding environment. The exper-
iment was conducted at the 60-GHz carrier frequency and
using the 400-MHz PRS bandwidth. The BS and UE were
equipped with 4 x 16 planar antenna arrays and Sivers
Semiconductors Evaluation Kits EVK06002 were used as
the TX and RX entities. The TX and RX used 126 and 252
beams, respectively, which corresponds to a 180° FOV for
the BS and 360° FOV for the UE. Overall, the UE trajectory
consisted of 45 measurements positions. The experimental
scenario is illustrated in Fig. 20, and for further details,
please see [193].

The considered SLAM problem is solved using an RBPF-
probability hypothesis density (PHD) filter [187] that
utilizes an optimal importance density (OID) approxima-
tion [188] to decrease the number of required particles.
The performance of the algorithm is visualized in Fig. 20;
as illustrated, the estimated path closely follows the UE
trajectory and the estimated landmarks coincide with the
actual floor plan. In the experiment, the RMSE position,
heading, and synchronization error are: 0.55 m, 2.43°,
and 1.53 ns, respectively. The benefit of using a filtering
approach is threefold. First, the filter can operate in mixed
LoS/NLoS conditions, and the posterior from the previous
time step can be viewed as a regularization term, which
constrains the posterior update so that the system state
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is identifiable at every measurement position. Second,
sequential processing of the measurements improves the
accuracy. Third, the filter can inherently deal with the chal-
lenges of bistatic radio SLAM, which include: 1) the
landmark can be misdetected due to limitations in the RX
and channel estimation routine; 2) clutter measurements
and multibounce signals can generate false detections that
are not inline with the measurement model; and 3) mea-
surement ambiguities can lead to situations where a wrong
measurement is associated with the wrong landmark.

V.TECHNOLOGIES FOR JOINT
MONOSTATIC SENSING AND
COMMUNICATION

A. Introduction

In this section, we address the monostatic sensing
and SLAM paradigms in the spirit of cellular ISAC.
We first briefly review the fundamentals and challenges
of monostatic system scenarios. Then, in Section V-B,
we present the basics of the related SI waveform mod-
eling and discuss shortly the potential TX-RX isolation
solutions, while Section V-C provides the examples how
precoding/beamforming optimization can contribute to SI
suppression. Section V-D then looks into relevant impair-
ments, most notably oscillator PN and Doppler-induced
ICI, and shows how these can be turned from foe to
friend in monostatic sensing. Finally, Section V-E presents
monostatic SLAM, which is one potential application of
monostatic sensing.

In general, different from the previously discussed
bistatic and multistatic TXx~RX arrangements, the mono-
static case refers to a scenario where the transmitting
and receiving entities are essentially collocated [194],
[195], [196]. A principal illustration of such monostatic
sensing and mapping scenario is shown in Fig. 21, indi-
cating also the opportunity for separate antenna systems
at the TX and RX ends [89]. Such a monostatic approach
allows to turn the individual UEs or gNodeBs (gNBs)
essentially into cellular radars, providing standalone situ-
ational awareness related to the surrounding environment
without relying on other network entities. Example rep-
resentative use cases could be, e.g., in different vehicular
or industrial systems where connected moving machines
can extract and harness situational awareness in terms
of the environment landmarks while also tracking their
own coordinates relative to a reference point, by using
their own transmit waveform as the illumination signal.
Compared to the bistatic or multistatic counterparts, the
monostatic approach is appealing as the complete 1/Q
transmit waveform is directly known also to the RX.
In addition, arranging for very accurate time and frequency
synchronization between the TX and RX chains is clearly
much more straightforward and can be resolved even at a
hardware level.

The monostatic operation is, as such, well known from
ordinary radars. Pulsed radars [194] operate based on time
multiplexing between the exact transmit and receive time
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periods. In the context of cellular systems, specifically in
time-division duplexing (TDD) networks, the individual
network nodes [UEs, gNBs, and the corresponding trans-
mission and reception points (TRPs)] also operate based
on dividing the TX and RX active periods in time. However,
the individual active transmit periods in both UL and DL
are commonly in the order of a millisecond—a period
that is very long compared to pulsed radars and does not
facilitate measuring transmit waveform interaction with
targets or landmarks at any meaningful distance. Hence,
any cellular monostatic sensor must be able to execute the
RX simultaneous to transmitting, in order to measure the
reflecting and scattering waves. This, in turn, means that
such a sensor is essentially operating as an inband full-
duplex (IBFD) transceiver, commonly also referred to as
an STAR system [195], [196], [197].

One fundamental technical challenge in STAR systems
is, in general, the SI or direct transmit-receive cou-
pling [197], [198], [199]. As a concrete example, the
effective isotropic radiated power (EIRP) of a macro gNB
can be in the order of +70 dBm, or more, while the RX
thermal noise floor with, e.g., 100-MHz channel band-
width, is around —90 dBm. Thus, from the sensing or radar
function point of view, the direct TX-RX coupling acts as an
extremely powerful target at a very short distance and will
mask everything else if not properly suppressed through
antenna processing, active RF cancellation, and baseband
digital cancellation [197], [198], [199], [200], [201].
Importantly, sufficient amount of TX-RX isolation must
be obtained already in the antenna or RF circuit domain
prior to the RX low noise amplifier (LNA)—otherwise, the
powerful SI will totally desensitize and block the LNA and
thereon the sensing RX. In Section V-B, we provide further
modeling of the SI waveform while also discussing the
basic TX-RX isolation approaches.

B. Basic SI Modeling and Isolation Solutions

We next shortly discuss the different potential solutions
to arrange sufficient TX-RX isolation, as well as the related
topic of SI channel and waveform modeling. There are,
generally speaking, two alternative ways to arrange the
antenna interface for simultaneously operating TX and RX,
namely, sharing a set of antennas through circulators for
both TX and RX or then utilizing different sets of physical
antennas for TX and RX. One may consider the latter more
feasible approach, as the circulators commonly provide
only isolation levels in the order of 20 dB, while the
different sets of antennas allow for larger isolation levels
by separating the antenna systems in space—especially in
gNB type of entities as well as in UE with larger form
factors such as vehicles. In addition, importantly separate
antenna systems allow harnessing beamforming optimiza-
tion for TX-RX isolation in a more efficient manner. Hence,
we also primarily assume in the following that separate
antenna systems are utilized, though the RF and baseband
digital canceller principles apply to both scenarios.

Considering first the basic SI channel and waveform
modeling, let us denote the baseband precoded transmit
waveform at transmit path [ by z;(n) and further assume
that subarray-based hybrid beamforming is adopted at
TX where each precoded signal is transmitted through a
subarray of size M. Then, the complex baseband equiva-
lent SI waveform at RX antenna j, contributed by the TX
subarray [, reads

M
2y ) = 3B )« (ol @) @8)
i=1

where hf}f (n) denotes the physical SI channel from the
antenna element s of the TX subarray | to RX antenna
element j, * denotes the convolution, and the function
#T%(.) refers to a TX hardware model that can accommo-
date different impairments such as PA nonlinearity and
oscillator PN. In addition, the beamforming weights of the
TX subarray [ are denoted by f; ;.

Next, taking into account the contribution of all involved
TX subarrays, say ! = 1,2,...,L, while incorporat-
ing also RX beamforming as well as RX hardware path
impairments, the observable baseband SI waveform reads
eventually

K L
:EBB,SI (n) — ¢RX <Z wj Z x?ﬁ’SI (n)> (29)
=1

Jj=1

where K denotes the array size at RX, w; denotes the cor-
responding beamforming weight, and ¢™* refers to the RX
path hardware model. This model is valid for an arbitrary
RX (sub)array.

Importantly, the models in (28) and (29) show that
both TX beamforming and RX beamforming contribute
to the observable SI at RX. Thus, beamforming is one
fundamental processing tool to facilitate or improve TX-RX
isolation—and particularly the TX beamforming as it
allows to control the SI waveform already at the RX
LNA input as shown by (28). Beamforming optimization
solutions that seek for controlled and favorable trade-
offs between SI suppression, target illumination capability,
and achievable communication rate are described, e.g.,
in [202], [203], [204], and [205], and will also be dis-
cussed in Section V-C. Furthermore, the accommodation of
the prominent hardware imperfections in (28) and (29)
is of great importance. For one, as shown, e.g., in [200],
[206], and [207], appropriate HW modeling allows to
craft advanced digital SI cancellation solutions that can
also suppress the nonlinear effects and distortion products
imposed by TX PA, RX LNA, and other analog components.
Such one is important when optimizing the RX dynamic
range. What is more, as discussed and demonstrated con-
cretely later in this section, proper modeling of hardware
imperfections can turn them from a foe to a friend,
when interpreted from the sensing point of view—this is
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Fig. 21. Illustration of the monostatic sensing paradigm at UE end, together with the corresponding problem geometry.

particularly so for the oscillator PN as discussed further in
Section V-D.

C. Triple-Function Precoding/Combining in FD
Transceivers

In this section, we discuss the precoder and combiner
design that enable the STAR operation for monostatic sens-
ing with communication-centric FD transceivers. We focus
on designs suitable for initial access and also tracking
scenarios.

1) Precoding/Combining for Tracking: We focus on the
tracking stage of the joint DL communication and sensing
with an FD BS in a single UE setting. The three functions
of the spatial filters at both the TX and the RX side can be
stated as follows: 1) enabling DL communication; 2) pro-
viding high gain in the target direction; and 3) contributing
to SI suppression. To provide simultaneous communication
and sensing, the system should operate with a multibeam
precoder that illuminates the target angle and the multiple
paths of the communication channel [195]. Considering a
system operating in FR2 with a hybrid analog/digital archi-
tecture at both ends of the FD BS and OFDM signaling, the
received signal at the FD BS can be expressed as

Yoo = WH, o FreFap (1] Xo,m

+ WHH?LIFRFFBB [’I’L] Xn,m +Zn,m (30)

SI

where H,, ,,,, H! € CV**"T are the radar and SI channels,
respectively. The entries of the SI channel are the coupling
between each TX—RX antenna pair, as described previously.
We assume that the FD BS is stationary, which is why
the SI channel remains constant at different symbols. The
second term in (30) should be suppressed with precod-
ing/combining so that the LNAs are not saturated and the
targets can be detected.

The precoders should also provide reliable DL com-
munication and target gain for the radar operation.
We can quantify the communication performance with
the subcarrier-dependent rate R,, which is a function
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of the precoders, the DL channel, and the combiners at
the UE. The precoders and the combiners at the UE are
designed separately, which is the common approach in
communications. Moreover, we can quantify the sensing
performance with the TX target gain per stream for a given
target angle 0,., which is expressed as

GTomyn (6r) = a7 (6r) [FreFap [n,m]], . ST

for ns = 1,..., N;. The final objective of the precoders is
to mitigate the SI that is equivalent to nulling the SI term
in (30) as

WY HY FreFps [n] = ONge p x N (32)

which is a joint task for the combiner. Aside from SI
suppression, the goal of the combiner is to provide a high
target gain at the n reth RX RF chain that is expressed as

2

Tt e @R (67

GRunw (0r) = |[W]., . (33)

for nrp = 1,..., Nrr,r. The joint precoding/combining
problem can be formulated as the maximization of the
sum DL rate over all subcarriers under the target gain,
SI suppression, and hardware constraints [202], [203].
We can define TX and RX gain thresholds denoted by
7r and Tg, respectively. With the described formulation,
we can write the overall optimization problem as

N-1
maximize E Rn
W, Fge,
Fpp[n] n=0

subject to Grng,n (0r) > 70, GRnge (0r) > TR
(32), Frr € Ar, We Ar
|FreFgg [7] |7 = Ny (34)

where A7 and Agr are the sets of feasible structures for
the analog precoder and the analog combiner, respectively.
For example, unit-modulus entries, which correspond to a
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phase shifter network, and the subarray architecture can
be imposed on the analog precoder/combiner by using
the defined sets. Finally, normalization is imposed on the
precoders to satisfy the power constraint.

The problem in (34) is hard to solve due to the coupling
between the precoders and the combiner, and the hard-
ware constraints related to the analog precoder/combiner.
Hence, alternating optimization can be adopted to decom-
pose the problem into several subproblems, each of them
responsible for one of the variables, while the others are
fixed. Furthermore, relaxation techniques, such as convex
approximations and semidefinite problems, can be used to
solve each subproblem. The work in [202] solves this prob-
lem by relaxing the cost function from rate to gain in the
LoS angle of the users. Moreover, SI cancellation is satisfied
with only the combiner by using the null-space projection
(NSP) method, which requires fine-grained attenuators in
addition to phase shifters. Islam et al. [203] maximized
the data rate by assuming that a subset of the targets in the
environment contribute to DL communication. They utilize
an analog SI cancellation method, which reduces the SI.
Then, the analog precoder and combiner are designed by
using a DFT codebook. Finally, the residual SI is suppressed
by the digital precoders, which also maximizes the DL com-
munication rate. In [208], a more general system model
is considered where the DL channel can have multiple
paths, which do not necessarily coincide with the targets.
This work utilizes generalized eigenvalue-based precoders
that suppress the SI while maximizing the data rate. The
precoders are coherently combined with the precoders that
maximize the TX target gain. Then, a hybrid decomposition
algorithm is used to obtain analog and digital precoders,
which reduces the SI suppression capability. Finally, a con-
vex relaxation-based algorithm is employed to design the
combiner that minimizes the residual SI while keeping the
RX target gain above a threshold.

2) Precoding/Combining for Initial Access: In this setting,
the BS and UE have to establish communication for the
first time. Thus, the precoders at the BS and the combiners
at the UE should be designed such that they cover a wide
angular region. This stage, in nature, is similar to the target
discovery step of radar operation. Hence, the precoders
and combiners at the BS that are used for initial access
and channel estimation for communication are suitable for
radar sensing. If we consider the triple-function precod-
ing/combining for tracking, we can see that the spatial
resources are shared between the communication and
sensing, which would not be necessary for the initial access
stage. In other words, the triple-function requirement for
precoding/combining would be reduced to two functions
as the communication and sensing requirement would be
unified.

Initial access can be established with beam train-
ing for FR2 in 5G NR. The beams are selected from
a codebook that comprises directional beams. Let us
denote the directional codebooks for TX and RX by

Ax = J[ar(61) ... ar(0ry)] € CNtXMr and Ay =

[ar(¢1) - .. ar(par)] € CM**Mr where Mr and Mg are the
sizes of AoA set {0;}1"" and AoD set {¢;}} ™, respectively.
If these codebooks are used for sensing at the FD BS,
we would observe high residual SI. Let us denote the
SI-aware beam codebooks that we would like to design as
Ay € CN*Mroand A, € CM**Mr The coupling matrix
that shows the residual SI between beam pairs can be
defined as C = AIHYAy, where HY ¢ CMe*N7 g the
frequency-flat SI channel. For a wideband SI channel,
H can be selected as the SI channel at the center fre-
quency. The goal of the codebook design is to minimize
the total coupling power, i.e., ||C||%, while the beams
maintain a high gain at the AoA and AoD grids. One
other constraint is to have unit-modulus entries so that the
beams can be realized with a purely analog architecture
that comprises phase shifters, which makes the problem
nonconvex. The TX and RX codebooks are designed with
alternating minimization and convex relaxation combined
with block-coordinate descent method by using Aix and
A as initial codebooks in [209]. The beam training pro-
cedure for sensing is designed such that a TX-RX beam
pair that corresponds to the same angle on the AoD and
AoA grids is employed for each symbol at the FD BS.
We show the radar SINR obtained at the angular grid in
a single point target scenario in Fig. 22. The FD BS is
equipped with two 8 x 8 planar arrays that are separated
by 10). The angular grid for both TX and RX codebooks is
selected as [-60°, —45°,...,60°] x [-30°,—15°,...,30°].
The results show that the Sl-aware codebook efficiently
suppresses SI and yields high radar SINR at the target
angle, while the initial codebook is corrupted by the SI,
which makes the target detection impossible. The beams
from the SIl-aware codebook can also be used for the
tracking stage by utilizing the beams from the codebook
at the analog precoder/combiner design.

The described monostatic sensing scenarios for the
tracking and initial access stages include only DL users
for communication. Thus, the precoder at the FD BS is
designed such that it serves for both S&C while considering
SI suppression. From a communication perspective, only
half-duplex communication is considered. One of the most
important challenges is to integrate UL users to enable
FD communication, which would significantly improve the
spectrum efficiency of the overall system.

D. Joint Monostatic Sensing and Communication
Under Nonidealities: Repurposing Challenges Into
Benefits

In this section, we address the problem of joint mono-
static S&C with OFDM waveform in the presence of
nonidealities and demonstrate how such imperfections
can be turned into an advantage for sensing. We begin
by presenting the OFDM radar signal model and basic
operations for range-Doppler detection/estimation. Then,
we focus on two specific nonidealities, namely, ICI and PN,
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Fig. 22. Radar SINR at the FD BS equipped with 8 x 8 arrays that
are separated by 10) for (a) initial codebook and (b) Sl-aware
codebook. The center frequency is 28 GHz, the bandwidth is 300 GHz,
the transmit power is 20 dBm, and the SI-to-noise ratio is 80 dBm.
The target is located at 80 m from the FD BS with an azimuth angle
of —20° and an elevation angle of 15°.

elaborating on their impacts on sensing as well as on how
they can be exploited to improve sensing performance.
For ease of exposition, we consider a single-input-single-
output (SISO) system at both radar and communication
RXs.

1) OFDM Monostatic Radar Sensing Without Nonideali-
ties: Consider a monostatic ISAC setup in Fig. 23, where
a monostatic ISAC transceiver sends data symbols to a
remote communications RX and collects the backscattered
signals at the co-located radar RX for sensing the objects
in the environment. Under an SISO setup, the monostatic
OFDM radar observations can be expressed using (1)
and (2) as

L—1
_ —j2mnAfry _j2nmTymry
Yn,m = E age e Y T m + Znm. (35)

£=0

Stacking (35) over N subcarriers and M symbols,
we obtain the frequency- and time-domain observations in
compact matrix form as [44]

L—1
Y=X0Y arb(r)e’ () +Z2eCTM  (36)
£=0

where X € CYVM with X]|pm = Tnm; Y € CVXM
with [Y]n,m = ¥nm; and b(r) € CY¥*! and c(v) €
CM*1 denote, respectively, the frequency-domain and
time-domain steering vectors, i.e., [b(7)], = e J2™AST
and [c(v)]m = 2" Twm? To detect targets from (36)
and estimate their delay-Doppler parameters, we first
remove the impact of data symbols X either via reciprocal
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filtering/zero forcing (i.e., dividing Y by X element-
wise) or MF (i.e., multiplying Y by the conjugate of X
element-wise) [3], [43], [210], [211]. Since b(7) and ¢(v)
correspond to DFT/inverse DFT (IDFT) matrix columns on
a uniformly sampled delay-Doppler grid, taking IDFT over
the columns and DFT over the rows of the resulting obser-
vation matrix provides the delay-Doppler/range-velocity
spectrum, from which target detection and parameter
estimation can be performed [3], [43], [49], [212], e.g.,
via constant false alarm rate (CFAR) processing [194,
Ch. 6.2.4]. Alternatively, super-resolution algorithms, such
as MUSIC and ESPRIT, can be applied by harnessing the
structure in b(7) and ¢(v) (e.g., shift-invariance property)
[213], [214].

2) OFDM Monostatic Radar Sensing Under ICI: When
dealing with high-speed targets and/or small Af,
the validity of model (36) diminishes since intrasym-
bol Doppler-induced phase shifts become nonnegligible,
destroying subcarrier orthogonality and leading to ICI.
Under scenarios with high mobility and/or small A f, (36)
can be generalized to [49]

L-1
Y=Y aFyDw)Fx (Xob(r)e" w))+2 (37)

ICI

where D(v) = diag (1,2 @/N¥ .
CN*N encodes the intrasymbol (fast time in radar nomen-
clature) phase shifts as a function of Doppler v. We note
that intersymbol (slow time) phase shifts are captured by
c(v). For low velocities and/or large subcarrier spacing, the
maximum phase progression in D(v) satisfies 27Tv <« 2.
In this case, D(v) = I and (37) boils down to (36). To illus-
trate the impact of ICI on sensing, Fig. 24 shows the range
spectrum of OFDM radar obtained via standard DFT/IDFT-
based processing, using typical 5G NR FR2 parameters in a
high-mobility scenario. We observe a noticeable increase in
sidelobe levels induced by ICI, leading to a masking effect
on targets. This phenomenon poses a significant challenge
for sensing as it could severely impede the detection of
weaker targets [49], [215].

, ejZﬁ(T(Nfl)/N)u) c

3) OFDM Monostatic Radar Sensing Under PN: For prac-
tical, nonideal oscillators, PN should be considered in
sensing. In this case, (36) becomes [216]

L—1
Y= aFy |W(n)oFY (X@b(n)cT (w)) +z
=0 \—\/—/

PN
(38)

where W(r,) € CV*M represents the multiplicative

PN matrix in the fast-time/slow-time domain, belonging
to the fth target. Due to the use of a shared oscil-
lator at the ISAC TX and the radar RX, as shown in
Fig. 23, W(7,) corresponds to a realization of a differential
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pairments, such as PN and ICI, carry geometric information on the parameters of

radar targets (i.e., delay and Doppler, respectively) and thus can be turned into benefits for sensing. Please see Table 3 for further details.

(self-correlated) PN process [217], which has delay-
dependent statistics [216] (the so-called range correlation
effect [218], [219], [220]). For the special case of an ideal
oscillator, W(7,) degenerates to an all-ones matrix and (38)
reverts to (36). Fig. 25 illustrates the impact of PN on the
range spectrum of OFDM radar. Similar to ICI, PN distorts
subcarrier orthogonality and reduces the dynamic range of
the radar, which, in turn, degrades detection performance,
particularly for weak targets.

4) Exploitation of ICI and PN in Monostatic Sensing: As
illustrated in Fig. 23, a critical distinction emerges between
monostatic radar S&Cs in ISAC systems when impairments,
such as ICI and PN, are present. Specifically, in a monos-
tatic sensing configuration, the radar RX shares the same
oscillator with the ISAC TX. In contrast, the communi-
cations RX uses an independent oscillator. This implies
that: 1) the ICI effect in (37) involves only target Doppler

without any CFO [49] and 2) the statistics of the PN in (38)
are delay-dependent since this self-correlated PN process
represents the difference between the original PN process
and a time-shifted version, where the shift corresponds to
the round-trip delay of the target [216], [221]. Table 3
summarizes the differences between monostatic S&Cs in
the face of impairments.

Such distinctive properties of ICI and PN in monostatic
sensing present opportunities to turn these traditionally
detrimental effects into beneficial elements to improve
sensing performance. As seen from (37), ICI brings
additional Doppler information through D(v) on top of
slow-time Doppler information carried by c(v). Due to
the N times higher frequency of time-domain sampling
in D(v) compared to c(v), we can derive an unambiguous
velocity from D(v) that is N times greater. Hence, ICI can
be exploited in two different ways: 1) resolving Doppler
ambiguity of high-speed targets and 2) enhancing target
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Fig. 24. Range spectrum in OFDM-based sensing under the impact
of ICI. The OFDM parameters are fc =28 GHz, Af=60kHz, N =4096,
and M = 16. The scenario includes two targets with the same velocity
v, the ranges (20,80) m, and the SNRs (25, —20) dB. v =70 m/s
represents the case where two cars are approaching one another on
a highway.
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Fig. 25. Range spectrum in OFDM-based sensing under the impact
of PN. The OFDM parameters are fc =28 GHz, Af=120kHz, N =512,
and M =10, while the oscillator is a free-running oscillator with the
3-dB bandwidth of 200 kHz. The scenario contains two targets with
the ranges (30,150) m, the velocities (10,10) m/s, and the SNRs
(30,-10)dB.
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Table 3 Exploitation of Impairments in Joint Monostatic Sensing and
Communications

Monostatic Sensing Communications
Oscillator | Shared Independent
IC1 Doppler Doppler + CFO
PN Delay-dependent statistics | Independent statistics

resolvability by introducing an additional unambiguous
Doppler dimension, allowing us to distinguish targets
located in the same delay-Doppler-angle bin [49]. Fig. 26
shows an example range—velocity scenario illustrating how
ICI can be turned into a benefit for sensing. Analogous
to ICI, the delay dependency of the PN statistics in (38)
can be exploited to resolve range ambiguity of faraway
targets since the range information conveyed through the
statistics of W(7) is not subject to any ambiguity, unlike
the one carried by b(7), which has a range ambiguity of
c/(2Af) [216]. Fig. 27 provides an illustrative example
of PN exploitation for resolving range ambiguity of a
distant target by a covariance matching approach [216,
Algorithm 2]. We note that employing this exploitation
strategy elevates the performance of a radar with PN
even beyond that of an ideal radar without PN, effectively
repurposing challenges into benefits for sensing.

E. Radio SLAM in Monostatic Scenarios

Classical monostatic SLAM originated in the field of
robotics, where a mobile user (e.g., a robot) continuously
scans its surrounding environment using a laser device
(lidar) or a camera. The primary goal is to detect specific
features (landmarks) of the scenario and simultaneously
estimate the mutual positions of the user and the land-
marks. At first glance, this process may seem like a “chicken
and egg” problem. Mapping, i.e., determining the position
of landmarks, requires knowledge of the user’s position.
Localization, i.e., determining the user’s position, requires
knowledge of the map. However, this apparent dilemma
can be generally resolved through appropriate algorithms.
A crucial requirement for a monostatic SLAM algorithm to
function effectively is that the user must be in motion to
collect measurements from different perspectives. It is even
more advantageous if the relative movements of the user
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Fig. 26. Exploitation of ICI in a multitarget scenario to resolve
Doppler ambiguity of high-mobility targets and introduce additional
dimension for target resolvability, where fc = 60 GHz, B =50 MHz,
and N = 2048.
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Fig. 27. Exploitation of PN via covariance matching to resolve
range ambiguity of a target at 800 m, which appears at 175 m due to
the maxi unambig range of 625 m. The OFDM parameters
are fc =28 GHz, Af=240kHz, N =256, and M = 10, while the
oscillator is a phase-locked loop (PLL) synthesizer with the loop

bandwidth of 1 MHz and the 3-dB bandwidth of 100 kHz.

can be measured through odometry or inertial devices.
Surveys on the general SLAM problem can be found
in [191], providing an overview of various techniques,
including FastSLAM, GraphSLAM, and belief propagation
SLAM.

In the classical setup, the (unknown) state of the sys-
tem at the discrete time instant n consists of the state
x, of the mobile user, encompassing factors such as its
position, orientation, and speed, and the position of the
landmarks m representing the map. The objective is to
determine the probability density function p(x,,m]y;.,)
(referred to as the belief) and deduce both x,, and m,
where y,.,, denotes the set of measurements collected up
to time instant n. To achieve real-time processing, Bayesian
filtering approaches can be employed. In each iteration,
p(Xn, mly;.,,) is computed, starting from the belief at time
n — 1 incorporating the new measurement y, and utilizing
the statistical mobility model of the user, characterized by
the probability density function p(x, |x,—1) [222].

The incorporation of ISAC functionalities into smart-
phones opens up the possibility of utilizing them as mono-
static SLAM devices, employing radio signals for scenario
scanning (radio SLAM). This allows for infrastructure-less
localization and the automatic generation of digital
maps, all while safeguarding user privacy and minimizing
energy consumption compared to lidar-based solutions
that demand perfect visibility and manual operation [223].
Early investigations into radio SLAM on handheld devices
were previously referred to as personal radar and were
introduced in [224]. In radio SLAM, landmarks are iden-
tified through specular reflections of signals emitted by
the mobile user, which is assumed to be equipped with an
antenna array.

From the perspective of signal processing algorithms,
two main approaches are typically followed: 1) classi-
cal SLAM algorithms that rely on the joint estimation
of landmarks and user positions, as described earlier;
and 2) algorithms based on relative pose estimation by
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comparing measurements (scenes) collected in the last two
time instants, y,, and y,,_;. In the latter approach, the goal
is to estimate the position and orientation displacement of
the mobile user, denoted as d,, = x,, —X,,_1, at time n with
respect to time instant n — 1. A wide range of algorithms
have been developed for this purpose, including the widely
used scan matching algorithm [226] and approaches bor-
rowed from image processing, such as those utilizing the
Fourier-Mellin transform [225], [227].

Nevertheless, the presence of multipath, diffuse reflec-
tions, and the sidelobes’ impact from the antenna array
can introduce artifacts in the backscattered received sig-
nal, leading to the emergence of “ghost” landmarks. This
complication renders the application of algorithms in radio
SLAM significantly more challenging compared to lidar- or
vision-based SLAM. Furthermore, at frequencies up to mil-
limeter waves, specular reflections tend to dominate over
diffuse reflections. Consequently, in a monostatic setup, the
signal emitted by the user terminal is only reflected back
to the user if it impinges the obstacle almost perpendicu-
larly to its surface. Otherwise, the obstacle might remain
invisible, posing a critical challenge to the SLAM process.

In this context, the capability to operate in the THz band
is expected to play a crucial role in 6G systems. The wide
bandwidth available in this range will result in high spatial
resolution, and the feasibility of large antenna arrays will
enable unprecedented angular resolution [228]. Moreover,
at THz frequencies, the wavelength becomes comparable
to the typical roughness of objects, potentially causing the
diffuse component to dominate over the specular compo-
nent. This aspect enhances object visibility even when the
impinging angle of the signal is not perpendicular. Experi-
mental investigations of radio SLAM at THz frequencies are
in their early stages. Initial results are reported in [225],
where the performance of scan matching algorithms and a
modified version of the Fourier—Mellin transform (MFM) is
assessed using real-world THz radar measurements in an
indoor environment. An example is provided in Fig. 28,
where the performance of the MFM algorithm in terms
of mapping and trajectory reconstruction is shown. The
results were obtained starting from measurements taken
at 300 GHz (lower THz frequency band) in a typical large
office scenario by moving the measurement set up along
a circular shape (red curve) and scanning the scene with
a span of +£90° with respect to the direction of movement
and a beamwidth of 18°. The obtained localization RMSE
is 12 cm. More details on the algorithms and the measure-
ment campaign can be found in [225].

VI. SENSING AND COMMUNICATING
WITH WIDE APERTURES
A. Introduction

In contemporary wireless systems, antenna arrays are
typically adopted to obtain beamforming and spatial mul-
tiplexing. The former involves directing the transmitted
signal precisely toward its designated RX in space, whereas
the latter consists in simultaneously transmitting multiple

M table

O UV UV

%

e e—av—u §
.¢“ \ .'0‘ o
. %
v d : [
Q‘. “0
] C o — —— L
1]
o
50 2
00
g raised floor
00

Fig. 28. Radio SLAM using measurements in the THz band. Top:
sketch of the measured indoor scenario. Bottom: trajectory and map
reconstruction using the MFM algorithm and an occupancy grid
mapping method, respectively [225].

data streams to the same user or users located at dif-
ferent positions. These are the core functionalities of
(massive) MIMO systems. As a natural evolution of the
massive MIMO technology, extremely large-scale MIMO
(XL-MIMO) further boosts the number of antennas by
at least an order of magnitude, e.g., several hundreds
or even thousands of antennas, thus obtaining electri-
cally large aperture arrays (ELAAs) and unprecedentedly
improving the spectral efficiency and spatial resolution
for wireless communication and sensing [229], [230],
[231]. In the following, we will refer to an ELAA as
an antenna whose dimension D is much larger than the
wavelength )\ (electrically large antenna). Depending on
the technology adopted and the way it is modeled, an ELAA
may be dubbed as holographic MIMO and large intelligent
surface (LIS) [232], [233], [234]. Typically, these terms
are applied when arrays consist of electrically small and
densely packed elements.

B. Near-Field Versus Far-Field Communication
and Sensing

The exploitation of higher frequency bands, from mil-
limeter waves to THz, foreseen in 6G networks and the
availability of new antenna technologies for ELAAs opens
new opportunities for communication and sensing [231],
[233], [234], [235], [236]. In fact, traditional wireless
systems typically work at distances beyond the Fraunhofer
distance, defined as dr = 2D?/\ (far-field boundary),
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Fig. 29. Fraunhofer region boundaries as a function of the antenna
size at different frequency bands. The area above each curve
corresponds to the far-field region (Fraunhofer region), whereas the
area below each curve corresponds to the near-field region.

where the electromagnetic wavefront can be well approxi-
mated as being planar. Instead, using an ELAA, the wireless
links are likely to operate at distances below dr, corre-
sponding to the radiating near-field region, where such
an approximation no longer holds and, consequently, the
wavefront impinging on the antenna is spherical [237].
While this aspect requires a revisitation of the classical
channel models that in many cases are based on the
far-field assumption and then may fail in the near field,
at the same time, it provides the chance to improve
the communication and sensing capabilities of the sys-
tem [230], [238]. In Fig. 29, the Fraunhofer distance is
plotted as a function of the antenna aperture size D for
different frequency bands ranging from microwave to THz.
As it can be noticed, at millimeter waves and beyond, the
radiating near-field region might correspond to practical
operating distances of several meters or hundred meters
even with relatively physically small (but electrically large)
antennas.

Regarding communication, a spherical electromagnetic
waveform is more informative than a plane wave, as it
will be discussed in Section VI-C. For sensing/positioning,
incident spherical wavefronts embed not only angular
information, as in the far-field regime, but also distance
information. This property can be exploited to determine
the position of a transmitting source by analyzing the
phase profile of the received signal along the antenna
aperture, as it will be detailed later [236].

C. Communication and Sensing With ELAAs

The adoption of an ELAA provides improved flexibility
in forming the beam and sensing the electromagnetic wave
(see Fig. 30). While in the far-field, only differently steered
beams can formed, thus providing user discrimination only
at the angular level, in the near-field region, the beam
can be focused on a specific location similar to an optical
lens [239]. It not only allows for the control of multiuser
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interference (interference shaping) in terms of angular
direction, similar to traditional beam steering but also
provides control over interference in terms of distance,
thus allowing the discrimination of users seen with the
same angle of view [240].

The near-field effect can be exploited to combat the
multiplexing gain degradation caused by sparse multipath
channels in MIMO links when operating in strong LoS
conditions at high frequencies. In principle, it is possible
to establish orthogonal channels (communication modes)
by generating nonoverlapping beams, each one focusing
on different properly chosen locations of the receiving
antenna (see UE3 in Fig. 30). A rough estimate of the
number of communication modes, i.e., communication
DoF, can be calculated starting from simple arguments of
diffraction theory [241]. Consider two antennas, modeled
as continuous surfaces for convenience, in parallax config-
uration with areas Ar and Agr at distance d, as shown in
Fig. 31. The smallest spot of area a we can use at the trans-
mitting antenna will be the one from which the diffracted
electromagnetic field approximately fills the aperture of
the receiving antenna. In particular, the diffraction solid
angle from the spot is Q ~ (A\?/a), where it must be
Q d? ~ Ag (full illumination). The number of distinct spots
on Ag, i.e., communication modes, is

Ar  ArAgr
DoF ~ o = e

(39)

The previous result confirms that with ELAA, i.e., A/ A2 >
1, it is possible to obtain high-rank communications even

RIS-aided NLOS
communication and sensing

ELAA

Obstacle

UE5
UE6

Beam steering
D (far field)

UE1 D
High-rank LOS

communications
UE2 Beam focusing
Interference shaping

6D localization

Fig. 30. Near-field c ing. UE1 and UE2 can
be discriminated even if they are at the same angle of view thanks

ication and

to focusing (interference shaping). UE3 can establish a high-rank
communication link (spatial multiplexing in LoS); the position and
orientation of UE4 can be estimated (single-antenna 6D
localization). UE5 can be localized/sensed in NLOS thanks to the RIS.
UEG is in the far-field region, and then, only rank 1 communication
and beam steering can be realized in strong LoS conditions.
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Fig. 31. Diffraction effect at a distance d of a small spot of area a
composing the transmitting surface.

in strong LoS conditions. A more accurate theoretical
bound on DoF valid also for asymptotically large ELAA
modeled as an LIS can be found in [234]. Achieving
capacity-approaching MIMO communications in the near
field results in intricate array phase profiles. As indicated
in [242], these profiles can be effectively approximated
by using a combination of simpler multiple-focused beams
whose configuration depends on the geometry.

Regarding the localization task, as anticipated, it is
possible to localize a source or a target using only one
ELAA if it is in the antenna’s near-field region through the
analysis of the phase profile of the impinging electromag-
netic wave [243], [244].

Example 8: Consider a simple 2-D scenario where a
receiving linear ELAA located in the origin is composed
of N elements deployed along the xz-axis spaced apart
of A = \/2 with coordinates r, = [(n — 1) A,0], for
n = 1,2,..., N. The size of the ELAA is D = N A, with
N > 1. A punctiform monochromatic RF source located
at position p = [ps,py] in the near field of the ELAA is
present (e.g., an active node to be localized or a reflecting
target in case of sensing). Denote with d = ||p — r;|| the
distance between the first element of the ELAA and the
source and by 6 the steering angle so that sin(6) = p./d
and p = [dsin(0), d cos(9)]. The complex baseband channel
between the source and the ELAA can be modeled as

27 g

hn = ﬁne_] A (40)

where 3, represents the channel amplitude and

(n—1)% X2 _ 2pa (n—1)A
442 2d?

dn = p - ta =d\/1+
41)

is the Euclidean distance between the source and the nth
receiving antenna element. If D < d, then 3,, ~ 8; Vn and
we can use in (41) the following Taylor expansion (1 +
)Y/? =1+ (z/2) — (¢*/8) + o(x?) leading to:

(n—1)Asin(d) (n—1)° /\2.

5 Ry (42)

The first term of (42) contributes in (40) with a constant
phase shift, which is not informative if d > X because of
the 27 phase ambiguity and the need for the source to
be perfectly synchronized with the antenna. The second
and third terms indicate a parabolic behavior of the phase
profile observed along the array, which is a function of
the steering angle and the distance, i.e., the position p of
the source, which can be therefore estimated. If d > dr
(far-field condition), the third term contributes with a
phase shift smaller than 7/8 at the edge of the antenna
and hence becomes negligible. As a consequence, d,, ~
d—(n—1)A sin(0)/2 and only the AoA 6 can be estimated.

The case where the source employs an antenna array
opens the door to 6-D positioning, i.e., the estimation
of the source’s position and orientation if located in the
near-field region of the ELAA (see UE4 in Fig. 30). The
theoretical performance bound of 6-D positioning has been
derived in [243] for generic shapes of the antenna arrays
and wideband signals.

It has to be remarked that single-antenna positioning
is also possible in the far field but that would require,
in addition to the signal’s AoA measurement, the exchange
of wideband signals to estimate the distance between
the source and the antenna through ToA measurements
and a ranging protocol to cope with the lack of a com-
mon clock. On the contrary, with an ELAA, localization
and sensing can be obtained with a narrowband signal
and lower latency because no ad hoc synchronization
procedures and time-base ranging protocols are needed.
As a consequence, more resources become available for
communication, which allows for more efficient joint com-
munication and sensing schemes.

A deep investigation of near-field ISAC is still missing
in the literature. In this direction, Wang et al. [245]
derived the minimization of the Cramér-Rao bound for
the near-field joint distance and angle sensing subject
to the minimum communication rate requirement of
each user. In the same work, both fully digital antennas
and hybrid digital and analog antennas are investigated.
Dehkordi et al. [246] considered a multistatic OFDM-based
ISAC scenario by proposing a low-complexity two-stage
estimation process where first a rough estimate of the
target is obtained assuming a far-field condition and then
refined accounting for the correct near-field model.

The primary challenges in modeling and designing joint
communication and sensing functionalities using ELAAs
can be summarized as follows.

1) Near-field channel modeling: The extremely large
array aperture introduces spatial nonwide sense sta-
tionary properties. Different regions of the array
observe the propagation environment from varying
perspectives, with diverse polarizations. This implies
that regions may perceive signals transmitted along a
specific propagation path with differing powers and
polarizations, or signals from distinct propagation
paths [247].
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D-MIMO positioning D-MIMO multistatic sensing
Fig. 32. D-MIMO for positioning (left) and multistatic sensing
(right). Phase-coherent processing leads to wavefront curvature,
considering all radio units (RUs) as part of a distributed array. Black
RUs are TXs, while blue RUs are RXs.

2) Channel estimation: Achieving optimal transmission
demands highly accurate channel estimation. Unfor-
tunately, the vast number of elements constituting
the ELAA generally entails estimating a consider-
able number of channel parameters, particularly in
challenging propagation environments, leading to
increased signaling overhead. In traditional MIMO
systems, exploiting the sparsity of the angular-domain
channel (e.g., through compressed sensing) simplifies
this task. However, near-field propagation exhibits
sparsity in the location domain due to different
electromagnetic characteristics. Consequently, exist-
ing angular-domain-based algorithms are not directly
applicable. For instance, Cui and Dai [248] proposed
a polar-domain representation of the channel that
comprehensively captures near-field spherical wave
characteristics. Differently, in cases of strong LoS,
the channel is closely linked to geometry, specifi-
cally the source’s position. In principle, only three
parameters are sufficient for estimating the chan-
nel. Consequently, channel estimation aligns with the
localization task, further intertwining S&C.

3) ELAA modeling: Depending on the technology
adopted, if the ELAA comprises dense elements,
mutual coupling effects between them cannot be
overlooked and must be accurately modeled [230].

D. Distributed MIMO/Cell-Free Massive MIMO for
Multiperspective Localization and Sensing

A distributed multiple-input-multiple-output (D-MIMO)
system can be viewed as a massive MIMO system, where a
large number of antennas are deployed over a wide area
with irregular interelement spacing (see Fig. 32) [249].
Each antenna (or small array) is called a RU, several of
which may be connected to a distributed unit (DU), which
takes care of most of the baseband processing [250]. The
DUs are connected to central unit (CU), which manages
higher layers and coordinates the DUs. Various D-MIMO
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architectures correspond to different node topologies,
different levels of local versus central processing, and
different levels of synchronization [251]. The operation
is otherwise similar to classical massive MIMO, involving
UL pilot transmission, DL multiuser beamforming, and UL
data transmission [252].

Typical D-MIMO assumes the phase synchronization
among the RUs, enabling spatial focusing toward UEs
[249], [253]. While for communication purposes, the loca-
tions of RUs are irrelevant and phase stability during each
coherence interval suffices, more stringent requirements
exist for localization and sensing functions. In these cases,
considering all D-MIMO RUs as a large array, the overall
array steering vector needs to be known, which requires
not only phase stability but also precisely known locations
of the RUs (within a fraction of the wavelength) [90],
[254], [255]. Combined, this places UEs and objects in
the near field of a massive distributed array while remain-
ing in the far field of individual elements [90]. Meeting
these stringent requirements is likely only feasible at FR1
[256, Sec. 6.2.1], [257], whereas at higher frequencies
(FR2 and above), classical time-coherent processing can be
performed. At FR1, the operation of D-MIMO bears resem-
blance to carrier phase positioning (see Section IV-B9),
with multistatic sensing (see Section IV) and with ELAA
(see Section VI-C). The main differences lie in the large,
dense, and distributed architecture of D-MIMO.

The main benefits of D-MIMO include more uni-
form coverage for communication, localization, and
sensing [249], [255]. In addition, the large aperture
provides enhanced multipath resolution and improved
accuracy, though at the expense of high computational
complexity [258].

E. Sensing and Localization Aided by Large RIS

The use of RIS for localization was discussed in
Section IV-B8, where the UE was in the far field of the RIS,
providing additional delay and angle information. When
the RIS becomes large and the UE is in the near-field region
of the RIS, model (24) changes to [259], [260], [261],
[262]

al}gs = aT_RISO‘RIS_Ral{IS (p) QmaRIS (30) .

(43)
This means that a single-antenna UE, observing y,, =
o®Ss,. + 2z, over a single subcarrier across different
times m, can in principle estimate its 3-D location p,
even when the LoS path between the UE and BS is
blocked [261], [262], [263], [264] or when some of the
RIS elements are failing [265]. In (43), aris(p) represents
the near-field response vector as a function of the UE
position. Fig. 33 illustrates a practical example of NLoS
localization facilitated by RIS. In this scenario, a single-
antenna UE navigates within an indoor setting in the
presence of several obstacles, with a BS emitting a refer-
ence OFDM signal. A long linear RIS is deployed (green
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Fig. 33. RISs-assisted localization in a near-field NLoS scenario. The
28-GHz OFDM system with 250-MHz bandwidth. The error evolution
along the trajectory is reported [259].

patches in the figure), allowing the UE to determine its
location by analyzing only the signals reflected by the
RIS. In this specific setup, as proposed in [259], the
reflection coefficient of each element in the RIS matrix .,
dynamically varies during the transmission of the reference
signal. This variation follows a predefined pattern designed
to enable the UE to estimate the delay of the signal
component reflected by each visible element of the RIS.
Utilizing these BS-RIS-UE delay measurements, the UE can
then compute its own position. The inset plot demonstrates
that, despite numerous obstacles partially shadowing the
RIS, the localization error along the trajectory of the UE
remains confined to 20-30 cm. In addition, a narrowband
version of the algorithm, leveraging the phase profile of
the received signal, is proposed in [259]. For sensing,
model (43) can be used, for example, in a monostatic setup
with a single-antenna BS monitoring an area and making
use of the high spatial resolution of the large RIS [266],
[267], [268]. By generating RIS configurations 2, that
scan an area, targets can be detected and localized, even
with limited bandwidth, from the observations at the BS,
harnessing the paths from BS to RIS to target, back to
RIS and back to the BS. The near-field imaging problem
utilizing XL-MIMO antennas and RIS has been investigated
in [269] where the design of the optimal illumination
waveform and RIS configuration is addressed.

VIL. TECHNOLOGIES FOR
SENSING-ASSISTED
COMMUNICATION

MIMO communication operating at mmWave with large
arrays and bandwidths provides the angular and delay
resolution required for high-accuracy localization and
sensing, as we have discussed in the previous sections.
Resilient communication becomes more challenging, how-
ever, as cellular networks advance to higher carrier
frequencies. On the other hand, fast adaptation of com-
munication strategies is more difficult due to large MIMO

arrays, higher bandwidths, and challenging circuit designs.
For example, initial access to configure the mmWave beams
in 5G [270] can be up to 5 s with a simple analog
beamforming architecture, with more time expected at
sub-THz frequencies [271]. On the other hand, there are
fewer opportunities for high-rate communication due to
the larger performance differential between LOS and NLOS
links, more frequent blockage (smaller first-order Fres-
nel zone), higher penetration losses, increased scattering,
and less reflection [16]. For example, commercial 5G
mmWave throughput measurements with a blocked LOS
path show a 2x throughput reduction when reconfiguring
the beamforming to use an available NLOS path and a 4x
throughput reduction when the device switches to a lower
frequency in 4G because no NLOS path is available [272].

Sensing-assisted network operation can mitigate the
impact of these issues. For example, ISAC maps can incor-
porate localization information about the environment
and about the success of past communication configura-
tions to design position-dependent beam codebooks with
a reduced number of beams, as explained in Section II-E
and illustrated in Fig. 5(c). In addition, Fig. 5(c) shows
how ISAC maps can also provide the position and velocity
of potential blockers of the communication signal, so the
network can proactively react to mitigate the impact of
blockage. In this section, we describe specific approaches
for adapting communication operations based on the
exploitation of the ISAC map. In particular, we address
the problems of sensing-aided array configuration and
blockage prediction and management.

A. Sensor-Aided Array Configuration

The earliest prior work on enhancing network operation
in an ISAC setting considers the problem of mmWave
MIMO beam training for initial access aided by some
type of sensing information and past communication. The
problem is to find the transmit beam f in a codebook F
and the receive beam w in a codebook W to maximize
a given performance metric, for example, SNR. The stan-
dard approaches are a brute-force search over pairs [273]
or a hierarchical search [274] over increasingly refined
codebooks. In both cases, search time generally grows
with antenna size, but it can be reduced by searching
(intelligently designed) smaller codebooks. Achieving this
reduction is especially important in vehicular settings,
where the channel is highly dynamic and frequent antenna
array reconfiguration is required. In the following, we will
show examples of how sensing and learning can be used
together to make communication more efficient.

1) Position-Aided Beam Training: Initial work exploited
position information obtained with a GPS [275] or a radar
mounted at the BS [276] to reduce the size of the beam
codebook. The basic idea consists of using the estimated
direction of the user ¢ur suggested by its position to
define a reduced set of beams to be tested [276]. This
reduced beam codebook W, can be computed to account
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for the estimation error in the angular direction of the user,
denoted as A¢ug. In this way, the reduced codebook will
include the beams from an initial grid indexed by the index
set £ such that n € £ if

sin (6-A0) +1< ]2\7” <sin (§+A9) +1+2/Nr.
' (44)

With this type of strategy, it is possible to achieve an
overhead reduction of (1 — |£|/N7) [276]. Newer strate-
gies that exploit location information obtained via radio
positioning have also been proposed [277]. However, all
these solutions are only feasible in LOS settings.

More elaborated approaches exploiting position and also
ML can achieve a significant overhead reduction in both
LOS and NLOS channels. For example, inverse finger-
printing learns a subset of location-dependent beam pairs
based on past measurements in similar locations such that,
with high probability, at least one of the vectors in the
subset works well [27], [28], [278]. The recommendation
algorithm is trained based on past measurements of the
strength of different beam pairs as a function of location,
made under different snapshots of the environment [28].
The recommendations may be refined using online learn-
ing, by further exploring the angular space to achieve
better beam pointing [27]. Additional information may
also be used, such as the traffic density, to make more
accurate predictions [278].

2) Radar-Aided Beam Configuration: For NLOS settings
and a hybrid architecture, it is possible to design the
precoders and combiners from the full instantaneous
CSI or from the spatial channel covariance information
(also known as statistical CSI, partial CSI, or imperfect
CSI). However, estimating either the channel or the spa-
tial covariance introduces a significant overhead [46],
[571, [279]. The spatial similarity between the radar and
communication channels has been studied in [32], [280],
and [281] via ray-tracing simulation and also experimental
measurements. These studies show that the similarity in
the main channel directions—in other words similarity
in spatial covariance—between radar and communication
channels operating at close but different mmWave frequen-
cies is high so that the radar covariance can be used as a
prior for the communication covariance.

The first work on radar-aided spatial mmWave link con-
figuration proposes the estimation of the spatial covariance
in a vehicle-to-infrastructure (V2I) link with an active
radar mounted at the BS [32]. An alternative design
in [281] considers a passive radar RX at the BS, which
is listening to the automotive radar signals coming from
the different vehicles on the road, as illustrated in Fig. 34.
Some of the vehicles are already connected to the BS, while
others need to join the network. Even in the absence of the
chirp reference signal used by the automotive radar in the
vehicles, it is possible to estimate the radar covariance at
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Fig. 34. Illustration of a vehicular communication system with
radar-aided beam training. There is a similarity between the radar
and communication main channel directions, which can be exploited
to reduce beam training overhead in NLOS and multiuser scenarios.

the BS radar RX. Using this information, Ali et al. [281]
showed that communication overheads can be reduced by
77% in a realistic vehicular environment simulated by ray
tracing. Though the results are promising, there is still
a mismatch between radar and communication channels
due to using different frequencies or different locations of
radar modules and transceivers in the vehicle, as illustrated
in Fig. 34. Some subsequent work [30], [282] introduces
multiple users into the environment and designs a deep
learning strategy that translates the radar covariance into
a communication covariance to compensate for these mis-
matches, achieving further overhead reductions that result
in higher effective rates as shown in Example 9.

Example 9: (Deep Learning-Based Radar Assisted Link
Configuration): We consider a radar-aided communication
system as the one illustrated in Fig. 34. The parameters
of the radar and communication signals are specified in
Table 4. The system is simulated with a number of four
users on the road. Additional details of the urban envi-
ronment simulated by ray tracing can be found in [30]
and [281]. The considered performance metric is the sum
rate, defined as Rs = )  R., with the effective rate per
user R,

R, = (1 - L) Afsy (45)

Tcoh

with Af the subcarrier spacing and s, the spectral effi-
ciency for the wuth link

N

su= Y log, (1+ SINR, [k])
k=1

(46)

with N the number of subcarriers. The initial estimation of
the radar covariance matrix at the radar arrays of the BS is
performed using the multiuser separation and covariance

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 10,2024 at 23:39:07 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gonzalez-Prelcic et al.: ISAC Revolution for 6G: Vision, Techniques, and Applications

Table 4 Simulation of a Radar-Aided mmWave Vehicular Communication
System: Parameters for the Communication Signals and the Automotive
Radar Signals

[ Parameter | Symbol[ Value [ Units |
Communication system
Transmit power P 30 dBm
Carrier frequency fe 73 GHz
Bandwidth B 1 GHz
BS height 5 m
Vertical separation of arrays at the BS 10 cm
Distance BS to closest point on the road | d 10 m
Number of antennas at the BS 128
Number of RF chains at the BS 1
Number of antennas at the vehicle 16
Number of arrays at the vehicle 4
Number of RF chains at the vehicle 1
Height of the communication arrays at 1.6 m
the vehicle
Number of phase shifter bits D 2 bits
Number of subcarriers N 2048
Subcarrier spacing Af 240 kHz
Cyclic prefix length L 511 samples
Radar system
Center frequency fr 76 GHz
Bandwidth B; 1 GHz
Transmit power 30 dBm
Number of antennas 128
Chirp period 500 us
Samples per chirp 1024 samples
Height of the vehicle radars 0.75 m

estimation strategies designed in [30] and [281]. A fully
connected network trained with a set of 9600 samples and
evaluated with a test set of 2400 samples is used to map
the radar covariance to the communication covariance.
Radar-aided beam training is implemented using a reduced
codebook composed of four beams around the direc-
tions suggested by radar. Fig. 35 shows the sum rate for
exhaustive search, radar covariance-aided beam training
without compensating for mismatches, and communi-
cation covariance-aided beam training after ML-based
mapping of the radar covariance to the communication
covariance. The performance gain of radar-aided beam
training strategies varies with the coherence time, but it is
significant in all cases. The benefit of ML-based mismatch
prediction is higher at smaller coherence times.

Other recent strategies for radar-aided communication
exploit the radar information obtained with a joint radar
and communication system to speed up beam training.
For example, Liu et al. [75] considered the beam tracking
stage of a vehicular communication system, exploiting a
BS operating as a radar to estimate the angle, distance,
and velocity of a given vehicle. The beamformers are
then updated based on the predicted angle for the com-
munication link, providing a relevant performance gain
with respect to other benchmarks. In a similar setting,
Yuan et al. [283] proposed a variation of this idea, exploit-
ing the delay and Doppler parameters estimated at the BS
for the link corresponding to a particular vehicle. Then,
a message passing algorithm based on factor graphs is
derived to estimate the unknown range, speed, AoA, and
path loss, to finally leverage the angular information for
beam tracking as in [75].
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Fig. 35. Sum rate versus coherence time for different beam
training strategies, including exhaustive search (blue), radar
covariance-aided beam training without compensating for
mismatches (green), and communication covariance-aided beam
training after ML-based mapping of the radar covariance to the
communication covariance (red).

3) Vision-Aided Beam Training: The images obtained
from cameras can be exploited to infer decisions related
to beam selection for mmWave systems, which is moti-
vated by the recent development of deep learning-powered
computer vision methods such as object detection and 3-D
scene reconstruction [284]. Moreover, the advancement of
camera technology allows the adoption of high-resolution
cameras at both BSs and UEs at a low cost. The features
extracted from the images may indicate the locations of
the UEs and reflectors, which would also help determine
the existence of the LoS path. The images can be fused
with other information, such as the position of the UEs,
to enhance the beam selection performance. Furthermore,
images can be useful to track the users in dynamic envi-
ronments, which would be beneficial for beam prediction.
Vision-aided beam training methods have the potential
to reduce or even completely mitigate the beam training
overhead incurred on the communication system.

One of the interesting works considers collecting mul-
tiple images in the vicinity of the mmWave BS [285].
The collected images are used to reconstruct the 3-D
environment, which is the input of a deep neural network
along with the position of the UE. The output of the
network indicates the selected beam index. The takeaway
from this work is that the reconstructed 3-D environment
contains spatial information such as the locations of the
scatterers. Tian et al. [284] studied the beam prediction
problem leveraging previous beam indices and correspond-
ing images in a dynamic vehicular scenario where the
roadside units have cameras to the BSs. The ray-tracing-
based simulation results show that several future beams
can be accurately predicted with various deep learning
architectures such as LSTM. Since these algorithms utilize
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deep learning methods, it is imperative to have a dataset
that contains both communication channels and corre-
sponding images. Although one such dataset is provided
by Alrabeiah et al. [286], where they obtained the images
of the scenes from ray-tracing environments, creating
datasets in realistic environments is an open challenge.

Another approach is to exploit the cameras mounted on
the UEs, which is more suitable for vehicular settings. It is
shown that it is possible to detect the surrounding objects
and vehicles if the images obtained from the cameras
mounted on an autonomous vehicle are exploited in [287].
This approach not only provides the beam decisions but
also predicts the duration of the beam coherence interval.
The simulation results obtained by using 3-D modeling and
ray-tracing software show that utilizing the images taken
at the UE is more beneficial than leveraging the cameras at
the BS.

4) Exploiting Lidar Point Clouds and Multimodal Infor-
mation: Sensors, such as lidar or IMU, have also been
leveraged to reduce beam training overhead [29], [288],
[289], [290]. The exploitation of these sensors is particu-
larly interesting in cellular networks supporting vehicles
or robots. The different beam training strategies aided
by lidar use the lidar point cloud to identify potential
obstacles in the environment. The proposed designs cre-
ate different features from the lidar point cloud and
other potential data. For example, in [29], this feature
is created from the positions of the BS and UE, the
coverage area, and the lidar point cloud. This informa-
tion is the input to a convolutional network that decides
about the channel state (LOS or NLOS) and recom-
mends a reduced set of beams for beam training. The
subsequent works introduced innovations that improve
the performance in complex NLOS cases. For example,
the approach in [288] considers a curriculum learning
strategy that trains with LOS measurements first and
then gradually introduces NLOS observations, resulting in
an improved beam classification accuracy. In [290], the
main novelty is the introduction of a federated learning
framework such that a set of connected vehicles use their
local lidar data to fine-tune a shared neural network for
beam selection. Since the same network can be utilized
by vehicles that join the network later, the overhead
is further reduced. lidar information is also commonly
exploited in a multimodal fashion, combined with position
information from GPS, images from cameras, or depth
maps [291], [292], [293], [294].

B. Blockage Prediction and Management

Wireless communication systems often experience
blockages that could lead to unreliable communication
links, even link failure. This problem is more pronounced
at mmWave and THz bands where the LoS path is usu-
ally much stronger than the other paths. Work has been
done to characterize the impact of blockage, especially
at millimeter wave frequencies. There have been many
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measurements of path loss in the presence of blockage and
specific studies describing the impact of a blocked link. For
example, path loss for LOS and NLOS in urban areas can be
characterized by different exponents [295] possibly with
additional corner losses [296]. In terms of specific blocking
objects, vehicles may incur 20 dB of attenuation [297],
people 40 dB [298], and hand 20 dB [299]. The impact
of the blockage and the duration depends critically on
the mobility of the TX, RX, and blockage as well as the
corresponding distances, with impact generally increasing
with frequency [297]. It seems likely that the trend will
continue for frequencies above 100 GHz.

In terms of blockage management, 5G NR primarily
relies on high BS density to facilitate macro-diversity and
increase the probability that at least one link is unblocked.
Its operation is primarily reactive, e.g., repeating the beam
training phase after a link failure. In particular, it does not
make special accommodations for the impact of blockage
despite the potential for harvesting a tremendous amount
of environmental information that could be available in a
network with ISACs.

One of the earliest works on sensor-aided blockage
management utilizes RGB and depth (RGB-D) cameras
that are located close to the mmWave BSs to predict the
human blockages [300]. This work employs a centralized
proactive BS selection algorithm, which is shown to be
effective with experimental results. The work in [301]
utilizes a dual-band BS supporting both sub-6-GHz and
mmWave frequencies at the roadside unit of a vehicular
communication system. In addition, the roadside unit is
equipped with a camera to improve the blockage detection
performance. The image feed provided by the camera and
the CSI from the sub-6-GHz system are used as the input
of a deep neural network for blockage detection. Ray-
tracing-based simulation results show that the blockages
can be detected with high accuracy. In [302], a bimodal
ML algorithm that makes use of the temporal beam index
sequence and the image feed from a camera equipped at
the BS is used to predict future blockages with the help of
a deep learning model that detects objects in the images.
Furthermore, this work also describes a BS handover
framework that is shown to be effective in ray-tracing-
based simulations. The work in [303] utilizes the GPS
information at the vehicles and images provided by the
camera at the mmWave BS to detect blockages. A feature
extraction and a fusion network are used to process the
vehicle location and camera images to detect the blockages
at the edge.

Lidar is another sensor that can provide physical infor-
mation related to the environment, which can be useful
for blockage prediction as shown in [304] where an lidar
is used to scan an indoor environment. Trajectories of
the users are predicted with an LSTM network. Then, the
trajectories are used to construct the 3-D environment that
can be used to trace the rays, referred to as ray casting,
which are converted to the human blockage predictions.
Similarly, the work in [305] proposes to convert the lidar
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data to 3-D scenes. The created scene is used for the
ray-tracing simulations to obtain the path information
between the BS and the UE, which is converted to an
initial channel estimate and blockage detection without
any communication overhead. In [294], an experimental
setup with a dual-band BS unit is also equipped with a
camera and an lidar. The authors use the camera images
if the environment is bright and the lidar output if it is
dark. Object detection algorithms and a recurrent neural
network are utilized for blockage prediction. The exper-
imental results show that successful frequency handover
is achieved with the described system. In [306], an lidar
is equipped alongside a mmWave BS at the roadside unit
of a vehicular communication system. The lidar data and
power sequence, i.e., received power sequence obtained
with the transmitted beams, are used as the inputs of
a deep neural network to predict blockages. The exper-
imental results verify the effectiveness of the considered
approach.

Finally, the work in [307] uses range-angle maps
obtained with the radar at the roadside unit. The
range-angle maps are utilized as the input of an LSTM
network to predict blockages. The authors show the effec-
tiveness of the proposed approach with an experimental
setup.

All this recent work shows that blockage detection and
proactive blockage prediction can be achieved with the
aid of sensors in mmWave systems. Moreover, ML-based
solutions are shown to be effective for converting the data
obtained from the sensor(s) to blockage detection and/or
prediction.
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