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Abstract

In the current century, wildfires have shown an increasing trend, causing a huge amount
of direct and indirect losses in society. Different methods and efforts have been employed
to reduce the frequency and intensity of the damages, one of which is implementing pre-
scribed fires. Previous works have established that prescribed fires are effective at reducing
the damage caused by wildfires. However, the actual impact of prescribed fire programs is
dependent on factors such as where and when prescribed fires are conducted. In this paper,
we propose a novel data-driven model studying the impact of prescribed fire as a mitigation
technique for wildfires to minimize the total costs and losses. This is applied to states in the
USA to perform a comparative analysis of the impact of prescribed fires from 2003 to 2017
and to identify the optimal scale of the impactful prescribed fire programs using least-cost
optimization. The fifty US states are classified into categories based on impact and risk
levels. Measures that could be taken to improve different prescribed fire programs are dis-
cussed. Our results show that California and Oregon are the only severe-risk US states to
conduct prescribed fire programs that are impactful at reducing wildfire risks, while other
southeastern states such as Florida maintain fire-healthy ecosystems with very extensive
prescribed fire programs. Our study suggests that states that have impactful prescribed fire
programs (like California) should increase their scale of operation, while states that burn
prescribed fires with no impact (like Nevada) should change the way prescribed burning is
planned and conducted.
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1 Introduction

The Federal Emergency Management Agency (FEMA) defines a wildfire as “an unplanned,
unwanted fire burning in a natural area, such as a forest, grassland, or prairie” (Federal
Emergency Management Agency 2022). Wildfires are designated as “natural disasters” by
the U.S. Environmental Protection Agency (EPA) (U.S. Environmental Protection Agency
2020) that have increasingly affected human society (Agarwal et al. 2020), built environ-
ment (for example, damage to public and private infrastructure), and ecosystem services
(i.e., air quality and long-term carbon storage) around the world over the past two decades
(Moritz et al. 2014). For example, the November 2018 Camp Fire that occurred in Cali-
fornia was recognized then as the second-costliest wildfire in the history of the USA, with
estimated losses of $8.47 billion. The fire burned 153,300 acres, destroyed 18,804 struc-
tures, and resulted in 85 fatalities. In 2021, there were 7400 fire incidents in California that
burned an estimated 2.5 million acres, damaged/destroyed 3629 structures, and caused 3
fatalities. There was a significant decrease in acreage burned in 2022, with 7700 incidents
burning a little over 360,000 acres (CALFIRE 2022). While California has shown some
recent progress, there is still much cause for concern nationally and globally. In Europe
in 2022, double the average acreage of fire was burned in a record-setting season for both
wildfires and heat (Phys.org 2022). A few years before that, in late 2019, record-breaking
bushfires (wildfires) plagued Australia, where, in addition to deaths and devastation, Attiya
and Jones (2022) found that everyday life was significantly disrupted by the air pollution
caused by the fires.

Past studies have analyzed seasonal patterns in wildfire occurrences to understand the
dynamics of changing wildfire regimes across the world. Bajocco et al. (2010) analyzed
the importance of human activity and climatic characteristics of the landscape on wild-
fire seasonality in Mediterranean regions. The authors identified an early arrival of the fire
season in urban and agricultural areas with favorable climatic conditions in comparison
with forests, grasslands, and shrublands. Coogan et al. (2020) studied spatial and seasonal
differences between lightning and human-caused wildfires in Canada. The authors found
that human-caused wildfires are more common in the southern parts of the country with
higher population density and anthropogenic activity. In contrast, the northern parts of the
country have a higher occurrence of lightning-caused fires due to lower population density
and anthropogenic activity. In terms of seasonality, lightning-caused fires occur more fre-
quently during the summer months (June to August), while human-caused fires peak dur-
ing the spring (in the month of May). Westerling et al. (2003) also found a strong influence
of climate on wildfires in the contiguous western USA, where 94% of fires that accounted
for 98% of the total area burned occurred between May and October. It was observed that
the wildfire season peaks between July and August which represent the warmest and driest
months in the entire year. The authors also investigated the importance of using the Palmer
Drought Severity Index (PDSI) (Keeley and Syphard 2021), a measure of combined pre-
cipitation, evapotranspiration, and soil moisture conditions, as a basis for forecasting the
severity of wildfire season months to years in advance. According to the study, such a fore-
cast can help guide fuel management practices and resource allocation decisions.

Human action can not only mitigate the effects of wildfires but can intervene to prevent
its onset and spread by using different strategies such as burning forests and grasslands pro-
actively to prevent uncontrolled burning and clearing dry fuel from forest areas to prevent
fires from starting (Ferris 2013). Different methods and efforts can be employed to reduce
the frequency and intensity of the damages caused by wildfires, one of which is conducting
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prescribed fires (also known as prescribed burns, controlled burns, scheduled burns, hazard
reduction burns, burn-offs, planned ignitions, or backfires). Prescribed burning has a long
history in the USA where indigenous people used fire for various cultural and ecological
purposes. A prescribed fire (which we refer to as Rx in this paper) is a fire ignited and
managed in a specific region for various reasons. These reasons include: to support diverse
ecosystems, to reduce the fuel load of a region to make it less susceptible to wildfire losses,
and even to protect wildland from a potential pyro-terror attack (large-scale arson) (Rashidi
et al. 2018). Rx is an effective way to reduce the risks posed by wildfires, including deaths
and injuries caused directly by burns and indirectly by smoke inhalation, damage to per-
sonal, public, and commercial properties and infrastructure, and disruption in the function-
ing of various industries (i.e., tourism, forestry, and transportation). While Rx is on the rise
as a prevention and mitigation strategy for wildfires, it is often impeded by lack of funding,
preparation, and guidance (Gass 2006).

The National Interagency Fire Center (NIFC) in collaboration with the National Intera-
gency Coordination Center (NICC) publishes annual fire statistics. Up to 2017, the data are
categorized into Rx and wildfires by state and agency. After 2018, the published data do
not break down Rx by state or agency (National Interagency Fire Center 2022). Figure 1b
shows that the density of wildfires from 2003 to 2017 is higher in the western states of
the mainland USA and Alaska compared to the eastern part of the country. Here, density
is defined as acres per 100 acres of forest cover as described by the Forest Inventory and
Analysis Database (FIADB) (USDA Forest Service 2022). Winston and Shao (2022) have
found that the western part of the USA has a “Mediterranean Climate” due to which it
gets most of its rain during winter. As a result, the summer months are dry and hot which
creates suitable conditions for wildfire ignitions. Additionally, the vegetation in the west-
ern region contains pine needles, dry grasses, and shrubs that are generally more flam-
mable than the vegetation found in the deciduous forests of the East coast. Fires are more
prevalent in states like California due to ideal conditions for a raging wildfire, such as dry
and hot weather which dehydrates the large amount of fuel present in forests. From 2003
to 2018, the acres of wildfires in the USA doubled, from 4 million acres to 8.5 million
acres. In the same time period, the number of wildfires in the USA decreased from 63,000
to 58,000, indicating that the average area burned by a wildfire has been on the rise, as
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observed in Fig. 1a. There have been 196 fires that spanned over 100,000 acres in the USA
from 2001 to 2019. In August 2020, the August Complex fire in California (the largest
complex fire in California history) started as 38 separate fires and burned over 1 million
acres in less than three months, about 1% of California’s 100 million acres of land (U.S.
Forest Service 2020). Furthermore, one of the fires of the complex, namely Doe Fire, is
the biggest fire by area in California’s history, having reached close to half a million acres,
while two other fires of the complex are in the third and fourth place for largest fires by
area in California’s history (Neilson 2020).

Over 40 million acres of Rx have been conducted in the USA since 2003, with the num-
ber conducted exponentially increased by approximately 2500% from 2014 (17,044) to
2018 (450,335), as observed in Fig. 2a. Figure 2b shows the density of Rx use across the
different states from 2003 to 2017. It is evident from this figure that southeastern states
such as Florida, Georgia, Alabama, and South Carolina have a much higher density of Rx
usage as compared to the other states. Florida runs one of the most active Rx programs in
the country, overseen by the Florida Forest Service, with an average of 88,000 authoriza-
tions to burn more than 2 million acres a year (Florida Forest Service 2022). In 2017, that
number hit a record high with over 4 million acres of Rx.

On the other hand, California has historically resisted prescribed burning to control
their already big smoke problem (Peterson 2018). A research study recently discovered,
however, that the smoke from wildfires is about 3 times more polluting than the smoke
from Rx (Liu et al. 2017). Tools such as remote sensing, geographical information sys-
tem, and statistical methods can be used to effectively detect and monitor smoke gener-
ated from wildfires and Rx (Abdollahi et al. 2021). A 129-page report by the Little Hoover
Commission in early 2018 lobbied for more Rx in California and Nevada (which, com-
bined, had more than 1.3 million acres of wildfire in 2017) to better manage the forests pre-
vent overcrowding and hence disastrous fires, specifically in the Sierra Nevada mountains
(Little Hoover Commission 2018). There are various reasons preventing California from
conducting more Rx, including lack of enough firefighters and 57% of land being owned
by the Federal Government which lacks the funds to conduct Rx, especially after recent
budget cuts to the U.S. Forest Service (Rainey 2018; United States Department of Agri-
culture 2017). In spite of this, CAL FIRE, the California Department of Forestry and Fire
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Protection, announced in 2018 that it would triple the amount of Rx on the 40% of forest
coverage that is state-owned (Peterson 2018). The number of Rx in the USA has also been
increasing correspondingly, with an almost 8-fold increase from 2003 to 2019 as can be
seen in Fig. 2a. Figure 3 shows the density of Rx (acres of Rx per 100 acres of forest area)
versus the density of wildfires (acres of wildfires per 100 acres of forest area) for states in
the USA from 2003 to 2017. We observe that certain states, such as Florida and Georgia,
conduct more Rx than wildfires, while other states, like California, Texas, Arizona, and
Oregon, have more wildfires than Rx.

Starting in 2019, the ongoing Coronavirus (also known as COVID-19) pandemic has
destroyed communities around the world, claiming about 6.5 million lives as of August
2022, and causing most countries in the world to plunge into severe economic recession
(Johns Hopkins Coronavirus Resource Center 2022; Jones et al. 2020). The pandemic has
also affected prescribed burning due to the need for social distancing and other safety regu-
lations. In addition, since Coronavirus heavily affects the respiratory system, the reduction
of smoke inhalation is vital. As a result, prescribed burning in 2020 is significantly lower
than the average for the last decade and will likely further exacerbate recent severe fire sea-
sons (Cahan 2020).

Existing literature has studied the effect of climatic conditions and seasonal patterns
on opportunities to conduct Rx across different regions. Weir (2011) analyzed 14 years of
weather data in north central Oklahoma, USA, to identify the time of year that presents the
best opportunities for conducting Rx. In this study, a day was considered to be a “burn day”
if it met specific weather conditions based on temperature, relative humidity, wind velocity,
and precipitation. It was observed that on average, a year consists of 222 burn days with
18.5 days per month. July was found to be the most favorable month for prescribed burns,
whereas the least number of burn days were found in February. Chiodi et al. (2018) did a
similar analysis to study the impact of climatological variations on the preferred weather
windows of Rx conducted across the southeastern USA. The authors found the availability
of preferred burn windows to be much less in summer than in autumn or winter due to sea-
sonal variations defined by the mixing height and transport wind conditions. Yurkonis et al.
(2019) identified days with preferable weather conditions for conducting Rx using Weir ’s
(2011) criteria of acceptable burn days. Their analysis was based on data collected from 20
weather stations located across North Dakota and northwestern Minnesota in the USA. The
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authors also studied the variation in burn windows over time that was found to shift from
early spring to late fall.

Past researchers have studied the effectiveness of Rx on mitigating wildfires using vari-
ous methods including case studies in a particular area (Martinson and Omi 2008), statisti-
cal assessments of fuel treatments in certain regions (Safford et al. 2012), simulation (Omi
et al. 1999), and surveys (Kobziar et al. 2015). Various optimization methods have been
applied to Rx and other fuel management techniques, such as (i) spatial optimization to
determine location of fuel treatments given budgetary and other constraints (Alcasena et al.
2018; Palaiologou et al. 2020), (ii) optimization for balancing Rx and wildlife prevention
activities (Butry et al. 2010), and (iii) multi-objective models that investigate the effects of
different fuel treatment patterns on wildfires (Kim et al. 2009). These works have clearly
established the effectiveness of Rx in mitigating wildfires and used various optimization
models to identify the best Rx strategies. In spite of this, many regions do not use Rx or
use them in smaller quantities than needed. To the best of our knowledge, the impact of
large-scale Rx programs on wildfire risk has not been rigorously studied. Furthermore, the
Rx programs of different states have not been quantitatively compared. Such comparative
assessments play a vital role in assisting policy makers and communities in improving their
respective regions’ resilience (Kumar and Mehany 2022; Torkayesh et al. 2022). In this
paper, we aim to answer the following research questions: RQ1: How impactful are Rx
programs at mitigating wildfire risks in different US states? and RQ2: Do impactful Rx
programs need to be scaled up, and by how much? To address these questions, we use a
data-driven approach to study the impact of Rx in mitigating the losses due to wildfires.
We also develop a least-cost optimization model to determine the optimal scale of Rx pro-
grams in different regions of the USA.

The rest of the paper is organized as follows: Sect. 2 discusses past works on the study
of effectiveness of fuel management and optimization of the same. The research gaps and
their addressal are expounded. Section 3 describes the exponential regression used to esti-
mate the impact of Rx and the least-cost optimization model. Section 4 explains the data
sources and parameter estimation used. Section 5 compares the impact of Rx programs
across US states, where each US state is classified into different categories based on risk of
wildfires and impact of Rx programs. The impact of Rx in Oregon is detailed, and the opti-
mal costs and losses of Oregon in the context of wildfires across different years are com-
pared. Section 6 presents recommendations for policy makers and practitioners based on
the results. Section 7 summarizes our work and discusses its limitations and future exten-
sions. “Appendix” provides the proofs for Propositions 1, 2 and 3 as given in Sect. 3.

2 Literature review

The effectiveness of Rx is widely studied. The effects of Rx on wildfires in specific treated
areas or forests have been studied extensively. For example, in central Idaho, Arkle et al.
(2012) examined the impact of Rx on the burn severity of wildfires post fuel treatment.
The authors discovered that patchy, low-severity Rx are effective and the size, shape, and
continuity of Rx may be more vital than the severity of the Rx. Martinson and Omi (2008)
observed lower scorch height (average height of foliage browning), crown damage (damage
from crown fires, where fire spreads from treetop to treetop), and ground char (a qualita-
tive measure of damage to the soil) in Rx-treated area in Jackson County, Mississippi. Omi
and Martinson (2002) also emphasized the importance of reduction in crown fuels which
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outweighs an increase in surface fire hazard that may be stimulated by a prescribed burn.
Safford et al. (2012) used statistical assessments to analyze the effectiveness of mechani-
cal fuel thinning and prescribed burns in Eastern and Southern California. Treatments that
include surface and ladder fuel removal were found to be consistently effective at reducing
wildfire severity and increasing the chances of adult tree survival. Some of these studies
are conducted using long-term data, such as Boer et al. (2009) who studied a 52-year fire
history from the Eucalypt forest regions in southwestern Australia and found that a unit
area reduction in wildfire requires about 4 unit areas of prescribed burning. In this study,
the average annual extent of Rx over a period of 6 years explained a 24% variation in the
average annual number and a 71% variation in the average annual extent of unintended
wildfires. In a similar study in Portugal, Davim et al. (2022) estimated a past fire (both
wildfire and Rx) leverage ratio of 0.28. That is, for every acre of past fire, subsequent wild-
fires are decreased by 0.28 acres. The estimated leverage ratio was estimated to be higher
in places with higher wildfire occurrence rates.

While forests in different parts of the world burn and react differently to fuel treatment,
studies all around the world indicate that Rx are effective at reducing wildfire risk in many
different aspects. In a study based in North-Western Portugal, Fernandes and Botelho
(2004) discovered that Rx reduce the potential intensity of an extreme-weather wildfire
by 96%. They also found that only 36% of the treated area requires heavy suppression
resources. Penman et al. (2020) studied the cost-effectiveness of Rx across various land-
scapes in southeastern Australia using a Phoenix RapidFire simulator. They discovered that
cost-effectiveness varies widely between regions, landscape types, and proximity to urban
interface. Price (2012) simulated the effects of fuel treatments on leverage (the negative
impact of fuel treatment on unintended wildfires). The percentage of area burnt by these
wildfires were found to have an exponential decay relationship with respect to the percent-
age of area treated. Stratton (2004) discovered that fuel treatment decreases size, spot fires,
surface flame length, fireline intensity, and crown fire under 75th, 85th, and 95th percentile
weather conditions.

In addition to establishing the effectiveness of Rx, there is extensive literature that opti-
mizes Rx to increase its impact. Research has been done to determine the optimal loca-
tion and layout of Rx. Alcasena et al. (2018) used spatial optimization to maximize the
contribution being made to different competing objectives with the Landscape Treatment
Designer. They ranked the fuel treatment priorities for landscapes in the western USA by
considering constraints related to budget, implementation, and legislation. Palaiologou
et al. (2020) used FlamMap Fire Simulation System to design optimal locations for fuel
treatments. FlamMap identifies the fastest fire travel routes and then uses fuel treatments
to block the spread of fires. They found that in Greece, fuel treatments in Conifer forests
(particularly with Olive-Conifer connectivity) appear to be very effective. Butry et al.
(2010) developed an optimization model for balancing the allocation of wildlife prevention
activities (WPE) and Rx over space and time. The model determines the optimal amount
of Rx and WPE in four regions in Florida taking into account variations due to weather,
community factors, etc. Elia et al. (2016) maximized the cost-effectiveness of Rx using
fire behavior simulations to determine WUI regions where reducing fuel load is the most
cost-effective. Minas et al. (2015) maximized the number of “cells” or areas in a region
that are suitably covered by deployed resources. The model was applied to 20 hypothetical
100-cell landscapes with hypothetical parameters. Vega-Garcia et al. (2014) optimized Rx
planning specifically for the Mediterranean region using custom fuel models. Three study
areas were selected, and their fuel loads and characteristics were measured before and after
Rx to identify the impact of Rx on different fuel loads.
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Other features of Rx have also been optimized, such as patterns of Rx. Finney
(2004) developed an optimization model to minimize the fire growth rate by iden-
tifying spatially optimal fuel treatment unit sizes and locations. The authors used a
genetic algorithm in combination with FARSITE to simulate fire growth across a given
landscape. Their study shows that spatial patterns of fire treatments are critical to fire
growth rates and randomly-arranged fire treatment units are very inefficient in chang-
ing overall fire growth rates. Mercer et al. (2007), on the other hand, identified the
optimal rate of prescribed burning that minimizes the net economic losses from wild-
fires using Monte Carlo simulations. Konoshima et al. (2010) built a spatial optimiza-
tion model to study the dynamics of harvesting and fuel treatment across a hypotheti-
cal landscape divided into 7 management units with 8 different spatial configurations.
Leén et al. (2018) used mixed integer programming (MIP) to break the connectivity
between high-risk regions while also taking into account the habitat quality of the burn
unit. Matsypura et al. (2018) developed an MIP framework in which they used graph
theoretical models to incorporate the directions of fire spread between adjacent cells.
The constraints in the model included the fuel load and age of each cell and budget
restrictions. Wei et al. (2008) developed a fuel treatment spatial allocation framework
to model the fire risk of a cell as a function of the ignition probability within a cell and
the conditional probability of external wildfire spreading to the cell.

Given that the effectiveness of Rx is widely established, and there are frameworks
available to help make better Rx decisions, Rx is not conducted as much as it should be
for a wide variety of reasons. Additionally, while Rx is effective, we want to study the
large-scale impact of Rx programs as they vary based on how, where and when Rx is
conducted. Koehler (1993) observed that decreasing the threat of wildfires is particu-
larly vital in Wildland-Urban Interface (WUI) regions. However, landowners oppose
Rx in these areas due to perceived danger to personal land and property. Even when
decision-makers are convinced that Rx is beneficial, they are often constrained by
inadequate funding, smoke management, air quality regulations, the necessity to com-
ply with environmental protection, and liability risks (Fernandes and Botelho 2003).
Kobziar et al. (2015) identified certain similar factors by conducting a survey in the
southern USA, of 523 public and private fire practitioners. The major hurdle to pre-
scribed burning is a lack of budget and staffing according to public land managers and
liability according to private entities.

Given this disparity and the increasing worldwide risk of wildfires, it is vital that
decision-makers understand the impact of Rx that is currently conducted and identify
the regions that conduct Rx inefficiently. Furthermore, to the best of our knowledge,
past studies have not provided a comparative analysis of the Rx conducted by region in
order to identify areas where overhaul is required. To address these gaps, we create an
analytical framework to classify regions into 4 categories based on risk and impact: (i)
regions with high wildfire risk and inefficient Rx programs—these regions need better
Rx strategies; (ii) regions with high wildfire risk and well-established large-scale Rx
programs for multiple objectives including mitigating wildfire risk; (iii) regions with
high wildfire risk and impactful Rx programs—these regions need to scale up their Rx
programs; and (iv) regions with low wildfire risk. For the third category, we also use
a least-cost optimization model to determine the optimal scale of the existing Rx pro-
gram. Our models use data analytics to derive the functions that describe the wildfire
risk of a region and the impact of Rx in mitigating these wildfires.
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3 Notations and model

Table 1 provides descriptions of the notations for the decision variables, parameters, and func-
tions used in the mathematical formulation of the least-cost model in this paper. In this paper,
we measure the impact of Rx in reducing the number of acres of wildfires in a given region.
The acres of wildfires, z(x) as a function of the acres of Rx, x are defined as follows:

2(x) = EF D

where {(x) is the vulnerability of a region to wildfires that is expressed as a function of
x and F is the total acres of forest cover in a given region. The measure {(x) takes into
account the burnable area of a given region. We assume that (i) {(x) is continuous and
twice differentiable for x > 0 and (ii) {(x) > 0, {’(x) < 0, and {"’(x) > 0 for x > 0. We pre-
sent a least-cost optimization model in which the best value of the decision variable (here,
x) is found such that the total costs, losses, and other monetary expenses are minimized
(Abhyankar et al. 2022; Anderson 1972). Our least-cost model optimizes the investment in
Rx in a region by minimizing the total costs and losses associated with wildfires and Rx,
U(x), which is expressed as the sum of costs and losses due to wildfire in a given region
and the cost of conducting Rx in said region as shown below:

min U(x) = ¢, 2(x) + CpX =c¢,{(OF + ¢ x

—— 2

costs and losses due to wildfire  cost of conducting Rx

where c,, represents the costs and losses of wildfires per acre and c,, is the cost to conduct
an acre of Rx. The c,, value for a region is calculated as a weighted sum:

2 A%
c, = —— X1 3

DY ®
Table 1 Notations used throughout the paper
Decision variables
x>0 Acres of Rx conducted in a region
x* Optimal acres of Rx conducted in a region
Parameters
z>0 Acres of wildfires in a region
F>0 Acres of forest cover in a region
a>0 Base vulnerability of a region to wildfires
A>0 Baseline impact of Rx in a region
c, >0 Cost to conduct an acre of Rx
¢, >0 Costs and losses per acre of wildfire
Functions
¢(x) Vulnerability of a region to wildfires
g(x) First derivative of {(x)
U(x) Total costs and losses due to wildfires and Rx
U(x™) Optimal total costs and losses due to wildfires and Rx
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where ¢, is the cost per acre of conducting a certain j type of Rx (for example, slash reduc-
tion or natural Rx) in the given region, A; is the acres of type j Rx conducted in the region,
and 1 is used to adjust the value for inflation. c,, for a region is calculated as 2, where c,, is
the sum total of all estimated losses in a region due to wildfires and z is the acres of wild-
fires in that region. As a part of our work, we do not convert non-economic losses into
economic losses. Instead, we use reports published by reputable sources that estimate the
economic losses of non-economic wildfire damage. Further details on how c,, and c, are
calculated are given in Sect. 4.

Proposition 1 For a general {(x) that satisfies the aforementioned assumptions, the optimal
amount of Rx to conduct (x*) and the total optimal costs and losses of wildfires (U*) are
given as follows:

“F 4)

. G'(--2) if ¢, <-G(O0),F
0 if ¢, > -G(0)c, F

‘W w

¢0)c, F if ¢, > -G(0)c, F

_1 Cp —1 _ i . 3
U = UG = cwﬁf(g (- ;))F+cpg ( - F) if ¢, < =G(0)c, F -

where G(x) = ¢ (x).

Remark In the above proposition, the minimum value of U, U*, and the corresponding x*
is calculated using differential calculus (Hancock 1917). The calculations are presented in
detail in “Appendix.” Proposition 1 expresses x* and U* as functions of parameters c,, ¢,
and F, and vulnerability function {(x). The values of x* and U* are dependent on the rela-
tionship between c, and —G(0)c, F. If ¢, < —G(0)c,, F, it is economically beneficial to con-
duct a positive number of Rx to minimize the losses and costs associated with wildfires.
If ¢, > —=G(0)c,, F’, conducting Rx does not appear to be an economically viable option for
decreasing wildfire risks and losses.

Studies such as Stratton (2004) observed an exponential decay relationship of the
vulnerability of an area to wildfires with respect to the percentage of the area treated
using prescribed burns. An exponential function was also used by Behrendt et al. (2019)
to model the relationship between vulnerability to structural fire losses and investment
in fire prevention. Past studies have also leveraged exponential functions to model the
following important aspects of wildfires: (a) Petrovic et al. (2012) used exponential dis-
tribution to model the temporal dynamics of wildfire spread in terms of a stochastic
birth—death process, (b) Alexandridis et al. (2008) used exponential function to study
the effect of wind speed and ground elevation on the rate of wildfire spread, (c) Sch-
oenberg et al. (2003) used exponential function to model the distribution of wildfire
size in terms of the burn area, and (d) Sakellariou et al. (2020) used exponential func-
tion to model the frequency distribution of wildfire ignitions. Based on past models,
we hypothesize the relationship between acres of wildfires and acres of Rx to be of the
exponential decay form. Let A be the baseline impact on wildfires per acre of Rx in a
given region and a be the base vulnerability of a given region when x = 0, then {(x) is
expressed as the following:
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{(x) =ae™ (©6)

We assume that the Rx burning season occurs before the wildfire season (that is, Rx is
usually conducted in the spring) in the USA, as supported by data like Missouri’s pre-
scribed burn council burn log (Missouri Prescribed Fire Council 2021), except for a few
western states such as California and Oregon where most Rx burning happens in the fall,
after the wildfire season (Oregon Department of Forestry 2022). In the former, the impact
of the current year’s Rx on the current year’s wildfires is studied, while in the latter case,
the impact of the previous year’s Rx on the current year’s wildfires is studied. In Eq. 6, a
higher A value denotes a higher impact of the prescribed burns conducted in a region lead-
ing to a higher rate of decrease of {(x) with respect to x, as illustrated in Fig. 4.

Proposition 2 For a {(x) that is expressed in Eq. 6, the optimal acres of impactful Rx to
conduct (x*) and the total optimal costs and losses of wildfires (U*) are given as follows:

RN B (%aﬁ) ?f ¢, <c akFi )
0 if ¢, 2 ¢ aF
) 4 l—ln( % ) if ¢, <c,aFA
U'=Ux)=4 4 ¢, aF i P S Cw ®)
c,,aF if ¢, 2 c,aF2

Proposition 3 For a {(x) that is expressed in Eq. 6, we observe the following:

1. x* (i) decreases with ¢, (if) increases with c,,, a, and F, and (iii) decreases with A if
¢, < lcwaFA, increases with A ifchaF/l < ¢, <c¢,aFA, and remains insensitive to A if
e e
¢, 2 ¢ af A
2. U*(i) increases with Cps (i) strictly increases with c,,, a, and F, and (iii) decreases with
A.

Fig.4 Variation of {(x) as a
function of x given A; > 4, > A3

Ay (high impact)
—%—%— 1, (medium impact)
—O0—0— A3 (low impact)

Q

wildfires, {(x)

Vulnerability of a region to
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4 Data sources and parameter estimation

To apply our model to different regions of the USA, the various parameter values are
obtained from or estimated using past data. In this paper, different states in the USA are
chosen as regions of study. The acres of wildfires and Rx in a state, z and x, respectively,
are obtained from the NIFC’s website for the years 2003—2017 (National Interagency Fire
Center 2022). After 2018, NIFC does not provide acres of Rx by state. Data on forest cover,
F, in the USA, broken down by state, are obtained from the 2016 Annual Forest Inventory
and Analysis Report (USDA Forest Service 2017). The vulnerability of a state to wildfires,
{(x), is given by i We fit £(x) to an exponential function of the form ¢ (x) = ae™*, as given
in Eq. 6. Here, A represents the estimated impact of Rx in a state, and a represents the esti-
mated baseline vulnerability of a state to wildfires when no fuel management is done.

The cost per acre of Rx, Cps is different for each region, and is based on a technical
report (Cleaves et al. 2000) by the United States Department of Agriculture (USDA). The
report presents the results of a survey, conducted in the year of 2000, on the costs of Rx in
Regions 1 (Northern), 2 (Rocky Mountain), 3 (Southwestern), 4 (Intermountain), 5 (Pacific
Southwest), 6 (Pacific Northwest), 8 (Southern), and 9 (Eastern) of the National Forest
System. Data on Region 10 (Alaska) was not reported. The cost of conducting an acre of
Rx is given in 1994 US dollars and includes the planning cost. For each region, the cost
of conducting an acre of four different types of Rx (slash reduction, management-ignited,
prescribed natural fire, and brush, range and grassland fires) and total amount spent on
each type is provided. We use this data to find the weighted average cost of all types of
Rx in each region, where the weights are given by the acres of each type of Rx conducted.
These costs are then adjusted for inflation to 2017 US dollars. While most states are located
entirely in one of the given regions, some states are located across multiple regions. The
¢, value for each state is given as the c, value of the region where the state is primarily

lgcated. For instance, states like Oregotllj have a <, value of 513.65 USD, while Montana
has a ¢, value of 247.56 USD. States that face very low wildfire risk, such as Maine, have a
¢, value of 91.76 USD. One report from Oregon in 2018 indicates that the cost to conduct
Rx ranged from 300 to 700 USD per acre (Bennett et al. 2018). This corroborates our esti-
mation of 513.65 USD per acre in Oregon. In summary, the c, value for a region is given as

below, following Eq. 3:

4
_ Zj:l AjCy

6= 4
Zj:l Aj

where 1 is used to adjust the value for inflation to 2017 USD. As mentioned above, the four
types of Rx are (i) slash reduction, (ii) management-ignited, (iii) prescribed natural fire,
and (iv) brush, range, and grassland fires.

The Oregon Forest Resources Institute published a report in 2018 detailing the losses
caused by wildfires in 2017 in Oregon (Oregon Forest Resources Institute 2018). Many of
the losses, such as harmful air quality and cancellation of sporting events at schools, are
not monetized. The total loss due to wildfires is given as a sum of all monetized losses,
including the cost of fire suppression and tourism losses, thus leading to a modest estima-
tion of the actual monetary loss. The breakdown of the total losses is tabulated in Table 2.
The total losses in Oregon in 2017 are divided by the acres of wildfires in Oregon in the
same year to obtain an estimation of the c,, value for Oregon. Since the economic damages
of a fire increase with the population density of a region (Doerr and Santin 2016), the c,,

X1
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Table 2 The breakdown of costs

and losses per acre of wildfire, c,, Reason 201708 Dollars
for Oregon in 2017 Fire suppression 454,000,000
Travel and tourism (direct losses) 3,270,000
Transportation 228,000
‘Wood products industry 1,000,000
Forests: private resource losses 60,000,000
Total loss (c,,) 518,498,000
Acres of wildfires (z) 714,520
c, = i in Oregon 725.65

of Oregon normalized by its population density is used to estimate the c,, values for other
states, based on their respective population densities.

5 Results and discussion
5.1 Impact of Rx across US states

From Sect. 3, we know that A indicates the impact of Rx programs in decreasing the vul-
nerability of forest area to wildfires. We obtain A using an exponential regression of past
data as given in Eq. 6, where a higher lambda denotes a larger impact per acre of Rx. Since
the A values are estimated via regression, it is crucial that the statistical significance of the
A value is considered as well, in our case, by taking into account the p value indicating A’s
significance. A p value higher than 0.1 indicates that there is no significant evidence from
the data that Rx explain any of the variance in wildfires. Our objective here is not to accu-
rately predict wildfires, but to estimate the significance of lambda.

The impacts of existing Rx programs in different states in the USA are compared. Many
states such as Alaska (AK), Hawaii (HI), and most Northeast states have very low numbers
and acres of Rx conducted which cause inconsequential results. These numbers are due to
the relatively low risk of severe (in terms of damage) wildfires in the region. Therefore,
we classify US states that burned less than 0.1% of forest area in 2020 as low risk. Table 3
shows the values of A and p values for the high-risk states, in order of smallest to largest
p value. The impacts in these states are calculated from the years 2003 to 2017. Of these
21 analyzed states, five states (Missouri (MO), New Mexico (NM), Oregon (OR), Nevada
(NV), and California (CA)) have a p value less than or equal to 0.1, indicating a significant
impact of Rx on wildfires. Of these five states, two states (California and Oregon) have a
positive 4 value, indicating a reduction in wildfires with increasing Rx. The other three
states (Missouri, New Mexico, and Nevada) have negative 4 values indicating that the Rx
conducted are not impactful at reducing wildfires on a large scale. California faces some
of the largest losses in the USA each year from crippling wildfires (in 2020, CA burned
13% of forests in wildfires) and conducts Rx primarily for wildfire risk reduction (CA Air
Resources Board 2021). On the other hand, Oregon burned 3.8% of their forest area in
2020. As mentioned in Sect. 5.2, Oregon also has an active Rx Council.

Based on the vulnerability to wildfire, A values, and p values, we classify all US states
into four different categories as given below. The classification is also depicted in Fig. 5.
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Table 3 The 4 values and p
values of 21 US states that faced
significant wildfire risk in 2020,
arranged from smallest to largest
p value

Fig.5 Classification of contigu-
ous US states based on wildfire
risk and measured impact of Rx
programs (1. Low risk; 2. High
risk, no perceived impact; 3.
High risk, “bad” impact; and 4.
High risk, “good” impact)

State 4 pvalue  State 4 p value
MO —5.14E-05 0.01 NE —-9.71E-05  0.36
NM — 1.05E-05  0.03 KS 4.01E-05 0.40
OR 2.55E-05 0.05 WA 2.73E-05 0.41
NV —2.52E-04  0.06 MS —451E-06 048
CA 2.19E-05 0.08 UT —3.09E-05 0.54
TX 1.06E-05 0.17 ND —2.56E-05 0.56
CcO 2.82E-05 0.18 AZ —2.53E-06 0.74
OK 5.42E-05 0.23 SD - 1.07E-05 0.75
wY 4.22E-05 0.25 ID 6.06E—06 0.85
MT —-5.72E-05 0.30 NJ 1.56E—-06 0.97
FL —5.86E-07 0.34

The italicized rows indicate the only two states (CA and OR) where

prescribed fires have a significant negative effect on wildfires

L[]

'.==|,

1]

g
o

State Classification [ll 1 |l 2 |l 3 M 4

o
o

1. States with low risk: States in this category burned less than 0.1% of forest area in 2020.
These states are predominantly in the mid-western, southern, and northeast regions. It
is worth reiterating here that although the focus of this work is on the impact of Rx on
wildfire, Rx has many other benefits. For example, Mitchell and Malecki (2000) argue
that Rx in the northeast region is a historic practice that is necessary to maintain a
healthy ecosystem and reduce damages caused by invasive species.

2. States with high risk, no perceived impact: States in this category burned more than
0.1% of forest area in 2020 and have p values greater than 0.1, indicating an insignificant
relationship between wildfire and Rx.

(a) These include states where large wildfires are routine, but Rx seemingly have no

impact.

(b) Other states, such as Florida and Mississippi, also have insignificant (based on p
value) and extremely small A values, indicating a very small impact (good or bad)
per acre of Rx due to the large acres of Rx conducted, as is done in the southeast
region. Ryan et al. (2013) state that Florida has been a model for Rx burning,
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legislation, and was one of the first states to start a Rx council. Thus, states like
Florida are not unimpactful; on the contrary, they conduct enough Rx to maintain
a healthy ecosystem, although this means that their per-acre impact is low.

3. States with high risk and significant “bad” impact: States in this category, such as Texas,
burned more than 0.1% of forest area in 2020, have p values less than 0.1, and nega-
tive A values. These states’ negative A values indicate that larger Rx programs in these
states have a significant positive correlation with larger wildfire seasons. One possible
explanation for this could be that these states increase their conducted Rx when there
is a higher risk of wildfires, but the Rx conducted are not impactful.

4. States with high risk and significant “good” impact: States in this category (California
and Oregon) burned more than 0.1% of forest area in 2020, have p values less than 0.1,
and positive A values. Past works claim that states in the western USA do not conduct as
much Rx as they should (Kolden 2019). Our results also indicate the same in Sect. 5.2.2
where, using our optimization model, we show that both California and Oregon should
conduct a lot more Rx than they currently do.

5.2 Case study in Oregon

In this section, we implement the models developed in this paper to the State of Oregon.
Some of the data used are given in Table 4. Past research works, such as Kim et al.
(2009), have often chosen Oregon as a study site due to the prevalence of Rx there and
the support for Rx from agencies such as the Oregon Rx Council (Oregon Prescribed
Fire Council 2022). Oregon is one of the few states that has a high risk for wildfires, but
also consistently uses Rx as a mitigation mechanism (Daugherty and Fried 2007). The
aforementioned council has pushed for policy changes, fostered discussion, educated the

Table 4 Values of the acres of
wildfires, acres of prescribed
fires, acres of forest, and 2003

Year z (acres) x (acres) F (acres) ¢

- ‘ 160,441 102,236 29,804,000 0.0054
vulnerability of a region

to wildfires, z, x, F, and ¢, 2004 31,220 138,880 29,804,000 0.0010

respectively, in the State of 2005 192,081 97,065 29,804,000 0.0064

Oregon from 2003 to 2017 2006 548,870 112,949 29,804,000 0.0184

2007 648,046 110,876 29,804,000 0.0217

2008 140,221 112,450 29,804,000 0.0047

2009 100,668 130,654 29,804,000 0.0034

2010 93,731 114,716 29,804,000 0.0031

2011 285,712 73,855 29,804,000 0.0096

2012 1,256,049 60,838 29,804,000 0.0421

2013 350,786 74,684 29,804,000 0.0118

2014 984,629 88,887 29,804,000 0.0330

2015 685,809 87,973 29,804,000 0.0230

2016 219,509 84,442 29,804,000 0.0074

2017 714,520 48,077 29,804,000 0.0240
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public, and provided assistance and training as needed. In January 2019, the State of
Oregon approved New Air Quality Rules to allow for more Rx (Burns 2019).

5.2.1 Impact of Rx in Oregon

We fit an exponential relationship between ¢ for a given year and x in the previous year
in the State of Oregon for the years 2004—2017. This is done because Oregon is one of
the states that conducts Rx primarily in the fall, after the wildfire season. The ¢ values
are obtained by dividing the acres of wildfires, z, by the forest cover, F, in Oregon. For
this time period, we obtain the relationship: ¢ = 0.124e~25%19"x Here, 12.4% of Oregon’s
forests are estimated to burn with no Rx, and one acre of Rx reduces the vulnerability
to 0.124¢7255%107 We know that this Rx program has a significant impact on wildfires
because this relationship has a p value of 0.05.

5.2.2 Optimization

The least-cost optimization model from Sect. 2 is depicted graphically for the year 2017
in Oregon in Fig. 6. We assume that the cost of Rx increases linearly with an increase in
the acres of Rx, as shown in Fig. 6. Vulnerability to wildfires decreases exponentially with
an increase in the acres of Rx. Applying the least-cost optimization model to Oregon from
2012 to 2017, we see that the optimal acres of Rx to be conducted are significantly higher
than the actual acres of Rx each year, as shown in Fig. 7. In this case, the model prescribes
conducting more Rx to obtain a significant decrease in the losses due to wildfires as shown
in Fig. 8. It is of note here that the exponential fit for the year 2012 is not statistically sig-
nificant, while the rest of the years are. From 2013 to 2017, we observe an average recom-
mended increase of 109,841 acres of Rx (143% increase) as shown in Fig. 7. The parame-
ters such as 4 and a for each year are estimated using data from the previous 8 years. These
numbers are chosen to account for the bias-variance trade-off (Brownlee 2016). A larger
number of years is not chosen so as to avoid overfitting and take into account only recent
history while estimating parameters. On the other hand, a smaller number is not chosen so

i 7
Fig. 6' Total F:ost and logs as som | 4§ e Total Cost
functions of investment in OR for .
the year 2017 -=-Loss due to Wildfires
600 M — Cost of Prescribed Fires
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Fig.7 A comparison of actual 2,00,000
versus optimal acres of Rx for "_E'
OR (2012-2017) 1,60,000 ’ [ ;
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Fig.8 A comparison of actual
versus optimal total costs and
losses for OR (2012-2017)
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as to provide a sufficient number of data points to obtain an accurate estimate of param-
eters and to avoid high bias.

From Fig. 8, it is observed that the optimal total costs and losses in Oregon are less than
the actual total costs and losses each year. From 2012 to 2017, there is an average decrease
in total costs and losses of 355 million USD which leads to, on average, an optimal value
which is 24% of the actual costs and losses each year. A similar analysis is done in Califor-
nia from the years 2012-2017. We only obtain statistically significant results for the year
2017 in CA, where the model suggested that almost 170,000 more acres should have been
burned to reduce the total costs and losses by over 5 billion USD.

5.2.3 Sensitivity analysis

We study how x* and U* in Oregon are sensitive to changes in the parameters
Cps €5 @, F, and A. We use the following baseline values of these parameters for the year
2017: ¢, = $513.65, ¢,, = $725.66, a = 0.19, F = 29,804,000 acres, and 4 = 3.02 X 1075,
Figure 9a illustrates the changes in x* and U* with respect to the parameter c,. It is
observed that with an increase in Cps x* shows a decreasing trend, while U* increases. A
lower value of ¢, motivates the landowners and forest managers to conduct more Rx in
order to mitigate the risks of wildfires with a simultaneous reduction in the total costs and
losses. Hence, in order to encourage the practice of conducting Rx, it is important to pro-

vide financial incentives so as to keep the value of ¢, in an affordable range.
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Fig.9 Sensitivity analysis of x* and U* with respect to parameters c
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Figure 9b illustrates the changes in x* and U* with respect to the parameter c,,. It is
observed that with an increase in c¢,,, both x* and U* show an increasing trend. The higher
the loss per acre of wildfire, the higher the acres of Rx that should be conducted by land-
owners and forest managers. As a result of higher losses and conducting more Rx, the total
costs and losses also increase.

Figure 9c illustrates the changes in x* and U* with respect to the parameter a which
can be conceptualized as a measure of vulnerability to wildfire. It is observed that with
an increase in a, both x* and U* show an increasing trend. For higher values of a, more
emphasis should be given to conducting a large number of acres of Rx to decrease risk.
However, as a result of higher losses and conducting more Rx, the total costs and losses
also increase.

Figure 9d illustrates the changes in x* and U* with respect to the parameter F. It is
observed that with an increase in F, both x* and U* show an increasing trend. For higher
values of F, the expected acres of wildfires in a region also increase. This risk can be
mitigated by conducting more acres of Rx, which in turn will result in an increase in the
total costs and losses.

Figure 9e illustrates the changes in x* and U* with respect to the parameter A. It is
observed that with an increase in A, both x* and U* show a decreasing trend. A high
value of A indicates a high impact per acre of Rx in mitigating wildfire risk. Hence,
fewer acres of Rx can be conducted to achieve the same level of risk mitigation. Because
fewer acres of Rx are conducted, the total costs and losses decrease. It is vital to con-
duct Rx optimally to increase their impact, as this will decrease total costs and losses.

In our study, we observe that an increase in the parameter c, leads to a decreas-

ing trend in x*, while U* increases. Similarly, an increase in c,,, a, F, or A shows an
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increasing trend in both x* and U*. Our findings suggest that financial incentives could
encourage the practice of conducting Rx to mitigate the risks of wildfires and to keep
the value of ¢, in an affordable range. We also emphasize the importance of conducting
Rx optimally to increase their impact, as this will decrease total costs and losses.

6 Recommendations for US states

All US states were classified into four different categories in Sect. 5.1, as depicted in Fig. 5.
In this section, we recommend future steps to take for states in each category.

1. States with low risk: While these states do not require immediate changes due to their
low risk of wildfires, wildfire risks are not necessarily confined to the west coast and
it is recommended that these states be fire pro-active (U.S. Fish and Wildlife Service
2008).

2. States with high risk, no perceived impact:

(a) Many of these states struggle with Rx that seems to be changing nothing. Works
such as Palaiologou et al. (2020) have suggested that random or scattered fuel
treatment is not as effective as fuel treatment that is spatially optimized. Addi-
tionally, Rx is often not conducted in the regions that could have the highest
impact on wildfire losses, such as WUI regions, due to the correspondingly high
potential liabilities of Rx in these regions (Miller et al. 2020). Such states could
increase their impact on wildfires by integrating better Rx planning strategies and
by changing regulations that prevent Rx from being conducted in the regions that
need it the most.

(b) A small subsection of states in the southeast, on the other hand, burn a lot. Florida
and Georgia alone burned almost 3.5 million acres of Rx in 2017 and consistently
burn more Rx than any other state. These states reap many benefits from the Rx
conducted, as evidenced by their relatively smaller wildfire-related losses. States
like these continue a healthy fire-dependent ecosystem that was historically prac-
ticed by indigenous people. In these states, disastrous wildfires are naturally kept
at bay, as is ideal (Buono 2020).

3. States with high risk and significant “bad” impact: Three states fall into this category:
Missouri, New Mexico, and Nevada. Like states that fall in category 2(a), these states
could benefit from changing the way Rx are conducted (Palaiologou et al. 2020).

4. States with high risk and significant “good” impact: California and Oregon fall into this
category. While these states already conduct Rx that reduce wildfire risk, they could
increase the overall impact on wildfires by increasing the scale of their Rx programs.
The optimal scale of Rx programs that should be conducted by these states to reduce
the overall costs and losses of wildfire is studied in Sect. 3.

Overall, based on data up to 2017, we observe that most Rx programs in the USA are lack-
ing and have not had a significant impact on wildfire risk. These results could feed into
misconceptions that Rx are a risky, expensive, and ineffective practice to introduce to fire-
ravaged ecosystems. On the contrary, our results show that Rx programs can be impactful
when carefully designed and planned, as in Oregon and California. Other high-risk states
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are recommended to take action to improve their Rx programs by (i) encouraging the for-
mation and growth of Prescribed Burn Associations (PBA) (Toledo et al. 2014) and Rx
Councils to both plan Rx in areas that need it the most and increase the acreage of Rx, (ii)
maintaining cohesive and detailed Rx logs that can be used to diagnose and improve Rx
programs, (iii) changing laws and regulations that prevent Rx, and (iv) providing resources,
training, and aid to organizations and landowners to conduct Rx. States that already con-
duct impactful Rx programs should focus on expanding their efforts and increasing acre-
age. States like Florida and Georgia, where healthy fire-dependent ecosystems are main-
tained, should aid other states with Rx training and resources in addition to continuing
their Rx programs.

7 Conclusions and future research directions

Wildfires in the USA have been increasing in intensity over the past decade. In the west-
ern USA, the 2020 wildfire season burned over 10 million acres, destroyed over 13,000
buildings, caused 46 fatalities, and had an estimated cost greater than 19 billion USD. This
unfortunate trend can be observed globally as well. For example, the 2019-2020 wildfire
season in Australia burned over 46 million acres and destroyed over 9000 buildings in
roughly 12 months. Fuel management techniques, such as Rx, are effective at decreasing
the intensity of wildfires and are carried out throughout the world.

In past works, Rx have been proved to be effective at reducing both the risk as well as
magnitude of wildfires, in addition to having a host of other benefits. Research has also
been done optimizing the pattern, location, and amount of Rx or fuel management. While
we know that Rx works, and that Rx can be impactful depending on how they are con-
ducted, the impact of Rx programs on a larger scale has not been studied. For example, not
burning Rx at the right places or right times could significantly reduce their impact. To the
best of our knowledge, a comparative analysis of the impact of Rx programs in different
states in the USA has not been conducted. We address these gaps by (i) determining the
impact of the Rx program in a region using data analysis, (ii) developing an optimization
model that finds the optimal scale of impactful Rx programs, and (iii) comparing the Rx
programs of different states in the USA.

We analyze and compare the impact of an Rx program in a region by conducting an
exponential regression of the acres of wildfires with respect to acres of Rx. An optimiza-
tion model to minimize the total costs and losses of wildfires, including the costs and losses
of wildfires and the costs of Rx, is developed using the results of the exponential regres-
sion. It is discovered that California and Oregon conduct the only significantly impactful
Rx among analyzed states. 19 of the 21 analyzed states (such as Colorado) do not seem
to have Rx programs that have significant impact on their wildfire risk. However, some of
these states (such as Florida) do not seem to have significant impact per acre while actu-
ally conducting very successful and expansive Rx programs. This is because these states
burn many millions of acres, like was done by indigenous peoples, where acres of Rx are
not burned exclusively for wildfire risk reduction, but to maintain a healthier ecosystem.
Other states (such as Hawaii) are not analyzed because they do not have significant wildfire
risk. Each year from 2013 to 2017, Oregon could save an average of 355 million USD by
increasing the Rx an average of 109,841 acres. In 2017, in California, savings of over 5 bil-
lion USD are estimated if an additional 170,000 acres were burned in the state.
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Our work can be expanded to locations outside the USA given access to data on Rx and
wildfires. Our optimization model can be extended to consider the effects of past Rx and wild-
fires on fire risk in order to gain deeper insights into the optimal amount of Rx to conduct in
aregion. In the future, these models can also be applied to study other fuel management tech-
niques such as logging. Future research can also extend the current study to model public—pri-
vate partnerships for developing collaborative relationships to encourage the use of Rx when
necessary. In addition, incorporating the risk preferences of stakeholders (Hunt et al. 2022)
can provide important insights into decision-making for fuel management.

Appendix

Proof for Proposition 1

In order to solve for x* and U*, we take the derivative of U(x) with respect to x and set it equal
to zero to solve for the optimal acres of Rx, x*, as follows:

dl;(cx) = ¢,GWF +¢, =0 )
s g1~
o(-3)

where G(x) = {’(x). Since we assume that ¢’ (x) is strictly increasing for x > 0, therefore G!
exists. The above value of x* warranties a minima for U(x) since:

2
ddligm =¢,g WF = ¢,{"(OF >0, ¢, F,¢"(x) > 0 an

For x* > 0, g—l( - :—’F) > 0, which implies ¢, < —G(0)c, F. On the other hand, x* = 0 if

W

¢, 2 =G(0)c, F. Novs;, we substitute the value of x*in Eq. 2 to get U* as shown below:

) if ¢, < =G(0)c,F

U* = UG*) = CWC<Q_1( _ C%))F+ c-pg—] ( -4
¢y, F if ¢, > =G(0)c, F

12)

Proof for Proposition 2

We consider {(x) = ae™*, where a, A > 0. For x > 0, we observe that the exponential decay

form of {(x) is continuous and twice differentiable and it also satisfies the assumptions as
shown below:

{x)>0 (13)

() = —ate™ = X (x) <0 (14)
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) = ar’e ™ = 22¢(x) > 0 (15)

In order to solve for x* and U*, we take the derivative of U(x) with respect to x and set it
equal to zero to solve for the optimal number of Rx, x* as follows:

dU) L
5 = ~AC.aFe M4, =0 (16)
1 S
* o =1
* A (cwaFﬂ> an
For x* to be positive ln (C o A) > 0, which implies ¢, < ¢,,aFA. On the other hand,
x* =0if—= ln ( = /1) < 0 which implies ¢, > ¢,,aF . The above value of x* warranties a
minima for U(x) smce
2
v A2CaFe™™ >0, “vc,,a,F,A> 0 (18)
a2

Now, we substitute the value of x* in Eq. 2 to get U* as follows:

2] —In(=— i

Ut = UGy =14 7 <l In (Cwa”)> if ¢, <c,aF2 (19)
¢ aF if ¢, 2 ¢, aF 4

Proof for Proposition 3

The sensitivity of x* and U* as a function of Cps Cyps s F, 4 are proved as follows:
For Cp

ER v (20)

ox* —% <0 if ¢, <c,aFA
» 0 if ¢, 2 ¢, aF 4

X 1 < .
our _ [ 4w (%) >0 if ¢, <c,aFi on
dc, 0 if ¢, 2 ¢,aF2
Forc,,
ox* _ T >0 %f ¢, <c,akFi 22)
adc,, 0 if ¢, 2 c,aF2
C
oU* £ >0 if ¢, <c aFA
=q 7 o 23)
adc,, abF >0 if ¢, 2 c aF4
For a,
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* 1 ;
0x {7>0 if ¢, <c,aFA

= a . (24)
oa 0 if ¢, 2 c,aF2
oU* 250 ife,<c,aFA
30 “\EF>0 if ¢, > cpaFi (25)
w p = Cw
For F,
* 1 1
ot _ | 5> 0 %f ¢, <cyabFi 26)
oF 0 if ¢, 2 c,aFA
oU* _ ,1_,1; >0 ?f ¢, <c,afa o7
oF c,a>0 if ¢, >c.aFA
For A,

ot 1(1 ( <, )+1) <0 ifcp<écwaF/1

) | In

a); =4 2\ T\ >0 if le,aFA<c, <c,aF2 (28)
if ¢, > ¢, aF4

U _ ~1n (Cwa'; A) <0 ?f ¢, <c,aF 29
04 0 if ¢, 2 c,aF2
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