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a b s t r a c t

In this paper, we consider a new approach for semi-discretization in time and spatial
discretization of a class of semi-linear stochastic partial differential equations (SPDEs)
with multiplicative noise. The drift term of the SPDEs is only assumed to satisfy a one-
sided Lipschitz condition and the diffusion term is assumed to be globally Lipschitz
continuous. Our new strategy for time discretization is based on the Milstein method
from stochastic differential equations. We use the energy method for its error analysis
and show a strong convergence order of nearly 1 for the approximate solution. The proof
is based on new Hölder continuity estimates of the SPDE solution and the nonlinear
term. For the general polynomial-type drift term, there are difficulties in deriving
even the stability of the numerical solutions. We propose an interpolation-based finite
element method for spatial discretization to overcome the difficulties. Then we obtain
H1 stability, higher moment H1 stability, L2 stability, and higher moment L2 stability
results using numerical and stochastic techniques. The nearly optimal convergence
orders in time and space are hence obtained by coupling all previous results. Numerical
experiments are presented to implement the proposed numerical scheme and to validate
the theoretical results.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following initial–boundary value problem for general semi-linear stochastic partial differential
quations (SPDEs) with function-type multiplicative noise:

du =
[
∆u+ F (u)

]
dt + G(u) dW (t) a.s. in (0, T )× D, (1.1)

u = 0 a.s. on (0, T )× ∂D, (1.2)

u(0) = u0 a.s. inD, (1.3)

here D = (0, L)d ⊂ Rd (d = 1, 2). F ,G are two given functions that will be specified later. {W (t); t ≥ 0} denotes an
R-valued Wiener process.
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The corresponding stochastic ordinary differential equations of (1.1) (without the Laplacian term) are studied in [1,2]
or the case when both F and G are Lipschitz continuous, and in [3] for the case when G satisfies the one-sided Lipschitz
ondition as stated in (2.7). The strong and weak divergence is considered in [4] for some F which are not Lipschitz
ontinuous. Besides, the corresponding stochastic partial differential equations of (1.1) when F is Lipschitz and non-
ipschitz continuous and when G is additive and multiplicative are studied in [5–9] based on the variational approach
nd in [10–16] based on the semigroup approach. Here the half-order convergence is established in [9] when the drift
erm is F (u) = u− u3 using the Euler-type scheme. The half-order convergence is established in [7] for the drift term in
2.6) and diffusion term in assumptions (A1)–(A3) for a fully discrete scheme.

The primary goal of this paper is to design and analyze a first-order numerical scheme for the time discretization of
he problem (1.1)–(1.3). Specifically, we design a new time discretization method first and then propose an interpolation
inite element method, which is based on the new time scheme to discretize the space. Our idea for the time discretization
ethod is inspired by the Milstein method [17] from stochastic differential equations and the semi-discrete in time
trategy of the stochastic Stokes equations in [18]. In addition, the diffusion function G is assumed to satisfy the global
ipschitz condition while the drift-nonlinear function F is only one-sided Lipschitz. Furthermore, to establish the rates
f convergence of the proposed scheme, we use the energy method followed by two steps: the first step is to prove
he first-order error order in time by utilizing several established Hölder continuity estimates. The second step is to
rove the optimal error order in space. To achieve this, the H1 stability of the numerical solution is needed. The H1-
eminorm stability of the numerical solution is proved first and based on which the L2 stability of the numerical solution
s established.

The remainder of this paper is organized as follows. In Section 2, several Hölder continuity results about the strong
olution are proved. These results will be used in establishing the semi-discrete in-time error estimates. In Section 3,
e present the new approach for the time discretization and its a priori stability as well as the error estimates of the
emi-discrete solution are proved. The convergence order is proved to be nearly 1 for the proposed scheme in L2-norm
nd the energy norm. In Section 4, we consider an interpolation finite element method for spatial discretization. The
inite element method is designed where the interpolation operator is utilized to overcome the difficulty resulting from
onlinearity. Through this approach, the second moment and higher moment H1 stability results are proved first, based
n which the second moment and higher moment L2 stability results are proved. Finally, the error estimates with optimal
onvergence order in space are established based on those stability results. In Section 5, several numerical tests including
ifferent initial conditions, drift terms, and diffusion terms are used to validate the theoretical results.

. Preliminaries

Let Th be the triangulation of D satisfying the following assumption [19]:

1
d(d− 1)

∑
K⊃E

|κK
E | cot θ

K
E ≥ 0, (2.1)

here E denotes the edge of simplex K . Note this assumption is just the Delaunay triangulation when d = 2. In 3D, the
otations in the assumption (2.1) are as follows: ai (1 ≤ i ≤ d+ 1) denote the vertices of K , E = Eij the edge connecting
wo vertices ai and aj, Fi the (d− 1)-dimensional simplex opposite to the vertex ai, θK

ij or θK
E the angle between the faces

i and Fj, and κK
E = Fi ∩ Fj.

Let H, K be two Hilbert spaces. Then, L(H,K) is the space of linear maps from H to K. For m ∈ N, inductively define

Lm(H,K) := L(H,Lm−1(H,K)), (2.2)

s the space of all multi-linear maps from H× · · · ×H (m times) to K for m ≥ 2.
For some function G : H → K, we define the Gateaux derivative of G with respect to u ∈ H, DG(u) ∈ L(H,K), whose

ction is seen as

v ↦→ DG(u)(v) ∀v ∈ H.

In general, we denote DkG(u) ∈ Lm(H,K), as the k-Gateaux derivative of G with respect to u ∈ H.
Below, we state the assumptions on the functionals G, F : H → K.

(A1) G is globally Lipschitz continuous and has linear growth. Namely, there exists a constant C > 0 such that for all
v, w ∈ H

∥G(v)− G(w)∥K ≤ C∥v − w∥H , (2.3a)

∥G(v)∥K ≤ C
(
∥v∥H + 1

)
. (2.3b)

(A2) There exists a constant C > 0 such that

∥DG∥ ∞ + ∥D2G∥ ∞ ≤ C . (2.4)
L (H;L(H,K)) L (H;L2(H,K))

2
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(A3) There exists a constant C > 0 such that for all u, v ∈ H

∥(DG(u)− DG(v))G(v)∥K ≤ C∥u− v∥H. (2.5)

In this paper, suppose that G : H1
0 (D) → H1

0 (D), and

F (u) = c0u− c1u3
− c2u5

− c3u7
− · · · , (2.6)

where ci ≥ 0, i = 0, 1, 2, . . .. For simplicity, we choose F (u) = u − uq for all odd numbers q ≥ 3. Then F satisfies the
following one-sided Lipschitz condition [20]

⟨a− b, F (a)− F (b)⟩ ≤ µ|a− b|2 ∀a, b ∈ Rd, (2.7)

where µ is a positive constant.
Under the above assumptions for the drift term and the diffusion term, it can be proved in [21] that there exists a

unique strong variational solution u such that(
u(t), φ

)
=

(
u(0), φ

)
−

∫ t

0

(
∇u(s),∇φ

)
ds (2.8)

+

∫ t

0

(
F (u(s)), φ

)
ds+

∫ t

0

(
G(u(s)), φ

)
dW (s) ∀φ ∈ H1

0 (D)

olds P-almost surely. Moreover, when the initial condition u0 is sufficiently smooth, the following stability estimate for
he strong solution u holds

sup
t∈[0,T ]

E
[
∥u(t)∥2H2

]
+ sup

t∈[0,T ]
E
[
∥u(t)∥4q−2

L4q−2

]
≤ C, (2.9)

here q is the exponent in the drift term of F (u) = u− uq.
Next, we introduce the Hölder continuity estimates for the variational solution u.

emma 2.1. Suppose that the solution u of (2.8) satisfies (2.9). For ϵ > 0, let θ1 =
1
2 − ϵ > 0, θ2 = 1− ϵ > 0. There exists

constant C ≡ C(D, T , q, u0) > 0, such that for all s, t ∈ [0, T ],

(i) E
[
∥u(t)− u(s)∥2H1

]
≤ C |t − s|2θ1 .

(ii) E
[u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

q

H1

]
≤ C |t − s|qθ2 , where q = 2, 4.

(iii) E
[
∥u(t)− u(s)∥qLq

]
≤ C |t − s|qθ1 , where q ≥ 2 are integers.

(iv) E
[F (u(t))− F (u(s))−

∫ t

s
DF (u(s))G(u(ξ )) dW (ξ )

2

L2

]
≤ C |t − s|2θ2 .

roof. The proof of (i) can be found in [7, Lemma 2.1], while the establishment of (iii) is based on the semigroup theory,
hich can be found in many references such as [22–24]. In addition, the proof of (ii) is followed [23, Lemma 10.27] and [18,
emma 2.3] with minor modifications for q = 4. We just need to prove (iv). To prove (iv), we use the Taylor expansion
or F with respect to u(s) ∈ L2(D) as follows.

F (u(t)) = F (u(s))+ DF (u(s))
(
u(t)− u(s)

)
+ R2, (2.10)

here R2 =

∫ 1

0
(1− η)

(
D2F (u(s)+ η(u(t)− u(s)))

)
(u(t)− u(s))2 dη.

Therefore, we have

F (u(t))− F (u(s))−
∫ t

s
DF (u(s))G(u(ξ )) dW (ξ )

= DF (u(s))
[
u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

]
+ R2.

Since we have DF (u) = 1− quq−1, then we obtainDF (u(s))[u(t)− u(s)−
∫ t

s
G(u(ξ )) dW (ξ )

]2

L2
(2.11)

=

∫
D

⏐⏐⏐(1− qu(s)q−1)
[
u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

]⏐⏐⏐2 dx
≤

∫
2(1+ q2|u(s)|2(q−1))

⏐⏐⏐[u(t)− u(s)−
∫ t

G(u(ξ )) dW (ξ )
]⏐⏐⏐2 dx
D s

3
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(

≤ 2
(∫

D
(1+ q2|u(s)|2(q−1))2 dx

) 1
2
u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

2

L4

≤ 2
(∫

D
2(1+ q4|u(s)|4(q−1)) dx

) 1
2
u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

2

L4
.

Taking the expectation E[·] to (2.11) and then using the Cauchy–Schwarz inequality, we obtain

E
[DF (u(s))[u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

]2

L2

]
(2.12)

≤ E
[
2
(∫

D
2(1+ q4|u(s)|4(q−1)) dx

) 1
2
u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

2

L4

]
≤ Cq

(
E
[
∥u(s)∥4(q−1)

L4(q−1)

]) 1
2
(
E
[u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

4

L4

]) 1
2
.

sing the interpolation inequality that E[∥u∥4
L4
] ≤ CE[∥u∥2

L2
∥∇u∥2

L2
] ≤ CE[∥u∥4

H1 ] and Lemma 2.1 (iii) yield to

E
[u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

4

L4

]
(2.13)

≤ CE
[u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

4

H1

]
≤ C |t − s|4θ2 .

By using (2.9), we arrive at

E
[DF (u(s))[u(t)− u(s)−

∫ t

s
G(u(ξ )) dW (ξ )

]2

L2

]
≤ C |t − s|2θ2 , (2.14)

where C = Cq

(
sups∈[0,T ] E

[
∥u(s)∥4(q−1)

L4(q−1)

]) 1
2
.

It is remaining to estimate R2. To do that, we notice that D2F (u) = −q(q− 1)uq−2. In the end, we have

∥R2∥
2
L2 (2.15)

≤

∫
D

⏐⏐⏐ ∫ 1

0
(1− η)q(1− q)(u(s)+ η(u(t)− u(s)))q−2(u(t)− u(s))2 dη

⏐⏐⏐2 dx
≤

∫
D

(
q(q− 1)2q−2(

|u(s)|q−2
+ |u(t)− u(s)|q−2))2

|u(t)− u(s)|4 dx

≤

∫
D
q2(q− 1)222q−3(

|u(s)|2(q−2)
+ |u(t)− u(s)|2(q−2))

|u(t)− u(s)|4 dx

= Cq

∫
D
|u(s)|2(q−2)

|u(t)− u(s)|4 dx+ Cq

∫
D
|u(t)− u(s)|2q dx

≤ Cq∥u(s)∥
2(q−2)
L4(q−2)∥u(t)− u(s)∥4L8 + Cq∥u(t)− u(s)∥2q

L2q
.

Taking the expectation E[·] to (2.15), using Lemma 2.1 (iii) and then (2.9), we obtain

E[∥R2∥
2
L2 ] ≤ CqE

[
∥u(s)∥2(q−2)

L4(q−2)∥u(t)− u(s)∥4L8
]
+ CqE

[
∥u(t)− u(s)∥2q

L2q
]

(2.16)

≤ Cq

(
E
[
∥u(s)∥4(q−2)

L4(q−2)

]) 1
2
(
E
[
∥u(t)− u(s)∥8L8

]) 1
2

+ E
[
∥u(t)− u(s)∥2q

L2q
]

≤ C(|t − s|4θ1 + |t − s|2qθ1 ) ≤ C |t − s|4θ1 ,

where C = Cq

(
sups∈[0,T ] E

[
∥u(s)∥4(q−2)

L4(q−2)

]) 1
2
.

The proof is complete by combining (2.14) and (2.16). □

. Semi-discretization in time

In this section, we follow the strategy of the Milstein scheme in SDEs to propose a new time discretization method of
1.1). This approach generates a convergence order of nearly 1 for the approximate solution.
4
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3.1. Formulation of the proposed method

Let t0 < t1 < · · · < tN be a uniform mesh of the interval [0, T ] with the time step size τ =
T
N . Note that t0 = 0 and

N = T .

lgorithm 1. Let u0
= u0 be a given H1

0 -valued random variable. Find un+1
∈ H1

0 (D) recursively such that P-a.s.(
un+1

− un, φ
)
+ τ

(
∇un+1,∇φ

)
= τ

(
F (un+1), φ

)
+

(
G(un)∆Wn (3.1)

+
1
2
DG(un)G(un)

[
(∆Wn)2 − τ

]
, φ

)
,

for all φ ∈ H1
0 (D) and ∆Wn = W (tn+1)−W (tn) ∼ N (0, τ ).

Remark 3.1. The scheme (3.1) will produce a convergence of order nearly 1. The difference between (3.1) and the
standard Euler–Maruyama method is the discretization of the noise term. While the Euler-type schemes, which establish a
convergence order of 1

2 , contain only the term G(un)∆Wn, the scheme (3.1) adds the extra term 1
2DG(u

n)G(un)
[
(∆Wn)2−τ

]
,

hich is the key point to obtain a higher convergence order.

Next, we define G : R+
× H1

0 (D) → L2(D) by

G(s; u) := G(u)+ DG(u)G(u)
∫ s

tn
dW (r), tn ≤ s ≤ tn+1. (3.2)

hen we have∫ tn+1

tn
G(s; un) dW (s) = G(un)∆Wn + DG(un)G(un)

∫ tn+1

tn

∫ s

tn
dW (r) dW (s)

= G(un)∆Wn +
1
2
DG(un)G(un)

[
(∆Wn)2 − τ

]
.

Therefore, we rewrite (3.1) as follow:(
un+1

− un, φ
)
+ τ

(
∇un+1,∇φ

)
= τ

(
F (un+1), φ

)
(3.3)

+

∫ tn+1

tn

(
G(s; un), φ

)
dW (s).

Next, we state the following technical lemma that is used to prove the error estimate results of this paper.

Lemma 3.1. Suppose that G satisfies the assumptions (A1), (A2), (A3). Let u0 ∈ L2(Ω;H1
0 (D) ∩ H2(D)), there exist constants

C > 0 such that the function G defined in (3.2) satisfies

(i) ∥G(s; u)− G(s; v)∥L2 ≤ C∥u− v∥L2 , ∀s > 0, u, v ∈ L2(D),
(ii) E

[G(u(s))− G(s; u(tn))
2
L2
]
≤ C |s− tn|2(1−ϵ), for tn ≤ s < tn+1 and ϵ > 0.

Proof. The Lipschitz continuity of G in (i) is directly obtained from the assumptions of G while the proof of (ii) can be
found in [23, Lemma 10.36] with similar arguments. □

Next, we will provide the stability estimates of Algorithm 1 in the following lemma. These stability estimates will be
used for the proof of the error estimates of the finite element approximation later.

Lemma 3.2. Let {un
} be the solution of Algorithm 1. Then, there exists a constant C ≡ C(D, T , u0, p) such that

(i) sup
1≤n≤N

E
[
∥∇un

∥
2r
L2
]
+ E

[
τ

N∑
n=1

∥∇un
∥
2r−2
L2

∥∆un
∥
2
L2

]
≤ C, for any integers r ≥ 1.

(ii) sup
1≤n≤N

E
[
∥∇un

∥
p
L2
]
≤ C, for any integers p ≥ 2.

Proof. We just provide the proof of (i) when r = 1. When r ≥ 2, the proof is similar to [25, Lemma 3.1] with minor
modifications. So, we skip it to save space.

To begin, we rewrite (3.1) in the strong form as follow:

un+1
− un

− τ∆un+1
= τF (un+1)+ G(un)∆Wn (3.4)

+
1
2
DG(un)G(un)[(∆Wn)2 − τ ].
5



Y. Li, L. Vo and G. Wang Journal of Computational and Applied Mathematics 437 (2024) 115442

B

s

Testing Eq. (3.4) by −∆un+1 and then using integration by parts we obtain(
∇(un+1

− un),∇un+1)
+ τ∥∆un+1

∥
2
L2 (3.5)

= −τ
(
F (un+1), ∆un+1)

−
(
G(un), ∆un+1)∆Wn

−
1
2

(
DG(un)G(un), ∆un+1)[(∆Wn)2 − τ

]
:= I+ II+ III.

y using the integration by parts, we obtain

I = −τ
(
un+1, ∆un+1)

+ τ
(
(un+1)q, ∆un+1) (3.6)

= τ∥∇un+1
∥
2
L2 − τq

(
(un+1)q−1

∇un+1,∇un+1)
= τ∥∇un+1

∥
2
L2 − τq

∫
D
(un+1)q−1

|∇un+1
|
2
dx ≤ τ∥∇un+1

∥
2
L2 ,

where the last inequality of (3.6) is obtained by using the fact that, for all odd q ≥ 3,
∫
D(u

n+1)q−1
|∇un+1

|
2 dx ≥ 0.

To bound II, we take the expectation and then use the fact that E[∆Wn] = 0. Namely,

E[II] = −E
[(
G(un), ∆(un+1

− un)
)
∆Wn

]
− E

[(
G(un), ∆un)∆Wn

]
(3.7)

= E
[(
∇G(un),∇(un+1

− un)
)
∆Wn

]
≤ CE[∥∇un

∥
2
L2 |∆Wn|

2
] +

1
4
E
[
∥∇(un+1

− un)∥2L2
]

= CτE[∥∇un
∥
2
L2 |] +

1
4
E
[
∥∇(un+1

− un)∥2L2
]
.

In addition, by using the Cauchy–Schwarz and the assumptions (A1), (A2), we have

E[III] ≤
C
τ
E
[
∥DG(un)G(un)∥2L2 |(∆Wn)2 − τ |

2]
+

τ

4
E
[
∥∆un+1

∥
2
L2
]

(3.8)

≤
C
τ
E
[
∥G(un)∥2L2 |(∆Wn)2 − τ |

2]
+

τ

4
E
[
∥∆un+1

∥
2
L2
]

≤ CτE
[
∥∇un

∥
2
L2
]
+

τ

4
E
[
∥∆un+1

∥
2
L2
]
,

where the last inequality of (3.8) is obtained by using the fact that E[|(∆Wn)2 − τ |
2
] ≤ Cτ 2.

Substituting all the estimates from I, II, III into (3.4) and absorbing the like-terms from the right side to the left
ide, we obtain

1
2
E
[
∥∇un+1

∥
2
L2 − ∥∇un

∥
2
L2
]
+

1
4
E
[
∥∇(un+1

− un)∥2L2
]
+

τ

2
E
[
∥∆un+1

∥
2
L2
]

(3.9)

≤ CτE
[
∥un+1

− un
∥
2
L2
]
+ CτE

[
∥∇un

∥
2
L2
]
.

Next, applying the summation
∑ℓ

n=0, for any 0 ≤ ℓ < N , we obtain

E
[
∥∇uℓ+1

∥
2
L2
]
+

ℓ∑
n=0

E
[
∥∇(un+1

− un)∥2L2
]
+ τ

ℓ∑
n=0

E
[
∥∆un+1

∥
2
L2
]

(3.10)

≤ Cτ

ℓ∑
n=0

E
[
∥∇un

∥
2
L2
]
+ E

[
∥∇u0∥

2
L2
]
+ Cτ

ℓ∑
n=0

E
[
∥un+1

− un
∥
2
L2
]
.

The proof is completed by using Gronwall’s inequality.
Finally, the proof of (ii) is followed by using the result from (i) and Hölder inequality. □

3.2. Error estimates for Algorithm 1

In this part, we state the first main result of this paper which establishes an O(τ 1−ϵ) convergence order for the proposed
method.

Theorem 3.1. Let u be the variational solution to (1.1) and {un
} be generated by Algorithm 1. Assume that G satisfies

(A1), (A2), (A3) and u0 ∈ L2(Ω;H1
0 (D) ∩ H2(D)). Suppose that 0 < ϵ < 1, then there exists a constant C = C(D, T , u0) > 0

such that

sup E
[
∥u(tn)− un

∥
2
L2

]
+ E

[
τ

N∑
∥∇(u(tn)− un)∥2L2

]
≤ C τ 2(1−ϵ). (3.11)
1≤n≤N n=1

6
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N

N

B

Proof. Denote en := u(tn)− un. Subtracting (3.3) from (2.8), we obtain the following error equation(
en+1

− en, φ
)
+ τ

(
∇en+1,∇φ

)
=

∫ tn+1

tn

(
∇(u(tn+1)− u(s)),∇φ

)
ds (3.12)

−

∫ tn+1

tn

(
F (u(tn+1))− F (u(s)), φ

)
ds

+

∫ tn+1

tn

(
F (u(tn+1))− F (un+1), φ

)
ds

+

∫ tn+1

tn

(
G(u(s))− G(s; un), φ

)
dW (s).

ow, choosing φ = en+1 and using the identity 2a(a− b) = a2 − b2 + (a− b)2, we have

1
2

[
∥en+1

∥
2
L2 − ∥en∥2L2

]
+

1
2
∥en+1

− en∥2L2 + τ∥∇en+1
∥
2
L2 (3.13)

=

∫ tn+1

tn

(
∇(u(tn+1)− u(s)),∇en+1) ds

−

∫ tn+1

tn

(
F (u(tn+1))− F (u(s)), en+1) ds

+

∫ tn+1

tn

(
F (u(tn+1))− F (un+1), en+1) ds

+

∫ tn+1

tn

(
G(u(s))− G(s; un), en+1) dW (s)

:= I+ II+ III+ IV.

ext, we bound the right side of (3.13) as follows.

In order to estimate I, we add and subtract
∫ tn+1

s
∇G(u(ξ )) dW (ξ ) for any tn ≤ s < tn+1, as follow.

I =

∫ tn+1

tn

(
∇

(
u(tn+1)− u(s)−

∫ tn+1

s
G(u(ξ )) dW (ξ )

)
,∇en+1

)
ds (3.14)

+

∫ tn+1

tn

(∫ tn+1

s
∇G(u(ξ )) dW (ξ ),∇en+1

)
ds

:= I1 + I2.

y using Lemma 2.1 (ii), we obtain

E[I1] ≤
∫ tn+1

tn
E
[u(tn+1)− u(s)−

∫ tn+1

s
G(u(ξ )) dW (ξ )

2

H1

]
ds (3.15)

+
τ

4
E
[
∥∇en+1

∥
2
L2
]

≤ Cτ 1+2(1−ϵ)
+

τ

4
E
[
∥∇en+1

∥
2
L2
]
.

Next, by the integration by parts we have

I2 =
∫ tn+1

tn

(∫ tn+1

s
∇G(u(ξ )) dW (ξ ),∇(en+1

− en)
)
ds (3.16)

+

∫ tn+1

tn

(∫ tn+1

s
∇G(u(ξ )) dW (ξ ),∇en

)
ds

= −

∫ tn+1

tn

(∫ tn+1

s
∆G(u(ξ )) dW (ξ ), en+1

− en
)
ds

+

∫ tn+1

tn

(∫ tn+1

s
∇G(u(ξ )) dW (ξ ),∇en

)
ds

:= I2a + I2b.
7
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H

We note that E[I2b] = 0 due to the martingale property of the Itô integral. So, it is left to estimate I2a. By using the

ölder inequality, we obtain

I2a = −

∫ tn+1

tn

(∫ tn+1

s
∆G(u(ξ )) dW (ξ ), en+1

− en
)
ds (3.17)

≤ 2
 ∫ tn+1

tn

∫ tn+1

s
∆G(u(ξ )) dW (ξ ) ds

2

L2
+

1
8
∥en+1

− en∥2L2

= 2
∫
D

⏐⏐⏐⏐ ∫ tn+1

tn

∫ tn+1

s
∆G(u(ξ )) dW (ξ ) ds

⏐⏐⏐⏐2 dx+ 1
8
∥en+1

− en∥2L2

≤ 2
∫
D

(∫ tn+1

tn

⏐⏐⏐⏐ ∫ tn+1

s
∆G(u(ξ )) dW (ξ )

⏐⏐⏐⏐ ds)2

dx+
1
8
∥en+1

− en∥2L2

≤ 2τ
∫
D

∫ tn+1

tn

⏐⏐⏐⏐ ∫ tn+1

s
∆G(u(ξ )) dW (ξ )

⏐⏐⏐⏐2 ds dx+ 1
8
∥en+1

− en∥2L2

= 2τ
∫ tn+1

tn

 ∫ tn+1

s
∆G(u(ξ )) dW (ξ )

2

L2
ds+

1
8
∥en+1

− en∥2L2 .

By using the Itô isometry we have

E[I2] = E[I2a] ≤ Cτ 3 sup
ξ∈[0,T ]

E[∥u(ξ )∥2H2 ] +
1
8
E[∥en+1

− en∥2L2 ] (3.18)

≤ Cτ 3
+

1
8
E[∥en+1

− en∥2L2 ].

Similarly, we can estimate II as follows.

II = −

∫ tn+1

tn

(
F (u(tn+1))− F (u(s))−

∫ tn+1

s
DF (u(s))G(u(ξ )) dW (ξ ), (3.19)

en+1
)

ds−
∫ tn+1

tn

(∫ tn+1

s
DF (u(s))G(u(ξ )) dW (ξ ), en+1

)
ds

:= II1 + II2.

By using Lemma 2.1 (iv) and Poincaré’s inequality, we obtain

E[II1] ≤ Cτ 1+2(1−ϵ)
+

τ

4
E
[
∥∇en+1

∥
2
L2
]
. (3.20)

To estimate II2, we use the same techniques from estimating I2 and also use (2.9), we obtain

E[II2] = −E
[∫ tn+1

tn

(∫ tn+1

s
DF (u(s))G(u(ξ )) dW (ξ ), en+1

− en
)
ds
]

≤ CE
[ ∫ tn+1

tn

∫ tn+1

s
DF (u(s))G(u(ξ )) dW (ξ ) ds

2

L2

]
+

1
8
E
[
∥en+1

− en∥2L2
]

≤ CE
[∫

D

(∫ tn+1

tn

⏐⏐⏐ ∫ tn+1

s
DF (u(s))G(u(ξ )) dW (ξ )

⏐⏐⏐ ds)2
dx
]

+
1
8
E
[
∥en+1

− en∥2L2
]

≤ CτE
[∫

D

∫ tn+1

tn

⏐⏐⏐ ∫ tn+1

s
DF (u(s))G(u(ξ )) dW (ξ )

⏐⏐⏐2 ds dx]
+

1
8
E
[
∥en+1

− en∥2L2
]

= CτE
[∫ tn+1

tn

 ∫ tn+1

s
DF (u(s))G(u(ξ )) dW (ξ )

2

L2
ds
]
+

1
8
E
[
∥en+1

− en∥2L2
]

= CτE
[∫ tn+1

tn

∫ tn+1

s
∥DF (u(s))G(u(ξ ))∥2L2 dξ ds

]
+

1
8
E
[
∥en+1

− en∥2L2
]

≤ Cτ 3
(

sup E
[
∥u(s)∥4(q−1)

L4(q−1)

])1/2(
sup E

[
∥u(ξ )∥4H1

])1/2
s∈[0,T ] ξ∈[0,T ]

8
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+
1
8
E
[
∥en+1

− en∥2L2
]

≤ Cτ 3
+

1
8
E
[
∥en+1

− en∥2L2
]
.

To estimate III, we use the one-sided Lipschitz condition (2.7) as follows.

E[III] ≤ CτE
[
∥en+1

∥
2
L2
]

(3.21)

≤ CτE
[
∥en+1

− en∥2L2
]
+ CτE

[
∥en∥2L2

]
.

To estimate IV, using Lemma 3.1, the Itô isometry and the martingale property of Itô integrals we have

E[IV] = E
[∫ tn+1

tn

(
G(u(s))− G(s; un), en+1

− en
)
dW (s)

]
(3.22)

+ E
[∫ tn+1

tn

(
G(u(s))− G(s; un), en

)
dW (s)

]
= E

[∫ tn+1

tn

(
G(u(s))− G(s; un), en+1

− en
)
dW (s)

]
+ 0

= E
[∫ tn+1

tn

(
G(u(s))− G(s; u(tn)), en+1

− en
)
dW (s)

]
+ E

[∫ tn+1

tn

(
G(s; u(tn))− G(s; un), en+1

− en
)
dW (s)

]
≤ CE

[ ∫ tn+1

tn

(
G(u(s))− G(s; u(tn))

)
dW (s)

2

L2

]
+ CE

[ ∫ tn+1

tn

(
G(s; u(tn))− G(s; un)

)
dW (s)

2

L2

]
+

1
8
E
[
∥en+1

− en∥2L2
]

= CE
[∫ tn+1

tn
∥G(u(s))− G(s; u(tn))∥2L2 ds

]
+ CE

[∫ tn+1

tn
∥G(s; u(tn))− G(s; un)∥2L2 ds

]
+

1
8
E
[
∥en+1

− en∥2L2
]

≤ Cτ 1+2(1−ϵ)
+ CτE

[
∥en∥2L2

]
+

1
8
E
[
∥en+1

− en∥2L2
]
.

Now, we substitute all the estimates from I, II, III, IV into (3.13) and use the left side to absorb the like-terms
from the right side of the resulting inequality. In summary, we obtain

1
2
E
[
∥en+1

∥
2
L2 − ∥en∥2L2

]
+

(1
8
− Cτ

)
E
[
∥en+1

− en∥2L2
]
+

τ

2
E
[
∥∇en+1

∥
2
L2
]

(3.23)

≤ Cτ 1+2(1−ϵ)
+ CτE

[
∥en∥2L2

]
+ Cτ 3.

We choose τ ≤ τ0 (for τ0 small enough) such that 1
8 −Cτ ≥ 0, so the middle term on the left side of (3.23) is nonnegative.

Next, applying the summation
∑m

n=0 for 0 ≤ m < N , we obtain

E
[
∥em+1

∥
2
L2
]
+ τ

m∑
n=0

E
[
∥∇en+1

∥
2
L2
]
≤ Cτ 2(1−ϵ)

+ Cτ

m∑
n=0

E
[
∥en∥2L2

]
. (3.24)

By using the discrete Gronwall’s inequality and taking supremum over all 0 ≤ m < M , we arrive at

sup
1≤n≤N

E
[
∥en∥2L2

]
+ τ

N∑
n=1

E
[
∥∇en∥2L2

]
≤ CeCT τ 2(1−ϵ). (3.25)

The proof is complete. □
9



Y. Li, L. Vo and G. Wang Journal of Computational and Applied Mathematics 437 (2024) 115442

w
i

A

o

4

4. Fully discrete finite element discretization

In this section, we consider the P1-Lagrangian finite element space

Vh =
{
vh ∈ H1

0 (D) : vh|K ∈ P1(K ) ∀K ∈ Th
}
, (4.1)

here P1 denotes the space of all linear polynomials. Then the finite element approximation of Algorithm 1 is presented
n Algorithm 2 as below.

lgorithm 2. We seek an Ftn adapted Vh-valued process {un
h}

N
n=1 such that it holds P-almost surely that

(un+1
h − un

h, vh)+ τ (∇un+1
h ,∇vh) = τ (IhF n+1, vh) (4.2)

+ (G(un
h), vh)∆Wn +

1
2
DG(un

h)G(u
n
h)
[
(∆Wn)2 − τ

]
, vh) ∀ vh ∈ Vh,

where F n+1
:= un+1

h − (un+1
h )q, ∆Wn = W (tn+1) − W (tn) ∼ N (0, τ ), and Ih is the standard nodal value interpolation

operator Ih : C(D̄) −→ Vh, i.e.,

Ihv :=

Nh∑
i=1

v(ai)ϕi, (4.3)

where Nh denotes the number of vertices of the triangulation Th, and ϕi denotes the nodal basis function of Vh
corresponding to the vertex ai. The initial condition is chosen by u0

h = Phu0 where Ph : L2(D) −→ Vh is the L2-projection
perator defined by(

Phw, vh
)
= (w, vh) vh ∈ Vh.

For each w ∈ Hs(D) for s > 3
2 , the following error estimates about the L2-projection can be found in [26,27]:

∥w − Phw∥L2 + h∥∇(w − Phw)∥L2 ≤ Chmin{2,s}
∥w∥Hs , (4.4)

∥w − Phw∥L∞ ≤ Ch2− d
2 ∥w∥H2 . (4.5)

Finally, given vh ∈ Vh, the discrete Laplace operator ∆h : Vh −→ Vh is defined by

(∆hvh, wh) = −(∇vh,∇wh) ∀wh ∈ Vh. (4.6)

.1. Stability estimates for the pth moment of the H1-seminorm of un
h

First, we shall prove the second moment discrete H1-seminorm stability result, which is necessary to establish the
corresponding higher moment stability result.

Theorem 4.1. Under the mesh constraint (2.1), we have

sup
0≤n≤N

E
[
∥∇un

h∥
2
L2
]
+

1
4

N−1∑
n=0

E
[
∥∇(un+1

h − un
h)∥

2
L2
]

(4.7)

+ τ

N−1∑
n=0

E
[
∥∆hun

h∥
2
L2
]
≤ C .

Proof. Testing (4.2) with −∆hun+1
h . Then

(un+1
h − un

h,−∆hun+1
h )+ τ (∇un+1

h ,−∇∆hun+1
h ) (4.8)

= τ (IhF n+1,−∆hun+1
h )+ (G(un

h),−∆hun+1
h )∆Wn+1

+
(1
2
DG(un

h)G(u
n
h)((∆Wn)2 − τ ),−∆hun+1

h

)
.

Using the definition of the discrete Laplace operator and the simple identity 2a(a− b) = a2 − b2 + (a− b)2, we get

(un+1
h − un

h,−∆hun+1
h ) =

1
2
∥∇un+1

h ∥
2
L2 −

1
2
∥∇un

h∥
2
L2 (4.9)

+
1
2
∥∇(un+1

h − un
h)∥

2
L2 ,

τ (∇un+1
h ,−∇∆hun+1

h ) = τ∥∆hun+1
h ∥

2
L2 . (4.10)
10
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L

c

w

o

The expectation of the second term on the right-hand side of (4.8) can be bounded by

E[(G(un
h),−∆hun+1

h )∆Wn] = E[(∇(PhG(un
h)),∇(un+1

h − un
h))∆Wn] (4.11)

≤ CτE[∥∇un
h∥

2
L2 ] +

1
4
E[∥∇(un+1

h − un
h)∥

2
L2 ].

The expectation of the third term on the right-hand side of (4.8) can be bounded by
1
2
E[(DG(un

h)G(u
n
h)((∆Wn)2 − τ ),−∆hun+1

h )] (4.12)

=
1
2
E[(∇(Ph(DG(un

h)G(u
n
h))),∇(un+1

h − un
h)) ((∆Wn)2 − τ )]

≤ Cτ 2E[∥∇un
h∥

2
L2 ] +

1
4
E[∥∇(un+1

h − un
h)∥

2
L2 ],

where the last inequality is obtained by using the assumption (A2). Notice that the stability in the H1-seminorm of the
2-projection (see [28]) is used in the inequalities of (4.11) and (4.12).
For the first term on the right-hand side of (4.8) since it cannot be treated as a bad term, which aligns with the

ontinuous case. Denote ui = un+1
h (ai), and then

τ (IhF n+1,−∆hun+1
h ) = τ∥∇un+1

h ∥
2
L2 − τ (∇

Nh∑
i=1

uq
i ϕi,∇

Nh∑
j=1

ujϕj) (4.13)

= τ∥∇un+1
h ∥

2
L2 − τ

Nh∑
i,j=1

(uq
i ∇ϕi, uj∇ϕj)

= τ∥∇un+1
h ∥

2
L2 − τ

Nh∑
i,j=1

bij(∇ϕi,∇ϕj),

here bij = uq
i uj.

Using Young’s inequality when i ̸= j, we have

|bij| ≤
q

q+ 1
uq+1
i +

1
q+ 1

uq+1
j . (4.14)

Besides, since the stiffness matrix is diagonally dominant, we have

−τ

Nh∑
i,j=1

bij(∇ϕi,∇ϕj) ≤ −τ

Nh∑
k=1

bkk[(∇ϕk,∇ϕk)−
q

q+ 1

Nh∑
i=1,
i̸=k

|(∇ϕi,∇ϕk)| (4.15)

−
1

q+ 1

Nh∑
j=1,
j̸=k

|(∇ϕk,∇ϕj)|]

≤ −τ

Nh∑
k=1

bkk[(∇ϕk,∇ϕk)−
Nh∑
i=1,
i̸=k

(∇ϕi,∇ϕk)]

≤ 0.

Then we have

τ (IhF n+1,−∆hun+1
h ) ≤ τ∥∇un+1

h ∥
2
L2 . (4.16)

Combining (4.8)–(4.11) and (4.16), and taking the summation, we have

1
2
E
[
∥∇uℓ

h∥
2
L2
]
+

1
4

ℓ−1∑
n=0

E
[
∥∇(un+1

h − un
h)∥

2
L2
]
+ τ

ℓ−1∑
n=0

E
[
∥∆hun+1

h ∥
2
L2
]

(4.17)

≤ Cτ

ℓ−1∑
n=0

E[∥∇un
h∥

2
L2 ].

Using Gronwall’s inequality, we obtain (4.7). □

Before we establish the error estimates, we need to prove the stability of the higher moments for the H1-seminorm
f the numerical solution.
11
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P
f
i

Theorem 4.2. Suppose the mesh assumption (2.1) holds. Then for any p ≥ 2,

sup
0≤n≤M

E
[
∥∇un

h∥
p
L2
]
≤ C .

roof. The proof is divided into three steps. In Step 1, we establish the bound for E∥∇uℓ
h∥

4
L2
. In Step 2, we give the bound

or E∥∇uℓ
h∥

p
L2
, where p = 2r and r is an arbitrary positive integer. In Step 3, we obtain the bound for E∥∇uℓ

h∥
p
L2
, where p

s an arbitrary real number and p ≥ 2. Step 1. Based on (4.8)–(4.16), we have
1
2
∥∇un+1

h ∥
2
L2 −

1
2
∥∇un

h∥
2
L2 +

1
2
∥∇(un+1

h − un
h)∥

2
L2 + τ∥∆hun+1

h ∥
2
L2 (4.18)

− (G(un
h),−∆hun+1

h )∆Wn −
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ),−∆hun+1

h

)
≤ τ∥∇un+1

h ∥
2
L2 .

Note the following identity

∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 =

3
4
(∥∇un+1

h ∥
2
L2 + ∥∇un

h∥
2
L2 ) (4.19)

+
1
4
(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 ).

Multiplying (4.18) by ∥∇un+1
h ∥

2
L2
+

1
2∥∇un

h∥
2
L2
, we obtain

3
8
(∥∇un+1

h ∥
4
L2 − ∥∇un

h∥
4
L2 )+

1
8
(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 )

2 (4.20)

+ (
1
2
∥∇(un+1

h − un
h)∥

2
L2 + τ∥∆hun+1

h ∥
2
L2 )(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 )

≤ τ∥∇un+1
h ∥

2
L2 (∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 )

+ (G(un
h),−∆hun+1

h )∆Wn(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 )

+
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ),−∆hun+1

h

)
(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 ).

The first term on the right-hand side of (4.20) can be written as

τ∥∇un+1
h ∥

2
L2 (∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 ) (4.21)

= τ∥∇un+1
h ∥

2
L2 (

3
2
∥∇un+1

h ∥
2
L2 −

1
2
(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 ))

≤ Cτ∥∇un+1
h ∥

4
L2 + θ1(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 )

2,

where θ1 > 0 will be determined later.
The second term on the right-hand side of (4.20) can be written as

(G(un
h),−∆hun+1

h )∆Wn(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 ) (4.22)

= (∇PhG(un
h),∇un+1

h )∆Wn(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 )

= ((∇PhG(un
h),∇un+1

h −∇un
h)∆Wn

+ (∇PhG(un
h),∇un

h)∆Wn)(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 )

≤ (
1
4
∥∇un+1

h −∇un
h∥

2
L2 + C∥∇un

h∥
2
L2 (∆Wn)2

+ (∇PhG(un
h),∇un

h)∆Wn)(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 ).

For the right-hand side of (4.22), using the Cauchy–Schwarz inequality, we get

C∥∇un
h∥

2
L2 (∆Wn)2(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 ) (4.23)

= C∥∇un
∥
2 (∆Wn)2(∥∇un+1

∥
2
− ∥∇un

∥
2
+

3
∥∇un

∥
2 )
h L2 h L2 h L2 2 h L2

12
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w

w

≤ θ2(∥∇un+1
h ∥

2
L2 − ∥∇un

h∥
2
L2 )

2
+ C∥∇un

h∥
4
L2 (∆Wn)4

+ C∥∇un
h∥

4
L2 (∆Wn)2,

where θ2 > 0 will be determined later.
Similarly, using the Cauchy–Schwarz inequality, we have

(∇PhG(un
h),∇un

h)∆Wn(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 ) (4.24)

= (∇PhG(un
h),∇un

h)∆Wn(∥∇un+1
h ∥

2
L2 − ∥∇un

h∥
2
L2 +

3
2
∥∇un

h∥
2
L2 )

≤ θ3(∥∇un+1
h ∥

2
L2 − ∥∇un

h∥
2
L2 )

2
+ C∥∇un

h∥
4
L2 (∆Wn)2

+
3
2
(∇PhG(un

h),∇un
h)∆Wn∥∇un

h∥
2
L2 ,

where θ3 > 0 will be determined later.
The third term on the right-hand side of (4.20) can be written as

1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ),−∆hun+1

h

)
(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 ) (4.25)

=
1
2

(
∇Ph(DG(un

h)G(u
n
h))((∆Wn)2 − τ ),∇(un+1

h − un
h)
)

(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 )+

1
2

(
∇Ph(DG(un

h)G(u
n
h))((∆Wn)2 − τ ),∇un

h

)
(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 )

≤
1
4
∥∇un+1

h −∇un
h∥

2
L2 + C∥∇un

h∥
2
L2 ((∆Wn)2 − τ )2

+
1
2

(
∇Ph(DG(un

h)G(u
n
h))((∆Wn)2 − τ ),∇un

h

)
(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 ).

For the right-hand side of (4.25), using the Cauchy–Schwarz inequality, we get

C∥∇un
h∥

2
L2 ((∆Wn)2 − τ )2(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 ) (4.26)

= C∥∇un
h∥

2
L2 ((∆Wn)2 − τ )2(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 +

3
2
∥∇un

h∥
2
L2 )

≤ θ4(∥∇un+1
h ∥

2
L2 − ∥∇un

h∥
2
L2 )

2
+ C∥∇un

h∥
4
L2 ((∆Wn)2 − τ )4

+ C∥∇un
h∥

4
L2 ((∆Wn)2 − τ )2,

here θ4 > 0 will be determined later. Similarly, using the Cauchy–Schwarz inequality, we have

(∇Ph(DG(un
h)G(u

n
h)),∇un

h)((∆Wn)2 − τ )(∥∇un+1
h ∥

2
L2 +

1
2
∥∇un

h∥
2
L2 ) (4.27)

= (∇Ph(DG(un
h)G(u

n
h)),∇un

h)((∆Wn)2 − τ )(∥∇un+1
h ∥

2
L2

− ∥∇un
h∥

2
L2 +

3
2
∥∇un

h∥
2
L2 )

≤ θ5(∥∇un+1
h ∥

2
L2 − ∥∇un

h∥
2
L2 )

2
+ C∥∇un

h∥
4
L2 ((∆Wn)2 − τ )2

+
3
2
(∇Ph(DG(un)G(un)),∇un

h)((∆Wn)2 − τ )∥∇un
h∥

2
L2 ,

here θ5 > 0 will be determined later.
Choosing θ1 ∼ θ5 such that θ1 + · · · + θ3 ≤

1
16 , and then taking the summation over n from 0 to ℓ − 1 and taking the

expectation on both sides of (4.20), we obtain

3
8
E
[
∥∇uℓ

h∥
4
L2
]
+

1
16

ℓ−1∑
n=0

E
[
(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 )

2] (4.28)

+

ℓ−1∑
E
[
(
1
4
∥∇(un+1

h − un
h)∥

2
L2 + τ∥∆hun+1

h ∥
2
L2 )(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 )

]

n=0

13
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H
s

w

4

s
q

T

≤ Cτ

ℓ−1∑
n=0

E
[
∥∇un+1

h ∥
4
L2
]
+

3
8
E
[
∥∇u0

h∥
4
L2
]
+ Cτ 2

ℓ−1∑
n=0

E
[
∥∇un

h∥
4
L2
]

+ Cτ

ℓ−1∑
n=0

E
[
∥∇un

h∥
4
L2
]
.

When restricting τ ≤ C , we have

1
4
E
[
∥∇uℓ

h∥
4
L2
]
+

1
16

ℓ−1∑
n=0

E
[
(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 )

2] (4.29)

+

ℓ−1∑
n=0

E
[
(
1
4
∥∇(un+1

h − un
h)∥

2
L2 + τ∥∆hun+1

h ∥
2
L2 )(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 )

]

≤ Cτ

ℓ−1∑
n=0

E
[
∥∇un

h∥
4
L2
]
+

3
8
E
[
∥∇u0

h∥
4
L2
]
.

Using Gronwall’s inequality, we obtain

1
4
E
[
∥∇uℓ

h∥
4
L2
]
+

1
16

ℓ−1∑
n=0

E
[
(∥∇un+1

h ∥
2
L2 − ∥∇un

h∥
2
L2 )

2] (4.30)

+

ℓ−1∑
n=0

E
[
(
1
4
∥∇(un+1

h − un
h)∥

2
L2 + τ∥∆hun+1

h ∥
2
L2 )(∥∇un+1

h ∥
2
L2

+
1
2
∥∇un

h∥
2
L2 )

]
≤ C .

Step 2. Similar to Step 1, using (4.20)–(4.24), we have

3
8
(∥∇un+1

h ∥
4
L2 − ∥∇un

h∥
4
L2 )+

1
16

(∥∇un+1
h ∥

2
L2 − ∥∇un

h∥
2
L2 )

2 (4.31)

+ (
1
4
∥∇(un+1

h − un
h)∥

2
L2 + τ∥∆hun+1

h ∥
2
L2 )(∥∇un+1

h ∥
2
L2 +

1
2
∥∇un

h∥
2
L2 )

≤ Cτ∥∇un+1
h ∥

4
L2 + C∥∇un

h∥
4
L2 (∆Wn)4 + C∥∇un

h∥
4
L2 (∆Wn)2

+ C∥∇un
h∥

4
L2∆Wn.

Proceed similarly as in Step 1. Multiplying (4.31) with ∥∇un+1
h ∥

4
L2
+

1
2∥∇un

h∥
4
L2
, we can obtain the 8-th moment of the

1-seminorm stability result of the numerical solution. Then repeat this process, the 2r -th moment of the H1-seminorm
tability result of the numerical solution can be obtained. Step 3. Suppose 2r−1

≤ p ≤ 2r . By Young’s inequality, we have

E
[
∥∇uℓ

h∥
p
L2
]
≤ E

[
∥∇uℓ

h∥
2r
L2

]
+ C < ∞, (4.32)

here the second inequality follows from the results of Step 2. The proof is completed. □

.2. Stability estimates for the pth moment of the L2-norm of un
h

Since the mass matrix may not be the diagonally dominated matrix, we cannot use the above idea to prove the L2

tability. Instead, we prove the stability results by utilizing the above established results. The following results hold when
≥ 3 is the odd integer in 2D case, and when q = 3 or q = 5 in 3D case.

heorem 4.3. Under the mesh assumption (2.1), there holds

sup
0≤n≤N

E
[
∥un

h∥
2
L2
]
+

N−1∑
n=0

E
[
∥(un+1

h − un
h)∥

2
L2
]
+ τ

N−1∑
n=0

E
[
∥∇un+1

h ∥
2
L2
]

+
τ

2

N−1∑
E
[
∥un+1

h ∥
q+1
Lq+1

]
≤ C .
n=0

14
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w

T

Proof. Testing (4.2) with un+1
h yields

(un+1
h − un

h, u
n+1
h )+ τ (∇un+1

h ,∇un+1
h ) = τ (IhF n+1, un+1

h ) (4.33)

+ (G(un
h), u

n+1
h )∆Wn +

1
2
DG(un

h)G(u
n
h)
[
(∆Wn)2 − τ

]
, un+1

h ).

We can easily prove the following inequalities:

(un+1
h − un

h, u
n+1
h ) =

1
2
∥un+1

h ∥
2
L2 −

1
2
∥un

h∥
2
L2 +

1
2
∥un+1

h − un
h∥

2
L2 ,

E[(G(un
h), u

n+1
h )∆Wn] = E[(G(un

h), (u
n+1
h − un

h))∆Wn]

≤ Cτ + CτE[∥un
h∥

2
L2 ] +

1
4
E[∥un+1

h − un
h∥

2
L2 ],

E[DG(un
h)G(u

n
h)((∆Wn)2 − τ ), un+1

h ] = E[DG(un
h)G(u

n
h)((∆Wn)2 − τ ), un+1

h − un
h]

≤ Cτ 2
+ Cτ 2E[∥un

h∥
2
L2 ] +

1
4
E[∥un+1

h − un
h∥

2
L2 ],

here (A2) is used in the inequality above.
We have the following standard interpolation result and the inverse inequality (see [27]):

∥v − Ihv∥
L
q+1
q (K )

≤ ChK∥∇v∥
L
q+1
q (K )

, (4.34)

∥v∥
q+1
Lq+1(K )

≤
C

h
d· q−1

2
K

∥v∥
q+1
L2(K )

. (4.35)

Using (4.34)–(4.35), and Young’s inequality, we have

τ (IhF n+1, un+1
h ) = τ (F n+1, un+1

h )− τ (F n+1
− IhF n+1, un+1

h ) (4.36)

≤ τ∥un+1
h ∥

2
L2 − τ∥un+1

h ∥
q+1
Lq+1

+ Cτ∥F n+1
− IhF n+1

∥

q+1
q

L
q+1
q

+
τ

4
∥un+1

h ∥
q+1
Lq+1

≤ τ∥un+1
h ∥

2
L2 − τ∥un+1

h ∥
q+1
Lq+1

+ Cτ
∑
K∈Th

h
q+1
q

K

(
(un+1

h )
q2−1

q , (∇un+1
h )

q+1
q
)
K +

τ

4
∥un+1

h ∥
q+1
Lq+1

≤ τ∥un+1
h ∥

2
L2 −

τ

2
∥un+1

h ∥
q+1
Lq+1 + Cτ

∑
K∈Th

hq+1
K ∥∇un+1

h ∥
q+1
Lq+1(K )

≤ τ∥un+1
h ∥

2
L2 −

τ

2
∥un+1

h ∥
q+1
Lq+1 + Cτ

∑
K∈Th

h
q+1−d q−1

2
K ∥∇un+1

h ∥
q+1
L2(K )

.

Note when d = 2, q+ 1− d q−1
2 ≥ 0 if q ≥ 0, and when d = 3, q+ 1− d q−1

2 ≥ 0 if q ≤ 5. Using the above inequalities,
heorem 4.2, taking summation over n from 0 to ℓ − 1, and taking expectation on both sides of (4.33), we obtain

1
4
E
[
∥uℓ

h∥
2
L2
]
+

1
4

ℓ−1∑
n=0

E
[
∥(un+1

h − un
h)∥

2
L2
]
+ τ

ℓ−1∑
n=0

E
[
∥∇un+1

h ∥
2
L2
]

(4.37)

+
τ

2

ℓ−1∑
n=0

E
[
∥un+1

h ∥
q+1
Lq+1

]
≤ τ

ℓ−1∑
n=0

E
[
∥un

h∥
2
L2
]
+ Cτ

ℓ−1∑
n=0

E
[
∥∇un+1

h ∥
q+1
L2

]
+ C

≤ τ

ℓ−1∑
n=0

E
[
∥un

h∥
2
L2
]
+ C,

where Theorem 4.2 is used in the last inequality.
The conclusion is a direct result by using Gronwall’s inequality. □

To obtain the error estimates results, we need to establish a higher moment discrete L2 stability result for the numerical
solution u .
h

15
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P
E
a

w

Theorem 4.4. Suppose the mesh assumption (2.1) holds. Then there holds for any p ≥ 2,

sup
0≤ℓ≤N

E
[
∥uℓ

h∥
p
L2
]
≤ C .

roof. The proof is divided into three steps. In Step 1, we give the bound for E∥uℓ
h∥

4
L2
. In Step 2, we give the bound for

∥uℓ
h∥

p
L2
, where p = 2r and r is an arbitrary positive integer. In Step 3, we give the bound for E∥uℓ

h∥
p
L2
, where p is an

rbitrary real number and p ≥ 2. Step 1. Based on (4.33)–(4.36), we have

1
2
∥un+1

h ∥
2
L2 −

1
2
∥un

h∥
2
L2 +

1
2
∥un+1

h − un
h∥

2
L2 + τ∥∇un+1

h ∥
2
L2 +

τ

2
∥un+1

h ∥
q+1
Lq+1 (4.38)

≤ τ∥un+1
h ∥

2
L2 + Cτ∥∇un+1

h ∥
q+1
L2

+ (G(un
h), u

n+1
h )∆Wn

+
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ), un+1

h

)
.

Note the following identity

∥un+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 =

3
4
(∥un+1

h ∥
2
L2 + ∥un

h∥
2
L2 )+

1
4
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 ). (4.39)

Multiplying (4.38) by ∥un+1
h ∥

2
L2
+

1
2∥u

n
h∥

2
L2
, we obtain

3
8
(∥un+1

h ∥
4
L2 − ∥un

h∥
4
L2 )+

1
8
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 )

2
+ (

1
2
∥(un+1

h − un
h)∥

2
L2 (4.40)

+ τ∥∇un+1
h ∥

2
L2 +

τ

2
∥un+1

h ∥
q+1
Lq+1 )(∥u

n+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 )

≤ (τ∥un+1
h ∥

2
L2 + Cτ∥∇un+1

h ∥
q+1
L2

)(∥un+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 )

+ (G(un
h), u

n+1
h )∆Wn(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 )

+
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − k), un+1

h

)
(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ).

The first term on the right-hand side of (4.40) can be written as

(τ∥un+1
h ∥

2
L2 + Cτ∥∇un+1

h ∥
q+1
L2

)(∥un+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 ) (4.41)

≤ τ∥un+1
h ∥

2
L2 (

3
2
∥un+1

h ∥
2
L2 −

1
2
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 ))

+ Cτ∥∇un+1
h ∥

2(q+1)
L2

+ τ∥un+1
h ∥

4
L2 + τ (∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 )

2

≤ Cτ∥un+1
h ∥

4
L2 + Cτ∥∇un+1

h ∥
2(q+1)
L2

+ θ1(∥un+1
h ∥

2
L2 − ∥un

h∥
2
L2 )

2,

here θ1 > 0 will be determined later.
The second term on the right-hand side of (4.40) can be written as

(G(un
h), u

n+1
h )∆Wn(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ) (4.42)

= (G(un
h), u

n+1
h − un

h + un
h)∆Wn(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 )

≤ (
1
4
∥un+1

h − un
h∥

2
L2 + C(1+ ∥un

h∥
2
L2 )(∆Wn)2

+ (G(un
h), u

n
h)∆Wn(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ).

For the second term on the right-hand side of (4.42), using the Cauchy–Schwarz inequality, we get

C(1+ ∥un
h∥

2
L2 )(∆Wn)2(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ) (4.43)

= C(1+ ∥un
h∥

2
L2 )(∆Wn)2(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 +

3
2
∥un

h∥
2
L2 )

≤ θ2
(
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 )

2
+ (C + C∥un

h∥
4
L2 )(∆Wn)4

+ C∥un
h∥

4
L2 (∆Wn)

) 2
+ C∥un

h∥
2
L2 (∆Wn)2,
16
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where θ2 > 0 will be determined later. Using (2.3b), the third term on the right-hand side of (4.42) can be bounded by

(G(un
h), u

n
h)∆Wn(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ) (4.44)

= (G(un
h), u

n
h)∆Wn(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 +

3
2
∥un

h∥
2
L2 )

≤ θ3(∥un+1
h ∥

2
L2 − ∥un

h∥
2
L2 )

2
+ (C + C∥un

h∥
4
L2 )(∆Wn)2

+
3
2
(G(un

h), u
n
h)∥u

n
h∥

2
L2∆Wn,

where θ3 > 0 will be determined later.
The third term on the right-hand side of (4.40) can be written as

1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ), un+1

h

)
(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ) (4.45)

=
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ), un+1

h − un
h + un

h

)
(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 )

≤
1
4
∥un+1

h − un
h∥

2
L2 + C(1+ ∥un

h∥
2
L2 )((∆Wn)2 − τ )2

+
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ), un

h

)
(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ).

For the second term on the right-hand side of (4.45), using the Cauchy–Schwarz inequality, we get

C(1+ ∥un
h∥

2
L2 )((∆Wn)2 − τ )2(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ) (4.46)

= C(1+ ∥un
h∥

2
L2 )((∆Wn)2 − τ )2(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 +

3
2
∥un

h∥
2
L2 )

≤ θ2
(
∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2
)2

+ (C + C∥un
h∥

4
L2 )((∆Wn)2 − τ )2

+ C∥un
h∥

4
L2 ((∆Wn)2 − τ )2 + C∥un

h∥
2
L2 ((∆Wn)2 − τ )2,

where θ4 > 0 will be determined later. Using (2.3b), the third term on the right-hand side of (4.45) can be bounded by

1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ), un

h

)
(∥un+1

h ∥
2
L2 +

1
2
∥un

h∥
2
L2 ) (4.47)

=
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ), un

h

)
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 +

3
2
∥un

h∥
2
L2 )

≤ θ5(∥un+1
h ∥

2
L2 − ∥un

h∥
2
L2 )

2
+ (C + C∥un

h∥
4
L2 )((∆Wn)2 − τ )2

+
1
2

(
DG(un

h)G(u
n
h)((∆Wn)2 − τ ), un

h

)3
2
∥un

h∥
2
L2 ,

where θ5 > 0 will be determined later.
Choosing θ1 ∼ θ5 such that θ1 + · · · + θ3 ≤

1
16 , and then taking the summation over n from 0 to ℓ − 1 and taking the

expectation on both sides of (4.40), we obtain

3
8
E
[
∥uℓ

h∥
4
L2
]
+

1
16

ℓ−1∑
n=0

E
[
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 )

2]
+

ℓ−1∑
n=0

E
[
(
1
4
∥(un+1

h − un
h)∥

2
L2 (4.48)

+ τ∥∇un+1
h ∥

2
L2 +

τ

2
∥un+1

h ∥
q+1
Lq+1 )(∥u

n+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 )

]
≤ Cτ

ℓ−1∑
n=0

E
[
∥un+1

h ∥
4
L2
]
+ Cτ

ℓ−1∑
n=0

E
[
∥∇un+1

h ∥
2(q+1)
L2

]
+

3
8
E
[
∥u0

h∥
4
L2
]

+ Cτ

ℓ−1∑
n=0

E
[
∥un

h∥
4
L2
]
+ C .
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When τ ≤ C , we have

1
4
E
[
∥uℓ

h∥
4
L2
]
+

1
16

ℓ−1∑
n=0

E
[
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 )

2]
+

ℓ−1∑
n=0

E
[
(
1
4
∥(un+1

h − un
h)∥

2
L2 (4.49)

+ τ∥∇un+1
h ∥

2
L2 +

τ

2
∥un+1

h ∥
4
L4 )(∥u

n+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 )

]
≤ Cτ

ℓ−1∑
n=0

E
[
∥un

h∥
4
L2
]
+ Cτ

ℓ−1∑
n=0

E
[
∥∇un+1

h ∥
2(q+1)
L2

]
+

3
8
E
[
∥u0

h∥
4
L2
]
+ C .

Using Gronwall’s inequality, we obtain

1
4
E
[
∥uℓ

h∥
4
L2
]
+

1
16

ℓ−1∑
n=0

E
[
(∥un+1

h ∥
2
L2 − ∥un

h∥
2
L2 )

2] (4.50)

+

ℓ−1∑
n=0

E
[
(
1
4
∥(un+1

h − un
h)∥

2
L2 + τ∥∇un+1

h ∥
2
L2

+
τ

2
∥un+1

h ∥
4
L4 )(∥u

n+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 )

]
≤ C .

Step 2. Similar to Step 1, using (4.40)–(4.44), we have
3
8
(∥un+1

h ∥
4
L2 − ∥un

h∥
4
L2 )+

1
16

(∥un+1
h ∥

2
L2 − ∥un

h∥
2
L2 )

2 (4.51)

+ (
1
4
∥(un+1

h − un
h)∥

2
L2 + τ∥∇un+1

h ∥
2
L2 +

τ

2
∥un+1

h ∥
4
L4 )(∥u

n+1
h ∥

2
L2 +

1
2
∥un

h∥
2
L2 )

≤ Cτ∥un+1
h ∥

4
L2 + Cτ∥∇un+1

h ∥
2(q+1)
L2

+ (C + C∥un
h∥

4
L2 )(∆Wn)4

+ (C + C∥un
h∥

4
L2 )(∆Wn)2 + (G(un

h), u
n
h)∥u

n
h∥

2
L2∆Wn.

Similar to Step 1, multiplying (4.51) by ∥un+1
h ∥

4
L2
+

1
2∥u

n
h∥

4
L2
, we can obtain the 8-th moment of the L2 stability result

f the discrete solution. Then repeating this process, the second moment of the L2 stability result of the discrete solution
an be obtained. Step 3. Suppose 2r−1

≤ p ≤ 2r , and then by Young’s inequality, we have

E
[
∥uℓ

h∥
p
L2
]
≤ E

[
∥uℓ

h∥
2r
L2

]
+ C ≤ C, (4.52)

here Step 2 is used in the second inequality. The proof is complete. □

.3. Error estimates of the finite element approximation

In this subsection, we consider error estimates between the semi-discrete solution un of Algorithm 1 and its finite
lement approximation un

h from Algorithm 2. Let enh = un
− un

h (n = 0, 1, 2, . . . ,N). In the following theorem, the
2-projection is used in the proof of the error estimates and the strong convergence rate is given.

heorem 4.5. Let {un
} and {un

h}
N
n=1 denote respectively the solutions of Algorithm 1 and Algorithm 2. Then, under the

ondition (2.1), there holds

sup
0≤n≤N

E
[
∥enh∥

2
L2
]
+ E

[
τ

N∑
n=1

∥∇enh∥
2
L2

]
≤ Ch2

| ln h|2(q−1).

roof. We write enh = ηn
+ ξ n where

ηn
:= un

− Phun and ξ n
:= Phun

− un
h, n = 0, 1, 2, . . . ,N.

Subtracting (4.2) from (3.1) and setting vh = ξ n+1, the following error equation holds P-almost surely,

(ξ n+1
− ξ n, ξ n+1) = −(ηn+1

− ηn, ξ n+1)− τ (∇un+1
−∇un+1

h ,∇ξ n+1) (4.53)

+ τ
(
F (un+1)− IhF n+1, ξ n+1)

+ (G(un)− G(un
h), ξ

n+1)∆Wn,

+
1
2

(
(DG(un)G(un)− DG(un

h)G(u
n
h))((∆Wn)2 − τ ), ξ n+1)

:= T1 + T2 + T3 + T4 + T5.
18
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L

The expectation of the left-hand side of (4.53) can be bounded by

E
[
(ξ n+1

− ξ n, ξ n+1)
]
=

1
2
E
[
∥ξ n+1

∥
2
L2 − ∥ξ n

∥
2
L2
]
+

1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2
]
. (4.54)

The first term on the right-hand side of (4.53) is 0 by the property of the L2-projection.
For the second term on the right-hand side of (4.53), we have

E [T2] = −τE
[
∇ηn+1

+∇ξ n+1,∇ξ n+1] (4.55)

≤ CτE
[
∥∇ηn+1

∥
2
L2
]
−

3
4
τE

[
∥∇ξ n+1

∥
2
L2
]

≤ Cτh2E[∥un+1
∥
2
H2 ] −

3
4
E
[
∥∇ξ n+1

∥
2
L2
]
τ .

In order to estimate the third term on the right-hand side of (4.53), we write

τ
(
F (un+1)− IhF n+1, ξ n+1)

= τ
(
F (un+1)− F (Phun+1), ξ n+1) (4.56)

+ τ
(
F (Phun+1)− F n+1, ξ n+1)

+ τ
(
F n+1

− IhF n+1, ξ n+1).
The first term on the right-hand side of (4.56) can be bounded as follows. Using Cauchy–Schwarz’s inequality, the

adyzhenskaya inequality ∥u∥L4 ≤ C∥u∥1/2
L2

∥∇u∥1/2
L2

, and (4.4) we obtain

τ
(
F (un+1)− F (Phun+1), ξ n+1) (4.57)

= −τ

(
ηn+1

[ q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

]
, ξ n+1

)
≤ τ∥ηn+1

∥L4

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1


L4
∥ξ n+1

∥L2

≤ Cτ∥ηn+1
∥
1/2
L2

∥∇ηn+1
∥
1/2
L2

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1


L4
∥ξ n+1

∥L2

≤ Cτh∥∇un+1
∥
1/2
L2

∥∆un+1
∥
1/2
L2

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1


L4
∥ξ n+1

∥L2

≤ Cτh2
∥∇un+1

∥L2∥∆un+1
∥L2

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

2

L4

+ τ∥ξ n+1
∥
2
L2 .

Taking the summation
∑ℓ

n=0 to (4.57) for any 0 ≤ ℓ ≤ N − 1 we obtain

τ

ℓ∑
n=0

(
F (un+1)− F (Phun+1), ξ n+1) (4.58)

≤ Ch2τ

ℓ∑
n=0

∥∇un+1
∥L2∥∆un+1

∥L2

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

2

L4

+ τ

ℓ∑
n=0

∥ξ n+1
∥
2
L2

≤ Ch2
(
τ

ℓ∑
n=0

∥∇un+1
∥
2
L2∥∆un+1

∥
2
L2

)1/2

×

(
τ

ℓ∑
n=0

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

4

L4

)1/2
+ τ

ℓ∑
n=0

∥ξ n+1
∥
2
L2 .
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w
o

p

Next, applying the expectation to (4.58) and using Cauchy–Schwarz’s inequality, and then using Lemma 3.2 we have

E
[
τ

ℓ∑
n=0

(
F (un+1)− F (Phun+1), ξ n+1)] (4.59)

≤ Ch2E
[(

τ

ℓ∑
n=0

∥∇un+1
∥
2
L2∥∆un+1

∥
2
L2

)1/2

×

(
τ

ℓ∑
n=0

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

4

L4

)1/2]
+ E

[
τ

ℓ∑
n=0

∥ξ n+1
∥
2
L2

]
≤ Ch2

(
E
[
τ

ℓ∑
n=0

∥∇un+1
∥
2
L2∥∆un+1

∥
2
L2

])1/2

×

(
E
[
τ

ℓ∑
n=0

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

4

L4

])1/2

+ E
[
τ

ℓ∑
n=0

∥ξ n+1
∥
2
L2

]
≤ Ch2

(
E
[
τ

ℓ∑
n=0

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

4

L4

])1/2

+ E
[
τ

ℓ∑
n=0

∥ξ n+1
∥
2
L2

]
.

Moreover, using the embedding inequality ∥u∥Lr ≤ C∥u∥H1 for any integers r ≥ 2 (see [29, Corollary 9.14]) we also
have

E
[
τ

ℓ∑
n=0

 q−1∑
i=0

(un+1)i(Phun+1)q−1−i
− 1

4

L4

]
≤ CE

[
τ

ℓ∑
n=0

(
∥un+1

∥
4(q−1)
L4(q−1) + ∥Phun+1

∥
4(q−1)
L4(q−1) + C

)]
≤ CE

[
τ

ℓ∑
n=0

(
∥un+1

∥
4(q−1)
H1 + ∥Phun+1

∥
4(q−1)
H1 + C

)]
≤ C,

here the last inequality is obtained by using Lemma 3.2. In summary, we obtain the following estimate for the first term
f T3

E
[
τ

ℓ∑
n=0

(
F (un+1)− F (Phun+1), ξ n+1)]

≤ Ch2
+ E

[
τ

ℓ∑
n=0

∥ξ n+1
∥
2
L2

]
. (4.60)

By using the one-sided Lipschitz condition (2.7), the second term on the right-hand side of (4.56) can be bounded by

E
[(
F (Phun+1)− F n+1, ξ n+1)]

≤ E
[
∥ξ n+1

∥
2
L2
]
. (4.61)

Using properties of the interpolation operator, the inverse inequality, and the fact that un+1
h is a piecewise linear

olynomial, the third term on the right-hand side of (4.56) can be handled by

E
[(
F n+1

− IhF n+1, ξ n+1)] (4.62)

≤ E
[
Ch2

∑
K∈Th

∥q(un+1
h )q−1

∇un+1
h ∥

2
L2(K )

]
+ E

[
∥ξ n+1

∥
2
L2
]

≤ E
[
Ch2

(
∥un+1

h ∥
2(q−1)
L∞ ∥∇un+1

h ∥
2
L2

)]
+ E

[
∥ξ n+1

∥
2
L2
]

≤ E
[
Ch2

| ln h|2(q−1)
(∑
K∈Th

(∥∇un+1
h ∥

2
L2(K ) + ∥un+1

h ∥
2
L2(K ))

)q−1

∥∇un+1
∥
2
]
+ E

[
∥ξ n+1

∥
2 ]
h L2 L2
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≤ E
[
Ch2

| ln h|2(q−1)(∥un+1
h ∥

2(q−1)
L2

+ ∥∇un+1
h ∥

2(q−1)
L2

)∥∇un+1
h ∥

2
L2

]
+ E

[
∥ξ n+1

∥
2
L2
]

≤ E
[
Ch2

| ln h|2(q−1)(∥un+1
h ∥

2q
L2
+ ∥∇un+1

h ∥
2q
L2
)
]
+ E

[
∥ξ n+1

∥
2
L2
]

≤ Ch2
| ln h|2(q−1)

+ E
[
∥ξ n+1

∥
2
L2
]
.

Combining (4.60)–(4.62) yields

E

[
τ

ℓ∑
n=0

T3

]
≤ Ch2

| ln h|2(q−1)
+ CE

[
τ

ℓ∑
n=0

∥ξ n+1
∥
2
L2

]
. (4.63)

By the assumption (A1) for G(·) and then Lemma 3.2, we have

E[T4] ≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2
]
+

1
2
τE

[
∥G(un)− G(un

h)∥
2
L2 ds

]
(4.64)

≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2
]
+

1
2
τE

[
∥un

− un
h∥

2
L2 ds

]
≤

1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2
]
+ CE

[
∥ηn

+ ξ n
∥
2
L2
]
τ

≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2
]
+ CE

[
∥ξ n

∥
2
L2
]
τ + Cτh2E

[
∥∇un

∥
2
L2
]

≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2
]
+ CE

[
∥ξ n

∥
2
L2
]
τ + Cτh2.

By using the assumption (A3) for G and then Lemma 3.2, we have

E[T5] ≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2

]
+

1
2
E
[
∥ DG(un)G(un)− DG(un) (4.65)

· G(un
h) ∥

2
L2

]
τ 2

+
1
2
E
[
∥DG(un)G(un

h)− DG(un
h)G(u

n
h)∥

2
L2

]
τ 2

≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2

]
+ CE

[
∥un

− un
h∥

2
L2 ds

]
τ 2

≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2

]
+ CE

[
∥ηn

+ ξ n
∥
2
L2

]
τ 2

≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2

]
+ CE

[
∥ξ n

∥
2
L2

]
τ 2

+ Cτ 2h2E
[
∥∇un

∥
2
L2
]

≤
1
2
E
[
∥ξ n+1

− ξ n
∥
2
L2

]
+ CE

[
∥ξ n

∥
2
L2

]
τ 2

+ Cτ 2h2

Taking the expectation on (4.53) and combining estimates (4.54)–(4.65), summing over n = 0, 1, 2, . . . , ℓ − 1 with
1 ≤ ℓ ≤ N , and using Lemma 3.2 we obtain

1
4
E
[
∥ξ ℓ

∥
2
L2
]
+

1
4
E
[
τ

ℓ∑
n=1

∥∇ξ n
∥
2
L2

]
≤

1
2
E
[
∥ξ 0

∥
2
L2
]
+ CE

[
τ

ℓ−1∑
n=0

∥ξ n
∥
2
L2

]
(4.66)

+ Ch2
| ln h|2(q−1)

+ Ch2E
[
τ

ℓ−1∑
n=0

∥un+1
∥
2
H2

]
≤

1
2
E
[
∥ξ 0

∥
2
L2
]
+ CE

[
τ

ℓ−1∑
n=0

∥ξ n
∥
2
L2

]
+ Ch2

| ln h|2(q−1).

Finally, the conclusion of the theorem follows from the discrete Gronwall’s inequality, the fact that ξ 0
= 0, and the

triangle inequality. □

4.4. Global error estimates

Finally, we are ready to state the global error estimates of our proposed method in the following theorem.
21



Y. Li, L. Vo and G. Wang Journal of Computational and Applied Mathematics 437 (2024) 115442
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Fig. 5.1. Test 1: Zero-level sets of the evolution: τ = 5× 10−4 , h = 0.02, ϵ = 0.04.

Table 5.1
Test 3: Time step errors and rates of convergence of Test 3: h = 0.01, ϵ = 0.3, δ = 0.01, T = 0.25.

L∞EL2 error Order EL2H1 error Order

τ = 0.025 0.080163 – 0.054115 –
τ = 0.0125 0.038604 1.0542 0.027675 0.9675
τ = 0.0625 0.018036 1.0978 0.013978 0.9855
τ = 0.03125 0.008724 1.0479 0.007467 0.9045

Theorem 4.6. Let u and {un
h}

N
n=1 denote respectively the solutions of (2.8) and Algorithm 2. Then, under the conditions of

heorems 3.1 and 4.5, there holds

sup
0≤n≤N

E
[
∥u(tn)− un

h∥
2
L2
]

+ E

[
τ

N∑
n=1

∥∇(u(tn)− un
h)∥

2
L2

]
≤ C

(
τ 2(1−ϵ)

+ h2
| ln h|2(q−1)).

5. Numerical experiments

In this section, three numerical tests are presented. In Test 1, the evolution and stability of (1.1) in the case F (u) = u−u3

are illustrated with different noise intensities. Test 2 provides the visualization of the stability using a different drift term
and diffusion term. Test 3 presents the error orders with respect to time step size τ . The domain D for all the following
tests is chosen to be D = [−1, 1] × [−1, 1].

Test 1. Consider the initial condition:

u0(x, y) = tanh(

√
x2 + y2 − 0.6

√
2ϵ

). (5.1)

For this test, F (u) = u− u3 is used as the nonlinear term, and G(u) = δu is used as the diffusion term. In Fig. 5.1, the
zero-level sets of the evolution using two different levels of noise intensity are shown. One can observe that the average
zero-level set is a shrinking circle for both levels of noise intensity. Fig. 5.2 demonstrates the EL2 and EH1 stability for each
time step. One can make the observation that they are both bounded. A one-sample EL2 and EH1 stability are provided
n Fig. 5.3. Those stability results are still bounded but they are not always decreasing over time.

Test 2. For this test, the initial condition is still in (5.1), and that ϵ = 0.5. The drift term is changed to F (u) = u− u11,
and the diffusion term is changed to G(u) = δ

√
u2 + 1. In Fig. 5.4, the EL2 and EH1 stability are given by the blue and

ink solid lines, along with the maximum and minimum of those two stabilities given by upper and lower edges of the
haded red and blue regions. One can see that both the EL2 and EH1 stability are bounded.
Test 3. Consider the initial condition:

u0(x, y) = tanh(

√
x2 + y2 − 0.8

√
2ϵ

). (5.2)

In this test, we use ϵ = 0.3, F (u) = u − u3 as the drift term, and G(u) = δu as the diffusion term. The final time
is T = 0.25. Table 5.1 demonstrates the error { sup E[∥en∥2

L2(D)
]}

1
2 and the error {E[

∑N
n=1 τ∥∇en∥2

L2(D)
]}

1
2 . The error
0≤n≤N
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{

T

Fig. 5.2. Test 1: Stability demonstration (average): τ = 5× 10−4 , h = 0.02, ϵ = 0.04.

Fig. 5.3. Test 1: Stability demonstration (one sample point): τ = 5× 10−4 , h = 0.02, ϵ = 0.04.

Fig. 5.4. Test 2: Stability demonstration (average and max/min): τ = 5× 10−4 , h = 0.02, ϵ = 0.5.

sup
0≤n≤N

E[∥en∥2
L2(D)

]}
1
2 is denoted by L∞EL2, and the error {E[

∑N
n=1 τ∥∇en∥2

L2(D)
]}

1
2 is denoted by EL2H1. By observing

able 5.1, one can see that the error orders for both L∞EL2 and EL2H1 are 1.
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Data availability

Data will be made available on request.
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