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ABSTRACT: Elevated levels of ammonia in breath can be linked
to medical complications, such as chronic kidney disease (CKD),
that disturb the urea balance in the body. However, early stage
CKD is usually asymptomatic, and mass screening is hindered by
high instrumentation and operation requirements and accessible
and reliable detection methods for CKD biomarkers, such as trace
ammonia in breath. Enabling methods would have significance in
population screening for early stage CKD patients. We herein
report a method to effectively immobilize transition metal
selectors in close proximity to a single-walled carbon nanotube
(SWCNT) surface using pentiptycene polymers containing metal-
chelating backbone structures. The robust and modular nature of
the pentiptycene metallopolymer/SWCNT complexes creates a platform that accelerates sensor discovery and optimization.
Using these methods, we have identified sensitive, selective, and robust copper-based chemiresistive ammonia sensors that
display low parts per billion detection limits. We have added these hybrid materials to the resonant radio frequency circuits of
commercial near-field communication (NFC) tags to achieve robust wireless detection of ammonia at physiologically relevant
levels. The integrated devices offer a noninvasive and cost-effective approach for early detection and monitoring of CKD.
KEYWORDS: ammonia sensing, chronic kidney disease, carbon nanotubes, conjugated polymers, wireless sensing

INTRODUCTION
Chronic kidney disease (CKD) is a common chronic disease
estimated to affect more than 10% of the population in many
regions of the world.1−6 Early detection of CKD is essential as
it allows room for early interventions and therapies to slow
down the disease progression.2,7 CKD at early stages is usually
asymptomatic, and as a result of a lack of population screening
programs, most patients with CKD are unaware of their
condition until they reach later stages with poor prognosis.8,9

For patients diagnosed with late-stage CKD, constant and
prompt monitoring is critical to evaluate the need for dialysis.2

However, conventional methods to diagnose and monitor
CKD are based on blood and urine tests that are labor-
intensive and time-consuming,1,10 thereby creating a barrier to
routine testing and hindering timely interventions. Therefore,
it is imperative to develop an accessible diagnostic tool for
rapid screening and easy monitoring of CKD, which can
significantly improve the quality of life for the patients.
CKD is characterized by the loss of kidney function to filter

metabolic waste,1,2 which causes an accumulation of waste in
the circulatory system with an elevated ammonia level in
blood, breath, and bodily fluids. As a result, ammonia is a
valuable biomarker for the screening and monitoring of
CKD.11−14 The breath ammonia levels in healthy individuals

are generally in the low parts per billion (ppb) concen-
trations.15 However, the breath ammonia levels of late-stage
CKD patients are significantly higher and can reach 10 parts
per million (ppm).11 Although a breath ammonia test may not
replace standard blood and urine tests, it can serve as a
complementary tool to rapidly screen asymptomatic patients
and provide home-based noninvasive real-time monitoring for
CKD patients. Moreover, an accessible and robust ammonia
detection method carries additional merits, as elevated
ammonia levels are also linked to other medical conditions
such as H. pylori infection that produces ammonia in the
stomach16−18 or genetic disorders such as ornithine trans-
carbamylase deficiency (OTCD) that hinders ammonia
metabolism.19−21

Existing methods for trace ammonia detection include gas
chromatography,22 ion mobility spectrometry,23,24 photo-
acoustic spectroscopy,25 and fluorescence spectroscopy.26
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These methods have high accuracy yet require expensive
instrumentation, making them less ideal as point-of-care tests
for CKD patients, especially in less developed regions of the
world.27 Alternatively, chemiresistive sensors that transduce
chemical interactions to electrical readouts, have become
increasingly popular due to their simple fabrication and high
sensitivity, making them suitable for the continuous monitor-
ing of target analytes.28−33 Among the different chemiresistive
materials used, single-walled carbon nanotubes (SWCNTs)
have attracted increasing attention because they operate at
ambient temperature, have tunable selectivity, display small
form factors, are rapidly prototyped, with low cost, high
scalability, and adaptability for integration into portable
electronic devices.32−38 These advantages of SWCNTs,
especially the miniature size and low cost and power
requirements, make them appealing as the sensing materials
for the envisioned home-based diagnostic tool for CKD.
By leveraging the electron-donating properties of ammonia,

we targeted SWCNTs adorned with electrophilic metal
complexes that serve as selectors. The goal is to enhance the
effective charge transfer from ammonia to the p-doped
SWCNTs and thereby modulating the conductance.32 To
enhance this chemiresistive response in metal-functionalized
SWCNTs, it is essential to construct a robust interface with
strong electronic coupling between metal complexes and
SWCNTs. We have previously shown that pentiptycene-based
conjugated polymers, such as P4 in Figure 1a, effectively bind
and disperse small diameter SWCNTs in organic solvents and
significantly improve their sensing performance.39,40 To
expand the functionalities of these SWCNT binding polymers
to include transition metals, we have introduced metal
chelation sites in the backbone (Figure 1a). Contrary to
other polymer-wrapped SWCNTs, where metal species are
anchored by pendant functional groups that are not necessarily
in direct communication with the SWCNTs,41−43 the metal
species chelated to the backbone of these pentiptycene
polymers are positioned to interact directly with the graphene
sidewalls of SWCNTs (Figure 1b). Therefore, any electronic
changes at the metal centers are expected to result in greater
charge transfer (doping) effects and provide higher chemir-
esistive responses. This functionalization scheme is non-
covalent and preserves the semiconducting properties of
SWCNTs that are critical to chemiresistive sensing.44 The
rigid pentiptycene units in these polymers also produce
internal free volume to create porous interstitial cavities.
These iptycene-based porous nanostructures are conducive to
gas analyte diffusion and have shown to facilitate the analyte-
selector interactions in gas sensing.39,40,42 The solution
processability of the resulting pentiptycene polymer/SWCNT
complexes also provides a practical and scalable sensor
fabrication. More importantly, this modular platform enables
rapid sensor screening to identify the optimal transition-metal-
based selectors for sensors of specific needs.
In this study, we utilize pentiptycene metallopolymer/

SWCNT complexes to create sensitive, selective, and robust
sensors for the detection of trace ammonia at levels relevant to
utility as a biomarker for chronic kidney disease. Incorporating
the sensors into accessible near-field communication (NFC)
tags, we have developed a wireless detection system for
ammonia testing at physiologically relevant levels and thereby
demonstrate a noninvasive cost-effective approach for early
detection and monitoring of chronic kidney disease.

RESULTS AND DISCUSSION
We synthesized a series of pentiptycene-based metal-chelating
polymers by a statistical Sonogashira coupling copolymeriza-
tion using 6,13-diethynylpentiptycene and equimolar amounts
of 4,7-dibromo-5,6-bis(tetradecyloxy)benzo-2,1,3-thiadiazole
and comonomers containing metal chelating bipyridine,
phenanthroline, bipyrimidine, and pyridine moieties (Figure
S1). The successful copolymerization is revealed by gel
permeation chromatography (GPC), 1H NMR, as well as
high-resolution X-ray photoelectron spectroscopy (XPS),
wherein the atomic ratios between nitrogen and sulfur species
were found to agree with the theoretical compositions of the
copolymers (Table S1, Figures S2−S6). Following our
previously reported procedures,39 we prepared pentiptycene
polymer/SWCNT dispersions by sonicating the components
in ortho-dichlorobenzene (oDCB). Centrifugation removes the
large SWCNT aggregates and amorphous carbon impurities,
yielding homogeneous stable dispersions. Consistent with the
previous study,39 the noncovalent functionalization of
SWCNTs using pentiptycene polymers does not result in
significant disruption to the CNT surface π-conjugation as
indicated by the absence of an enhanced Raman defect band
(D-band) at ∼1300 cm−1 (Figure S7).45,46 Taking advantage of
the high processability of these pentiptycene polymer/
SWCNT dispersions, we fabricated chemiresistive devices
simply by drop-casting a small amount of the dispersion (1 μL)
between gold electrodes deposited on a glass substrate. The

Figure 1. (a) Structural drawings of pentiptycene-based polymers.
(b) Schematic drawing of pentiptycene metallopolymer/SWCNT
complex. (bottom) Adapted from ref 39. Copyright 2020 American
Chemical Society.
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subsequent metal coimmobilization was achieved by submerg-
ing the devices in DMF solutions of metal salts for 12 h. For
example, the successful chelation of CuOTf (OTf− =
CF3SO3

−) by the pentiptycene polymers is evidenced by the
formation of an XPS N 1s peak with significantly higher
binding energy that can be assigned to pyridinic nitrogen
chelated to metal species (Figure S8a).47−49 XPS analysis also
suggests the formation of Cu2+ species with characteristic Cu
2p satellite peaks,50 possibly due to aerobic oxidation (Figure
S8b). With the fabricated devices at hand, we then tested their
chemiresistive response to trace ammonia in dry air, which is
evaluated as the normalized changes in their resistance (ΔR/
R0, where ΔR is the change in resistance and R0 represents the
baseline resistance). A typical testing procedure includes
setting the devices under constant airflow for 30 min to
establish a baseline, followed by a 5 min exposure to ammonia
at controlled concentration levels, and then a recovery period
in analyte-free carrier gas. Minor linear baseline corrections are
used to address linear baseline resistance drift.33 As a result of
the simple fabrication and derivatization of chemiresistive
devices made from the pentiptycene polymer/SWCNT
complexes, we could perform quick sensor screening with a
variety of transition metal species, including Cu+, Co2+, Fe3+,
Ir3+, Ni2+, Pt2+, Rh3+, and Ru3+. As shown in Figure S9, using
P4-bpy as the model polymer substrate, we identified CuOTf
as the best performer with the highest chemiresistive response
toward 100 ppm ammonia (211.5%). The sensing traces of
devices made of P4-bpy/CuOTf showed large, quick, and
reversible chemiresistive changes with low device-to-device
variability (Figure 2). In the control experiments where we

removed CuOTf (P4-bpy-SWCNT) and the pentiptycene
polymer (pSWCNT/CuOTf), we observed significantly lower
responses (Figure S10). The elevated ammonia sensitivity of
P4-bpy/CuOTf could be attributed to the synergistic effect of
the high affinity between the electron-donating ammonia and
the copper center as well as the strong electronic coupling
provided by the bipyridine ligands. It is also worth highlighting
that there is an apparent positive correlation between the
density of the metal-chelating groups on the polymer backbone

and the chemiresistive response toward ammonia. We
compared the performance of the devices containing 50%
(P4-bpy/CuOTf), 20% (P4-bpy20/CuOTf), and 0% (P4/
CuOTf) bipyridine groups (Figure S10). Moreover, P4-bpy/
CuOTf displayed much higher responses than devices made
from a commercial bipyridine-containing polyfluorene that has
been widely used in dispersing and sorting SWCNTs (PFO-
bpy/CuOTf).51−53

The choice of the metal-chelating group in the polymer also
seems to influence the chemiresistive response to ammonia. As
shown in Figure 2, we compared the responses to 100 ppm
ammonia in sensors made from the series of pentiptycene
polymers bearing different metal chelating comonomers.
Although sensors with phenanthroline moieties (P4-phen/
CuOTf) were found to possess similar sensitivity to ammonia
as sensors made from a bipyridine-containing polymer (P4-
bpy/CuOTf), sensors with the monodentate pyridine groups
(P4-py/CuOTf) or the electronically distinct bipyrimidine
groups (P4-bpym/CuOTf) displayed significantly lower
sensitivities. These demonstrate that the sensor performance
can be effectively modulated by molecular engineering of the
polymer backbone. Moreover, these results suggest the
potential in these structurally diverse pentiptycene metallo-
polymer/SWCNT complexes in sensor arrays that can
generate distinct response profiles to achieve analyte
identification and classification within complex environ-
ments.54−56

Although pristine CNTs possess some degree of intrinsic
sensitivity to ammonia,57,58 we attribute the mechanism for the
enhanced ammonia responses in our sensors to the
interactions with the immobilized copper centers. The
electronic coupling between the metals and the graphene
sidewalls results in a decreased carrier concentration or carrier
pinning upon exposure to ammonia, inducing an increase in
the resistivity of SWCNTs. An n-type (dedoping) response is
consistent with previous ammonia sensing systems employing
transition metal species as selectors on SWCNTs.59−61 To rule
out the reduction/oxidation sensing mechanism, where the
metal center is formally reduced by ammonia, we performed
the sensing test under a nitrogen environment, and no
significant difference was observed in sensor sensitivity or
reversibility (Figure S11), supporting the chemisorption/
desorption mechanism without parallel redox complications.
To characterize the sensitivity of our sensors, we evaluated

the chemiresistive responses of P4-bpy/CuOTf in different
levels of ammonia in dry air. As shown in Figure 3b, we
observed an increasing chemiresistive response of P4-bpy/
CuOTf as a function of the ammonia concentration. More
importantly, we observed significant chemiresistive responses
to ammonia at physiologically relevant concentrations (Figure
3c). The chemiresistive responses to ammonia also possess a
linear relationship with ammonia concentrations (Figure 3d)
so that the ammonia level can be quantified with high
confidence. The average limit of detection (LOD) of the P4-
bpy/CuOTf chemiresistive ammonia sensor is calculated62−64

to be 57 ppb, placing it in the same league among the most
sensitive room-temperature chemiresistive ammonia sensors
reported (Table S2).
Besides meeting the requirement in sensor sensitivity to

detect trace levels of ammonia, the sensor also needs to be
selective when challenged with common interfering agents
found in breath. As shown in Figure 4, P4-bpy/CuOTf
displays superior selectivity toward ammonia against a series of

Figure 2. Chemiresistive responses of P4-bpy/CuOTf (green), P4-
phen/CuOTf (red), P4-bpym/CuOTf (blue), and P4-py/CuOTf
(orange) to ammonia. Devices were exposed to 100 ppm ammonia
in dry air for 5 min. (N ≥ 4).
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gases and volatile organic compounds, even when the ammonia
concentration is 2 to 4 orders of magnitude lower than the
interferants. Moreover, P4-bpy/CuOTf displays insignificant

responses toward trace H2S (Figure S12), which is often
present in exhaled breath.65,66

Another critical requirement for a functional sensor for
breath analysis is the tolerance to high humidity as the exhaled
breath typically contains saturated moisture. Drying columns
have been employed in breathalyzers to mitigate the humidity
effect, albeit at the expense of an increased instrumentation
cost.67 Hence a sensor with intrinsic tolerance to humidity is
necessary for practical breath analysis. As shown in Figure 5
and Figure S13, in high humidity levels (>60% relative
humidity), the chemiresistive responses of P4-bpy/CuOTf to
10 ppm ammonia are minimally impacted. This humidity
tolerance is significant when it is considered that excess water
can competitively bind to the selector, highlighting the notable
selectivity of P4-bpy/CuOTf to ammonia. Although the
humidity effect is more prominent when the ammonia
concentration is at 100 ppm (Figure 5, Figure S14), this
ammonia concentration is much higher than the physiologi-
cally relevant level. We note that differences with humidity
may also be related to the observed increases in the baseline
resistance (Figure S15).68−70 This may be indicative of an
initial depletion of mobile hole carriers that are capable of
being modulated by n-type dopant ammonia. The fast
saturation of the chemiresistive responses to high concen-

Figure 3. (a) Polymer structure of P4-bpy/CuOTf. (b) Chemiresistive responses of P4-bpy/CuOTf to ammonia (5 ppm−100 ppm) in dry
air for 5 min. (c) Chemiresistive responses of P4-bpy/CuOTf to ammonia (500 ppb−2 ppm) in dry air for 5 min. (d) Calibration curve of
P4-bpy/CuOTf to ammonia (500 ppb−10 ppm) in dry air for 5 min. (N ≥ 4).

Figure 4. Chemiresistive responses of P4-bpy/CuOTf toward
volatile organic compounds and gases in dry air for 5 min. (N ≥ 4).
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trations of ammonia is consistent with this possibility (Figure
S14). We also observed an increased sensor recovery kinetics
under high humidity (Figure S13, Figure S14), consistent with
a previous report of water-assisted desorption of ammonia
from SWCNTs.70

P4-bpy/CuOTf exhibits good reusability and long-term
stability under ambient storage conditions. The chemiresistive
responses are retained after repeated ammonia exposure
(Figure S16) and month-long aging (Figure S17), highlighting
the robustness of the device.
To make an accessible home-based diagnostic tool, we have

incorporated P4-bpy/CuOTf chemiresistive sensors into
smartphone readable NFC tags43,71−73 for noninvasive and
real-time monitoring of ammonia levels. For this application,
CuOTf is added to the P4-bpy SWCNT dispersion. We then
drop-cast the metalated dispersion on an inexpensive
commercial NFC tag to introduce a parallel circuit within
the existing circuit of the NFC tag to fabricate a parallel-
chemically actuated resonant device (p-CARD) (Figure 6).43

The change in the resistance of the chemiresistor results in a
change in the gain amplitude of the p-CARD at the resonant
frequency,71−73 due to the change in the efficiency of energy
transfer between the tag and the reader.74 The fabricated p-
CARDs are placed in a sensing chamber under constant airflow
and measured by a vector network analyzer (VNA) with a

copper antenna positioned at a fixed distance over a 10−20
MHz frequency range. A typical wireless sensor testing
workflow includes 30 min of constant airflow to establish the
baseline, 15 min of ammonia exposure, and 1 h of recovery
under air. The sensor response is defined by the difference in
the gain amplitude before and after ammonia exposure
(ΔGain, dB).
Control experiments using unmodified NFC tags and metal-

free P4-bpy/SWCNT complexes showed insignificant re-
sponses to ammonia (Figure S18). Gain responses of a
representative p-CARD containing P4-bpy/CuOTf are shown
in Figure 7a. A significant change in gain amplitude at the
resonant frequency (0.5 dB) was observed when the P4-bpy/
CuOTf p-CARD was exposed to 100 ppm ammonia in dry air.
To determine the speed of ammonia response of the P4-bpy/
CuOTf p-CARDs, we have evaluated the p-CARD responses
with respect to the duration of ammonia exposure. As shown in
Figure S19, most of the responses took place within the first
few minutes of ammonia exposure, whereas maximum
responses were reached within 15 min. Trace ammonia (2
ppm) can also be detected with a significant change in gain
amplitude at the resonant frequency (0.06 dB), owing to the
robust baseline. Duplicate devices showed similar responses to
ammonia in dry air (Figure S20). The P4-bpy/CuOTf p-
CARDs also display excellent reversibility (Figure S20).
Moreover, we can establish a calibration curve with high
confidence with exponential fitting between p-CARD re-
sponses and ammonia concentrations where trace levels of
ammonia can be effectively quantified. As gain amplitudes are
expressed in decibels, this logarithmic relationship between
gain amplitudes and ammonia concentrations is consistent
with the linear dependency shown in the chemiresistive
measurements (Figure 3),72 suggesting similar operative
sensing mechanisms in the two types of approaches. The
average calculated LOD is 130 ppb for these devices. More
importantly, the ammonia responses of P4-bpy/CuOTf p-
CARDs were mostly retained in high humidity (Figure S21).
These results highlight the potential utility of p-CARDs
consisting of pentiptycene metallopolymer/SWCNT com-
plexes in serving as an accessible, noninvasive, and practical
platform for the rapid screening and easy monitoring of CKD.

CONCLUSION
In pursuit of sensitive and selective chemiresistive sensors for
ammonia, we have reported a method to effectively immobilize
transition metal selectors on SWCNT-based chemiresistors
using pentiptycene polymers containing metal-chelating back-
bone structures. These molecularly tunable metal-chelating
pentiptycene polymer/SWCNT complexes serve as a modular
platform for rapid sensor screening. As a result, we have
identified Cu-chelated pentiptycene polymer/SWCNT com-
plexes as selective, sensitive, and robust chemiresistive sensors
for detecting trace ammonia at levels wherein it can serve as a
breath biomarker for chronic kidney disease. Furthermore, the
sensors can be integrated into accessible NFC tags to enable
the wireless detection of ammonia at physiologically relevant
concentrations. These sensors offer a noninvasive and cost-
effective approach for early detection and easy monitoring of
CKD, which can improve the quality of life for patients.

MATERIALS AND METHODS
Materials. Commercial reagents were purchased from Sigma-

Aldrich, Alfa Aesar, Combi-Blocks, Oakwood, and Ambeed Inc. and

Figure 5. Summary of chemiresistive responses of P4-bpy/CuOTf
to 100 ppm of ammonia (red) and 10 ppm of ammonia (blue) with
respect to relative humidity. (N ≥ 4).

Figure 6. Schematic design of p-CARD, showing the location for
the drop-cast and the modified circuit design incorporating the
chemiresistor. Adapted from ref 43. Copyright 2017 American
Chemical Society.
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used as received unless otherwise noted. Deuterated solvents were
purchased from Cambridge Isotope Laboratories and used as
received. Single-walled carbon nanotubes [Signis SG65i, lot no.:
MKBZ1159V; (6,5) chirality, ≥ 93% carbon as SWCNT; 0.7−0.9 nm
diameter) were purchased from Sigma-Aldrich and used as received.
PFO-bpy (Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6′-(2,2′-bi-
pyridine))], ADS153UV, Mn = 134 kDa, lot no. 21H003A1) was
purchased from American Dye Source Inc. and used as received. Gas
cylinders were purchased from Airgas. 6,13-Diethynylpentiptycene,75

4,7-dibromo-5,6-bis(tetradecyloxy)benzo-2,1,3-thiadiazole,76 and
P477 were synthesized according to procedures in literature.
Instrument. NMR spectra were recorded by using a Bruker

Avance 500 MHz NMR spectrometer. Polymer samples were
analyzed in THF using an Agilent 1260 Infinity GPC system with
variable wavelength diode array (254, 450, and 530 nm) and refractive
index detectors. The instrument was calibrated with narrow-dispersity
polystyrene standards between 1.7 and 3150 kg mol−1. Tip sonication
was performed with a Qsonica Q125 sonicator. Bath sonication was
performed with a Branson B5510 sonicator. Raman spectra were
collected using a Horiba Jobin-Yvon LabRam (Model HR 800)
Raman confocal microscope with a 633 nm laser. X-ray photoelectron
spectroscopy (XPS) measurements were performed on a Thermo
Scientific K-Alpha+ X-ray photoelectron spectrometer. Mass flow
controllers (MFCs) were purchased from Alicat Scientific, with carrier
gas flow rates (air or nitrogen) controlled using an MC-10SLPM-D/
5M and analyte gas flow rates controlled using an MC-10SCCM-D/
5M. Analyte gases from volatile organic compounds were generated
by a FlexStream FlexBase module. Device resistance was measured
using an Agilent Keysight 34970A data logger equipped with a
34901A 20-channel multiplexer module. Commercial RFID tags were
used (Texas Instruments, HF-I Tag-It Plus Transponder Inlays, and
TI-Tag) and were converted to resonant devices for wireless chemical
sensing. The RFID tags were used as received, and the RF signals
were monitored from 10 to 20 MHz using a copper loop probe as
antenna that was connected to an Agilent E5061B network analyzer.
Synthesis of P4-bpy. 6,13-Diethynylpentiptycene (0.20 mmol),

4,7-dibromo-5,6-bis(tetradecyloxy)benzo-2,1,3-thiadiazole (0.10
mmol), 5,5′-dibromo-2,2′-bipyridine (0.10 mmol), tetrakis-
(triphenylphosphine)palladium(0) (0.01 mmol), and copper(I)
iodide (0.02 mmol) were placed in a Schlenk flask equipped with a
magnetic stirrer. Contents were evacuated and backfilled with argon 5
times. Degassed toluene (3 mL) and diisopropylamine (1 mL) were
added to the flask, and after 5 more freeze−pump−thaw cycles with
liquid nitrogen, the resulting mixture was stirred at room temperature

for 30 min followed by 48 h at 65 C and 24 h at 75 C. After cooling to
room temperature, contents were precipitated in methanol, isolated
by filtration with nylon membrane filter, and washed with methanol.
The resulting polymer was washed with hot acetone for 6 h and
extracted with hot chloroform using a Soxhlet apparatus and dried
under reduced pressure. GPC (THF vs PS): Mn = 3.5 × 104 Da, PDI
= 1.8.

Synthesis of P4-phen. 6,13-Diethynylpentiptycene (0.20 mmol),
4,7-dibromo-5,6-bis(tetradecyloxy)benzo-2,1,3-thiadiazole (0.10
mmol), 3,8-dibromo-1,10-phenanthroline (0.10 mmol), tetrakis-
(triphenylphosphine)palladium(0) (0.01 mmol), and copper(I)
iodide (0.02 mmol) were placed in a Schlenk flask equipped with a
magnetic stirrer. Contents were evacuated and backfilled with argon 5
times. Degassed anisole (3 mL) and diisopropylamine (1 mL) were
added to the flask, and after 5 more freeze−pump−thaw cycles with
liquid nitrogen, the resulting mixture was stirred at room temperature
for 30 min followed by 48 h at 150 C. After cooling to room
temperature, contents were precipitated in methanol, isolated by
filtration with nylon membrane filter, and washed with methanol. The
resulting polymer was washed with hot acetone for 6 h and extracted
with hot chloroform using Soxhlet apparatus and dried under reduced
pressure. GPC (THF vs PS): Mn = 1.4 × 104 Da, PDI = 1.9.

Synthesis of P4-bpym. 6,13-Diethynylpentiptycene (0.20
mmol), 4,7-dibromo-5,6-bis(tetradecyloxy)benzo-2,1,3-thiadiazole
(0.10 mmol), 5,5′-dibromo-2,2′-bipyrimidine (0.10 mmol), tetrakis-
(triphenylphosphine)palladium(0) (0.01 mmol), and copper(I)
iodide (0.02 mmol) were placed in a Schlenk flask equipped with a
magnetic stirrer. Contents were evacuated and backfilled with argon 5
times. Degassed anisole (3 mL) and diisopropylamine (1 mL) were
added to the flask, and after 5 more freeze−pump−thaw cycles with
liquid nitrogen, the resulting mixture was stirred at room temperature
for 30 min followed by 48 h at 150 °C. After cooling to room
temperature, contents were precipitated in methanol, isolated by
filtration with nylon membrane filter, and washed with methanol. The
resulting polymer was washed with hot acetone for 6 h and extracted
with hot chloroform using Soxhlet apparatus and dried under reduced
pressure. GPC (THF vs PS): Mn = 1.5 × 104 Da, PDI = 2.2.

Synthesis of P4-py. 6,13-Diethynylpentiptycene (0.20 mmol),
4,7-dibromo-5,6-bis(tetradecyloxy)benzo-2,1,3-thiadiazole (0.10
mmol) , 2 ,5 -d ib romopyr id ine (0 .10 mmol) , t e t r ak i s -
(triphenylphosphine)palladium(0) (0.01 mmol), and copper(I)
iodide (0.02 mmol) were placed in a Schlenk flask equipped with a
magnetic stirrer. Contents were evacuated and backfilled with argon 5
times. Degassed toluene (3 mL) and diisopropylamine (1 mL) were

Figure 7. Wireless detection of ammonia by P4-bpy/CuOTf p-CARDs. (a) Resonance-frequency traces of a representative P4-bpy/CuOTf p-
CARD in response to different concentrations of ammonia in dry air for 15 min. (b) Correlation of magnitude of response (ΔGain) at the
resonant frequency and ammonia concentrations. (N = 3).

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c07325
ACS Nano 2024, 18, 364−372

369

https://pubs.acs.org/doi/10.1021/acsnano.3c07325?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c07325?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c07325?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c07325?fig=fig7&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c07325?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


added to the flask, and after 5 more freeze−pump−thaw cycles with
liquid nitrogen, the resulting mixture was stirred at room temperature
for 30 min followed by 48 h at 65 °C and 24 h at 75 °C. After cooling
to room temperature, contents were precipitated in methanol, isolated
by filtration with nylon membrane filter, and washed with methanol.
The resulting polymer was washed with hot acetone for 6 h and
extracted with hot chloroform using Soxhlet apparatus and dried
under reduced pressure. GPC (THF vs PS): Mn = 3.8 × 104 Da, PDI
= 2.1.
Synthesis of P4-bpy20. 6,13-Diethynylpentiptycene (0.20

mmol), 4,7-dibromo-5,6-bis(tetradecyloxy)benzo-2,1,3-thiadiazole
(0.16 mmol), 5,5′-dibromo-2,2′-bipyridine (0.04 mmol), tetrakis-
(triphenylphosphine)palladium(0) (0.01 mmol), and copper(I)
iodide (0.02 mmol) were placed in a Schlenk flask equipped with a
magnetic stirrer. Contents were evacuated and backfilled with argon 5
times. Degassed toluene (3 mL) and diisopropylamine (1 mL) were
added to the flask, and after 5 more freeze−pump−thaw cycles with
liquid nitrogen, the resulting mixture was stirred at room temperature
for 30 min followed by 48 h at 65 °C and 24 h at 75 °C. After cooling
to room temperature, contents were precipitated in methanol, isolated
by filtration with nylon membrane filter, and washed with methanol.
The resulting polymer was washed with hot acetone for 6 h and
extracted with hot chloroform using Soxhlet apparatus and dried
under reduced pressure. GPC (THF vs PS): Mn = 4.6 × 104 Da, PDI
= 1.9.
Preparation of SWCNT Dispersion. For pristine SG65i

SWCNTs, a stock solution of SG65i SWCNTs (2 mg) was prepared
in o-dichlorobenzene (oDCB) (20 mL) by bath sonication at RT for
30 min. Subsequently, the suspension was allowed to stand overnight
undisturbed. For polymer/SWCNT dispersions, polymer (2 mg) was
dissolved in o-dichlorobenzene (oDCB, 2 mL), and the solution was
sonicated in a water bath for 10 min. To the polymer solution was
added 0.2 mg of SG65i SWCNTs, and the resulting mixture was
chilled with ice and homogenized for 20 min using a Qsonica Q125
sonicator at 63W with a pulse sequence (10 s ON and 5 s OFF).
Subsequently, the suspension was centrifuged for 3 h at 22000g. The
top 80% of the supernatant was isolated and used.
Chemiresistive Device Preparation. Glass slides (VWR micro-

scope slides) were cleaned with oxygen plasma for 15 min (Harrick
PDC-32G Plasma Cleaner), bath sonicated in acetone for 15 min, and
then dried with a stream of nitrogen. Using an aluminum mask,
chromium (15 nm) followed by gold (50 nm) was deposited using a
Thermal Evaporator (Angstrom Engineering), leaving a 0.5 mm gap
between the gold electrodes. A 1 μL amount of the SWCNT
dispersion was drop-casted in between the gold electrodes and dried
at RT under house vacuum in a desiccator or vacuum oven.
Subsequently, the glass slides were submerged in a solution of metal
salt (10 mg/mL) in N,N-dimethylformamide (DMF) in a glass vial
overnight for the metal ion incorporation. The fabricated sensors were
dried at room temperature under a house vacuum in a desiccator.
Chemiresistive Gas Sensing Measurements. The chemiresis-

tive device was enclosed in a homemade Teflon gas flow chamber.
The resistance of the device was measured over time (1 scan/s), with
typical procedures including 15 min equilibration time (for the
baseline resistance to stabilize) followed by 5 min exposure to analyte
and then 15 min of recovery. All presented data are given as the
numerical average (N ≥ 4) accompanied by the standard deviation.
The limit of detection was determined following reported
procedures.62−64

Wireless Device (p-CARD) Preparation. One mL portion of
polymer/SWCNT dispersion was added with 1 mg of copper(I)
triflate toluene complex, diluted with 4 mL of oDCB, and bath
sonicated for 30 min. Two drops (0.5 μL each) of the resulting
dispersion were drop-casted onto the commercial RFID tag in
locations following previously reported procedures43,72,78 to convert
the RFID tag to a p-CARD. After drop-casting, the p-CARDs were
dried at room temperature under house vacuum in a desiccator.
Device RF Response Characterization. According to reported

procedures,43,72,78 p-CARDs were placed in a house-made sensing
chamber connected to gas flow. The RF signal responses of p-CARDs

were measured from 10−20 MHz with a custom-made loop probe
connected via a BNC cable to a vector network analyzer (VNA)
(Agilent E5061B). The distance between the probe and the device in
the sensing enclosure was fixed throughout an experiment. The
minimum gain value at the resonance frequency (in dB) was
measured and acquired. The typical procedures include 15 min of
equilibration time (for the baseline resistance to stabilize) followed by
15 min of exposure to analyte and then 60 min of recovery.
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