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Archimedean zeta integrals for unitary groups
By Ellen E. Eischen at Eugene and Zheng Liu at Santa Barbara

Abstract. We derive precise formulas for the archimedean Euler factors occurring in
certain standard Langlands L-functions for unitary groups. In the 1980s, Paul Garrett, as well
as Ilya Piatetski-Shapiro and Stephen Rallis (independently of Garrett), discovered integral
representations of automorphic L-functions that are Eulerian but, in contrast to the Rankin–
Selberg and Langlands–Shahidi methods, do not require that the automorphic representations
to which the L-functions are associated are globally generic. Their approach, the doubling
method, opened the door to a variety of applications that could not be handled by prior methods.
For over three decades, though, the integrals occurring in the Euler factors at archimedean
places for unitary groups eluded precise computation, except under particular simplifications
(such as requiring certain representations to be one-dimensional, as Garrett did in the first major
progress on this computation and only prior progress for general signatures). We compute these
integrals for holomorphic discrete series of general vector weights for unitary groups of any
signature. This has consequences not only for special values of L-functions in the archimedean
setting, but also for p-adic L-functions, where the corresponding term had remained open.

1. Introduction

In the 1980s, Paul Garrett, as well as Ilya Piatetski-Shapiro and Stephen Rallis (inde-
pendently of Garrett), discovered integral representations of automorphic L-functions that
are Eulerian but, in contrast to the Rankin–Selberg and Langlands–Shahidi methods, do not
require that the automorphic representations to which the L-functions are associated are glob-
ally generic [4,11,22,30,31]. Their approach, the doubling method, opened the door to a variety
of applications that could not be handled by the Rankin–Selberg method, since not all automor-
phic representations of classical groups are globally generic. Their work, together with later
work of [25], computed the integrals occurring in each of the Euler factors produced by the
doubling method at finite unramified primes.
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For over three decades, though, the integrals occurring in the Euler factors at archimedean
places eluded precise computation in the case of unitary groups, except in special cases that
admitted particular simplifications (such as requiring certain representations to be one-dimen-
sional, as Garrett did in the first major progress on this computation and only prior progress
for general signatures). The present paper computes them for holomorphic discrete series of
general vector weights. This has consequences not only for special values of L-functions in
the archimedean setting, but also for p-adic L-functions, where the corresponding term had
remained open except in special cases (as discussed in [8, Section 4.5.4]).

Applications of the doubling method include analytic, algebraic, and p-adic aspects
of cuspidal automorphic L-functions. For example, the doubling method was employed in
the study of possible poles of automorphic L-functions in [21]. Also, adapting Shimura’s
use of Rankin–Selberg integrals to prove the algebraicity of special values of (normalized)
Rankin–Selberg convolutions in [32, 33], Shimura and Harris employed doubling integrals in
their proofs of the algebraicity of (normalized) critical values of automorphic L-functions in
[15,17,36]. These proofs of algebraicity eventually led to constructions of p-adic L-functions.
In particular, in analogue with how Hida built on Shimura’s work in the Rankin–Selberg case
to construct p-adic L-functions associated to modular forms [18], several mathematicians,
including each of the authors of the present paper, have constructed p-adic L-functions via
the doubling construction. In the symplectic case, this was carried out in [1, 28], while it was
recently completed in the unitary case in [8, 9].

When these last two constructions of p-adic L-functions were completed, the precise
form of their archimedean Euler factors remained open, except under restrictive assumptions.
For the case of symplectic groups, this problem was solved in [29]. (With small adaptations, the
method [29] also handles the unitary groups with signature .a; a/.) The general case of unitary
groups, however, presents additional challenges. In particular, the Schrödinger model, the tool
employed in [29], lacks convenient, explicit formulas for unitary groups of signature .a; b/with
a ¤ b. In the present paper, we explain how to overcome these challenges and determine the
precise form of the archimedean Euler factors appearing in [8,9] for unitary groups of arbitrary
signature.

1.1. Doubling method. The doubling method (an instance of the pullback methods first
discovered by Garrett in the 1970s, though years would pass before they appeared in the litera-
ture) takes as input several pieces of data meeting certain conditions, and it outputs an integral
that has properties associated with a zeta function, namely a functional equation, a mero-
morphic continuation, and an Euler product. One of the key steps in applying the doubling
method involves choosing this data so that it is amenable to computation of these integrals.
In addition, one must carefully choose data that result in L-functions suited to one’s desired
applications.

Before proceeding, we briefly recall the construction of the doubling integral. (Later in
the paper, we give more details, but at the moment, we give only the information necessary
for clarity in our introduction to the problem. See also [4] for an introduction to the doubling
method.) Consider a Hecke character � of a CM field K with maximal totally real subfield
KC, and consider a unitary group G that preserves a Hermitian pairing on a vector space of
defined over K of dimension n. Then G �G can be identified with a subgroup of a unitary
group H of signature .n; n/ (at each archimedean place). For the doubling method, we also
need a particular Siegel parabolic subgroup P of H . (So the Levi subgroup MP is isomorphic
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to GL.n/K .) A Siegel–Eisenstein series on H associated to s 2 C and a section

f .s; �/ D
O0

fv.s; �/ 2 Ind
H.A

KC
/

P.A
KC

/
.� � j � js/ Š

O
v

IndH.K
C
v /

P.K
C
v /
.�v � j � j

s
v/

(with the product over all places of KC and � � j � js viewed as a character onP via composition
with the projection from P to MP Š GL.n/=K and the determinant map on GL.n/=K ) is the
C-valued function

(1.1.1) E.g; f .s; �// D
X


2P.KC/nH.KC/

f .s; �/.
g/:

Let � be a cuspidal automorphic representation ofG and let z� be its contragredient. Let ' 2 �
and z' 2 z� . The global doubling integral is then

(1.1.2) Z.f .s; �/; '; z'/ D

Z
ŒG�G�

'.g/z'.h/E..g; h/; f .s; �//��1.det.h// dg dh;

with E. � ; f .s; �// an Eisenstein series as in equation (1.1.1). As proved in [30], when these
data are chosen so that we have factorizations into restricted tensor products ' D

N0
v 'v,

z' D
N0
v z'v, and

N0
v f .s; �v/, this integral unfolds as a product of local integrals

Z.f .s; �/; '; z'/ D
Y
v

Zv.fv.s; �/; 'v; z'v/

with

(1.1.3) Zv.fv.s; �/; 'v; z'v/ D

Z
G.K

C
v /

fv.s; �/..g; 1//h�v.g/'v; z'vi dg;

where h � ; � i denotes a suitably normalizedG-invariant pairing. For finite places v where every-
thing is unramified, the integral in equation (1.1.3) was computed in the split case in [30] and
in the inert case in [25] and shown to equal Lv.s C 1

2
; �v � �v/ up to a product of explicit

L-factors for characters. (More recently, Yamana proved that, for all finite places, the great-
est common denominator of the local zeta integrals is the correct definition of local L-factors
[37, Theorem 5.2].) So the behavior of the global L-function is determined by the global inte-
gral (1.1.2) and thus by the behavior of the cusp forms and the pullback of the Eisenstein series
to G �G if one has a good understanding of the local integral (1.1.3).

The constructions of p-adic L-functions via the doubling method, e.g. in [8, 28], depend
on carefully choosing the local data. For p-adic L-functions in the setting of unitary groups,
the local zeta integrals at all the finite places are calculated in [8] (for the local data chosen
there). On the other hand, precise values at the archimedean places were only known in certain
cases. In the absence of precise formulations of the archimedean Euler factors, one has only
a poorly understood normalizing factor in the comparison of the p-adic L-function with the
corresponding C-valued L-functions, whose critical values the p-adic L-function interpolates.

1.2. Relationship with prior results. Prior to the present paper, some special cases
had been addressed. In [12], Garrett showed that the archimedean zeta integrals are algebraic
up to a predictable power of the transcendental number � . At each archimedean place where
the extremeK-type of the cuspidal automorphic representation � is one-dimensional, a precise
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computation of the archimedean zeta integrals is given in [35, 36]. More generally, at each
archimedean place at which at least one of the two factors of the extreme K-type of � is
one-dimensional, Garrett computed the archimedean integrals precisely for a certain choice of
sections. The general case, where neither factor was required to be a scalar, though, remained
open until the present paper.

Key inspiration for the approach of the present paper comes from the theta correspon-
dence. The computation of archimedean zeta integrals from the point of view of the theta
correspondence has been studied in [26, 27], where B. Lin and D. Liu consider unitary groups
of signature .n; 1/ and the evaluation of the archimedean zeta integrals at the center. The main
interest of the computation [26,27] is about non-holomorphic discrete series. Like [26,27], we
will employ the Fock models, perhaps more familiar in certain areas of harmonic analysis and
mathematical physics than in algebraic number theory.

In the symplectic case in [29], the Schrödinger model is employed. As noted above,
though, the Schrödinger model alone lacks convenient formulas for unitary groups of signature
.a; b/ with a ¤ b. Consequently, in the present paper, we must employ both the Fock and
Schrödinger models, which are related through the Bargmann transform.

1.3. Main results and overview of paper. In Section 2, after introducing notation and
conventions, we introduce the archimedean zeta integrals that we will compute. In particular,
we introduce the doubling integral and our precise choices of archimedean data. These choices
are based on those from [8]. In particular, we work with holomorphic discrete series.

Section 3 introduces the Schrödinger and Fock models, which provide convenient mod-
els for the Weil representation and are related through the Bargmann transform. By using the
Schrödinger model (Section 3.1), we reduce the computation of the archimedean zeta integrals
to that of certain matrix coefficients of the Weil representation. Unlike in the case of symplectic
groups or unitary groups of signature .a; a/, the Schrödinger model (Section 3.1) lacks conve-
nient, explicit formulas (and pluri-harmonic polynomials) to compute those matrix coefficients.
We use the Bargmann transform to carry out the computation with the Fock model.

Section 4 further simplifies the integrals. The main trick is to consider three different
one-dimensional spaces inside the subspace of the joint harmonic polynomials which is iso-
morphic to the tensor product of an irreducible representation of U.a/ � U.b/ � U.k/ and its
dual representation.

In Section 5, we obtain our main result, Theorem 5.3.1. As a consequence, we see that the
normalization factor we compute has the form predicted by Coates and Perrin-Riou in [2, 3].
In particular, concluding the calculation of the doubling integral at a critical point for a unitary
group at an archimedean place, our main result is the following.

Theorem 1.3.1 (Theorem 5.3.1). Let � be an archimedean place of KC where the
unitary group G.KC� / has signature .a; b/ (with n D aC b). Denote by D.� I�/ (resp. D�.� I�/)
the holomorphic discrete series of G.KC� / of weight

.� I �/ D .�1; : : : ; �aI �1; : : : ; �b/

(resp. the contragredient representation of D.� I�/), and denote by �ac the anticyclotomic char-
acter of C� sending x to x

jxxj1=2
. Suppose that the integer k � n satisfies condition (2.5.3).

Then, for the archimedean section fk;.� I�/.s; �rac/ defined in (2.4.6), and v.� I�/ 2 D.� I�/

(resp. v�.� I�/ 2 D�.� I�/), the highest weight vector inside the lowest K-type of D.� I�/ (resp. the
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dual vector of v.� I�/),
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2
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�
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�
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2
� b C 1

�Qb
jD1 �

�
��j � j C

kCr
2
� aC 1

�Qn
jD1 �.k � j C 1/

D
2
n2

2
�ni�

n2

2
Cn
2
�ab.�1/nr

dim.GL.a/; �/ dim.GL.b/; �/
E�
�
k�nC1
2

;D�.� I�/ � �
r
ac
�

2n.n�1/�
n.n�1/
2 .�2�i/�nk

Qn
jD1 �.k C 1 � j /

:

Here, the term E� .s;D
�
.� I�/ � �

r
ac/ denotes the modified archimedean Euler factor defined in

Section 2.3.

Condition (2.5.3) is for the point

s D ˙
k � n

2
C
1

2

to be critical for the L-factor L� .s;D�.� I�/ � �
r
ac/. The factor

2n.n�1/�
n.n�1/
2 .�2�i/�nk

nY
jD1

�.k C 1 � j /

also arises in [6, equation (15)] in the process of constructing a family of Eisenstein series that
can be p-adically interpolated, where (like in the present paper) it is the archimedean normal-
ization factor for Siegel–Eisenstein series at s D k�n

2
on U.n; n/. Combining Theorem 1.3.1

and the functional equation for doubling local zeta integrals, one deduces formulas for

Z�
�
fk;.� I�/.s; �

r
ac/; v

�
.� I�/; v.� I�/

�ˇ̌
sDn�k

2

in terms of modified Euler factor E�
�
n�kC1
2

;D�.� I�/ � �
r
ac
�

for integers k satisfying condition
(2.5.3). See Theorem 5.4.1 for details.

Applying our main theorem to the p-adic measures from [8, Main Theorem 9.2.2], we
obtain Corollary 1.3.2 below. Before stating it, we make a few remarks about its contents.
Because it would take considerable space to fully explain each of the technical conditions of
[8, Main Theorem 9.2.2] and they are unnecessary for developing the main results for the
present paper, we just briefly highlight them here, to give the reader a sense of the setting in
which Corollary 1.3.2 holds. The representation � is assumed to be of type .�;Kr1/ in the
sense of [8, Section 6.5.1], where Kr1 is a certain open compact subgroup and r1 is a param-
eter tied to the level. (This condition in particular implies that all the archimedean components
of � are isomorphic to holomorphic discrete series.) Moreover, T D T� denotes the corre-
sponding connected component of the ordinary Hecke algebra, and �� is a character of T as
in [8, Section 6.6.8]. The main hypotheses on � are that it satisfies a global multiplicity one
hypothesis [8, Hypothesis 7.3.3], a Gorenstein condition [8, Hypothesis 7.3.2], and a minimal-
ity hypothesis [8, Proposition 7.3.5]. The cuspidal automorphic forms ', '[ are chosen to lie
in certain lattices.
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We define Xp to be the maximal abelian extension of K unramified away from p, and
ƒXp denotes an Iwasawa algebra OJXpK for a sufficiently large p-adic ring O. We also take
S to be a finite set of primes including all ramified places and all places dividing p1, and we
denote by LS the (product of the Euler factors of the) standard Langlands L-function away
from S .

For the automorphic representation � as above and an algebraic unitary Hecke character
�u of K�nA�

K
, we set

E1.s; �; �u/´
Y

� WKC,!R

E� .s; �
�
� � �u;� /:

We also define the constant

A.�1; �u;1/´
Y

� WKC,!C

2
n2

2
�ni�

n2

2
Cn
2
�a�b� �u;� .�1/

n

dim.GL.a� /; �� / dim.GL.b� /; �� /
;

where .a� ; b� / is the signature of the unitary group at � , and .�� I �� / is the weight of the
holomorphic discrete series �� .

In addition, to emphasize the connection with the Euler factors predicted by Coates in [2],
we follow his conventions, writing Ep for the product of the factors at primes v dividing p in
place of the notation employed in [8, equation (86)].

Corollary 1.3.2. Let ' and '[ be cuspidal automorphic forms from � and its contra-
gredient, respectively, all meeting the conditions of [8, Main Theorem 9.2.2]. There is a unique
element

L.Eis; ' ˝ '[/ 2 ƒXp y̋ T

such that, for any algebraic Hecke character � D k � k�
k�n
2 �u of Xp, with �u unitary and

k � n a positive integer, the image of L.Eis; ' ˝ '[/ under the map on ƒXp y̋ T induced by
�˝ �� is

�';'[ISA.�1; �u;1/L
S
�k � nC 1

2
; �; �u

�
�Ep

�k � nC 1
2

; �; �u

�
E1

�k � nC 1
2

; �; �u

�
;

with �';'[ a period associated to ' and '[ (more precisely, the Petersson pairing of these
two forms, normalized by a volume factor) and IS a finite product (of certain constant volume
factors and Euler factors at finite primes in S of Hecke L-functions associated to �).

In the formulation of [8, Main Theorem 9.2.2], the period �';'[ is instead expressed as
a product of three terms that are individually dependent on � but whose product (�';'[) is
independent of �. (The notation�';'[ is not used in that paper, but we use it here to emphasize
the dependence only on ' and '[. The term�';'[ is the product of the first two terms, a volume
factor and a pairing, from the expression obtained in [8, Corollary 9.2.1]. As explained in
[8, Remark 4.1.6], this pairing is the Petersson pairing of ' and '[.) For the reader expecting
to see a Gauss sum, please note that they arise here not in �';'[ but instead in the "-factors
in Ep

�
k�nC1
2

; �; �u
�
. (Similarly, Gauss sums arise in the Euler factors at p in the analogous

construction for symplectic groups in [28] whose archimedean factors were computed in [29].)
The notation Eis inL.Eis; ' ˝ '[/ refers to the Eisenstein measure from [5,6] used to construct
the p-adic L-functions in [8].
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2. The archimedean zeta integrals for studying critical L-values

2.1. The unitary group U.a; b/. We begin by introducing some notation and conven-
tions for unitary groups. Let a; b be two non-negative integers with aC b D n, and

U.a; b/ D
²
g 2 GL.n;C/

ˇ̌̌̌
tg

�
1a
�1b

�
g D

�
1a
�1b

�³
;

the unitary group of signature .a; b/. We fix the Haar measure on U.a; b/ as the product
measure of the maximal compact subgroup U.a/ � U.b/ and the symmetric domain

Ba;b D ¹z 2Ma;b.C/ j 1a � ztz > 0º;

where the measure on U.a/ � U.b/ is the Haar measure with total volume 1, and the measure
on Ba;b is

det.1 � ztz/�n
Y
1�i�a
1�j�b

jdzijdzij j:

This Haar measure agrees with the standard Haar measure (see, e.g., [13, §7]) with respect to
the symmetric form .X; Y / D Tr tXY on Lie U.a; b/.

2.2. Archimedean L-factors for holomorphic discrete series. We briefly recall the
definition of the local L-factors for the holomorphic discrete series representation of U.a; b/
with which we work. Let D.� I�/ be the holomorphic discrete series of weight

.� I �/ D .�1; : : : ; �aI �1; : : : ; �b/:

We denote by D�.� I�/ the contragredient representation of D.� I�/ which is the anti-holomorphic
discrete series of weight .��I ��/. We write

�� D .��1 ; : : : ; �
�
a / D .��a; : : : ;��1/ and �� D .��1 ; : : : ; �

�
b / D .��b; : : : ;��1/:

The half sum of compacts roots (resp. non-compact roots) of U.a; b/ is

�c D

�a � 1
2

; : : : ;
�aC 1

2„ ƒ‚ …
a

I
b � 1

2
; : : : ;

�b C 1

2„ ƒ‚ …
b

� �
resp. �nc D

�b
2
; : : : ;

b

2„ ƒ‚ …
a

I �
a

2
; : : : ;�

a

2„ ƒ‚ …
b

��
;

and the Harish-Chandra parameter of D.� I�/ equals

.� I �/C .�c � �nc/ D
�
�1 C

a � b � 1

2
; : : : ; �a C

�a � b C 1

2
I

�1 C
aC b � 1

2
; : : : ; �b C

a � b C 1

2

�
:

(2.2.1)

Let �ac be the unitary character of C� which takes the value x
.xx/1=2

at x 2 C, and let r
be an integer. The local L-factor for D�.� I�/ � �

r
ac is

L.s;D�.� I�/ � �
r
ac/ D

aY
jD1

�C

�
s C

ˇ̌̌
�j �

r

2
C
a � b C 1

2
� j

ˇ̌̌�
�

bY
jD1

�C

�
s C

ˇ̌̌
�j �

r

2
C
aC b C 1

2
� j

ˇ̌̌�
;
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where �C.s/ D 2.2�/
�s�.s/. Since we will focus on one real place, we omit the subscript

indicating the place from the L-factor L, the modified Euler factor E, and the local doubling
zeta integral.

The condition for s D s0 to be a critical point for L.s;D�.� I�/ � �
r
ac/ is that

s0 C
r C n � 1

2
2 Z;

and

�

ˇ̌̌
�j �

r

2
C
a � b C 1

2
� j

ˇ̌̌
C 1 � s0 �

ˇ̌̌
�j �

r

2
C
a � b C 1

2
� j

ˇ̌̌
for all 1 � j � a;

�

ˇ̌̌
�j �

r

2
C
aC b C 1

2
� j

ˇ̌̌
C 1 � s0 �

ˇ̌̌
�j �

r

2
C
aC b C 1

2
� j

ˇ̌̌
for all 1 � j � b:

2.3. Modified archimedean Euler factor for p-adic interpolation. Following the
conventions of [2], the modified archimedean Euler factor for D�.� I�/ � �

r
ac is

E.s;D�.� I�/ � �
r
ac/ D

aY
jD1

e�
�i
2
.sCj�j�

r
2
C
a�bC1
2
�j j/

� �C

�
s C

ˇ̌̌
�j �

r

2
C
a � b C 1

2
� j

ˇ̌̌�
�

bY
jD1

e�
�i
2
.sCj�j�

r
2
C
aCbC1
2
�j j/

� �C

�
s C

ˇ̌̌
�j �

r

2
C
aC b C 1

2
� j

ˇ̌̌�
:

(2.3.1)

(In [2], the motives are assumed to be defined over Q, and a subscript1 is used to denote the
archimedean place.)

For an integer k satisfying the later defined condition (2.5.3), expanding the right-hand
side of (2.3.1) at s D k�nC1

2
, we have

E
�k � nC 1

2
;D�.� I�/ � �

r
ac

�
D 2�n.2�i/�

P
�j�

P
��
j
�a k�r

2
�b kCr

2
C
a.a�1/Cb.b�1/

2
C2ab

�

aY
jD1

�
�
�j C 1 � j C

k � r

2
� b

�

�

bY
jD1

�
�
��j C 1 � j C

k C r

2
� a

�
:

Let 
.s;D�.� I�/ � �
r
ac/ be the gamma factor as defined in [23]. Then it follows from the prop-

erties of the gamma factor and the definition of the modified Euler factor that

E
�n � k C 1

2
;D�.� I�/ � �

r
ac

�
D .�1/

P
�jC

P
�jCa

kCr
2
Cb k�r

2 i�a
2�b2

� 

�k � nC 1

2
;D�.� I�/ � �

r
ac

�
�E

�k � nC 1
2

;D�.� I�/ � �
r
ac

�
:

(2.3.2)
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2.4. The archimedean sections used for p-adic L-functions. We now introduce the
choices of archimedean sections used in the doubling integrals for the construction of the
p-adic L-functions in [8]. Let

J2n D

�
i � 1n

�i � 1n

�
:

Viewing J2n as an Hermitian form on C2n, the associated unitary group

U.J2n/ D ¹h 2 GL.2n;C/ j thJ2nh D J2nº

is isomorphic to U.n; n/ and is quasi-split. It contains a Siegel parabolic subgroup

QU.J2n/ D

²
h D

�
A B

tA�1

� ˇ̌̌̌
A 2 GL.n;C/; B 2Mn;n.C/;

t.A�1B/ D A�1B

³
:

Let
I.s; �rac/ D IndU.J2n/

QU.J2n/
�racj � j

s
C

be the (normalized) induction of the character�
A B

tA�1

�
7! �rac.detA/jdetAjsC

(where jxjC D xx for x 2 C). Inside the degenerate principal series I.s; �rac/, for an integer k
of the same the parity as r , we have the classical section fk.s; �rac/ (built from the canonical
automorphy factor), whose values on h D

�
A B
C D

�
, where A;B;C;D are n � n matrices, are

given by

(2.4.1) fk.s; �
r
ac/.h/ D .det h/

rCk
2 det.C i CD/�kjdet.C i CD/j�sC

k
2
�n
2

C :

In [8], the section
fk;.� I�/.s; �

r
ac/ 2 I.s; �

r
ac/

chosen for s D k�n
2

with k � n and D�.� I�/ twisted by �rac is obtained by applying the Lie
algebra operators to the classical section fk.s; �rac/.

Let

(2.4.2) s D
1
p
2

�
1n �i � 1n
1n i � 1n

�
;

the conjugation of which gives an isomorphism between U.n; n/ and U.J2n/. We consider the
Lie algebras .Lie U.J2n//˝R C and .Lie U.n; n//˝R C. In order to distinguish from the i
in the first factor of the tensor product, we write i for a fixed square root of �1 in the second
factor. The weight raising operators in .Lie U.n; n//˝R C consist of

�CU.n;n/;X D
1

2

�
0 X

tX 0

�
C
1

2

�
0 �iX

i tX 0

�
˝ i; X 2Mn;n.C/;
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to which we can apply the conjugation by s and obtain the weight raising operators for U.J2n/,

�CU.J2n/;X D s�1�CU.n;n/;Xs:

Denote by UCU.n;n/ (resp. UCU.J2n/) the C-vector space spanned by �CU.n;n/;X (resp. �CU.J2n/;X ),
X 2Mn;n.C/.

We set

�
C;up-left
U.n;n/ and �C;up-left

U.J2n/ .resp. �C;low-right
U.n;n/ and �C;low-right

U.J2n/ /

to be the a � a (resp. b � b) matrices taking values in UCU.n;n/ (resp. UCU.J2n/) with the .i; j /-
entry as

�C;up-left
U.n;n/;ij D �

C

U.n;n/;Eij
; �C;up-left

U.J2n/;ij
D �CU.J2n/;Eij

;

�C;low-right
U.n;n/;ij D �

C

U.n;n/;EaCi;aCj
; �C;low-right

U.J2n/;ij
D �CU.J2n/;EaCi;aCj

;

where Eij denotes the n � n matrix with 1 as the .i; j /-entry and 0 elsewhere.
The vector space spanned by the entries of �C;up-left

U.n;n/ and �C;low-right
U.n;n/ is isomorphic to the

quotient
UCU.n;n/=U

C
U.n;n/ \ {

�
.Lie U.a; b/ � U.b; a//˝R C

�
;

where { is the embedding

(2.4.3)

{WU.a; b/ � U.b; a/ ,! U.n; n/;

a b !
x1 x2 a

x3 x4 b
�

b a !
y1 y2 b

y3 y4 a
7!

a b a b0BBB@
1CCCA

x1 x2 a

y1 y2 b

y3 y4 a

x3 x4 b

:

The idea of considering this space for constructing archimedean sections for arithmetic appli-
cations of the doubling method stems from [16].

For k, r , and .� I �/ such that both �a � kCr
2

and ��
b
�
k�r
2

are non-negative integers,
define the polynomial Qk;r;.� I�/ on n � n matrices by

(2.4.4) Qk;r;.� I�/ D

a�1Y
jD1

�
�j��jC1
j �

�a�
kCr
2

a

b�1Y
jD1

�0j
��
j
���
jC1�0b

��
b
�k�r

2 ;

where �j (resp. �0j ) stands for the determinant of the upper left (lower right) j � j block
of a matrix, and �� D .��1 ; : : : ; �

�
b
/ D .��b; : : : ;��1/. (N.B. These are similar to the polyno-

mials arising in the differential operators in [7, Corollary 5.2.10] and [36, Section 12].) Note
that the condition that �a � kCr

2
and ��

b
�
k�r
2

are non-negative integers is essentially the later
defined condition (2.5.3), which is the condition for the point s D ˙k�n

2
C

1
2

to be critical for
L.s;D�.� I�/ � �

r
ac/.

We define the differential operators DU.n;n/
k;r;.� I�/ and DU.J2n/

k;r;.� I�/ by

(2.4.5) DU.n;n/
k;r;.� I�/ DQk;r;.� I�/

��C;low-right
U.n;n/

2�i

�
; D

U.J2n/
k;r;.� I�/ DQk;r;.� I�/

��C;low-right
U.J2n/

2�i

�
:

The section fk;.� I�/.s; �rac/ 2 I.s; �
r
ac/ used in [8] for constructing p-adic L-functions is

defined by

(2.4.6) fk;.� I�/.s; �
r
ac/´ D

U.J2n/
k;r;.� I�/fk.s; �

r
ac/:
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2.5. The archimedean doubling zeta integrals. For a section f .s; �rac/ 2 I.s; �
r
ac/

and vectors v�1 2 D�.� I�/, v2 2 D.� I�/, the archimedean doubling zeta integral is defined by

(2.5.1) Z
�
f .s; �rac/; v

�
1 ; v2

�
D

Z
U.a;b/

f .s; �rac/.s
�1{.g; 1/s/hg � v�1 ; v2i dg;

where s is the matrix defined in equation (2.4.2) and { is the embedding (2.4.3).
In the following, we compute

(2.5.2) Z
�
fk;.� I�/.s; �

r
ac/; v

�
.� I�/; v.� I�/

�ˇ̌
sD˙k�n

2

for integers k satisfying the conditions

(2.5.3) k � r mod 2; k � n; �a �
k C r

2
; �1 � �

k � r

2
;

and the section fk;.� I�/.s; �rac/ defined in equation (2.4.6), v.� I�/ 2 D.� I�/ the highest weight
vector in the lowest K-type of D.� I�/, and v�.� I�/ 2 D�.� I�/ the dual vector of v.� I�/.

Remark 2.5.1. The term

Z
�
fk;.� I�/

�k � n
2

; �rac

�
; v�.� I�/; v.� I�/

�
is left as an unknown number in [8, Main Theorem 9.2.2] (which notes it is equal to a nonzero
rational number multiplied by an automorphic period). This paper computes this number, and
the result is stated in Theorem 5.3.1.

3. Theta correspondence of unitary groups

Our computation of the archimedean doubling zeta integral (2.5.2) relies on results from
the theory of the theta correspondence between U.a; b/, U.n; n/ and the compact unitary
group U.k/. Before starting the computation, we briefly recall some basics about Weil rep-
resentations.

3.1. The Schrödinger model. We fix the additive character

eRWR! C�; eR.x/ D e
2�i �x :

For a positive integer m, let Sp.2m/ be the symplectic group²
g 2 GL.2m;R/

ˇ̌̌̌
tg

�
1m

�1m

�
g D

�
1m

�1m

�³
;

and let Mp.2m/ be the central extension

1! C� ! Mp.2m/! Sp.2m/! 1:

The metaplectic group Mp.2m/ has a Weil representation. The definition of Mp.2m/ and its
Weil representation depend on the choice of the additive character of R.
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Let Smk denote the Schrödinger model of the Weil representation of Mp.2mk/. (See
[20, especially Chapters I and II] for an introduction to the Schrödinger model.) More precisely,
Smk is the space of Schwartz functions on Rmk (valued in C) on which�

g D

�
A B

C D

�
; z

�
2 Mp.2mk/

acts by sending the Schwartz function �.X/ 2 Smk to

X 7! �
eR
k
.x.g/; z/
R.eR/

� rkC

�

Z
Rmk=ker tC

�.tCY C tAX/

� eR

�1
2
.tYC tDY C tYC tBX C tXAtBX/

�
dgY;

(3.1.1)

where �eR
k

is the character

R� ËC� ! C�;

.x; z/ 7! .x; .�1/
mk.mk�1/

2 /R �

´
1 if k is even;

z � 
R.x; eR/
�1 if k is odd;

with . � ; � /R denoting the Hilbert symbol,


R.eR/ D e
�i
4 ; 
R.x; eR/ D e

�i
4
.sgn.x/�1/;

x.g/ 2 R is defined by

x.g/ D det.A1A2/;

g D

 
A1 B1

tA�11

!0BBBB@
1mk�rkC

1rkC

1mk�rkC

�1rkC

1CCCCA
 
A2 B2

tA�12

!
;

and the Haar measure dgY on Rmk=kerC is defined such that operator (3.1.1) preserves the
L2-norm on Smk .

3.2. The Siegel–Weil sections. We consider the reductive dual pair .U.J2n/;U.k//
inside Sp.4nk/. Thanks to our assumption that k and r have the same parity, we can fix a lifting

(3.2.1)
U.J2n/ � U.k/ Mp.4nk/

Sp.4nk/

 - !
�r

 

!

 !

and an isomorphism of R2nk with Mn;k.C/, such that the action of U.J2n/ � U.k/ on S2nk

satisfies

!S2nk

�
�r

��
A B

t NA�1

�
; 1

��
ˆ.X/ D �rac.detA/jdetAj

k
2

C eR

�1
2

Tr t NXB t NAX
�
ˆ.t NAX/;
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where X 2Mn;k.C/ and ˆ 2 S2nk is viewed as a Schwartz function on Mn;k.C/ Š R2nk .
In the following, for .g; h/ 2 U.J2n/ � U.k/ and �r as in (3.2.1), we denote !S2nk .�r.g; h//

by !S2nk .g; h/.
The Siegel–Weil section fSW.ˆ/ 2 I

�
k�n
2
; �rac

�
associated to ˆ 2 S2nk is defined by

fSW.ˆ/.g/´ !S2nk .g; 1/ˆ.0/:

Let ˆ0 2 S2nk be the Gaussian function defined by ˆ0.X/´ e�� Tr t NXX . Then it follows
easily from formula (3.1.1) that the evaluation at s D k�n

2
of the classical section fk.s; �rac/

(given in equation (2.4.1)) is the Siegel–Weil section attached to the Gaussian function, i.e.

(3.2.2) fSW.ˆ0/ D fk

�k � n
2

; �rac

�
:

3.3. Restrictions of Siegel–Weil sections and matrix coefficients of Weil representa-
tions. Let V (resp. V 0) be an n-dimensional Hermitian space over C with signature .a; b/
(resp. .b; a/), and set V D V ˚ V 0. We fix the following basis:

V W .e; f / D .e1; : : : ; ea; f1; : : : ; fb/;(3.3.1)

V 0 W .e0; f 0/ D .e01; : : : ; e
0
b; f

0
1; : : : ; f

0
a/;

V W .e; e0; f 0; f /;(3.3.2)

under which the matrix of the Hermitian form on V (resp. V 0) is
�1a
�1b

�
(resp.

�1b
�1a

�
), and

the embedding U.V / � U.V 0/ ,! U.V / agrees with the embedding { in (2.4.3).
We consider another basis of V given as

(3.3.3) .e; e0; f 0; f /s D

�
e C f 0

p
2
;
e0 C f
p
2
;
�i.e � f 0/
p
2

;
�i.e0 � f /
p
2

�
:

With respect to the basis (3.3.2), U.V / is identified with U.n; n/, and with respect to (3.3.3),
U.V / is identified with U.J2n/.

We also consider the symplectic spaces over R associated to the Hermitian spaces over C.
Denote by VR (resp. V 0R, VR) the symplectic space over R of dimension 2n (resp. 2n, 4n),
which equals V (resp. V 0, V ) viewed as an R-vector space and equipped with the symplectic
form obtained by taking the imaginary part of the Hermitian form. For VR (resp. V 0R), we fix
the following basis:

VR W .e; f ;�ie; if /;

V 0R W .f
0; e0; if 0;�ie0/;

VR W .e; e
0; f 0; f ;�ie;�ie0; if 0; if /;

VR W .e; e
0; f 0; f ;�ie;�ie0; if 0; if /S;(3.3.4)

where

S D
1
p
2

0BBBB@
1n 0 0 1n
1n 0 0 �1n
0 �1n 1n 0

0 1n 1n 0

1CCCCA:
The bases (3.3.3) and (3.3.4) are compatible with our fixed embedding (3.2.1).
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With these fixed bases, we obtain the following commutative diagram:

U.a; b/ � U.b; a/ U.n; n/ U.J2n/

Mp.2n/ �Mp.2n/ Mp.4n/ Mp.4n/:

 - !
{

 
-

!

�
\
r;1��

\
r;2

 

!
s�1�s

 
-

!

�
\
r  

-

! �r

 - !

 

!
S�1�S

The action of U.a; b/ (resp. U.b; a/) on Snk is induced by the embedding �\r;1 (resp. �\r;2) and
the standard action of Mp.2n/ on Snk . Similarly, we make U.n; n/ act on S2nk through the
embedding �\r and the standard action of Mp.4n/ on S2nk .

The embedding �\r;1 (resp. �\r;2) also induces embedding of the reductive dual pair

U.a; b/ � U.k/ .resp. U.b; a/ � U.k//

into Mp.2nk/, and we denote by !Snk .g; h/ the action of .g; h/ 2 U.a; b/ � U.k/ on Snk .
We define the matrix coefficients for the action of U.a; b/ on Snk as

(3.3.5)
MCSnk WU.a; b/ � .Snk ˝Snk/! C;

.g; �1 ˝ �2/ 7!

Z
Rnk

!Snk .g; 1/�1.x/ �2.x/ dx:

Note that Snk ˝Snk is dense in S2nk . By taking the limit, one can extend the above map to

MCSnk WU.a; b/ �S2nk ! C:

Let zS D ŒS; 1� 2 Mp.4n/ and zS 2 C� such that zS�1 D ŒS�1; zS�.

Proposition 3.3.1. For �1 ˝ �2 2 Snk ˝Snk ,

!S2nk .
zS�1; 1/.�1 ˝ �2/.0/ D �

eR
k
.1; zS/
R.eR/

�nk 2
nk
2

Z
Rnk

�1.x/ �2.�x/ dx:

Proof. We have

S�1 D
1
p
2

0BBBB@
1n 1n 0 0

0 0 �1n 1n
0 0 1n 1n

1n �1n 0 0

1CCCCA D
0BBBB@

1n 0 0 0

0 0 0 1n
0 0 1n 0

0 �1n 0 0

1CCCCA 1
p
2

0BBBB@
1n 1n 0 0

�1n 1n 0 0

0 0 1n 1n
0 0 �1n 1n

1CCCCA:
It follows from formula (3.1.1) that x.S�1/ D 1, and

!S2nk ;1.
zS�1; 1/.�1 ˝ �2/.0/

D �
eR
k
.1; zS/
R.eR/

�nk

�

Z
Mn;k

.R/.�1 ˝ �2/

�
1
p
2

�
0 1n
0 �1n

��
0

x

��
� eR

�
1

4
Tr
�
0 1n
0 �1n

��
0

x

��
0 tx

��
1n 1n
0 0

��
dx

D �
eR
k
.1; zS/
R.eR/

�nk2
nk
2

Z
Mn;k.R/

�1.x/ �2.�x/ dx:
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The next proposition relates the evaluation at s D k�n
2

of the section defined in (2.4.6) to
the matrix coefficient of the Schwartz function obtained by applying the differential operator
defined in (2.4.5) to the Gaussian function.

Proposition 3.3.2. Maintaining the conventions from above, we have

fk;.� I�/

�k � n
2

; �rac

�
.s�1{.g; 1/s/

D .�1/
a.kCr/
2
C
b.k�r/
2
C
P
�jC

P
�j 2

nk
2 MCSnk

�
g; !S2nk .D

U.n;n/
k;r;.� I�//ˆ0

�
:

Proof. It follows from the definition of fk;.� I�/
�
k�n
2
; �rac

�
and (3.2.2) that

fk;.� I�/

�k � n
2

; �rac

�
.s�1{.g; 1/s/

D !S2nk .
zS�1; 1/!S2nk .{.g; 1//!S2nk .

zS; 1/!S2nk .D
U.J2n/
k;r;.� I�//ˆ0.0/

(3.3.6)

By formulas (3.1.1) and

S D
1
p
2

0BBBB@
1n 0 0 1n
1n 0 0 �1n
0 �1n 1n 0

0 1n 1n 0

1CCCCA D 1
p
2

0BBBB@
1n 1n 0 0

1n �1n 0 0

0 0 1n 1n
0 0 1n �1n

1CCCCA
0BBBB@

1n 0 0 0

0 0 0 1n
0 0 1n 0

0 �1n 0 0

1CCCCA;
we see that x.S/ D .�1/n and

!S2nk .
zS; 1/ˆ0

�
x1

x2

�
D �

eR
k
..�1/n; 1/
R.eR/

�nk 2�
nk
2

Z
Mn;k.R/

ˆ0

� x1Cx2p
2

�
p
2y

�
eR.Tr ty.x2 � x1// dy

D �
eR
k
..�1/n; 1/
R.eR/

�nkˆ0

�
x1

x2

�
:

Combining this with Proposition 3.3.1, we get

(3.3.6) D !S2nk .
zS�1; 1/!S2nk .{.g; 1//

� !S2nk .D
U.n;n/
k;r;.� I�//!S2nk .

zS; 1/ˆ0.0/

D �
eR
k
..�1/n; 1/�

eR
k
.1; zS/
R.eR/

�2nk 2
nk
2

�

Z
Rnk

!Snk .g; 1k/!S2nk .D
U.n;n/
k;r;.� I�//ˆ0

�
x

�x

�
dx:

In particular, this equality holds when the differential operator DU.J2n/
k;r;.� I�/ is the trivial one and

g D 1n. This case implies that

�
eR
k
..�1/n; 1/�

eR
k
.1; zS/
R.eR/

�2nk
D 1:

Therefore,

(3.3.7) (3.3.6) D 2
nk
2

Z
Rnk

!Snk .g; 1/!S2nk .D
U.n;n/
k;r;.� I�//ˆ0

�
x

�x

�
dx:
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For the action of U.b/ � U.a/ � U.b; a/ through the Weil representation, the Gaussian
function ˆ0 is of highest weight

�
k�r
2
; : : : ; k�r

2
I
kCr
2
; : : : ; kCr

2

�
. Then it follows from the def-

inition of the differential operator DU.n;n/
k;r;.�;�/

in equations (2.4.5) that DU.n;n/
k;r;.�;�/

ˆ0 is of highest
weight .� I �/. Thus,

!S2nk .D
U.n;n/
k;r;.�;�//ˆ0.x1;�x2/

D .�1/
a.kCr/
2
C
b.k�r/
2
C
P
�jC

P
�j!S2nk .D

U.n;n/
k;r;.�;�/ˆ0/.x1; x2/:

(3.3.8)

Combining equations (3.3.7) and (3.3.8), we get

(3.3.6) D .�1/
a.kCr/
2
C
b.k�r/
2
C
P
�jC

P
�j 2

nk
2 MCSnk

�
g; !S2nk .D

U.n;n/
k;r;.� I�//ˆ0

�
:

Remark 3.3.3. Viewing the evaluations at s�1{.g; 1/s of the Siegel–Weil sections as
the matrix coefficients of Weil representations has been widely used in the study of the theta
correspondence and the doubling method, for example in [24]. We write out all the computation
above in order to make sure that the factors in the comparison of the evaluations of the sections
and the matrix coefficients are precise.

3.4. The Fock model. Proposition 3.3.2 allows us to reduce the computation of (2.5.2)
in the case sD k�n

2
to studying the decomposition of the Weil representation of U.a;b/�U.k/

and its matrix coefficients. Unlike the case of symplectic groups in [29], the Schrödinger model
is not convenient for this purpose due to the lack of nice explicit formulas for the action of
U.a; b/ and pluri-harmonic polynomials (especially when a ¤ b). (Note that the model used
in [19] is not the Schrödinger model when a ¤ b.) We need to introduce the Fock model and
the Bargmann transform.

Following [10], let Fmk be the Fock model of the Weil representation of the metaplec-
tic group Mp.2mk/. It consists of entire functions on Cmk which are square integrable with
respect to the Hermitian pairing

(3.4.1) hF1; F2iFmk D 2
�mk

Z
Cmk

F1.z/F2.z/e
�� tzz

jdz dzj:

Let

W D
1
p
2

�
1nk i � 1nk
�1nk i � 1nk

�
:

For g 2 Sp.2mk/ with

WgW�1 D

�
P Q

Q P

�
;

its action on F 2 Fmk is given by

!Fmk .g/F.Z/

D .
�1=2

det P /2�mk
Z

Cmk
e
�
2
.tZQP�1ZC2tWP�1tZ�tWP�1QW /

� F.W /e��
tWW

jdW dW j:

(3.4.2)

Here the ambiguity of det1=2 P is since the Weil representation is a representation of Mp.2mk/
rather than Sp.2mk/, but for our purpose, it is not necessary to be precise about this ambiguity.
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The Hermitian pairing (3.4.1) is equivariant for this action. From (3.4.2), it is easy to deduce
formulas for the action of .Lie Sp.2mk//˝R C on F2mk . For X 2 Sym.mk;R/, let

�CSp.2mk/;X D
1

2

�
0 X

X 0

�
C
1

2

�
�X 0

0 X

�
˝ i;

��Sp.2mk/;X D
1

2

�
0 X

X 0

�
C
1

2

�
X 0

0 �X

�
˝ i:

Since

W�CSp.2mk/;XW�1 D

�
0 0

X 0

�
˝ i; W�CSp.2mk/;XW�1 D �

�
0 X

0 0

�
˝ i;

by formulas (3.4.2), we easily see that

!Fmk .�
C

Sp.2mk/;X /F.Z/ D
�i

2
tZXZ � F.Z/;

!Fmk .�
�
Sp.2mk/;X /F.Z/ D

i

2�

X
1�i;j�mk

Xij
𝜕2

𝜕Zi𝜕Zj
F.Z/:(3.4.3)

Between the Schödinger model and the Fock model, there is the Bargmann transform

BWSmk ! Fmk;

� 7! B.�/.Z/ D 2
mk
4

Z
Rnk

f .X/e2�X
tZ��X tX��

2
ZtZ dX:

The Bargmann transform is an isometry with respect to the standard Hermitian pairing on Smk

and the Hermitian pairing (3.4.1), i.e.Z
Rmk

�1.X/ �2.X/ dX D 2
�mk

Z
Cmk

B.�1/.Z/B.�2/.Z/e
�� tZZ

jdZ dZj:

Similarly to the definition of the matrix coefficients in (3.3.5), we define the matrix coefficients
for the action of U.a; b/ on Fnk as

MCFnk WU.a; b/ � .Fnk ˝Fnk/! C;

.g; F1 ˝ F2/ 7! 2�nk
Z

Cnk
!Fnk .g; 1/F1.Z/F2.Z/e

�� tZZ
jdZ dZj;

and extend it to U.a; b/ �F2nk . It follows from the isometry property of the Bargmann
transform that

(3.4.4) MCSnk .g;ˆ/ D MCFnk .g;B.ˆ//:

We identify Cnk (resp. Cnk , C2nk) with Mn;k.C/ (resp. Mn;k.C/, M2n;k.C/) through
the basis (3.3.1), (3.3.2) and the standard basis of the positive definite Hermitian space of
dimension k over C (for which the matrix of the Hermitian form is 1k). Write z; w 2Mn;k.C/
as

(3.4.5) z D

k !
z1 a

z2 b
; w D

k !
w1 b

w2 a
:
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The space Mn;k.C/ �Mn;k.C/ is identified with M2n;k.C/ by

.z; w/ 7!

0BBBB@
z1

w1

w2

z2

1CCCCA:
Also,

W �\r.�
C

U.n;n/;X /W
�1
D �

0BBBB@
0 0 0 0

0 0 0 0

0 X 0 0
tX 0 0 0

1CCCCA:
Hence,

(3.4.6) !F2nk .�
C

U.n;n/;X /F.z; w/ D �� Tr
�
X

�
z1

tw2 z1
tz2

w1
tw2 w1

tz2

��
F.z;w/:

It is also easy to see that h 2 U.k/ acts on F 2 F2nk by

(3.4.7) !F2nk .h/F.z; w/ D F

��
z1h

z2h

�
;

�
w1h

w2h

��
:

Proposition 3.4.1. We have

fk;.� I�/

�k � n
2

; �rac

�
.s�1{.g; 1/s/ D .2i/�

P
�j�

P
��
j
C
a.kCr/
2
C
b.k�r/
2 MCFnk .g; Fk;r;.� I�//;

where

Fk;r;.� I�/.z; w/ DQk;r;.� I�/

�
z1

tw2 z1
tz2

w1
tw2 w1

tz2

�
D

a�1Y
jD1

�j .z1
tw2/

�j��jC1 det.z1tw2/
�a�

kCr
2

�

b�1Y
jD1

�0j .z2
tw1/

��
j
���
jC1 det.z2tw1/

��
b
�k�r

2 :

Proof. Combining Proposition 3.3.2 and equation (3.4.4), we get

fk;.� I�/

�k � n
2

; �rac

�
.s�1{.g; 1/s/ D .�1/

a.kCr/
2
C
b.k�r/
2
C
P
�jC

P
�j 2�

nk
2

�MCFnk

�
g; !F2nk .D

U.n;n/
k;r;.� I�//B.ˆ0/

�
:

Direct computation shows that B.ˆ0/ D 2
�nk
2 . By equation (3.4.6) and the definition of the

operator DU.n;n/
k;r;.� I�/ in equations (2.4.5), we have

!F2nk .D
U.n;n/
k;r;.� I�//B.ˆ0/ D 2

�nk
2

� i
2

�P �jC
P
��
j
�
a.kCr/
2
�
b.k�r/
2

�Qk;r;.� I�/

��
z1

tw2 z1
tz2

w1
tw2 w1

tz2

��
;

and the proposition follows.
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Let F ınk � Fnk be the subspace consisting of all the polynomials on Mn;k.C/. It is
closed under the action of the maximal compact subgroup and the Lie algebra of Sp.2nk/. By
[19, Theorem III (7.2)], the Weil representation of Lie.U.a; b/ � U.k// on F ınk (k � n) has
a multiplicity-free decomposition

(3.4.8)
M

m�kCr
2
; l��k�r

2

D.mIl/ � �k;r.m; l/;

where m (resp. l) is a dominant weight for GL.a/ (resp. GL.b/), and �k;r.m; l/ denotes the
irreducible representation of U.k/ of highest weight�

m1 �
k C r

2
; : : : ; ma �

k C r

2
; 0; : : : ; 0; l1 C

k � r

2
; : : : ; lb C

k � r

2

�
:

Denote by H.a;b/;k the subspace of Fnk consisting of joint harmonic polynomials for the
action of U.a; b/, i.e. polynomials annihilated by�

0 X
tX 0

�
�

�
0 �iX

i tX 0

�
˝ i 2 ��U.a;b/;X ; X 2Ma;b.C/;

or equivalently annihilated by

kX
jD1

𝜕2

𝜕z1;mj 𝜕z2;lj
for all 1 � m � a; 1 � l � b;

where z is the coordinate of Mn;k.C/ as in equations (3.4.5). (The equivalence follows easily
from the formula in equation (3.4.3).) The joint harmonic polynomials correspond to vectors
inside the direct sum of lowest K-types of the irreducible components in the decomposition
(3.4.8). The space H.a;b/;k is preserved by the action of U.a/ � U.b/ � U.k/, the maximal
compact subgroup of U.a; b/ � U.k/, and has a decompositionM

m�kCr
2
; l��k�r

2

H.a;b/;k.m; l/

with H.a;b/;k.m; l/ corresponding to the lowest K-type of D.mIl/ � �k;r.m; l/ in the decom-
position (3.4.8). Similarly, we can consider the action of U.b; a/ � U.k/ on Fnk , and define
the space of joint harmonic polynomials H.b;a/;k and its subspace H.b;a/;k.l

�; m�/. Let

�.U.k// D ¹.u; u/ j u 2 U.k/º:

Then the space

(3.4.9)
�
H.a;b/;k.�; �/˝ H.b;a/;k.�

�; ��/
��.U.k//-inv

is an irreducible representation of .U.a/ � U.b//� .U.b/ � U.a//. Define

(3.4.10)
�
H.a;b/;k.�; �/˝ H.b;a/;k.�

�; ��/
��.U.k//-inv
.U.a/�U.b/;U.b/�U.a//-hwt

as the highest weight subspace of (3.4.9). It follows from the irreducibility of (3.4.9) (as a rep-
resentation of .U.a/ � U.b//� .U.b/ � U.a//) that the subspace (3.4.10) is one-dimensional.
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The space Fnk ˝Fnk is acted on by U.a; b/ � U.b; a/. We consider the projection

F ınk ˝F ınk ! .D.� I�/ � �k;r.�; �//˝ .D.��I��/ � �k;r.��; ��//

and denote by P hol;inv
k;r;.� I�/ the image of the polynomial Fk;r;.� I�/ (defined in Proposition 3.4.1).

Since Fk;r;.� I�/ is the highest weight vector of weight .�; �/, .��; ��/ for the action of

U.a/ � U.b/ � U.a; b/ and U.b/ � U.a/ � U.b; a/;

and is invariant under the action of �.U.k//, the polynomial P hol;inv
k;r;.� I�/ belongs to the one-

dimensional space (3.4.10).

Proposition 3.4.2. Let d.D.� I�/; dg/ denote the formal degree of the holomorphic dis-
crete series D.� I�/ with respect to our fixed Haar measure dg. Then

Z
�
fk;.� I�/

�k � n
2

; �rac

�
; v�.� I�/; v.� I�/

�
D .2i/�

P
�j�

P
��
j
C
a.kCr/
2
C
b.k�r/
2 d.D.� I�/; dg/

�1 MCFnk .1n; P
hol;inv
k;r;.� I�//:

Proof. When identifying (3.4.9) with the extreme K-type of D.� I�/ ˝D�.� I�/, the poly-
nomial P hol;inv

k;r;.� I�/ and v.� I�/ ˝ v�.� I�/ belong to the same one-dimensional subspace. Therefore,
it follows from the definition of formal degree thatZ

U.a;b/
hz�� .g/v

�
.� I�/; v.� I�/iMCFnk .g; Fk;r;.� I�// dg

D d.D.� I�/; dg/
�1 MCFnk .1n; P

hol;inv
k;r;.� I�//;

which, combined with Proposition 3.4.1 and the definition of the zeta integral (2.5.1), implies
the proposition.

4. Three one-dimensional spaces in H.a;b/;k.�; �/˝ H.b;a/;k.�
�; ��/

Proposition 3.4.2 reduces the computation of the zeta integral to the computation of

MCFnk .1n; P
hol;inv
k;r;.� I�// D

Z
Mn;k.C/

P hol;inv
k;r;.� I�/.z; z/e

�� Tr tzz
jdzdzj;

the value of the pairing (3.4.1) atP hol;inv
k;r;.� I�/ 2 Fnk ˝Fnk . A major obstruction to directly eval-

uating this integral is due to the difficulty of writing down the polynomial P hol;inv
k;r;.� I�/ explicitly.

We solve this difficulty by introducing another two one-dimensional subspaces (4.0.2)
and (4.0.3) of H.a;b/;k.�; �/˝ H.b;a/;k.�

�; ��/ in addition to the one-dimensional subspace
(3.4.10) spanned by P hol;inv

k;r;.� I�/. The invariance of the map

(4.0.1) MCFnk .1n; � /WCŒMn;k�˝CŒMn;k�! C

under the right translation of �.U.k// makes it possible to compute MCFnk .1n; P hol;inv
k;r;.� I�// by

computing MCFnk .1; � / for other polynomials in H.a;b/;k.�; �/˝ H.b;a/;k.�
�; ��/ that are not

necessarily �.U.k//-invariant.
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Besides the subspace (3.4.10), another one-dimensional space inside

H.a;b/;k.�; �/˝ H.b;a/;k.�
�; ��/

that is natural to consider is

(4.0.2)
�
H.a;b/;k.�; �/˝ H.b;a/;k.�

�; ��/
�.U.k/;U.k//-hwt
.U.a/�U.b/;U.b/�U.a//-hwt;

the highest weight space for both the action of U.k/ (as defined in equation (3.4.7)) and the
action of U.a/ � U.b/ � U.a; b/ and U.b/ � U.a/ � U.b; a/. It is not difficult to check that
this one-dimensional space is spanned by Qk;r;.� I�/ ˝ zQk;r;.� I�/ with

Qk;r;.� I�/.z/ D

a�1Y
jD1

�j .z/
�j��jC1�a.z/

�a�
kCr
2 �

b�1Y
jD1

�0j .z/
��
j
���
jC1�0b.z/

��
b
�k�r

2

zQk;r;.� I�/.w/ D

b�1Y
jD1

�j .w/
��
j
���
jC1�b.w/

��
b
�k�r

2 �

a�1Y
jD1

�0j .w/
�j��jC1�0a.w/

�a�
kCr
2 ;

where the notation �j , �0j is as explained when defining the polynomial in equation (2.4.4).
However, although Qk;r;.� I�/ ˝ zQk;r;.� I�/ has the above explicit and easy formula, the corre-
sponding matrix coefficient is still difficult to compute.

Like in [29], a key observation is to further exploit the invariance of the map (4.0.1) under
the left translation by

�.U.a/ � U.b// D
²��

h1

h2

�
;

�
h2

h1

�� ˇ̌̌̌
h1 2 U.a/; h2 2 U.b/

³
;

and consider a third one-dimensional space in H.a;b/;k.�; �/˝ H.b;a/;k.�
�; ��/: the space

(4.0.3)
�
H.a;b/;k.�; �/˝ H.b;a/;k.�

�; ��/
�.U.k/;U.k//-hwt
�.U.a/�U.b//-inv

spanned by vectors which are of the highest weight for the action of U.k/� U.k/, and is
invariant under the left translation by �.U.a/ � U.b//. Contrary to taking the invariance of
the action of �.U.k//, for which a polynomial in the subspace (3.4.10) is hard to write down
explicitly, from Qk;r;.� I�/ ˝ zQk;r;.� I�/, one can easily write down the following polynomial
in (4.0.3):

Ik;r;.�;I�/.z; w/ D

a�1Y
jD1

�j .
tz1w2/

�j��jC1�a.
tz1w2/

�a�
kCr
2

�

b�1Y
jD1

�0j .
tz2w1/

��
j
���
jC1�0b.

tz2w1/
��
b
�k�r

2 :

(4.0.4)

Proposition 4.0.1. Maintaining the conventions in Proposition 3.4.2, we have

Z�

�
fk;.� I�/

�k � n
2

; �rac

�
; v�.� I�/; v.� I�/

�
D
.2i/�

P
�j�

P
��
j
C
a.kCr/
2
C
b.k�r/
2

dim.GL.a/; �/ dim.GL.b/; �/
dim�k;r.�; �/

d.D.� I�/; dg/
MCFnk .1n; Ik;r;.� I�//;
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where dim.GL.a/; �/ (resp. dim.GL.b/; �/) denotes the dimension of the irreducible algebraic
representation of GL.a/ (resp. GL.b/) of highest weight � (resp. �), and �k;r.�; �/ is the
irreducible representation of U.k/ of highest weight�

�1 �
k C r

2
; : : : ; �a �

k C r

2
; 0; : : : ; 0; �1 C

k � r

2
; : : : ; �b C

k � r

2

�
:

Proof. It suffices to show that

(4.0.5) MCFnk .1n;P
hol;inv
k;r;.� I�//D

dim�k;r.�; �/

dim.GL.a/; �/ dim.GL.b/; �/
MCFnk .1n;Ik;r;.� I�//:

Let
d1 D dim�k;r.�; �/ and d2 D dim.GL.a/; �/ dim.GL.b/; �/:

Fix a basis v1; : : : ; vd1 (resp. u1; : : : ; ud2) of the irreducible sub-representation of U.k/ (resp.
U.a/ � U.b/) in H.a;b/;k.�; �/ generated by v1 D u1 D Qk;r;.�;�/, and let v_1 ; : : : ; v

_
d1

(resp.
u_1 ; : : : ; u

_
d2

) be a basis of the irreducible sub-representation of U.k/ (resp. U.b/ � U.a/) in
H.b;a/;k.�

�; ��/ generated by zQk;r;.�;�/ such that

MCFnk .1n; vi ˝ v
_
j / D ıij .resp. MCFnk .1n; ui ˝ u

_
j / D ıij /:

Then
Qk;r;.�;�/ ˝ zQk;r;.�;�/ D Cv1 ˝ v

_
1 D Cu1 ˝ u

_
1 ;

C D MCFnk .1n;Qk;r;.�;�/ ˝ zQk;r;.�;�//:
Similarly to the proofs of [29, Propositions 1.5.1 and 2.2.1], one can show that

P hol;inv
k;r;.� I�/ D C

d1X
jD1

vj ˝ v
_
j ; Ik;r;.� I�/ D C

d2X
jD1

uj ˝ u
_
j :

Thus,
MCFnk .1n; P

hol;inv
k;r;.� I�// D d1 �MCFnk .1n;Qk;r;.� I�/ ˝ zQk;r;.� I�//;

MCFnk .1n; Ik;r;.� I�// D d2 �MCFnk .1n;Qk;r;.� I�/ ˝ zQk;r;.� I�//;
and equation (4.0.5) follows.

5. The computation

5.1. Computing MCFnk
.1n;Ik;r;.�I�//. We compute the matrix coefficient appearing

on the right-hand side of the identity in Proposition 4.0.1.

Proposition 5.1.1.

MCFnk .1n; Ik;r;.� I�// D
��

P
�j�

P
��
j
Ca kCr

2
Cb k�r

2Qa
jD1 �.j /

Qb
jD1 �.j /

�

aY
jD1

�
�
�j �

k C r

2
C a � j C 1

�

�

bY
jD1

�
�
��j �

k � r

2
C b � j C 1

�
:



Eischen and Liu, Archimedean zeta integrals 23

Proof. Every z D
�
z1
z2

�
2Mn;k.C/ DMa;k.C/ �Mb;k.C/ can be written as

z1 D &

0BB@
r1 � � � x1a x1;aC1 � � � x1k

: : :
:::

:::
: : :

:::

ra xa;aC1 � � � xak

1CCA; & 2 U.a/; r1; : : : ; ra 2 R>0;

xij 2 C; 1 � i � a; i < j � k;

z2 D &
0

0BB@
y11 � � � y1;k�b r 01
:::

: : :
:::

:::
: : :

yb1 � � � yb;k�b yb;k�bC1 � � � r 0
b

1CCA; & 0 2 U.b/; r 01; : : : ; r
0
b
2 R>0;

yij 2 C; 1 � i � b;

1 � j � k � b C i;and

jdz dzj D
2a.2�/

a2Ca
2Qa

jD1 �.j /
!U.a/ ^ dr1 � � � dra ^

^
1�i�a
i<j�k

jdxij dxij j

^
2b.2�/

b2Cb
2Qb

jD1 �.j /
!U.b/ ^ dr

0
1 � � � dr

0
b ^

^
1�i�b

1<j�k�bCi

jdyij dyij j;

where !U.a/ (resp. !U.b/) is the Haar measure of U.a/ (resp. U.b/) with total volume 1. The
invariance of Ik;r;.� I�/ by the left translation of �.U.a/ � U.b// makes

Ik;r;.� I�/

��
z1

z2

�
;

�
z2

z1

��
independent of &; & 0, and from (4.0.4), one easily sees that

Ik;r;.� I�/

��
z1

z2

�
;

�
z2

z1

��
D

aY
jD1

r2�j�k�rC2aC1�2jj

bY
jD1

r 0;2�
�
j
�kCrC2bC1�2j

j :

The matrix coefficient MCFnk .1n; Ik;r;.� I�// is computed by

2�nk
Z
Mn;k.C/

Ik;r;.� I�/

��
z1

z2

�
;

�
z2

z1

��
e�� Tr.z1tz1Cz2

tz2/ jdz1 dz1 dz2 dz2j

D 2�nk
2a.2�/

a2Ca
2Qa

jD1 �.j /

aY
jD1

Z
R�0

r2�j�k�rC2aC1�2jj e��r
2
j drj

�

�Z
C
e��xx dx dx

�ak�a2Ca
2

�
2b.2�/

b2Cb
2Qb

jD1 �.j /

bY
jD1

Z
R�0

r 0;2�
�
j
�kCrC2bC1�2j

j e��r
0;2
j dr 0j

�

�Z
C
e��xx dx dx

�bk�b2Cb
2
;

(5.1.1)

and an easy computation gives
aY

jD1

Z
R�0

r2�j�k�rC2aC1�2jj e��r
2
j drj

bY
jD1

Z
R�0

r 0;2�
�
j
�k�rC2bC1�2j

j e��r
0;2
j dr 0j

D

Qa
jD1 �

�
�j �

kCr
2
C a � j C 1

�
2a�

P
�j�

a.kCr/
2
C
a2Ca
2

Qb
jD1 �

�
��j �

k�r
2
C b � j C 1

�
2b�

P
��
j
�
b.k�r/
2
C
b2Cb
2

;
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and �Z
C
e��xx dx dx

�ak�a2Ca
2
�Z

C
e��xx dx dx

�bk�b2Cb
2
D 2ak�

a2Ca
2
Cbk�b

2Cb
2 :

The proposition follows by plugging them into equation (5.1.1).

5.2. Formulas for dimensions and formal degrees. We use the Weyl dimension for-
mula and Harish-Chandra’s formal degree formula to compute the ratio

dim�k;r.�; �/

d.D.� I�/; dg/

appearing on the right-hand side of the identity in Proposition 4.0.1.

Proposition 5.2.1.

dim�k;r.�; �/

d.D.� I�/; dg/
D 2ab�

n
2 �ab

Qa
jD1 �.j /

Qb
jD1 �.j /QaCb

jD1 �.k � j C 1/

�

aY
jD1

�
�
�j � j C

k�r
2
� b C 1

�
�
�
�j � j

kCr
2
C aC 1

� bY
jD1

�
�
��j � j C

kCr
2
� aC 1

�
�
�
��j � j �

k�r
2
C b C 1

� :
Proof. The Weyl dimension formula for the irreducible algebraic representation of high-

est weight � of a Lie group is given as

dim.W�/ D
Q
˛2�C.�C �; ˛/Q
˛2�C.�; ˛/

:

Applying it to the U.k/-representation �k;r.�; �//, for which the highest weight � is�
�1 �

k C r

2
; : : : ; �1 �

k C r

2
; 0; : : : ; 0; �1 C

k � r

2
; : : : ; �b C

k � r

2

�
;

and half of the sum of positive roots is � D
�
k�1
2
; k�3
2
; : : : ;�k�1

2

�
, we get

dim�k;r.�; �/

D

nY
jD1

�.k � j C 1/�1
aY

jD1

�
�
�j � j C

k�r
2
� b C 1

�
�
�
�j � j �

kCr
2
C aC 1

�
�

bY
jD1

�
�
��j � j C

kCr
2
� aC 1

�
�
�
��j � j �

k�r
2
C b C 1

� aY
iD1

bY
jD1

.�i C �
�
j C 1 � i � j /

�

Y
1�i<j�a

.�i � �j � i C j /
Y

1�i<j�b

.��i � �
�
j � i C j /:

(5.2.1)

Next, we recall Harish-Chandra’s formal degree formula for the discrete series with
Harish-Chandra parameter � of a Lie group G (see [14, corollary of Lemma 1 in §23]):

(5.2.2) d.��; dg/ D
2�

dimG=K�rkG=K
2 .2�/�j�

Cj

vol.T; dT / vol.K; dK/�1
Y
˛2�C

jhH˛; �ij:
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Here K is the maximal compact subgroup and T is the maximal anisotropic torus of G. The
measures dK and dT are the induced measures with respect to a fixed bilinear symmetric form
on LieG, and dg is the standard measure with respect to the same bilinear symmetric form. For
a root ˛, the vector H˛ 2 .LieG/C is defined by .H;H˛/ D hH;˛i. We apply this formula to
the holomorphic discrete series D.� I�/ on U.a; b/ and the symmetric form .X; Y / D Tr tXY

on Lie U.a; b/. Then

dimG=K � rkG=K D 2ab � n; j�Cj D
n.n � 1/

2
;

vol.T; dT / D .2�/n; vol.K; dK/ D
.2�/

a2Ca
2
C
b2Cb
2Qa

jD1 �.j /
Qb
jD1 �.j /

:

With � the parameter in (2.2.1), we haveY
˛2�C

jhH˛; �ij D
Y

1�i<j�a

.�i � �j � i C j /
Y

1�i<j�b

.��i � �
�
j � i C j /

�

aY
iD1

bY
jD1

.�i C �
�
j C 1 � i � j /:

Plugging these into equation (5.2.2) gives

(5.2.3) d.D.� I�/; dg/ D

Q
1�i<j�a.�i � �j � i C j /

Q
1�i<j�b.�

�
i � �

�
j � i C j /

�
Qa
iD1

Qb
jD1.�i C �

�
j C 1 � i � j /

2ab�
n
2�ab

Qa
jD1 �.j /

Qb
jD1 �.j /

:

The desired identity follows from combining equations (5.2.1) and (5.2.3).

5.3. The main result. Combining Propositions 4.0.1, 5.1.1, 5.2.1, we obtain the fol-
lowing theorem.

Theorem 5.3.1. Suppose that the integer k satisfies condition (2.5.3). Then, for the
archimedean section fk;.� I�/.s; �rac/ defined in equation (2.4.6), we have

Z
�
fk;.� I�/.s; �

r
ac/; v

�
.� I�/; v.� I�/

�ˇ̌
sDk�n

2

D
2ab�

n
2�ab.2�i/�

P
�j�

P
��
j
C
a.kCr/
2
C
b.k�r/
2

dim.GL.a/; �/ dim.GL.b/; �/

�

Qa
jD1 �

�
�j � j C

k�r
2
� b C 1

�Qb
jD1 �

�
��j � j C

kCr
2
� aC 1

�Qn
jD1 �.k � j C 1/

D
2
n2

2
�ni�

n2

2
Cn
2
�ab.�1/nr

dim.GL.a/; �/ dim.GL.b/; �/
E
�
k�nC1
2

;D�.� I�/ � �
r
ac
�

2n.n�1/�
n.n�1/
2 .�2�i/�nk

Qn
jD1 �.k C 1 � j /

;

where the modified Euler factor E
�
k�nC1
2

;D�.� I�/ � �
r
ac
�

is defined in Section 2.3.

Note that 2n.n�1/�
n.n�1/
2 .�2�i/�nk

Qn
jD1 �.k C 1 � j / is the normalization factor for

Siegel–Eisenstein series at s D k�n
2

on U.n; n/ appearing in [6, equation (12)].
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5.4. To the left of the center. Let k; r; .� I �/ be as in condition (2.5.3). The evaluation
of the archimedean zeta integral

(5.4.1) Z
�
fk;.� I�/.s; �

r
ac/; v

�
.� I�/; v.� I�/

�ˇ̌
sD�k�n

2

is crucial for studying the critical values of L.s; z� � �/ to the left of the center. The inte-
gral defining Z.f .s; �rac/; v

�
1 ; v2/ in equation (2.5.1) does not converge at s D �k�n

2
, and

fk;.� I�/
�
�
k�n
2
; �rac

�
2 I

�
�
k�n
2
; �rac

�
is not a Siegel–Weil section attached to the theta cor-

respondence between U.n; n/ and another definite unitary group.
We compute (5.4.1) by combining our results in Theorem 5.3.1 and the functional equa-

tion of doubling local zeta integrals.

Theorem 5.4.1. Suppose that the integer k satisfies condition (2.5.3). Then, for the
archimedean section fk;.� I�/.s; �rac/ defined in equation (2.4.6), we have

Z
�
fk;.� I�/.s; �

r
ac/; v

�
.� I�/; v.� I�/

�ˇ̌
sDn�k

2

D
2
n2

2
�ni

n2

2
Cn
2
Cab.�1/nrCa

kCr
2
Cb k�r

2
C.nC1/bn

2
c

dim.GL.a/; �/ dim.GL.b/; �/

�
E
�
n�kC1
2

;D�.� I�/ � �
r
ac
�

2n.n�1/��
n.nC1/
2 ink

Qn
jD1 �.j /

:

Note that 2n.n�1/��
n.nC1/
2 ink

Qn
jD1 �.j / is the normalization factor for Siegel–Eisen-

stein series at s D n�k
2

on U.n; n/.

Proof. For f .s; �rac/ 2 I.s; �
r
ac/ and ˇ 2 Her.n;C/, define the (local) Fourier coeffi-

cient Wˇ . � ; f .s; �rac// as

Wˇ
�
g; f .s; �rac/

�
D

Z
Her.n;C/

f .s; �rac/

��
�1n

1n �

�
g

�
e�2�i Trˇ� d�; g 2 U.J2n;R/:

For non-degenerate ˇ, the functional equation for Wˇ (see [23, bottom of page 326]) shows
that there exists c.s; �rac; ˇ/ 2 C (independent of f .s; �rac/ and g) such that

Wˇ
�
g;M.s; �rac/f .s; �

r
ac/
�
D c.s; �rac; ˇ/Wˇ

�
g; f .s; �rac/

�
;

where M.s; �rac/W I.s; �
r
ac/! I.�s; �rac/ is the standard intertwining operator. Because

M.s; �rac/fk.s; �
r
ac/ D W0

�
12n; fk.s; �rac/

�
fk.�s; �

r
ac/;

it follows from our definition of the section fk;.� I�/.s; �rac/ that

(5.4.2) M.s; �rac/fk;.� I�/.s; �
r
ac/ D W0

�
12n; fk;.� I�/.s; �rac/

�
fk;.� I�/.�s; �

r
ac/:

We also have ([23, (14)])

c.s; �rac; ˇ/ D
W0
�
12n; fk.s; �rac/

�
Wˇ

�
12n; fk.�s; �rac/

�
Wˇ

�
12n; fk.s; �rac/

�
D
W0
�
12n; fk;.� I�/.s; �rac/

�
Wˇ

�
12n; fk;.� I�/.�s; �rac/

�
Wˇ

�
12n; fk;.� I�/.s; �rac/

� :

(5.4.3)
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For split ˇ, by [23, Theorem 3, equations (19) and (25)], the archimedean doubling zeta
integrals satisfy the following functional equation:

Z
�
M.s; �rac/f .s; �

r
ac/; v

�
1 ; v2

�
D �� .�1/.detˇ/�r jdetˇj

�sC r
2

C c.s; �rac; ˇ/

� 

�
s C

1

2
;D�.� I�/ � �

r
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�
Z
�
f .s; �rac/; v

�
1 ; v2

�
:

Applying it to

ˇ D ın D

0BBBBB@
1

: :
:

1

1

1CCCCCA 2 Her.n;C/

and using equation (5.4.2), we get
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�
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Z
�
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P
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r
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�
Z
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r
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�
.� I�/; v.� I�/

�
:

Therefore,
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r
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�
W1n

�
12n; fk;.� I�/.�s; �rac/

�
D .�1/

P
�jC

P
��
j
Cbn=2crc.s; �rac; ın/

�
W1n

�
12n; fk;.� I�/.s; �rac/

�
W0
�
12n; fk;.� I�/.s; �rac/

�
W1n

�
12n; fk;.� I�/.�s; �rac/

�
�


�
s C 1

2
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r
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�
W1n

�
12n; fk;.� I�/.s; �rac/

� :

(5.4.4)

By equation (5.4.3), we can replace the ratio in the third line of (5.4.4) with c.s; �rac; 1n/�1,
and we obtain
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�
fk;.� I�/.�s; �

r
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�
.� I�/; v.� I�/
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s C 1

2
;D�.� I�/ � �
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Z
�
fk;.� I�/.s; �

r
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�
.� I�/; v.� I�/

�
W1n

�
12n; fk;.� I�/.s; �rac/

� :

(5.4.5)

We know that

W1n
�
12n; fk;.� I�/.s; �rac/

�
jsDk�n

2

D 2�n.n�1/��
n.n�1/
2 .�2�i/nk
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(5.4.6)

W1n
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12n; fk;.� I�/.s; �rac/

�
jsDn�k

2

D 2�n.n�1/�
n.nC1/
2 i�nk

nY
jD1

�.j /�1;

(5.4.7)
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which are the inverse of the archimedean normalization factors of the Siegel–Eisenstein series.
Combining Theorem 5.3.1 with equations (5.4.6) and (2.3.2) gives
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(5.4.8)

It follows from [34, equation (4.34K)] that
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(5.4.9)

By plugging equations (5.4.8) and (5.4.9) into equation (5.4.5), we get
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�E
�n � k C 1

2
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r
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�
;

which, together with equation (5.4.7), proves the theorem.
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