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In this paper, we consider a new approach for semi-discretization in time and spatial
discretization of a class of semi-linear stochastic partial differential equations (SPDEs)
with multiplicative noise. The drift term of the SPDEs is only assumed to satisfy a one-
sided Lipschitz condition and the diffusion term is assumed to be globally Lipschitz
continuous. Our new strategy for time discretization is based on the Milstein method
from stochastic differential equations. We use the energy method for its error analysis
and show a strong convergence order of nearly 1 for the approximate solution. The proof
is based on new Holder continuity estimates of the SPDE solution and the nonlinear
term. For the general polynomial-type drift term, there are difficulties in deriving
even the stability of the numerical solutions. We propose an interpolation-based finite
element method for spatial discretization to overcome the difficulties. Then we obtain
H' stability, higher moment H! stability, L? stability, and higher moment L? stability
results using numerical and stochastic techniques. The nearly optimal convergence
orders in time and space are hence obtained by coupling all previous results. Numerical
experiments are presented to implement the proposed numerical scheme and to validate
the theoretical results.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following initial-boundary value problem for general semi-linear stochastic partial differential
equations (SPDEs) with function-type multiplicative noise:

du = [Au+ F(u)]dt + Gu)dW(t)  as.in(0,T) x D, (1.1)
u=20 as.on (0,T) x aD, (1.2)
u(0) = ug a.s.inD, (1.3)

where D = (0,L) c RY(d = 1,2). F, G are two given functions that will be specified later. {W(t); t > 0} denotes an

R-valued Wiener process.
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The corresponding stochastic ordinary differential equations of (1.1) (without the Laplacian term) are studied in [1,2]
for the case when both F and G are Lipschitz continuous, and in [3] for the case when G satisfies the one-sided Lipschitz
condition as stated in (2.7). The strong and weak divergence is considered in [4] for some F which are not Lipschitz
continuous. Besides, the corresponding stochastic partial differential equations of (1.1) when F is Lipschitz and non-
Lipschitz continuous and when G is additive and multiplicative are studied in [5-9] based on the variational approach
and in [10-16] based on the semigroup approach. Here the half-order convergence is established in [9] when the drift
term is F(u) = u — u® using the Euler-type scheme. The half-order convergence is established in [7] for the drift term in
(2.6) and diffusion term in assumptions (A1)-(A3) for a fully discrete scheme.

The primary goal of this paper is to design and analyze a first-order numerical scheme for the time discretization of
the problem (1.1)-(1.3). Specifically, we design a new time discretization method first and then propose an interpolation
finite element method, which is based on the new time scheme to discretize the space. Our idea for the time discretization
method is inspired by the Milstein method [17] from stochastic differential equations and the semi-discrete in time
strategy of the stochastic Stokes equations in [18]. In addition, the diffusion function G is assumed to satisfy the global
Lipschitz condition while the drift-nonlinear function F is only one-sided Lipschitz. Furthermore, to establish the rates
of convergence of the proposed scheme, we use the energy method followed by two steps: the first step is to prove
the first-order error order in time by utilizing several established Hélder continuity estimates. The second step is to
prove the optimal error order in space. To achieve this, the H! stability of the numerical solution is needed. The H!-
seminorm stability of the numerical solution is proved first and based on which the L? stability of the numerical solution
is established.

The remainder of this paper is organized as follows. In Section 2, several Holder continuity results about the strong
solution are proved. These results will be used in establishing the semi-discrete in-time error estimates. In Section 3,
we present the new approach for the time discretization and its a priori stability as well as the error estimates of the
semi-discrete solution are proved. The convergence order is proved to be nearly 1 for the proposed scheme in L?>-norm
and the energy norm. In Section 4, we consider an interpolation finite element method for spatial discretization. The
finite element method is designed where the interpolation operator is utilized to overcome the difficulty resulting from
nonlinearity. Through this approach, the second moment and higher moment H! stability results are proved first, based
on which the second moment and higher moment L? stability results are proved. Finally, the error estimates with optimal
convergence order in space are established based on those stability results. In Section 5, several numerical tests including
different initial conditions, drift terms, and diffusion terms are used to validate the theoretical results.

2. Preliminaries

Let 7, be the triangulation of D satisfying the following assumption [19]:
1 K K
E cotf. >0, 2.1
d(d_l)K)ElKEI f .

where E denotes the edge of simplex K. Note this assumption is just the Delaunay triangulation when d = 2. In 3D, the
notations in the assumption (2.1) are as follows: a; (1 <i < d + 1) denote the vertices of K, E = E; the edge connecting
two vertices g; and g;, F; the (d — 1)-dimensional simplex opposite to the vertex a;, 05‘ or eg the angle between the faces
F and F;, and k¥ = F;NF;.
Let #, K be two Hilbert spaces. Then, £(#, K) is the space of linear maps from A to K. For m € N, inductively define
Li(H, K) = L(H, Lm—1(H, K)), (2.2)

as the space of all multi-linear maps from H x --- x H (m times) to K for m > 2.
For some function G : H — K, we define the Gateaux derivative of G with respect to u € H, DG(u) € £L(#, K), whose
action is seen as

v+ DG(u)(v) VveH.

In general, we denote D¥G(u) € Lm(H, K), as the k-Gateaux derivative of G with respect to u € H.
Below, we state the assumptions on the functionals G, F : H — K.

(A1) G is globally Lipschitz continuous and has linear growth. Namely, there exists a constant C > 0 such that for all
v, weEH

1G(v) — G(w)llx < Cllv —wlla, (2.3a)
Gl < C(lIvlls + 1) (2.3b)
(A2) There exists a constant C > 0 such that

DGl oo (34: £(34.10)) + 1ID*Gllioo(34: o310y < C. (2.4)
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(A3) There exists a constant C > 0 such that for all u, v € H

I(DG(u) — DG(v))G(v)llx < Cllu — v]l%. (2.5)
In this paper, suppose that G : H}(D) — Hg(D), and
F(u) = cou — cqu® —cuu® —csu” — -+ -, (2.6)
where ¢; > 0,i = 0, 1, 2, .. .. For simplicity, we choose F(u) = u — u? for all odd numbers g > 3. Then F satisfies the
following one-sided Lipschitz condition [20]
(a—b,F(a)— F(b)) < ula—b> Va,beRY, (2.7)

where p is a positive constant.
Under the above assumptions for the drift term and the diffusion term, it can be proved in [21] that there exXists a
unique strong variational solution u such that

(u(t), ¢) = (u(0), ¢) — / (Vu(s), Vo) ds (2.8)

0
N / (F(s)). ¢) ds + f (GLu(s)), ¢) dW(s) ¥ € HY(D)
0 0

holds P-almost surely. Moreover, when the initial condition ug is sufficiently smooth, the following stability estimate for
the strong solution u holds

Sup E[nu O] + Sup E[nu( ihs] =<c. (2.9)

where q is the exponent in the drift term of F(u) = u — uf.
Next, we introduce the Holder continuity estimates for the variational solution u.

Lemma 2.1. Suppose that the solution u of (2.8) satisfies (2.9). For ¢ > 0,let 0; = 7 — € > 0,6, = 1 — € > 0. There exists
a constant C = C(D, T, q, ug) > 0, such that for all s, t € [0, T],

(i) E[flu(t) — (5)||,2,1] = Clt — s>,
(i) IE[”u(t) —u(s / G(u(‘;‘))dW(é)HZl] < C|t — 5|92, where g = 2, 4.
(iii) E[Jlu(t) — u(s)lIfy] 55 C|t —s|%, where q > 2 are integers.

(v) 5[ |Feute - Fatsn - DG aw @), < cle - s

s

Proof. The proof of (i) can be found in [7, Lemma 2.1], while the establishment of (iii) is based on the semigroup theory,
which can be found in many references such as [22-24]. In addition, the proof of (ii) is followed [23, Lemma 10.27] and [ 18,
Lemma 2.3] with minor modifications for ¢ = 4. We just need to prove (iv). To prove (iv), we use the Taylor expansion
for F with respect to u(s) € L*(D) as follows.
(u(t)) = F(u(s)) + DF(u(s))(u(t) — u(s)) + Ry, (2.10)
1
where Ry = | (1 —n)(D*F(u(s) + n(u(t) — u(s))))(u(t) — u(s)) dn.

0
Therefore, we have

F(U(t))—F(U(S))—/ DF(u(s))G(u(§))dW(§)

=DF(u(s))[u(r)—u(s>— / G(U(S))dW(S)] +R,.

Since we have DF(u) = 1 — qui~!, then we obtain

2

|oFtusn[ute) — s - | " Glu(e) aw(e)| 2.11)

12

= [ Jo = [ us) - [ e awes][ e

2

< 21+ e ) [ue) - ws) - [ cutenawee)]|
D s

3
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<2( [+ PP ar)°
D

< 2( [ 200+ gt ) Juto) - uis) - [ ctuteawe
D s

2

u(t )—U(S)—/ Glu(§)dW(8)] ,

Taking the expectation E[-] to (2.11) and then using the Cauchy-Schwarz inequality, we obtain

;] (2.12)

2
L4]

[ | preuts) [ute) - uts) - / t Glu(&))aw s)]

S

< B[2( / z(1+q4|u(s>|4<q—”)dx)j u(t) - u(s) - /  Glu(e) awie)
D s

< (e[t ])? (e[ o - o - /Stc(u(s»dW(s) ‘).

Using the interpolation inequality that E[||u||f4] < ClE[IIullf2 ||Vu||fz] < CIE[||u||;_‘,1] and Lemma 2.1 (iii) yield to

ol Juer - [ Gt awee)| ] (2.13)

t 4
< e[ fun—ue - [ cwenawee]) ] = cie—si,

By using (2.9), we arrive at

t 2
e |orwsy{uc - wo) - [ cutenawe)][,] = cie - s, (2.14)
L
N
3
where C = Cq(supse[0 T ]E[llu(s)llfﬁ?q 11 ]) .
It is remaining to estimate R,. To do that, we notice that D*F(u) = —q(q — 1)u?"2. In the end, we have
IRz 112 (2.15)

1 2
5/ ‘/ (1 —m)q(1 — q)(u(s) + n(u(t) — u(s))*(u(t) — u(s))*dn| dx
D 0
2
< [ (a0 = 020272 + u(e) — w1 2)) ) — )
D

< / a*(q — 122273 (Ju(s)P92 + Ju(t) — u(s) X2 Ju(t) — u(s)|* dx
D

G, / ()P 2u(e) — u(s)* dx + / () — u(s)P dx

Collu()IIT 3 lu(t) — u(s)lIfs + Cyllu(t) — u(s)|%,
Taking the expectation E[-] to (2.15), using Lemma 2.1 (iii) and then (2.9), we obtain

E[IR11%] < GE[lIu()II75 2 Ilu(t) — u(s)1% ] + CE[llut) — u(s)|1%, ] (2.16)

< G (B[ 30)* (luo - usik])*
+ E[u(t) — u(s)1%,]
< C(t = 51 4 |t — sP") < CJt — 51,

IA

1

where € = Gy (supscon E[Iu() 3])

The proof is complete by combining (2.14) and (2.16). O

3. Semi-discretization in time

In this section, we follow the strategy of the Milstein scheme in SDEs to propose a new time discretization method of
(1.1). This approach generates a convergence order of nearly 1 for the approximate solution.

4
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3.1. Formulation of the proposed method

Let tg < t; < --- < ty be a uniform mesh of the interval [0, T] with the time step size T = % Note that ty = 0 and
tn =T.

Algorithm 1. Let u® = ug be a given Hj-valued random variable. Find u™! € H}(D) recursively such that P-a.s.
(W™ —u", @) + T (VU™ Vo) = t(F™™), o)+ ( Gu") AW, (3.1)
+ 506N G[(AW,F ~ 7.6),
for all ¢ € H)(D) and AW, = W (1) — W(ta) ~ N(0, 7).

Remark 3.1. The scheme (3.1) will produce a convergence of order nearly 1. The difference between (3.1) and the
standard Euler-Maruyama method is the discretization of the noise term. While the Euler-type schemes, which establish a
convergence order of 3, contain only the term G(u") AW, the scheme (3.1) adds the extra term 3DG(u") G(u™)[(AW,)*—1],
which is the key point to obtain a higher convergence order.

Next, we define G : R™ x H}(D) — L*(D) by
N
G(si 1) i= Gu) + DGGK) [ WD by =5 = by (32)
th
Then we have
tht1 tht1 S
/ G(s; u™)dW(s) = Gu™) AW, + DG(u“)G(u”)/ / dW(r)dW(s)
th th tn

1
= Gu")AW, + 5Dc(u”)c(u”)[(Awn)2 -]
Therefore, we rewrite (3.1) as follow:

(W —u", ¢) + (VU Vo) = T(Fu™), ¢) (33)
tht1
+ / (9(s; u™), @) dW(s).
th
Next, we state the following technical lemma that is used to prove the error estimate results of this paper.

Lemma 3.1. Suppose that G satisfies the assumptions (A1), (A2), (A3). Let ug € L?($2; H)(D) N H*(D)), there exist constants
C > 0 such that the function G defined in (3.2) satisfies

(i) 16(s; u) — G(s; V)|l2 < Cllu — v|l2, Vs> 0,u,v e L*D),
(ii) E[| Glu(s)) — g(s: u(rn))||f2] < Cls— t,)2079 for t, <s < tyyq and € > 0.

Proof. The Lipschitz continuity of G in (i) is directly obtained from the assumptions of G while the proof of (ii) can be
found in [23, Lemma 10.36] with similar arguments. O

Next, we will provide the stability estimates of Algorithm 1 in the following lemma. These stability estimates will be
used for the proof of the error estimates of the finite element approximation later.

Lemma 3.2. Let {u"} be the solution of Algorithm 1. Then, there exists a constant C = C(D, T, ug, p) such that

N
(i) sup ]E[||Vu"||f£] -HE[r Z ||Vu"||2r‘2||Au"||fz] < C, for any integers r > 1.
n=1

2
1<n<N L

(ii) sup E[|Vu"|[",] < C, for any integers p > 2.
1

<n<N

Proof. We just provide the proof of (i) when r = 1. When r > 2, the proof is similar to [25, Lemma 3.1] with minor
modifications. So, we skip it to save space.
To begin, we rewrite (3.1) in the strong form as follow:

U™ —u" — rAu™ = tF(u™) + G(uM) AW, (3.4)
1
+ EDG(u”)G(u”)[(AWn)Z —1].

5



Y. Li, L. Vo and G. Wang Journal of Computational and Applied Mathematics 437 (2024) 115442

Testing Eq. (3.4) by —Au™" and then using integration by parts we obtain
(V@™ —u"), Vu"™T) + 7| au"t 2, (35)
— —‘L'(F( n+1) Aun+1) (G(un)7 Aun+l)AWn

1
- 5(Dc(u")c(u"),A u" M [(AW, ) — 1]

=I4II4TIII.
By using the integration by parts, we obtain
I=—t(u"", Au™") + (@), Aau™) (3.6)

= || Vu" 2, — rq((™) VU, vt

— 7| Va2 — oq / W Ve dx < Vet |,

where the last inequality of (3.6) is obtained by using the fact that, for all odd q > 3, f(u"+1)" Va1 dx > 0.
To bound II, we take the expectation and then use the fact that E[AW,] = 0. Namely,

E[1I] = —E[(Gu"), A@™" — u™) AW, | — E[(G(u"), Au") AW, ] (3.7)
E[(VG"), V™! —u") AW, ]

1
< CE[IVu" 5| AW, ] + SB[V —un):]
1
= CeBI Va1 + SB[V —u)i]-
In addition, by using the Cauchy-Schwarz and the assumptions (A1), (A2), we have

C
E[LIT] < —E[IDGW"GW)B (AW, — ] + “E[14u ] (3.8)

I A

I /\

fE[nG BN AW, — o] + ZE[1 w12
< C[IVa"l%] + B[ 4w 1],

where the last inequality of (3.8) is obtained by using the fact that E[|(AW,)? — rlz] < Ct2
Substituting all the estimates from I, II, III into (3.4) and absorbing the like-terms from the right side to the left
side, we obtain

1 1 T
EE[”VUH-H”fz — [IVu™i%,] + ZIE[IIV(u"Jrl —u"|%]+ EIE[IIAu”+1 %] (3.9)
< CTE[|[u™" —u"||% ] + CTE[IVu"[|2,].

Next, applying the summation Zi:w for any 0 < £ < N, we obtain
¢

4
E[IVu 5]+ > E[IV@™ —uMiG] + 7 Y E[lau%] (3.10)
n=0

n=0
14

Cr Z IVu"I] + E[IVuol %] + €t > B[l — u")1%].
n=0
The proof is completed by using Gronwall’s inequality.
Finally, the proof of (ii) is followed by using the result from (i) and Hoélder inequality. O

3.2. Error estimates for Algorithm 1

In this part, we state the first main result of this paper which establishes an O(t!~¢) convergence order for the proposed
method.

Theorem 3.1. Let u be the variational solution to (1.1) and {u"} be generated by Algorithm 1. Assume that G satisfies
(A1), (A2), (A3) and ug € L*(2; Hj(D) N H*(D)). Suppose that 0 < e < 1, then there exists a constant C = C(D, T, up) > 0
such that

N
sup E[u(ty) "l +E[r > IVult) — u")nfz} <o, (3.11)
=n= n=1

6
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Proof. Denote e" := u(t,) — u". Subtracting (3.3) from (2.8), we obtain the following error equation
tnt1
(e —e" ¢) + (Ve Vo) = f (V(u(tns1) — u(s)), Vo) ds (3.12)
tn
tn+1
[t - Fus). ) o
tn
tn+1 1
" / (F(u(ta)) — F™1), ) ds
tn
tnt1
+ / (Glu(s)) — G(s; u"), ¢) dW(s).
tn
Now, choosing ¢ = e™! and using the identity 2a(a — b) = a* — b®> + (a — b)?, we have
1 1
E[IIE"+1 12, — lle"I%,] + §||€"+] — "%, + 7| Ve 2,
(OR8]
= [ (V) - s, v s
th

(3.13)

- / " (Fultns) — Flu(s)), €1 ds
th
tnt1

+/ (F(u(tat1)) — Fu"™), &™) ds

thy
+ / (G(u(s)) — G(s; u™), e™*1) dW(s)
th
=I4+II+III+4 IV.
Next, we bound the right side of (3.13) as follows.

Iy
In order to estimate I, we add and subtract / VG(u(€))dW(€) for any t, < s < t,41, as follow.
S

tht1 tnt1
+ / ( / VG(u()) dW(§), Ve"“) ds
= I1 + ?[2.

By using Lemma 2.1 (ii), we obtain

tht1 tht1
B[L] < / & Juttrn) — ) - / G(u(&)) dW(E)

+ ZE[Ive™ ]

2
]ds (3.15)
Hl

T
< CT1+2(]76) + Z]E[“ven+1”52]

Next, by the integration by parts we have
tht1 tht1
I, = / (/ VG(u(&))dW(€), V(e"t! — e”)) ds (3.16)
" fn+51 tht1
+ / (/ VG(u(£)) dW(E), Ve") ds
[rt:ﬂ frs1+1
= —f (/ AG(U(E)) dW(£), &' — e") ds

th s

¥ f " ( f " V) dw(e), ve') ds

= Tpa + Igp.
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We note that E[I5,] = 0 due to the martingale property of the It6 integral. So, it is left to estimate I,,. By using the

Holder inequality, we obtain

L = — / ( f " AGu(E) dw(E), e — e") ds
tni1 fn+1 2
< 2”[ / ) dW(&)ds

tnt1
W(§)ds

1
+1 2
+ glle =
12

2

ft1 1 n+1 n 2
=2 dx—i—glle =€l

L

thg1
/ AG(U(E)) dW (£)

- 2/(/[n+1
D th
<2 / / / " AGu(E ) dw ()
D Jty s

_ 2 f / " AG(E ) dw ()
th K

By using the It6 isometry we have

2
1

+1 2

dsdx + glle’1 —e"[|

2

1
ds + §||e"“ —e"[?.

12

1
E[To] = E[Toa] = C7° sup E[Jlu(®)lli] + Ellle™" —€"llp]
£€[0,T]

1
<Cr+ gﬁ[ne"“ —e"|%].

Similarly, we can estimate I as follows.

1= [ (Rt~ Flus) ~ [ DR@S)GEN AW E),

tn+1 tn+1
et ) ds — / ( / DF(u(s))G(u(&)) dW(€), e"+1) ds
= IIi + II2 '

By using Lemma 2.1 (iv) and Poincaré’s inequality, we obtain

B T
EITT,] < C'207 + ZB[ | Ve, ].

To estimate II,, we use the same techniques from estimating I, and also use (2.9), we obtain

st = s [ ([ oruencuer we. e - ) ]

I /\

IA

/s o DF(u(s))G(u(£)) dW(S)‘ ds) dx]

CE[‘/[;(‘/;”%H

+ E[”en+1 en”2 ]

/ /fn+1
th

+ —E[fle"" —e"||?, ]

8
tn+1
CtE [[
tn

| /\

tn+l 2
CTE / (u(s))Gu(E)) dw(e)| " ds ]

—_ 1 00|

th1 2
| prsnctenawe)|

1/2
< c( sup E[ues )" (EEE%E[nu(s)n:l])

s€[0,T]
8

2 1
ds) dx + §||e”+1 —e"%

H /tn+] ffn+1 Glue)) dW (& dSH ]+ IE[||€”+1 o ” ]

1
ds] + SB[l — el

41 Ll 1
e[ f DRGNS d ds] + SE[je"! — "I ]
tn

(3.17)

(3.18)

(3.19)

(3.20)
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—_

+-E

—

2
lle™*" — eI, ]

8
< Cr’ 4 _E[[le™! — "2, ].

0| =

To estimate III, we use the one-sided Lipschitz condition (2.7) as follows.

E[III] < CTE[[e" |2 ] (3.21)
< CrE[[|e"" — e"[I ] + CTE[lle"13 ]-

To estimate IV, using Lemma 3.1, the Itd isometry and the martingale property of Itd integrals we have
thy1
FLr = E[/ (Cu(s) — g ), & ") aw(s)] (322)
th
th1
+ E[ / (Gu(s)) — g(s; u"), €") dW(s)]
th
tn+1
= E[/ (Gu(s)) — (s; u"), e+ — ") dW(s)] 40
th
thi1
= E[ f (Glu(s)) — G(s; u(ty)), "+ —e") dW(s)]
tn
tht1
+ E[/ (G(s: u(ty)) — G(s: u™), ™' — ") dW(s)]
2
LZ]

+ x| /t " (0ls: u(tn)) — Gs: ") dW(s)

< ci|| f " (Gu(s) — o(s: u(ty))) dWS)

2
L2]

1
+ g=le — 1]
tnt1 )
—ca[ [ ictuts) - ots: (e, ]
tn
thi1 )
B [ iots ) = et ]
tn
1
+ g&[le - 2]
_ 1
= CeHO 4 CeB[lle"p] + gELlle™ ! — el

Now, we substitute all the estimates from I, II, III, IV into (3.13) and use the left side to absorb the like-terms
from the right side of the resulting inequality. In summary, we obtain

1 1 T
SE[Ie™ 1% — "] + (5 — Cr )E[1e™! — "l ] + SE[1Ve™ 2] (3:23)

< Ct'"179 4 CrE[|le")%] + €.
We choose t < 1y (for 7o small enough) such that % —Ct > 0, so the middle term on the left side of (3.23) is nonnegative.
Next, applying the summation an=0 for 0 <m < N, we obtain

m

m
E[le™ %]+ Y E[IVe™ %] < v+ cr Y CE[fe"%] (3.24)
n=0 n=0

By using the discrete Gronwall’s inequality and taking supremum over all 0 < m < M, we arrive at

N
sup E[lle"|%] + 7 > E[IIVe"|%] < ceT 21 (3.25)

1<n<N =1

The proof is complete. O
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4. Fully discrete finite element discretization

In this section, we consider the P;-Lagrangian finite element space
Vi = {vn € Hy(D) : vnlk € P1(K) VK € Th}, (4.1)

where P; denotes the space of all linear polynomials. Then the finite element approximation of Algorithm 1 is presented
in Algorithm 2 as below.

Algorithm 2. We seek an F;, adapted Vj,-valued process {ug}’;’:1 such that it holds P-almost surely that
Uit —ufl, vp) + T(Vuptt, Vo) = T F™ vp) (4.2)

+ (G, w) AW, + DGR [ AW Y — <] w) Vo € i,

where F™1 = ul™! — (upth)9, AW, = W(tn1) — W(ta) ~ N(0, 7), and I, is the standard nodal value interpolation
operator I, : C(D) —> Vj, i.e.,
Np
v =Y va)gi, (43)

i=1

where N;, denotes the number of vertices of the triangulation 7, and ¢; denotes the nodal basis function of Vj
corresponding to the vertex a;. The initial condition is chosen by u2 = Pyuo where P;, : [(D) — Vj, is the L?-projection
operator defined by

(Phw, Uh) = (w, vp) vp € V.
For each w € H¥(D) for s > % the following error estimates about the L?-projection can be found in [26,27]:
lw = Pawllz + h[[V(w — Paw)ll 2 < CH™ 2 fw]|ps, (4.4)
lw — Prwllie < Ch2=% ] 2. (45)
Finally, given v, € V}, the discrete Laplace operator Ay : V, — V}, is defined by

(Apvn, wp) = —(Vup, Vwp)  Ywp € Vi (4.6)
4.1. Stability estimates for the pth moment of the H'-seminorm of up

First, we shall prove the second moment discrete H!-seminorm stability result, which is necessary to establish the
corresponding higher moment stability result.

Theorem 4.1. Under the mesh constraint (2.1), we have

N—-1
1
sup E[IVujli] + 7 > E[IV = upiiZ] (47)
<n< 0
anl
+1 Y E[lawp}:] < c.
n=0

Proof. Testing (4.2) with —Apu*'. Then

Ut =l — At + (VU VARt (4.8)
= t(ILF™, —Apul ™) + (G(ul), —Apuf ™) AWiiq

1
+ (5, DGR GUpX(AW) — 7). —Au ).

Using the definition of the discrete Laplace operator and the simple identity 2a(a — b) = a®* — b?> 4 (a — b)?, we get

1 1
! —ufl, — Aty = 5||Vuz“ I72 = S IVuRIE (4.9)
1
+ Enwu;:“ —up)l%,
t(Vupt!, =V At = ol Apup 1. (4.10)

10
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The expectation of the second term on the right-hand side of (4.8) can be bounded by
E[(G(up), —Antty ") AW,] = E[(V(PhG(up)), V(up™" — uR)) AW,] (4.11)
1
< CTE[|| VupllZ,] + IE[IIV(u"+1 —up)l7].
The expectation of the third term on the rlght—hand side of (4.8) can be bounded by

1
EIE[(DG(u;;)G(uz)((Awn)2 1), —Apup )] (4.12)

1
*E[(V(Ph(DG(uZ’)G(uZ))), V(up™ = up) (AW, = 7)]

IA

CTE[VUll%] + E[IIV( TR R

where the last inequality is obtained by using the assumption (A2). Notice that the stability in the H'-seminorm of the
L?-projection (see [28]) is used in the inequalities of (4.11) and (4.12).

For the first term on the right-hand side of (4.8) since it cannot be treated as a bad term, which aligns with the
continuous case. Denote u; = uh“(a,) and then

Np h
(I F™, —An ) = | VU 1%, — (VY ulen VY ujgy) (4.13)

Np

=t Vupt L — T YW Ve, ujVe)
ij=1
Np

= 7| Vupt L — T Y by(Vei, V),
ij=1

where by = u]u;.
Using Young’s inequality when i # j, we have

Ibj| < qilu?“Jr q}rluj-’“. (4.14)
Besides, since the stiffness matrix is diagonally dominant, we have
Np
—t ) by(Vei, Vo) < —t Z bl (Vpr, Vo) — Z (Vi Vo)l (4.15)
ij=1 k=1 1¢k

q+1ZIprk,W;

J#k
Np Np

<=1 ) bul(Ver, Vo) — Y (Vei, Vi)l
k=1 s
<0.
Then we have
T(WF™, —Apup ™) < || V1%, (4.16)

Combining (4.8)-(4.11) and (4.16), and taking the summation, we have

-1
1

SELIVIE] + 2 Y B[NV — i, +r§:1€ [l A1 (417)
n=0

=1
< Ct Y E[|IVup|%].
n=0
Using Gronwall’s inequality, we obtain (4.7). O

Before we establish the error estimates, we need to prove the stability of the higher moments for the H!-seminorm
of the numerical solution.

11



Y. Li, L. Vo and G. Wang Journal of Computational and Applied Mathematics 437 (2024) 115442

Theorem 4.2. Suppose the mesh assumption (2.1) holds. Then for any p > 2,

sup E[|IVupl?,] < ¢C
0<n<M

Proof. The proof is divided into three steps. In Step 1, we establish the bound for IEHVu,1 ||4 In Step 2, we give the bound
for ]E||Vuh||L2, where p = 2" and r is an arbitrary positive integer. In Step 3, we obtain the bound for IE||Vuh||L2, where p
is an arbltrary real number and p > 2. Step 1. Based on (4.8)-(4.16), we have

||Vu”+1 1% - f||Vu;:||§2 an( P —u + Tl A2, (4.18)

(). — Apu "“)Awn—%(Dc(uz)c;(uzxmwn)z—r) ~ At
< Vi

Note the following identity
IVupt% + %nwznfz = (||Vu"“ 1% + IVupll%) (4.19)
(||Vu”“||L2 — [ Vupll%).
Multiplying (4.18) by ||Vu”H || +35 ||Vuh||L2, we obtain
f(nw"“n“z — IVuplih) + g(nwz“nfz — VU3 ) (4.20)
+(5 ||V(u"H —upl1%, + Tl A )N VS, + %nwznfz)
< tIvup LAV, + Enwﬁnfz)
(), — ) AWV + SV I)
+ 5 (DGR G X(AWR Y — ), A IV I + SV I%)
The first term on the right-hand side of (4.20) can be written as
|| Vupt! ||Lz(||Vu“+1 1% + 1||Vu?,||22) (4.21)

1 1 1 2
=TIV I 2 Ivur R, (||Vu“+ 1% — 1VuI%)
1 1 252

< Cr vt +91(||Vu"+ lle — VU3,

where 6; > 0 will be determined later.
The second term on the right-hand side of (4.20) can be written as

1
(G(up), —Anup ™) AW VU 12, + S IVailiE) (4.22)
1
= (VPyG(up), Vup™") AW, (| Vup |12, + 5||Vu7:||fz)
= ((VPyG(u}}), Vupt! — vul AW,
1
+ (VPyG(up), Vup) AW, )(IVup 1% + 5||Vuﬁ||fz)
=( ||Vu"+1 Vupll?, + ClIIVup 1% (AW,)*
1
+ (VPyG(up), Vup) AW, )(IVup 1% + 5||Vuz||fz).
For the right-hand side of (4.22), using the Cauchy-Schwarz inequality, we get
1
CIIVupl% (AW P(IVup 1%, + f||VuZ||fz) (4.23)

3
= ClIVuR B AW (VU 12 — IVl + EIIVUZIIfz)

12
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< IV, — VUL + CIVUl (AW,
+ C”Vuh ”,_z(AWn)za

where 6, > 0 will be determined later.
Similarly, using the Cauchy-Schwarz inequality, we have

1
(VPAGlup), Vi) AW, (Vi I, + S IV ag1) (4.24)
3
= (VPhG(up), V) AW, IV IE, — IVuR I + S 1V
< O5(IVup 1%, — IVUplI% ) + ClIVup | (AW,)
3
+ S(VPG), VU AW, [ Vi,

where 63 > 0 will be determined later.
The third term on the right-hand side of (4.20) can be written as

1 1
5 (DGR GuX(AW,Y = o), = Autly ™)1V I + S IVERI) (4.25)

1
=5(VPh<DG(uz)c(u;:)x( W) — 1), V(upt! — up)

—_

(IVupt)z, + fIIVu,,II )+ E(VPh(DG(uh) GU(AW, ) — 1), Vi)
IVupE + EIIVU;}IILZ)
||Vu“+1 — Vup|l?, + ClIVupl|% (AW, ) — 1)
" %(vph(nc(uz)c(uz)xm Wa? = ), Va) VU 1 + 5 IV,
For the right-hand side of (4.25), using the Cauchy-Schwarz inequality, we get

1
CIVERIZ(AW,Y = TPV 1% + S 1 VufI:) (4.26)

3
= CIVUIZ(AW,Y = TPV 1% = IV + S IVaRI:)

< Ou(IVut G = IVUpl%)? + CIVUp IS (AW,) — 1)t
+ CIIVUp L (AW, — T),

where 6, > 0 will be determined later. Similarly, using the Cauchy-Schwarz inequality, we have
(VPu(DG(up) G(up)), Vup (AW, — )(IVup |2, + 1IIVu};‘IIfz) (4.27)
= (VPy(DG(up) G(up)), Vup (AW, — T)([IVup 12,
— IV + 5 IVegI)
< 05V 1% — IVURlI3 )P + VRl (AW, — 77
+ 2 (VDG G, VAW, — DI Vi,

where 65 > 0 will be determined later.
Choosing 61 ~ 05 such that 6; + --- + 63 <
expectation on both sides of (4.20), we obtain

16, and then taking the summation over n from 0 to £ — 1 and taking the

SELIVuiliE] 162112 VU 1%, = [Vup%)?] (4.28)

1
+ ZE[ IVt = uplZ + Tl Ay 12V 1% + anz”fz)]

13
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-1
<CrZE IV ] + E[||Vuh||Lz]+CrZZE ARy
n=0
-1
+ Co Y E[IVupl].
n=0
When restricting T < C, we have
1 -1
04 +1 22
JElIVuIL] + 5 X; [AVu 1% — vupl% ] (4.29)
-1 1
+YE [(HV( w4 ol Ap AV + 2||Vuz||§z)]
n=0
-1
<Ct) E[IVuplfh]+ E[uwhn )]
n=0
Using Gronwall’s inequality, we obtain
1 -1
L4 +1 252
fE[||Vuh||Lz]+En§ (VU 12, = 1Vupli?)?] (4.30)

+ZE[ Lot = IR, + ol At )V,

1
+ S IVuil)] = ¢
Step 2. Similar to Step 1, using (4.20)—(4.24), we have
(||Vu"“||L2 — IVullI4) + (||Vu"+1||L2 — Va2 (431)

1
+(3 IIV(u”+1 —uply + T||Ahu"+l|| DXIVuRS + EIIVHEIIfz)

< Crnw“ I + CIVUIL (AW, + CIVULIIL (AW, )
+ CIVUIl, AW,

Proceed similarly as in Step 1. Multiplying (4.31) with ||Vu”“ || + 3 ||Vuh||L2, we can obtain the 8-th moment of the
H'-seminorm stability result of the numerical solution. Then repeat this process, the 2"-th moment of the H'-seminorm
stability result of the numerical solution can be obtained. Step 3. Suppose 2 ~! < p < 2". By Young’s inequality, we have

E[IVui?,] < E[IVuf% ] + ¢ < oo, (432)

where the second inequality follows from the results of Step 2. The proof is completed. O

4.2. Stability estimates for the pth moment of the L>-norm of up

Since the mass matrix may not be the diagonally dominated matrix, we cannot use the above idea to prove the L?
stability. Instead, we prove the stability results by utilizing the above established results. The following results hold when
q > 3 is the odd integer in 2D case, and when ¢ = 3 or ¢ = 5 in 3D case.

Theorem 4.3. Under the mesh assumption (2.1), there holds

N—-1 N-1
sup E[Jlupl2] + D B[t —upi] + 1 Y B[V 2]
0<n<N

n=0 n=0

+ - ZE[lu““ Zqﬂ] <cC

14
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Proof. Testing (4.2) with u"“ yields

P —ul utth oVt vty = (T uptt (4.33)

(up
1
+ (Guf), upt™y AW, + 2DG up) Gup)[(AW, Y — ], up*™).
We can easily prove the following inequalities:

+1 2
i - uh”LZa

" — ™) = I — I + 1

E[(Gup), up™") AW, ] —E[( (up), (up ™! —uz))AWn

< Ct + CeE[|luj )] + E[nu"“ — upl12],

E[DG(up) Gup)(AW,)* — 7), up*'] = E[DG(up) G(u )((Awn) 7). up ™ —up]
< C7? + CT°El|uplIZ] + E[nu"“—uznfz],

where (A2) is used in the inequality above.
We have the following standard interpolation result and the inverse inequality (see [27]):

lv—1Iwvll ¢ < Chg ||V L (4.34)
L9 (K) (K)
q+1 q+1
Il <~z 10y (4.35)

K
Using (4.34)-(4.35), and Young's inequality, we have

T(Ith+1 2#’1) (Fﬂ+1 ;7+1) _ T(Fn+1 _ Ith+l, uz+1) (436)
+1 +1),q+1
< tlupt iz — o lup g1
1 1 £ +1,9+1
n
+ Cr||F"™ — L,F™ | é’ﬂ +*I|u [
q
+1 +1 q+1
< tlupt?, - rllﬂ" IILqH
C h q n+1 vyl % n+1,q+1
+Cr vy, Sl o
KeTy
1 1)q+1 +1 1,,q+1
< Tl - ||u”+ [ I A AT A AR
KeTp
+1 +1 q+1 g+1-di= +1,g+1
< tluptiE - ||u" I e YR v (s
KeTh

Note whend =2,q+1— d% >0ifg>0,andwhend=3,q+1— d% > 0 if ¢ < 5. Using the above inequalities,
Theorem 4.2, taking summation over n from 0 to £ — 1, and taking expectation on both sides of (4.33), we obtain

-1 -1
1
) +1 2 +1
AELIIE] + 5 DBt —uik] + 0 Y B [IVa ] (437)
n=0 n=0
‘L_e—l
1
+ 2 2 E [
n=0

<erE g 1%,] +CTZIE[|Vu"+1 q“] 4C
erE[nuﬁnfz]w
n=0

where Theorem 4.2 is used in the last inequality.
The conclusion is a direct result by using Gronwall’s inequality. O

To obtain the error estimates results, we need to establish a higher moment discrete L? stability result for the numerical
solution uy.

15
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Theorem 4.4. Suppose the mesh assumption (2.1) holds. Then there holds for any p > 2,

E b C.
Sup [upl?] <

Proof. The proof is divided into three steps. In Step 1, we give the bound for E””fl”fz- In Step 2, we give the bound for
E||uh|| where p = 2" and r is an arbitrary positive integer. In Step 3, we give the bound for IE||uﬁ||’L7 , where p is an

2’
arbitrary real number and p > 2. Step 1. Based on (4.33)-(4.36), we have
1
fuu”“ I = S il + fnu"“ —ul%, + T VUt + ||u"“||§qtﬂ (4.38)

<r||u"+1||L2+CT||Vu““||"+1 (G, w1ty Aw,
+ E(Dc(ug)c(ug)((Awn) ), uptt).

Note the following identity

1
lup M2, + S il = f(nu"“nlz + llupli?) + (||u”+1 12, = lup ). (4.39)
Multiplying (4.38) by |lujt! I%, + 3 llujl%, we obtain
(nu"“n — lluplih) + (||u““|| — llupli%)? (,”( P — ) (4.40)
12 hilj2 12 hilj2 h/1lp2 .
1
FTIVU I, + S I I + 3 1)

1
< (el + cf||Vu”“ I 1% + 7 i)
+ (G(up), up™) AWR(Ilup 12, + fuuznfz)
1 1
+ 5 (DG(R) Gup)((AWRY = k), wy* ) (I, + 5 IRl )
The first term on the right-hand side of (4.40) can be written as
1
(Tllup G + CrlVup IS 1%, + 5 Iglz2) (4.41)
< r||u"“||L2(f|| uptZ, - (||u"“||L2 — lupli%)
+ Crnw"“nz“’“ + r||u“+‘||Lz + (I = )

+1 +1)2(g+1) +1 2 \2
< Cllup ™l + CellVuy LT 4 61l I — lupl2,),

where 6; > 0 will be determined later.
The second term on the right-hand side of (4.40) can be written as

(G, ) AW (™ 1 + 5 1) (442)
= GO ) S SIaf1)
< ST = 2 4+ C(1 4+ ) AW,
+ (G, AW s + 5 N I%).
For the second term on the right-hand side of (4.42), using the Cauchy-Schwarz inequality, we get
C(1+ I 1AW, (1%, + %nuznfz) (4.43)

3
= COU+ R X AW (™ I = Tl + S 1372)

<0 (1% = Nupl? ) + (C + Cllup b AW, )
+ Cllup I (AW,) ) 2 + CllupllZ (AW, Y,

16
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where 6, > 0 will be determined later. Using (2.3b), the third term on the right-hand side of (4.42) can be bounded by

1
(GQup), up) AW([lup 1%, + 5 Iuhl2) (4.44)

3
= (Glup), up) AW (1™ I — Nl + S i)
< Os(llup ™17 — lupl%)* + (C + Cllupli (AW,)
3
+ Z(Gup), up)|upl|Z AW,

2

where 65 > 0 will be determined later.
The third term on the right-hand side of (4.40) can be written as

1 1
E(DG(uz)G(uz)((Awn)2 =) upt (g% + Enu;:nfz) (4.45)

—

1
= 3 (DG Gp(AW, Y = o). ™ =+ up) ™ 12 + 5 )

- N

= ZIIUZ+1 — UpllE, + CC1+ Nuf 2 (AW, — )

1 1
+ E(DG(uz)G(uz)((Awn)2 =), up)(lup % + 5||uz||f2).
For the second term on the right-hand side of (4.45), using the Cauchy-Schwarz inequality, we get

1
CO+ N XCAWa)? = (™ 1, + 5 1f72) (4.46)

3
= COL+ [lupl2)(AWR)? — T 2(llup ™12, — llupliF + Elluﬂllfz)

2
<O (IlupM 1% = Nupll%)” + (C+ Cluplh (AW, — 1)
+ Cllupl (AW )? — T + Cllup 15 (AW, = T),

where 64 > 0 will be determined later. Using (2.3b), the third term on the right-hand side of (4.45) can be bounded by

1 1
5(£>G(u;:)G(uﬁ)((Awn)2 — ), up)(llup I + Enuzniz) (4.47)

1
= 2 (DGR G (AWLY = o). u) U™ I — Ny + 5 )

3
2
< 05l 1% — %Y + (C + ClullL) (AW, P — ©)?

1 3
+ 5 (DGR GUpX(AWL ) = ), ) Sz,

where 05 > 0 will be determined later.
Choosing 61 ~ 65 such that 6; +--- + 63 < 11—6. and then taking the summation over n from 0 to £ — 1 and taking the
expectation on both sides of (4.40), we obtain

-1 -1

3 £4 1 +1,2 2 \2 1 +1 2
SELIIE] + 2 D B [ ™G — i) + Y B[ ™ — uii (4.48)
n=0 n=0
T 1
+ IV + 2l I 1% + S )]
-1 -1 3
+14 +1)2(q+1) 04
< o Y B[]+ o YR [V A ]+ Zu (1))
n=0 n=0
-1
+Cr Y E[llupld] +C.
n=0

17
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When t < C, we have
2B [unl] + 75 ZIE [ 1% = gl )] + ZE urtt —up)Z (4.49)
+ T VuptZ, + ||u”“ %)t 12 + 5||u2||fz )]

3
<CrZE |uh||L2 +CfZE[|VU"H||2(qH)]+§IE[|IU2IIZ‘2]+C

Using Gronwall’s inequality, we obtain
1 1 -1
4 +1 232
2ElIiz] + o ZO [t 1% = ukl%)?] (4.50)
+Z [ Uttt —ul + ol Va3

1
IIU"Jrl ) 1% + 2IIUL‘Ilfz)] =cC

Step 2. Similar to Step 1, using (4.40)—(4.44), we have

(||u"+1||L2 — U l) + - <||u“+1 12, — g% (451)
1 1
+ (Gl = upi +r||Vu"+1|| S N 1 + 5 gl

< Crllupt I + Co || Vup ! ||2<"+” + (c + Cllul I ) AW,
+ (C+ ClU IS AW + (Gu), ub) |2 AW,

Similar to Step 1, multiplying (4.51) by |ju}*" I, + 3llujli%,, we can obtain the 8-th moment of the L* stability result

of the discrete solution. Then repeating this process the second moment of the [? stability result of the discrete solution
can be obtained. Step 3. Suppose 2! < p < 2', and then by Young’s inequality, we have

E[Jugl%] < B[ Iugl3] +c < c, (452)

where Step 2 is used in the second inequality. The proof is complete. O
4.3. Error estimates of the finite element approximation

In this subsection, we consider error estimates between the semi-discrete solution u" of Algorithm 1 and its finite
element approximation up from Algorithm 2. Let ey = u" —up (n = 0,1,2,...,N). In the following theorem, the
L?-projection is used in the proof of the error estimates and the strong convergence rate is given.

Theorem 4.5. Let {u"} and {uh} , denote respectively the solutions of Algorithm 1 and Algorithm 2. Then, under the
condition (2.1), there holds

N
sup E[llefl%] + [anwgn;] < Ch?| Inh|%a-1),

0<n<N n—1

Proof. We write e} = " 4- £" where
n"=u"—Pu" and &":=Puw"—u;, n=0,1,2,...,N.
Subtracting (4.2) from (3.1) and setting v, = £"*!, the following error equation holds P-almost surely,

(§n+1 _ gn’ %.n+l) — _(nl’H-l _ nn’ %-VH—I) _ r(vul’H»l _ Vu]f;+1, V%.I’H»l) (453)

4 ,L,(F(un+l) _ IhFIH—l7 %.n+l) + (G(u”) _ G(UZ)» $n+1)AWn7
1

+ 5((DG(H")G(U") — DG(up) Gup) (AW, — 7), §™1)

=T1+TL+T:+T4+Ts.

18
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The expectation of the left-hand side of (4.53) can be bounded by

E[(E)H—] _ En’ %-Tl+1)] I

1
SE[IE™ 2 — 16" %] + SELIE™ = £ (4.54)

The first term on the right-hand side of (4.53) is 0 by the property of the L?-projection.
For the second term on the right-hand side of (4.53), we have
E[T] = —tE[Vy™! + VE™, vE] (4.55)

3
< CrE[IVn"™ 7] = ZeE[IVE™ ]

3
= CTR’E[[u"™1F,1 = ZE[IVE™ 5] ©
In order to estimate the third term on the right-hand side of (4.53), we write

_L.(F(uIH—]) _ IhFIH—]’ $n+l) — T(F(un+l) _ F(Phun+l), E’H—]) (456)
+ .L,(F(Phun+1) _ FTH»]’ %-n+l)
+ ‘L’(Fnﬂ _ Ith+1, $n+1).

The first term on the right-hand side of (4.56) can be bounded as follows. Using Cauchy-Schwarz’s inequality, the

Ladyzhenskaya inequality ||u||;a < C||u||]/2||Vu||22/2, and (4.4) we obtain
(F(un+1) (Phun+1) %-TH»]) (457)
q—1
( n+1[z U (Pt 1], §n+1)
i=0
q7 . .
< Tl e D@ P = (18
i=0 L
< Call™ NV | Do Rt — 1) g

i=

< CTh||Vun+l||]/2 ”Aul’H-l ”1/2 (uﬂ+l)f(Phuﬂ+l)q—l—i _

1
1 1E™ ),
L

q
Z(un+1 )i(Phun+1)q—1—i -1 2

< Coh?|Vu"™ |2 | Au™ | 2 B

i=

12
+TlER,

Taking the summation Zﬁzo to (4.57) forany 0 < ¢ < N — 1 we obtain

14

Ty (F™) — F(Puu™"), &™) (4.58)
n=0
4 q—1 . ) 2
< Chzl' Z ||Vu"+] ”]_ ”Aun+1”L2 Z(un+1)l(Phun+1 )q7171 -1 p
n=0 i=0

4
+r Y IEE
n=0

L
1/2
< ar?(x IV A )

n=0
l

q—1
('L’ ”Z n+1 (P un+1)q =i _q

n=0 i=0

4N1/2 ’ n+1,2
L) AT,
n=0
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Next, applying the expectation to (4.58) and using Cauchy-Schwarz’s inequality, and then using Lemma 3.2 we have
4

E[t 3 (™) — Fau), s"“)] (459)
n=0
¢ 172
= g (v Y IVt G et )
n=0
14 q—1 4\1/2 14
(r Z H Z P 4) ] —HE[t Z ||5n+1||fz]
n=0  i=0 k n=0
¢ 12
= a2 (E[r Y IVt B w3 ])
n=0

4 1/2
1)
14

4 q—1
(]E[ H Uity
¢
+E[ 3" .|
¢ g-1
<1 (]E[r Z H WPty
n=0 i=0

+E[ 5 6™ 112 |
n=0
Moreover, using the embedding inequality |lull;r < C|lu|;1 for any integers r > 2 (see [29, Corollary 9.14]) we also

have
4
4 ]

4(q—-1) 1
= e 3 (e 1) + et 1) + )|

4 1/2
1)
14

IE[r 2[: H W (P 1

< B[ 3 (I 1 e 40 4 )] <
n=0

where the last inequality is obtained by using Lemma 3.2. In summary, we obtain the following estimate for the first term
of T3

12

4
B[r DO (F) = P ), 67) | < ch® + B[ e Y1612 . (4.60)
n=0

n=0
By using the one-sided Lipschitz condition (2.7), the second term on the right-hand side of (4.56) can be bounded by
E[(F(Puu™") — F™1 ™) <E[IIE™12]. (4.61)

Using properties of the interpolation operator, the inverse inequality, and the fact that uﬁ“ is a piecewise linear
polynomial, the third term on the right-hand side of (4.56) can be handled by

E [(FrH—l —I Fﬂ+1 %-rl+l)] (462)
< E[cr Y gty urt g |+ E g1
KeTy

= B[cr® (I 11 vag 13 ) | + B [1e 3]

q—1
= B[ In A0 ( D (Vi gy + 1 )
KeTp
1vur G ]+ B g™ ]
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[Chzl In e (! ||2(q Dy IVur! ”2(q 1) )”VL‘nH”LZ]
+E[1E™1%]
< B[ In kRSO0 128 + Va0 | + B 113
< CR|InhPO D+ E[1E")3].
Combining (4.60)-(4.62) yields
E [z XZ: n} < Ch?|Inh|?9~ 4 CE |:‘c i £+ ||fz} . (4.63)
n=0 n=0

By the assumption (A1) for G(-) and then Lemma 3.2, we have

1
E[Tus—E[ns"ﬂ £"1%] + frE[nc ") — Gl ds| (464)
< SE[IE™ — &3] + S e[ — ufi, ds]
1
< SE[IE™T = "% ] + CE[In" + &3] =
1
55 [1E™" = &™) + CE[1E"1%] 7 + ConB[I Vu |,
< SB[l - "% ]+ CE[IE™1%] T + CTh?,

By using the assumption (A3) for G and then Lemma 3.2, we have
1 1
EITs] < 5E [16™ — "l | + B[ I D6u") G(u") — DG(u") (465)

1
Glup) Il % [ + B[ 106" Gup) — DG(up) Gl |2

IA
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IA
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< SE[16™" — "1 | + B[ 16" | 2 + c?hR[1var]
< E]E [us““ - g”nfz] +CE [||g"||fz] 2 4 Co2K?

Taking the expectation on (4.53) and combining estimates (4.54)-(4.65), summing over n = 0,1,2,...,¢ — 1 with
1 < ¢ <N, and using Lemma 3.2 we obtain

4
JELE] + 2B [e S 19sn]
n=1

-1
1
< S [I6%1] + Cu[r 3 1671 ] (4.66)
n=0
+ Ch?| Inh2@1 4 ChZIE[T > ! ||12.,2]
=

-1
SE[IE°13] + CE[r D7 16715 | + cn?l n e,
n=0

Finally, the conclusion of the theorem follows from the discrete Gronwall’s inequality, the fact that £ = 0, and the
triangle inequality. O

4.4. Global error estimates

Finally, we are ready to state the global error estimates of our proposed method in the following theorem.
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Fig. 5.1. Test 1: Zero-level sets of the evolution: T =5 x 1074, h = 0.02, € = 0.04.

Table 5.1
Test 3: Time step errors and rates of convergence of Test 3: h = 0.01,¢ = 0.3, =0.01,T = 0.25.
L®EL? error Order EL?H' error Order
T =0.025 0.080163 - 0.054115 -
7 =0.0125 0.038604 1.0542 0.027675 0.9675
T = 0.0625 0.018036 1.0978 0.013978 0.9855
T = 0.03125 0.008724 1.0479 0.007467 0.9045

Theorem 4.6. Let u and {uﬁ}’nv=1 denote respectively the solutions of (2.8) and Algorithm 2. Then, under the conditions of
Theorems 3.1 and 4.5, there holds

sup E [||u(ty) — upl|? ]
0<n<N

N
+E |:T Z IV (u(ts) = UZ)||fz:| < C(c2179) 4 K| Inhj2@~D).
n=1

5. Numerical experiments

In this section, three numerical tests are presented. In Test 1, the evolution and stability of (1.1) in the case F(u) = u—u?
are illustrated with different noise intensities. Test 2 provides the visualization of the stability using a different drift term
and diffusion term. Test 3 presents the error orders with respect to time step size t. The domain D for all the following
tests is chosen to be D = [—1, 1] x [—1, 1].

Test 1. Consider the initial condition:

X2 +y?% — 0.6)
V2e )

For this test, F(u) = u — u® is used as the nonlinear term, and G(u) = 8u is used as the diffusion term. In Fig. 5.1, the
zero-level sets of the evolution using two different levels of noise intensity are shown. One can observe that the average
zero-level set is a shrinking circle for both levels of noise intensity. Fig. 5.2 demonstrates the EL?> and EH! stability for each
time step. One can make the observation that they are both bounded. A one-sample EL?> and EH! stability are provided
in Fig. 5.3. Those stability results are still bounded but they are not always decreasing over time.

Test 2. For this test, the initial condition is still in (5.1), and that € = 0.5. The drift term is changed to F(u) = u — u'!,
and the diffusion term is changed to G(u) = 8+/u? + 1. In Fig. 5.4, the EL?> and EH' stability are given by the blue and
pink solid lines, along with the maximum and minimum of those two stabilities given by upper and lower edges of the
shaded red and blue regions. One can see that both the EL? and EH! stability are bounded.

Test 3. Consider the initial condition:

x2+y2—0.8
ﬁe ’

In this test, we use ¢ = 0.3, F(u) = u — u® as the drift term, and G(u) = $u as the diffusion term. The final time

: _ n 2 1 N n2 1
is T = 0.25. Table 5.1 demonstrates the error {OEEENE[HE ||L2(D)]}2 and the error {E[) ,_, t||Ve ||L2(D)]}2. The error

Up(x, y) = tanh( (5.1)

ug(x, y) = tanh( (5.2)
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—— H' Stability

—— L? Stability | |
—— H' Stability

0 ~ 0 >
0 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02
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Fig. 5.2. Test 1: Stability demonstration (average): T =5 x 1074, h = 0.02, ¢ = 0.04.

T 20 T T
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Fig. 5.3. Test 1: Stability demonstration (one sample point): T =5 x 1074, h = 0.02, ¢ = 0.04.
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Fig. 5.4. Test 2: Stability demonstration (average and max/min): 7 =5 x 1074, h = 0.02, € = 0.5.

{ sup ]E[||e"||f2(D)]}% is denoted by L°EL?, and the error {E[Y _, r||Ve”||f2(D)]}% is denoted by EL?H!. By observing
0<n<N

Table 5.1, one can see that the error orders for both [°EL? and EI>H! are 1.

23



Y. Li, L. Vo and G. Wang Journal of Computational and Applied Mathematics 437 (2024) 115442

Data availability

Data will be made available on request.
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