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ABSTRACT

Reinforcement learning (RL) has shown its viability to learn
when an agent interacts continually with the environment to
optimize a policy. This work presents a memristor-based deep
reinforcement learning (Mem-DRL) system for on-chip
training, where the learning process takes place in a dynamic
cartpole environment. Memristor device variability is taken
into account to make the study more realistic. The proposed
system utilized an analog ReLu module to reduce analog to
digital converter usage. The analog Mem-DRL system
consumed 191 times less energy than an optimized digital
FP16 computing system. Our Mem-DRL system reduced the
ADC usages by 40%, which led to reduced the overall system
energy by 42%. Mem-DRL is 2.4 times faster than the FP16
system and performs 9.27 GOPS during DRL training. The
system exhibited an energy efficiency of 23.8 TOPS/W.
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1 Introduction

Reinforcement Learning (RL) has attracted significant
attention for training autonomous systems, as it enables the
system to navigate an unknown dynamic environment based
on experience. Unlike supervised and unsupervised learning,
RL is motivated by cognitive neuroscience and offers a
decision-making process that learns from the environment.
Supervised or unsupervised systems provide a static solution,
but an RL system can continuously evolve and has the
potential to adapt to the environment. RL systems become
more powerful when combined with a deep neural network
and are referred to as Deep Reinforcement Learning (DRL)
systems. For instance, the AlphaGo DRL system [1] beat
human level capability in the game of Go.

It is common practice to train and run neural network-
based systems on Graphics Processing Units (GPU) or Central
Processing Units (CPU), which tend to be very energy hungry.
For example, the first generation of AlphaGo trained using 280
GPUs, which consumed a peak power of 0.5 MW [2]. Edge DRL

applications, such as autonomous drones, prosthetics joints,
and autonomous robotic navigation, are generally battery
powered and so need much more energy austere training on
the device.

Several application-specific integrated circuits (ASICs)
have been developed recently to run deep learning algorithms
efficiently. They however, still require a high volume of
memory and suffer from data latency for accessing off-chip
memory modules. Neuromorphic and Computing-in-Memory
(CIM) are emerging paradigms that dramatically reduce data
transfer bottlenecks for these applications. CIM studies are
advancing in industry and academia, with these architectures
being investigated for increasing widespread internet-
connected IoT and edge devices. Most of the CIM research
uses static RAM (SRAM) based memory cells to store
quantized binary weights to perform Al inference on edge
devices [3]. The majority of CIM studies and products are for
inference only, with only a handful of academic studies
looking at training.

Training generally requires higher weight precision than
for inference. An advantage of SRAM based CIM systems is
that they can store quantized digital weight representations
[3] that have sufficient precision for online training. However,
state-of-the-art memristor devices can now be programmed
up to thousands of states [15] and thus are also well suited for
on-chip training systems.

The majority of memristor based CIM studies for on-chip
training look at classification applications. Only a few works
demonstrate RL or Q-learning on memristor-based in-
memory spiking [5] and analog [2] domains. However, these
works relied more on digital computing components and
utilized high bit-width data conversion units, leading to more
expensive on-chip training systems. Moreover, prior work on
memristor implementations [2] used 16-bit ADC for output
quantization and did not investigate the model performance
to establish the post-learning success of RL in memristor
neuromorphic systems.

This work proposes an extremely low power DRL system
with online learning capabilities. The system utilizes emerging
memristor devices for developing CIM neuromorphic
processors for on-chip training. The memristor crossbar
circuit is capable of computing multiplication and addition
simultaneously in a highly parallel fashion to perform the dot-
product of artificial neural networks. This work used a
transposable single column memristive circuit with
complementary inputs for accommodating negative parts of



the weight. Analog-to-digital converters (ADCs), digital-to-
analog converters (DACs), and on-chip memory units are also
needed to perform on-chip training in the analog domain. We
developed a custom python-numpy platform to determine the
training accuracy in such memristor systems. We compared
the performance of the memristor system with a highly
energy efficient digital computing system that would be
computed in 16-bit floating point (FP16) precision. We
assumed a 40 nm process technology was used for both
memristor and digital systems.

The contributions of this work are to implement
memristor DRL (Mem-DRL) on-chip training systems that
have incorporated the following circuit-level
implementations:

1. This is the first study to examine the use of analog ReLu
circuits for DRL memristor circuits. To ensure accurate
evaluation, we implemented the analog ReLu circuit in
SPICE and compared the linearity with traditional ReLu.
Analog ReLu reduced ADC usage by about 40%. This
reduced overall system energy by about 42%.

2. We have shown that low precision can be used for analog
training. We used 4-bit ADCs and DACs for on-chip analog
training operations where other studies used 16-bit ADCs
[2]. To evaluate the training accuracy impact of this, we
developed a Mem-DRL on-chip training simulator on the
Python-Numpy platform that utilized state-of-the-art
device parameters.

The combined effect of these two contributions is a major
reduction in the energy consumption and increase in speed of
the MEM-DRL system. Comparing our memristor systems
with an optimized digital system (FP16), shows about 192
times lower energy while computing 2.4 times faster.
Additionally, our Mem-DRL system consumed several
orders less energy than the system studied in [2].

We show the proposed Mem-DRL system uses online
training to learn in an unknown dynamical environment. This
task has many potential applications, such as robotics and
healthcare (programming a prosthetic limb [6]), or industry
[7] (Unmanned Aerial Vehicle (UAV) flight training [8]
and mining operations). For instance, the prosthetic limb
application requires the RL chip to be fast (to keep up with
real time use), produce low heat (as the system would be
attached to the human body), and have low power (to keep
battery weight and size low). This motivates the need for a
fast, low power memristor DRL system.

The rest of the article is organized as follows: Section 2
describes related works. Section 3 describes in-memory RL
systems, and section 4 presents the environment setup for the
DRL system. Section 5 describes on-chip training, and section
6 presents the experimental setup for the memristor-based
system. Section 7 presents and describes all the results on
Mem-DRL, and section 8 describes energy and timing analysis.
At the end, section 9 presents a brief conclusion on this article.

2 Related Work

Hardware implementations of CIM systems can be found in
the literature [3]. Many research groups and industries are
developing and implementing SRAM-based CIMs mainly for
edge inference with quantized binary weights stored in SRAM
cells [3, 4]. A suitable in-memory learning system is still an
open challenge to research communities. Emerging memristor
devices are very suitable for developing in-memory
computing systems for on-device training and inference.
Memristors are well-known non-volatile devices that have
been examined for implementing CIM systems [3,4].

The hardware implementation of ANN-RL has not been
investigated as much compared to software implementations
for many application domains. There are only a few works
that have presented reinforcement learning in hardware. Field
Programmable Gate Array (FPGA) based deep reinforcement
learning has been presented in [9]. The FPGA-based system
has to frequently access memory for data, thus causing latency
and area overhead. TIME is a memristor-based training in-
memory architecture that proposed a CIM reinforcement
learning framework [10].

A memristor spiking neural network (SNN) model was
proposed for RL in acrobat systems [11,12]. The Remote
Supervised Method (ReSuMe) combines SNNs with the basic
RL algorithm SARSA [11]. The STDP learning rule is
implemented for the SNN training [12]. The RL is
implemented in a 1T1R memristor-CMOS hybrid system in
[2]. This is an in-memory training system for a classic
frictionless and noiseless ideal Cartpole system. The training
utilizes off-chip pretraining to accelerate learning, but the
memristor-based on-chip training mechanism is hard to
determine, given the information provided.

Alternatively, our proposed work complements the
previous papers in this area, as we present a complete method
for in-situ learning in a memristor crossbar-based RL circuit.
We have presented a Mem-DRL hardware model for on-chip
RL training and inference with a memristor-based Multi-
Layered Perceptron (MLP) model. Error backpropagation
method is programmed, and the same crossbar circuit was
used for backpropagation. Memristor crossbars were updated
with pulse update via the write circuit. As a result, we
successfully learned Cartpole-v0, as our system produced a
score above 195 over 100 consecutive trials. This is the
recommended metric for success for this problem, as
described in [13,14].

We show that memristor-based on-chip and in-memory
computing can be performed even after adding in device
variability. This work looks at a broad application of
reinforcement learning as a proof of concept for applications
such as autonomous UAV training and prosthetics
applications.

3 In-Memory RL in Memristor

Memristors are resistive memory devices whose resistive
state can be programmed and which retain this resistance
level when powered off. They are often used in crossbar



circuits to perform neural network computational primitives
of Matrix-Vector-Multiplication (MVM) in the analog domain.
An artificial neural network model can be mapped onto
multiple inter-connected crossbar circuits. The crossbar maps
each neural network layer for computing MVM operation in
one shot. A transposable crossbar circuit is implemented for
performing the training operations. Figure 2a is the crossbar
representation of a single neuron with complementary inputs
by connecting inverter circuits to the original inputs. The
complementary input strategy also helps to reduce the input
buffer memory and DAC usage. The neuron circuit has
+

negative and positive weight representations with ¢;; and oy} ,

and the actual MVM output is the algebraic sum of viJiJ; and
v;0;;, where v; is the element of the input feature map. Eq. (1)
presents output voltage representations of j» neuron in a
crossbar circuit (Figure (1a,1b). The forward propagation of a
transposable crossbar system is presented in Figure 1b. The
same circuit is used during error backpropagation, but the
inputs are inserted from the transposed direction. The
crossbar circuit is orchestrated with digital-to-analog
converters (DAC), ReLu activation, analog-to-digital
converters (ADC), weight update circuits, and buffer storage
for storing quantized outputs and rewards in each time step.
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Figure 1: Memristor crossbar circuits, (a) a single neuron,
(b) a neural network layer with N inputs and M outputs. The
changes of JL-J]“- and og;; are limited between 0y, and Oy
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Op-amp circuits are used as summing amplifiers for
carrying out the resultant dot-product of the neural system
and give a corresponding voltage output. The crossbar circuit
outputs can be represented in Eq. (1), which is analogous to
the computing primitive of conventional neural networks, as
shown in Eq.(2), where x;, wy, and b represent respectively
inputs weight matrix and bias of a conventional neural
network layer.

V; = R[XN(viaf — vi0;) + vpog) M
Y =YX x.w;+b (2)

An analog ReLu circuit [21] (see Figure 2a) is
implemented in SPICE and analyzed with a DC sweep within
the the range of -2V to 2V to show the linearity of the circuit to
perform ReLu activation. The ReLu circuit works as a half-
wave rectifier. For V,>0, P, and N, transistors are turned on
and give a linear output, and for V.<0, the output remains at

ground level through P.. The linearity of the ReLu circuit
follows the traditional ReLu activation with less than 0.01%
error margin. The Mem-DRL simulation is set to 0V to 2V for
activation output to mimic the actual ReLu output.
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Figure 2: Analog ReLu implementation, (a) ReLu activation
circuit, (b) ReLu linearity compared to traditional ReLu.

4 Environment Setup of Mem-DRL

The conceptual schematic of the Mem-DRL with MLP
neural network is presented in Figure 3. The MLP neural
network learns the policy function for a particular
environment state (s). The reward prediction for action is
based on the forward passes of the perceptron network and
historical observations repeatedly replayed from the
experience to optimize the network parameter 6 to make the
best decision in the unknown dynamic environment. The
policy my (s, a) is a Markov decision process that dictates the
action which is taken by the agent regarding the state and
environment by looking one step ahead to the next state.

Table 1: Parameters for Basic Cartpole system

Parameter | Magnitude
Mass of the Cart 1kg
Mass of the Pole 0.1kg
Total Mass 1.1kg
Length of the Pole 1m
Force 10N
Cart Friction Coefficient (i) 5x10
Pole Friction Coefficient (pp) 2x10
Interval Between State Update 0.02s
Reward in Each Time Step 1
Network Learning Rate 0.001
Discount Parameter (y) 0.997
Optimum Average Score >195

This work adopts a cartpole environment to examine the
Mem-DRL in a memristor neuromorphic CIM. The kinematic
relations of a cartpole system are given by A. Barto et al. [16].
A cartoon model of the cartpole is presented in Figure 3(a)
with the conventional parameters, and Figure 3(b) presents
the Mem-DRL training model. The cartpole environment
generates a random four-dimensional Markov state vector s(x,
dx/dt, 6, df/dt) as input in each time step, x and 6 represent
position and angle of the pole, respectively. The inputs are
applied to the Mem-DRL Q-learning network. In Q-learning,
the agent interacts with the environment through a sequence
of experience replay, state, action, and reward. The process is
schematically presented in Figure 3(b). Table 1 presents the
basic environmental setup of the cartpole system.
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Figure 3: (a) A standard cartpole model with usual
parameters, (b) DRL learning setup with state-action
representation.

5 Mem-DRL On-Chip Training

In this experiment, the cartpole agent is physically
implemented with a memristor based deep Q-network. Q-
learning is performed by the agent, which randomly samples
from a fixed size pool of transitions (s a:ry, se+1) at each time-
step, where s;, ar ri, and st+1 represent the state, action, reward,
and next state, respectively. The stored transitions are defined
as experience and used to train the agent to make future
decisions by experience replay.

The physical Mem-DRL training process is presented in
Figure 4. The four-dimensional state vector is applied to the
memristor crossbar array with complement inputs, as shown
in Figure 2. The op-amp circuit in the neuron accumulates
MVM results and produces a voltage output. The ReLu
removes all negative voltages, ADCs quantize output voltages,
and the quantized outputs are stored in the output buffer for
the training operation.
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Figure 4: Mem-DRL training procedure.

The memristor-based Q-network works as the Q-function
approximator and approximates the Q-function for the
current and future states. The results of the forward pass are
used in the Bellman equation [2] to compute the loss function.
The computed error is applied from the transposed direction
of the crossbar circuit and computes the error gradient. The
error gradient is quantized and generates a pulse to update
the memristor conductance, which is applied to the crossbar
through a weight-update circuit along with the previously
stored layer input.

6 Experimental Setup

In this study, we assumed a memristor and digital system
for evaluation. All the hardware parameters were estimated

based on a 40 nm process technology. The memristor system
was specified in detail (see below) while the digital system is
described at the end of this section.

The crossbar sizes for MLP circuits are (4x2+1)x48,
(48x2+1)x24, and (24x2+1) x2 for 404802402 fully connected
MLP network. The MLP network needs a total of 2858
memristor devices in the crossbar circuits. The ADC and DAC
bit-widths are set to 4-bits for both forward and backward
propagation. The minimum and maximum conductive states
of the memristor devices are considered 0.7 puS and 210uS
with a ratio of 300. The weight update process strictly bound
the conductive state within this range. The training system
assumes there are M ADCs for the faster training process. The
ADCs are connected to the neuron after ReLu activation,
reducing the ADC access by about 40% as negative voltages
become zero, thus reducing the timing and energy
consumption, as shown in Figure 5.

The use of ADCs in the memristor circuits leads to a
quantization of the op-amp outputs and reduces the training
accuracy of the memristor system compared to a digital
training system. It is essential to capture this effect to ensure
accurate training modeling in memristor circuits. Thus, we
developed a python-numpy based deep learning training
software that modeled the training of the MLP network in our
memristor crossbar based training circuits. This software is
flexible enough to model other types of networks and
ADC/DAC bit widths.
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Figure 5: Application of ReLu circuit in the hidden layer 2.

We considered only the memory or computation units for
energy and timing estimation for the digital system. We
ignored all other energies, including control. Thus, our digital
system energy would be the equivalent of a highly optimized
digital system. All digital computations were assumed to be
done in FP16 for energy and timing considerations. However,
the actual training is performed in a general-purpose x86
computer using FP64.

The computing speed of the FP16 system was estimated
using parameters from L. Li et al. [17]. The memory energy
consumption was estimated with a 40 nm ultra-low leakage
memory SRAM memory design by ]. Wang et al. [18], and the
memory area was estimated with Hewlett Packard's CACTI-P
memory estimation software [19]. The ADCs are often one of
the most energy-hungry pieces of hardware in analog
processors. The ADC energy consumption and area were
scaled and estimated based on the results from S. Yu et al.
[20].



7 Results and Discussion

The Mem-DRL system is examined with the cartpole-v0
agent for on-chip training and testing. The results of the DRL
experiment using a purely digital approach are displayed in
Figure 6 compared to the proposed Mem-DRL design, using
the same network and hyperparameters. Successful training
requires an average score greater than 195 over 100
consecutive trials, and the maximum possible score is 200 for
a single trial [13]. Figure 6 presents the raw scores, and Figure
7 presents the moving average of the last 100 trials. The Mem-
DRL system took 172 episodes to reach the cut-off reward,
whereas the digital system spent 161 episodes.

The injected noise makes the system more realistic and
adds to the variability of the memristor devices. We have
introduced noise as the randomly generated signal multiplied
by a certain percent of the minimum resistance level of the
memristor devices. With increasing noise, learning of Mem-
DRL system becomes challenging and increases the play time
to reach the required score for a successful training operation.
The Mem-DRL took 179 and 197 trials to achieve 195 average
rewards when applied at a 2% and 4% noise level. For 6%
noise, the training does not reach the required score level for
successful training.

After solving the problem, the trained models were
evaluated to check the performance of both digital and
memristor-based Mem-DRL systems. Figure 8 presents the
evaluation of the trained models. The systems played 500 test
trials. The digital and ideal Mem-DRL system successfully
played all trials and scored 100% accuracy. However, the
Mem-DRL system with 4% noise failed to score in 16 trials
where 195 is considered a passing score. Thus, the accuracy is
about 97%.

8 Energy and Timing Analysis

Energy consumption and performance analysis are crucial
for measuring the robustness of any hardware. We estimated
the energy, power, and processor performance using detailed
system evaluations. In the analog training processor design,
the data conversion and memory modules are the most energy
consuming hardware components. Mem-DRL requires about
1.66 KB of on-chip memory for training the cartpole agent.
This is needed to store intermediate training parameters
generated in the forward pass and to be consumed during the
backward propagation. However, this work did not consider
the energy consumption in the replay memory. Table II
presents the timing, energy consumption, and performance of
the cartpole Mem-DRL and digital systems. The Mem-DRL
system is experimented with ReLu in an analog circuit. If
activation is computed in a digital system then the energy
consumption per time step is 0.147 nJ, which is reduced in the
Mem-DRL system to 0.062 n]. Thus, analog ReLu reduced the
ADC usage by about 40% and the energy consumption by
42%.
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Figure 6: Reward vs. play episode during training.
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Figure 8: Evaluation of a trained model for digital and
MEM-DRL systems.

At the end of the training process, Mem-DRL consumed
1.42 pJ, and the FP16 system consumed 271 pJ. The Mem-DRL
system consumed about 191 times less energy than the FP16
system. Figure 9 presents the energy consumption of the
cartpole-v0 agent to complete the successful training, where it
achieved 195 average rewards over 100 successive trials. The
Mem-DRL system performs 9.27 GOPS, which makes the
system about 2.4 times faster than the FP16 system. The chip
area of Mem-DRL is 1.19x smaller than the FP16 system. The
chip area of the digital system is mainly dominated by
memory, and the FP16 system requires 8.85KB of memory for
cartpole DRL training, which occupies only 0.0145 mmz:. The



chip area of the analog system is dominated by the ADC, which
occupies about 80% of the chip area. Finally, the Mem-DRL
system exhibited 23.8 TOPS/W, whereas the FP16 system
showed 0.123 TOPS/W in DRL training operation.

Table 2: Energy, Time, Performance and Power

Parameters | FP16 | Mem-DRL
Time (ps)/step 0.38 0.158
Energy (n])/step 11.9 0.062
Power (mW) 31 0.389
Performance (GOPS) 3.85 9.27
Energy Efficiency (TOPS/W) 0.123 23.8
Chip Area (mm?) 0.0078 0.014
Max Training E (uJ)/Trial 2.38 0.0123
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Figure 9: Energy consumption for successful training of
cartpole in Mem-DRL and FP16 digital systems.

9 Conclusion

We have developed a low power memristor-based analog
computing processor, Mem-DRL, for reinforcement learning
applications. We also compared the Mem-DRL system with a
digital FP16 system and showed that it achieves the same
accuracy level with significantly lower energy costs. The
memristor system consumed 191 times less energy than the
FP16 system while computed about 2.4 times faster. However,
the Mem-DRL has a 1.91 times bigger chip size than the FP16
system. The analog ReLu significantly reduced the memristor-
based analog computing system's energy consumption, a
major contribution of this work. This activation technique
potentially can be implemented in many other analog
computing system for low power training operations. Finally,
the Mem-DRL shows 80 times more power efficiency than the
FP16 system. In future work, the memristor-based ANN-RL
may be utilized to develop in-memory and in-situ training
systems for autonomous drones, power-constrained
navigation robots, and prosthetics.
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