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ABSTRACT 

Reinforcement learning (RL) has shown its viability to learn 
when an agent interacts continually with the environment to 
optimize a policy. This work presents a memristor-based deep 
reinforcement learning (Mem-DRL) system for on-chip 
training, where the learning process takes place in a dynamic 
cartpole environment. Memristor device variability is taken 
into account to make the study more realistic. The proposed 
system utilized an analog ReLu module to reduce analog to 
digital converter usage. The analog Mem-DRL system 
consumed 191 times less energy than an optimized digital 
FP16 computing system. Our Mem-DRL system reduced the 
ADC usages by 40%, which led to reduced the overall system 
energy by 42%. Mem-DRL is 2.4 times faster than the FP16 
system and performs 9.27 GOPS during DRL training. The 
system exhibited an energy efficiency of  23.8 TOPS/W.  
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1 Introduction 

Reinforcement Learning (RL) has attracted significant 
attention for training autonomous systems, as it enables the 
system to navigate an unknown dynamic environment based 
on experience. Unlike supervised and unsupervised learning, 
RL is motivated by cognitive neuroscience and offers a 
decision-making process that learns from the environment. 
Supervised or unsupervised systems provide a static solution, 
but an RL system can continuously evolve and has the 
potential to adapt to the environment. RL systems become 
more powerful when combined with a deep neural network 
and are referred to as Deep Reinforcement Learning (DRL) 
systems. For instance, the AlphaGo DRL system [1] beat 
human level capability in the game of Go. 

 It is common practice to train and run neural network-
based systems on Graphics Processing Units (GPU) or Central 
Processing Units (CPU), which tend to be very energy hungry. 
For example, the first generation of AlphaGo trained using 280 
GPUs, which consumed a peak power of 0.5 MW [2]. Edge DRL 

applications, such as autonomous drones, prosthetics joints, 
and autonomous robotic navigation, are generally battery 
powered and so need much more energy austere training on 
the device. 

Several application-specific integrated circuits (ASICs) 
have been developed recently to run deep learning algorithms 
efficiently. They however, still require a high volume of 
memory and suffer from data latency for accessing off-chip 
memory modules. Neuromorphic and Computing-in-Memory 
(CIM) are emerging paradigms that dramatically reduce data 
transfer bottlenecks for these applications. CIM studies are 
advancing in industry and academia, with these architectures 
being investigated for increasing widespread internet-
connected IoT and edge devices. Most of the CIM research 
uses static RAM (SRAM) based memory cells to store 
quantized binary weights to perform AI inference on edge 
devices [3]. The majority of CIM studies and products are for 
inference only, with only a handful of academic studies 
looking at training. 

Training generally requires higher weight precision than 
for inference. An advantage of SRAM based CIM systems is 
that they can store quantized digital weight representations 
[3] that have sufficient precision for online training. However, 
state-of-the-art memristor devices can now be programmed 
up to thousands of states [15] and thus are also well suited for 
on-chip training systems. 

The majority of memristor based CIM studies for on-chip 
training look at classification applications. Only a few works 
demonstrate RL or Q-learning on memristor-based in-
memory spiking [5] and analog [2] domains. However, these 
works relied more on digital computing components and 
utilized high bit-width data conversion units, leading to more 
expensive on-chip training systems. Moreover, prior work on 
memristor implementations [2] used 16-bit ADC for output 
quantization and did not investigate the model performance 
to establish the post-learning success of RL in memristor 
neuromorphic systems. 

This work proposes an extremely low power DRL system 
with online learning capabilities. The system utilizes emerging 
memristor devices for developing CIM neuromorphic 
processors for on-chip training. The memristor crossbar 
circuit is capable of computing multiplication and addition 
simultaneously in a highly parallel fashion to perform the dot-
product of artificial neural networks. This work used a 
transposable single column memristive circuit with 
complementary inputs for accommodating negative parts of 



  

 

 

 

the weight. Analog-to-digital converters (ADCs), digital-to-
analog converters (DACs), and on-chip memory units are also 
needed to perform on-chip training in the analog domain. We 
developed a custom python-numpy platform to determine the 
training accuracy in such memristor systems. We compared 
the performance of the memristor system with a highly 
energy efficient digital computing system that would be 
computed in 16-bit floating point (FP16) precision. We 
assumed a 40 nm process technology was used for both 
memristor and digital systems. 

The contributions of this work are to implement 
memristor DRL (Mem-DRL) on-chip training systems that 
have incorporated the following circuit-level 
implementations: 

 
1. This is the first study to examine the use of analog ReLu 

circuits for DRL memristor circuits.  To ensure accurate 
evaluation, we implemented the analog ReLu circuit in 
SPICE and compared the linearity with traditional ReLu. 
Analog ReLu reduced ADC usage by about 40%. This 
reduced overall system energy by about 42%. 
 

2. We have shown that low precision can be used for analog 
training. We used 4-bit ADCs and DACs for on-chip analog 
training operations where other studies used 16-bit ADCs 
[2]. To evaluate the training accuracy impact of this, we 
developed a Mem-DRL on-chip training simulator on the 
Python-Numpy platform that utilized state-of-the-art 
device parameters.  

The combined effect of these two contributions is a major 
reduction in the energy consumption and increase in speed of 
the MEM-DRL system. Comparing our  memristor systems 
with an optimized digital system (FP16), shows about 192 
times lower energy while computing 2.4 times faster. 
Additionally, our Mem-DRL system consumed several 
orders  less energy than the system studied in [2]. 

We show the proposed Mem-DRL system uses online 
training to learn in an unknown dynamical environment. This 
task has many potential applications, such as robotics and 
healthcare (programming a prosthetic limb [6]), or industry 
[7] (Unmanned Aerial Vehicle (UAV) flight training [8] 
and  mining operations). For instance, the prosthetic limb 
application requires the RL chip to be fast (to keep up with 
real time use), produce low heat (as the system would be 
attached to the human body), and have low power (to keep 
battery weight and size low). This motivates the need for a 
fast, low power memristor DRL system. 

The rest of the article is organized as follows: Section 2 
describes related works. Section 3 describes in-memory RL 
systems, and section 4 presents the environment setup for the 
DRL system. Section 5 describes on-chip training, and section 
6 presents the experimental setup for the memristor-based 
system. Section 7 presents and describes all the results on 
Mem-DRL, and section 8 describes energy and timing analysis. 
At the end, section 9 presents a brief conclusion on this article. 

  

2 Related Work 

Hardware implementations of CIM systems can be found in 
the literature [3]. Many research groups and industries are 
developing and implementing SRAM-based CIMs mainly for 
edge inference with quantized binary weights stored in SRAM 
cells [3, 4]. A suitable in-memory learning system is still an 
open challenge to research communities. Emerging memristor 
devices are very suitable for developing in-memory 
computing systems for on-device training and inference. 
Memristors are well-known non-volatile devices that have 
been examined for implementing CIM systems [3,4]. 

The hardware implementation of ANN-RL has not been 
investigated as much compared to software implementations 
for many application domains. There are only a few works 
that have presented reinforcement learning in hardware. Field 
Programmable Gate Array (FPGA) based deep reinforcement 
learning has been presented in [9]. The FPGA-based system 
has to frequently access memory for data, thus causing latency 
and area overhead. TIME is a memristor-based training in-
memory architecture that proposed a CIM reinforcement 
learning framework [10]. 

A memristor spiking neural network (SNN) model was 
proposed for RL in acrobat systems [11,12]. The Remote 
Supervised Method (ReSuMe) combines SNNs with the basic 
RL algorithm SARSA [11]. The STDP learning rule is 
implemented for the SNN training [12]. The RL is 
implemented in a 1T1R memristor-CMOS hybrid system in 
[2]. This is an in-memory training system for a classic 
frictionless and noiseless ideal Cartpole system. The training 
utilizes off-chip pretraining to accelerate learning, but the 
memristor-based on-chip training mechanism is hard to 
determine, given the information provided. 

Alternatively, our proposed work complements the 
previous papers in this area, as we present a complete method 
for in-situ learning in a memristor crossbar-based RL circuit. 
We have presented a Mem-DRL hardware model for on-chip 
RL training and inference with a memristor-based Multi-
Layered Perceptron (MLP) model. Error backpropagation 
method is programmed, and the same crossbar circuit was 
used for backpropagation. Memristor crossbars were updated 
with pulse update via the write circuit. As a result, we 
successfully learned Cartpole-v0, as our system produced a 
score above 195 over 100 consecutive trials. This is the 
recommended metric for success for this problem, as 
described in [13,14]. 

We show that memristor-based on-chip and in-memory 
computing can be performed even after adding in device 
variability. This work looks at a broad application of 
reinforcement learning as a proof of concept for applications 
such as autonomous UAV training and prosthetics 
applications. 

3 In-Memory RL in Memristor 

Memristors are resistive memory devices whose resistive 
state can be programmed and which retain this resistance 
level when powered off. They are often used in crossbar 



  

 

 

circuits to perform neural network computational primitives 
of Matrix-Vector-Multiplication (MVM) in the analog domain. 
An artificial neural network model can be mapped onto 
multiple inter-connected crossbar circuits. The crossbar maps 
each neural network layer for computing MVM operation in 
one shot. A transposable crossbar circuit is implemented for 
performing the training operations. Figure 2a is the crossbar 
representation of a single neuron with complementary inputs 
by connecting inverter circuits to the original inputs. The 
complementary input strategy also helps to reduce the input 
buffer memory and DAC usage. The neuron circuit has 
negative and positive weight representations with 𝜎𝑖𝑗

+ and 𝜎𝑖𝑗
− , 

and the actual MVM output is the algebraic sum of  𝑣𝑖𝜎𝑖𝑗
+ and 

𝑣𝑖𝜎𝑖𝑗
−, where vi is the element of the input feature map. Eq. (1) 

presents output voltage representations of jth neuron in a 
crossbar circuit (Figure (1a,1b). The forward propagation of a 
transposable crossbar system is presented in Figure 1b. The 
same circuit is used during error backpropagation, but the 
inputs are inserted from the transposed direction. The 
crossbar circuit is orchestrated with digital-to-analog 
converters (DAC), ReLu activation, analog-to-digital 
converters (ADC), weight update circuits, and buffer storage 
for storing quantized outputs and rewards in each time step.  

     

(a)                                              (b) 

Figure 1: Memristor crossbar circuits, (a) a single neuron, 
(b) a neural network layer with N inputs and M outputs. The 
changes of  𝜎𝑖𝑗

+ and 𝜎𝑖𝑗
−  are limited between 𝜎𝑚𝑖𝑛  and 𝜎𝑚𝑎𝑥.  

Op-amp circuits are used as summing amplifiers for 
carrying out the resultant dot-product of the neural system 
and give a corresponding voltage output. The crossbar circuit 
outputs can be represented in Eq. (1), which is analogous to 
the computing primitive of conventional neural networks, as 
shown in Eq.(2), where xi, wij, and b represent respectively 
inputs weight matrix and bias of a conventional neural 
network layer.  

𝑉𝑗 = 𝑅[∑ (𝑣𝑖𝜎𝑖𝑗
+ − 𝑣𝑖𝜎𝑖𝑗

−) + 𝑣𝛽𝜎𝛽]𝑁
𝑖=1                           (1)          

 𝑌𝑗 = ∑ 𝑥𝑖 . 𝑤𝑖𝑗
𝑁
𝑖=1  + b                                        (2) 

An analog ReLu circuit  [21] (see Figure 2a) is 
implemented in SPICE and analyzed with a DC sweep within 
the the range of -2V to 2V to show the linearity of the circuit to 
perform ReLu activation. The ReLu circuit works as a half-
wave rectifier. For Vin>0,  P1, and N2, transistors are turned on 
and give a linear output, and for Vin≤0, the output remains at 

ground level through P2. The linearity of the ReLu circuit 
follows the traditional ReLu activation with less than 0.01% 
error margin. The Mem-DRL simulation is set to 0V to 2V for 
activation output to mimic the actual ReLu output. 

  

(a)                                        (b) 

Figure 2: Analog ReLu implementation, (a) ReLu activation 
circuit, (b) ReLu linearity compared to traditional ReLu.  

4 Environment Setup of Mem-DRL 

The conceptual schematic of the Mem-DRL with MLP 
neural network is presented in Figure 3. The MLP neural 
network learns the policy function for a particular 
environment state (s). The reward prediction for action is 
based on the forward passes of the perceptron network and 
historical observations repeatedly replayed from the 
experience to optimize the network parameter 𝜃 to make the 
best decision in the unknown dynamic environment. The 
policy 𝜋𝜃(𝑠, 𝑎) is a Markov decision process that dictates the 
action which is taken by the agent regarding the state and 
environment by looking one step ahead to the next state. 

Table 1: Parameters for Basic Cartpole system 

Parameter Magnitude 
Mass of the Cart 1 kg 
Mass of the Pole 0.1 kg 
Total Mass 1.1 kg 
Length of the Pole 1 m 
Force 10 N 

Cart Friction Coefficient (µc) 5×10-4  

Pole Friction Coefficient (µp) 2×10-6   

Interval Between State Update 0.02 s 
Reward in Each Time Step 1 
Network Learning Rate 0.001 
Discount Parameter (γ) 0.997 
Optimum Average Score >195 

This work adopts a cartpole environment to examine the 
Mem-DRL in a memristor neuromorphic CIM. The kinematic 
relations of a cartpole system are given by A. Barto et al. [16]. 
A cartoon model of the cartpole is presented in Figure 3(a) 
with the conventional parameters, and Figure 3(b) presents 
the Mem-DRL training model. The cartpole environment 
generates a random four-dimensional Markov state vector s(𝑥,
𝑑𝑥/𝑑𝑡, 𝜃, 𝑑𝜃/𝑑𝑡) as input in each time step, x and 𝜃 represent 
position and angle of the pole, respectively. The inputs are 
applied to the Mem-DRL Q-learning network. In Q-learning, 
the agent interacts with the environment through a sequence 
of experience replay, state, action, and reward. The process is 
schematically presented in Figure 3(b). Table 1 presents the 
basic environmental setup of the cartpole system. 



  

 

 

 

 

Figure 3: (a) A standard cartpole model with usual 
parameters, (b) DRL learning setup with state-action 
representation. 

5 Mem-DRL On-Chip Training 

In this experiment, the cartpole agent is physically 
implemented with a memristor based deep Q-network. Q-
learning is performed by the agent, which randomly samples 
from a fixed size pool of transitions  (st, at rt, st+1) at each time-
step, where st, at rt, and st+1 represent the state, action, reward, 
and next state, respectively. The stored transitions are defined 
as experience and used to train the agent to make future 
decisions by experience replay. 

The physical Mem-DRL training process is presented in 
Figure 4. The four-dimensional state vector is applied to the 
memristor crossbar array with complement inputs, as shown 
in Figure 2. The op-amp circuit in the neuron accumulates 
MVM results and produces a voltage output. The ReLu 
removes all negative voltages, ADCs quantize output voltages, 
and the quantized outputs are stored in the output buffer for 
the training operation. 

 

Figure 4: Mem-DRL training procedure. 

The memristor-based Q-network works as the Q-function 
approximator and approximates the Q-function for the 
current and future states. The results of the forward pass are 
used in the Bellman equation [2] to compute the loss function. 
The computed error is applied from the transposed direction 
of the crossbar circuit and computes the error gradient. The 
error gradient is quantized and generates a pulse to update 
the memristor conductance, which is applied to the crossbar 
through a weight-update circuit along with the previously 
stored layer input. 

6 Experimental Setup 

In this study, we assumed a memristor and digital system 
for evaluation. All the hardware parameters were estimated 

based on a 40 nm process technology. The memristor system 
was specified in detail (see below) while the digital system is 
described at the end of this section. 

The crossbar sizes for MLP circuits are (4×2+1)×48, 
(48×2+1)×24, and (24×2+1) ×2 for 4🡪48🡪24🡪2 fully connected 
MLP network.  The MLP network needs a total of 2858 
memristor devices in the crossbar circuits. The ADC and DAC 
bit-widths are set to 4-bits for both forward and backward 
propagation. The minimum and maximum conductive states 
of the memristor devices are considered 0.7 µS and 210µS 
with a ratio of 300.  The weight update process strictly bound 
the conductive state within this range. The training system 
assumes there are M ADCs for the faster training process. The 
ADCs are connected to the neuron after ReLu activation, 
reducing the ADC access by about 40% as negative voltages 
become zero, thus reducing the timing and energy 
consumption, as shown in Figure 5.  

The use of ADCs in the memristor circuits leads to a 
quantization of the op-amp outputs and reduces the training 
accuracy of the memristor system compared to a digital 
training system. It is essential to capture this effect to ensure 
accurate training modeling in memristor circuits. Thus, we 
developed a python-numpy based deep learning training 
software that modeled the training of the MLP network in our 
memristor crossbar based training circuits. This software is 
flexible enough to model other types of networks and 
ADC/DAC bit widths.  

 
Figure 5: Application of ReLu circuit in the hidden layer 2.  

We considered only the memory or computation units for 
energy and timing estimation for the digital system. We 
ignored all other energies, including control. Thus, our digital 
system energy would be the equivalent of a highly optimized 
digital system. All digital computations were assumed to be 
done in FP16 for energy and timing considerations. However, 
the actual training is performed in a general-purpose x86 
computer using FP64. 

The computing speed of the FP16 system was estimated 
using parameters from L. Li et al. [17]. The memory energy 
consumption was estimated with a 40 nm ultra-low leakage 
memory SRAM memory design by J. Wang et al. [18], and the 
memory area was estimated with Hewlett Packard's CACTI-P 
memory estimation software [19].  The ADCs are often one of 
the most energy-hungry pieces of hardware in analog 
processors. The ADC energy consumption and area were 
scaled and estimated based on the results from S. Yu et al. 
[20]. 



  

 

 

7 Results and Discussion 

The Mem-DRL system is examined with the cartpole-v0 
agent for on-chip training and testing. The results of the DRL 
experiment using a purely digital approach are displayed in 
Figure 6 compared to the proposed Mem-DRL design, using 
the same network and hyperparameters. Successful training 
requires an average score greater than 195 over 100 
consecutive trials, and the maximum possible score is 200 for 
a single trial [13]. Figure 6 presents the raw scores, and Figure 
7 presents the moving average of the last 100 trials. The Mem-
DRL system took 172 episodes to reach the cut-off reward, 
whereas the digital system spent 161 episodes.  

The injected noise makes the system more realistic and 
adds to the variability of the memristor devices. We have 
introduced noise as the randomly generated signal multiplied 
by a certain percent of the minimum resistance level of the 
memristor devices. With increasing noise, learning of  Mem-
DRL system becomes challenging and increases the play time 
to reach the required score for a successful training operation. 
The Mem-DRL took 179 and 197 trials to achieve 195 average 
rewards when applied at a 2% and 4% noise level. For 6% 
noise, the training does not reach the required score level for 
successful training. 

After solving the problem, the trained models were 
evaluated to check the performance of both digital and 
memristor-based Mem-DRL systems. Figure 8 presents the 
evaluation of the trained models. The systems played 500 test 
trials. The digital and ideal Mem-DRL system successfully 
played all trials and scored 100% accuracy. However, the 
Mem-DRL system with 4% noise failed to score in 16 trials 
where 195 is considered a passing score. Thus, the accuracy is 
about 97%. 

8  Energy and Timing Analysis 

Energy consumption and performance analysis are crucial 
for measuring the robustness of any hardware. We estimated 
the energy, power, and processor performance using detailed 
system evaluations. In the analog training processor design, 
the data conversion and memory modules are the most energy 
consuming hardware components. Mem-DRL requires about 
1.66 KB of on-chip memory for training the cartpole agent. 
This is needed to store intermediate training parameters 
generated in the forward pass and to be consumed during the 
backward propagation. However, this work did not consider 
the energy consumption in the replay memory. Table II 
presents the timing, energy consumption, and performance of 
the cartpole Mem-DRL and digital systems. The Mem-DRL 
system is experimented with ReLu in an analog circuit. If 
activation is computed in a digital system then the energy 
consumption per time step is 0.147 nJ, which is reduced in the 
Mem-DRL system to 0.062 nJ. Thus, analog ReLu reduced the 
ADC usage by about 40% and the energy consumption by 
42%. 

 

Figure 6: Reward vs. play episode during training. 

 

 Figure 7: Average reward vs. episode to determine the 
success of cartpole training while injecting randomly 
distributed noise scaled with the percent of minimum 
memristor conductance. 

 

Figure 8: Evaluation of a trained model for digital and 
MEM-DRL systems. 

 

At the end of the training process, Mem-DRL consumed 
1.42 µJ, and the FP16 system consumed 271 µJ. The Mem-DRL 
system consumed about 191 times less energy than the FP16 
system. Figure 9 presents the energy consumption of the 
cartpole-v0 agent to complete the successful training, where it 
achieved 195 average rewards over 100 successive trials.  The 
Mem-DRL system performs 9.27 GOPS, which makes the 
system about 2.4 times faster than the FP16 system. The chip 
area of Mem-DRL is 1.19× smaller than the FP16 system. The 
chip area of the digital system is mainly dominated by 
memory, and the FP16 system requires 8.85KB of memory for 
cartpole DRL training, which occupies only 0.0145 mm2. The 



  

 

 

 

chip area of the analog system is dominated by the ADC, which 
occupies about 80% of the chip area. Finally, the Mem-DRL 
system exhibited 23.8 TOPS/W, whereas the FP16 system 
showed 0.123 TOPS/W in DRL training operation.  

Table 2: Energy, Time, Performance and Power 

Parameters FP16 Mem-DRL 
Time (µs)/step 0.38 0.158 
Energy (nJ)/step 11.9 0.062 
Power (mW) 31 0.389 
Performance (GOPS) 3.85 9.27 
Energy Efficiency (TOPS/W) 0.123 23.8 
Chip Area (mm2) 0.0078 0.014 
Max Training E (µJ)/Trial 2.38 0.0123 

 

Figure 9: Energy consumption for successful training of 
cartpole in Mem-DRL and FP16 digital systems. 

9  Conclusion 

We have developed a low power memristor-based analog 
computing processor, Mem-DRL, for reinforcement learning 
applications. We also compared the Mem-DRL system with a 
digital FP16 system and showed that it achieves the same 
accuracy level with significantly lower energy costs. The 
memristor system consumed 191 times less energy than the 
FP16 system while computed about 2.4 times faster. However, 
the Mem-DRL has a 1.91 times bigger chip size than the FP16 
system. The analog ReLu significantly reduced the memristor-
based analog computing system's energy consumption, a 
major contribution of this work. This activation technique 
potentially can be implemented in many other analog 
computing system for low power training operations. Finally, 
the Mem-DRL shows 80 times more power efficiency than the 
FP16 system. In future work, the memristor-based ANN-RL 
may be utilized to develop in-memory and in-situ training 
systems for autonomous drones, power-constrained 
navigation robots, and prosthetics.  
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