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Abstract— A memristor based neuromorphic processor for on-
chip training is presented. Additionally, a novel approach utilizing
in-situ learning to improve wireless signal modulation
classification under adversarial jamming is described. The
neuromorphic system is over 50x energy efficient than optimized
digital systems at this wireless signal modulation task for similar
accuracy levels.
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I. INTRODUCTION

Wireless communication uses various types of modulation
techniques, such as Phase Shift Keying (PSK), Frequency Shift
Keying (FSK), Quadrature = Amplitude = Modulation
(QAM). Modulation techniques help to compress the signal, so
that the message can be sent with limited band widths.
Automatic Modulation Classification (AMC) is a technique to
detect the wireless signals and identify the modulation class.
AMC has a wide range of applications in intelligent and
Cognitive Radio (CR) [2]. CR networks detect the received
signal without knowing the type of modulation technique used.
AMC classifies the modulation types from complex-valued raw
radio signals without knowing the signal or the channel
parameters.

The state-of-the-art approach of AMC technique is utilizing
artificial intelligence, in particular Deep Neural Networks
(DNN) for better performance in dynamic spectrum access [3].
However, the DNN training is performed in Graphics
Processing Units (GPU) based high power computing facilities,
such as in cloud computing or data centers. These are expensive
computing facilities and these GPU based computing facilities
are not feasible for low powered edge devices.

The traditional pretrained DNN models for AMC are
severely affected by various noise interference, and thus their
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performance deteriorates after deploying. This is particularly
problematic in adversarial jamming situations, where a strong
interference signal is used to prevent communications. To
address this issue, Zhang et al [4] recently proposed an online
learning approach to help improve AMC in a strong interference
or jamming situation. In this approach, the transmitter
periodically sends out a known “dictionary” of the different
modulations it uses, and the receiver uses this dictionary to train
a neural network that is customized for AMC in the current high
interference environment. The receiver knows when the
dictionary will be sent out and is thus able to assign class labels
to the signals received in order to carry out the training.

Deep network learning is computationally expensive and
thus is typically done on high performance computing systems.
In a high interference environment, however, communications
to the cloud would be disrupted and thus the receiver would have
to do the training directly on its own hardware. This would
require highly energy efficient on-chip training DNN chips. No
commercial edge processor offers online learning for deep
learning applications so far.

This work proposed an extremely low power AMC system
with online learning capabilities in a wireless adversarial
jamming environment. The system utilizes the emerging
memristor devices for developing the Computing in-Memory
(CIM) neuromorphic processor for on-chip training. The
memristor crossbar circuit is capable of computing
multiplication and addition simultaneously in highly parallel
fashion to perform the dot-product of artificial neural networks.
This work used a transposable two-column memristive kernel
circuit for implementing Convolutional Neural Networks
(CNNs). Analog to digital converters (ADCs), digital to analog
converters (DACs), and on-chip memory units are also needed
to perform on-chip training in the analog domain. We developed
a custom python-numpy platform to determine the training
accuracy in such memristor systems. We compared the
performance of the memristor system with a highly energy



efficient digital computing system that would be computing in
16 bit floating point (FP16) precision. We assumed a 40 nm
process technology was used for both memristor and digital
systems.

Our experimental setup used two physical transmitters and a
physical receiver for the online learning experiment. We
generated our own dataset and used it for training our networks.
One transmitter sends a sequence of 12 modulation classes while
the second transmitter sends an adversarial jamming signal to
block the original signal. Both transmitters were at the same
distance from the receiver and the jamming signal was much
stronger than the main transmission (0dB vs -30dB). Both
transmitters used the same center frequency. The receiver used
two LeNet-5 networks [5] to identify the modulation class.
LeNet-5 was used to reduce the training simulation time in
memristor based systems. One of the networks was
preprogrammed, while the other was trained online during at
real-time in the adversarial jamming environment.

We found that the AMC system using the pretrained network
did poorly at AMC during jamming, with its accuracy dropping
from 97% down to down to 15% and 12% for digital and
memristor based systems at 0 dB interference. On the other
hand, with online learning, the AMC accuracy dropped down to
71% and 69% for digital and memristor systems respectively at
0 dB interference. At -12 dB interference, the online learning
AMCs have shown 85% and 81.5% accuracy.

Our memristor based online learning chip design was much
more efficient than the digital FP16 chip design. We show that
to achieve the same level of accuracy, the memristor system
needed 40 times less energy than the FP16 system. Additionally,
the memristor system had a 20 times higher throughput
compared to the FP16 system, leading to faster training speeds.
This makes the memristor system significantly more efficient
than the digital system.

As far as we know, this is the first study of using memristor
based analog neuromorphic computing paradigm for
implementation of DNN based AMC systems for wireless
modulation signal detection in an adversarial jamming
environment. The rest of the article is organized as
follows: section II presents the related works. Section III
described the wireless modulation dataset, section IV presents
memristor based analog computing systems. Section V presents
the experimental setup of online learning. Section VI describes
the results of this study, and section VII presents the processor
performance and energy efficiency, and section VIII presents a
brief conclusion.

II. RELATED WORKS

Traditional approaches for AMC include likelihood and
feature based techniques [6]. The drawback of these is that they
need precise understanding of received signals and are
computationally expensive. Recently, deep learning based
approaches for AMC have become popular due to their better
performance.

F. Meng et al. is one of the pioneers of using DNN models
for implementing AMC. They achieved about 63% accuracy
with 24 modulation classes [7]. T. Huynh-The et al. and S. -H.
Kim et al. used asymmetric kernels and customized

convolutional blocks to achieve 93.59% and 94.94% accuracy
respectively [8]. Almost all of the recent works on AMC using
DNNSs are based on pretrained models and their performance
declines in real-world applications due to noise interference. To
address this, S. Zhang et al. proposed an AMC model with
online learning capabilities to maintain a good automatic
spectrum detection accuracy [4]. Their experiments used a
complex ResNet network model for the experiment. This model
is difficult to train at the edge at ultra low power because of the
huge amount of intermediate data produced during training, and
the large amount of computations needed for this data.

The works described above are implemented in DNN
frameworks and trained in GPU based high performance
computing systems. This work proposed a memristor based non-
von Neumann hardware implementation of a deep learning
based AMC system with online learning capability. The
memristor based analog CIM neuromorphic system is presented
in our prior work [9]. This work is the first implementation of
memristor based AMC systems. Our proposed work
implemented online training of an intelligent AMC system for
edge platforms.

III. WIRELESS SPECTRUM DATA

The dataset for this study was obtained using a three
PlutoSDR radio setup as shown in Fig. 1. Further details on this
are available in [4]. Two radios were set up as transmitters (Tx-
1, and Tx-2) and one as a receiver (Rx). In this experiment, both
transmitters are situated at the same distance from the
receiver. In this setup, transmitter Tx-1 is the primary source
that receiver Rx is trying to communicate with. Transmitter Tx-
2 is an interference source to jam the communications between
Tx-1 and Rx. Radio Tx-2 transmitted a 128-QAM interference
signal with a gain that was varied from -28 to 0 dB and the target
transmitter (Tx-1) sent signals with a constant gain of -30dB.
The 12 modulation classes shown in Table I were used in this
study by transmitter Tx-1. The radios transmit signals with a 902
MHz center frequency.

Receiver connected
to desktop computer

Fig. 1: Experimental setup consisting of three Analog Devices
PlutoSDRs, with transmitter, and source, and receiver unit.

To allow adaptability to the radio environment, transmitter
Tx-1 periodically sends out a dictionary of training data at
predetermined times. This dictionary consists of the signals of
different modulations being transmitted in a predetermined
sequence for a predetermined amount of time, as shown in Fig.



2. As the receiver knows what modulation classes each of the
dictionary samples received is, it can assign class labels and train
on the received dictionary signals.

Once the dictionary is received by the receiver, the in-phase and
quadrature components of the signal are split into 2x1024 arrays
analogous to RADIOML 2018.01A dataset [10]. The dataset has
a total of 30,000 samples with 2500 in each modulation
spectrum class. Three sets of transmissions are collected, a clean
signal transmission (with only Tx-1 transmitting), a dictionary
transmission under interference (with both Tx-1 and Tx-2
transmitting), and a jammed signal transmission (with both
transmitters transmitting).

Fig. 3 an organizational view of our setup. Receiver Rx uses two
separate DNN networks: one pretrained (Net-1) and one online
trained (Net-2). Net-1 is a pretrained model, which is trained
offline, perhaps using a large dataset on powerful computing
systems. It is capable of detecting a large variety of modulation
distortions. Net-2 is programmed through online learning using
the dictionary transmitted by Tx-1. As a result, Net-2 is able to
adapt to a specific network environment and thus have better
accuracy than Net-1 for unknown or unusual jamming
situations.

Mod 12| Pause Pause | Mod 2 | Pause | Mod 1 Start
Data Sequence

Transmitter | ] 4 Receiver

Fig.2 Data sequence for neural network training.
Tx-1: Transmits 12 R
Modulation Classes - Net-1
with Gain of -30 dB =3 Pretrained

Rx: Net-1and Net-2
uses for modulation
classification

Tx-2: Transmits L
128-QAM with Net-2 Online
Gain of -28 to 0 dB Trained

Fig. 3: Online training in wireless jamming environment.

TABLE L WIRELESS MODULATION SPECTRUM CLASSES
Class Number | Modulation Category

1 BPSK
2 QPSK
3 8PSK
4 16QAM
5 64QAM
6 GFSK
7 CPFSK
8 PAM4
9 B-FM

10 DSB-AM-WC

11 DSB-AM-SC

12 SSB-AM

IV. MEMRITOR BASED ANALOG COMPUTING SYSTEMS

Memristors are resistive memory devices, whose resistive
state can be programmed and they then retain this resistance
level. State-of-the-art memristor devices can be programmed up
to thousands of states for deep learning applications
[11]. Memristors are generally used in crossbar circuits to
perform neural network computational primitives of Matrix-
Vector-Multiplication (MVM) in the analog domain. A simple
crossbar kernel or neuron circuit is presented in Fig.4. This is a
two column kernel representation to accommodate positive and
negative synaptic weights. The algebraic difference of
conductance of two adjacent devices represents a synaptic
weight. Op-amp circuits are used as summing amplifiers for
carrying out the resultant dot-product of the neural system and
give a corresponding voltage output. The crossbar circuit
outputs can be represented as Eq. (1). Fig. 5 is composed of M
kernels connected to form a neural network layer.

A DNN model can be mapped onto multiple inter-connected
crossbar circuits. A transposable crossbar circuit is
implemented in Fig. 5 for performing CNN training operations.
The crossbar maps the M kernels with the dimension of k. The
input feature has C channels which gives a (kxkxC) by M
crossbar size for computing a convolution layer in one shot. The
crossbar circuit is orchestrated with digital to analog converters
(DAC), analog to digital converters (ADC), weight update
circuits, buffer storage for storing activations, and analog
sensing circuits to read column outputs. The details of all these
circuit elements are outside the scope of this study. Instead, we
focus on the CNN training process on memristor systems for
online learning and its application to adaptive wireless spectrum
detection.

N+1

Y = f(z x;. (o —07))

Memristor

[

Fig. 4: Memristor based analog computing kernel circuit.
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Fig. 5: The crossbar circuit presenting a CNN layer with M
number of Kernels and input channel width C.

Fig.6 presents the layout of a memristor based analog in-
memory computing processor. The design of the processor level
architecture is inspired by H. Jiang et al. [12]. The high-level
architecture consists of an array of interconnected tiles and each
tile consists of multiple process engines. A process engine may
contain one or multiple crossbar array(s). The processor has
separate activation, pooling, and weight update units. The
accumulator unit is an array of op-amp circuits that work as
summing amplifiers. The I/O buffer and global buffer are used
for storing intermediate parameters during the on-chip training
processes. No off-chip memory is used in the current
architecture to remove the off-chip access energy and data
transmission latency. The weight update module is activated
during the weight update phase of a DNN layer.

Tile Input Buffer | =Tt ~
] =]
5 = Tile | | Tile |we| Tile
|| 2
5|2 & ¥
B % I
-
g 5 =
£, . . .
Eu . ] ‘2 Tile Tile |- | Tile
pra— -
Crossbar < -
¢ - — S
a8l _ = Global Buffer
: g
RS il 2% 3
= —at =
| il 18
B < © Weight Update Module
= —

Fig.6: Layout of memristor based on-chip training system.

V. EXPERIMENTAL SETUP FOR ONLINE LEARNING

In this study, we assumed a memristor and digital system for
evaluation. All the hardware parameters were estimated based
on a 40 nm process technology. The memristor system was
specified in detail (see below) while the digital system is
described at the end of this section.

In this study, we used the LeNet-5 network with three
convolutional layers, two average pooling layers, and two fully
connected layers to process the wireless modulation data. The
feature space of the wireless modulation spectrum is an
asymmetric vector array, which is 2x1024. Thus, asymmetric
kernels are implemented in the crossbar array. The layer-wise
kernel dimensions are (1x3)x1x32, (1x3)x32x64, and
(2x3)x64x64 and the average-pooling window is 1x2. There are
two fully connected layers, one with 64 and the other with 12
output neurons. The full CNN architecture implementing LeNet-
5 is presented in Fig. 7.

The crossbar sizes for three convolution layers are
3x(32x2), 92%(64x2), and 384x(64%2). The output feature size
after the third convolution layer is 252, which makes the weight
matrix size 16128%(64x2) for FC-1 and the array size for FC-2
is 64%(12x2) as the classification layer. The ADC and DAC bit-
widths are set to 10-bits for both forward and backward
propagation. The high resistive state and low resistive state of
the memristor devices are considered 2 MQ and 5KQ. The
experiment computes the activation and error gradient in the
digital domain. The training system assumes there are M ADCs
for the faster training process.

For both the pretrained (Net-1) and the online trained (Net-
2) networks in Fig 3, we calculated the accuracy for modulation
classification. For the digital system, we used TensorFlow to
calculate the accuracies. For the memristor systems, we
calculated the accuracies using a custom software we developed.

The use of ADCs in the memristor circuits leads to a
quantization of the op-amp outputs and reduces the training
accuracy of the memristor system compared to a digital training
system. It is essential to capture the effect of this to ensure
accurate modeling of training in memristor circuits. Thus we
developed a python-numpy based deep learning training
software that modeled the training of the LeNet-5 network in our
memristor crossbar based training circuits. This software is
flexible enough to model other types of networks and
ADC/DAC bit widths.

Conv-3-  FC-1- FC-2

" Input>

Conv-1+P, > Conv-2 + P,>
Fig. 7: LeNet-5 architecture with 3 convolutional layers, 2
fully connected layers and 2 average pooling layers.

For the digital system, we considered only the energy
consumption of key memory and compute elements. We
assumed that both the memristor and digital systems were able
to compute the same number of operations per cycle, due to the
digital system having an array of compute units. The array sizes
for the digital system were the same as the memristor crossbar



sizes specified below. The digital compute arrays perform
MVM operations in FP16 systems but all the parameters are
stored using an off-chip memory. The memory and digital arrays
are connected with the data bus system. A controller controls
all data movement and MVM operations. We have considered
SRAM memory utilized for storing training parameters in both
memristor and FP16 systems. The energy consumption of the
control system is not considered, but the area is.

For the digital system, but took only the memory or
computation energies for that system. We ignored all other
energies, including control. Thus our digital system energy
would be the equivalent of a highly optimized digital system. All
digital computations were assumed to be done in FP16 for
energy and timing considerations. However the accuracies for
the digital system were calculated using TensorFlow, which is
using FP64.

The computing speed of the FP16 system was estimated
using parameters from L. Li et al. [13]. The memory energy
consumption was estimated with a 40 nm ultra-low leakage
memory SRAM memory design by J. Wang et al. [14], and the
memory area was estimated with Hewlett Packard’s CACTI-P
memory estimation software [15]. The ADCs are often one of
the most energy hungry pieces of hardware in analog processors.
The ADC energy consumption and area was scaled and
estimated based on the experimental results from Y. -H. Tsai et
al. [16].

VI. RESULTS AND DISCUSSION

A. Offline Pretraining and Performance

The offline training is performed both in memristor and
digital computing systems in Net-1 (see Fig. 3). The digital
computing utilized traditional deep learning frameworks. The
memristor systems performed analog MVM computing with 10-
bit ADCs and DACs. The minibatch training methodology is
utilized with a minibatch size of 64. The received dataset had
30,000 samples, and was split 90% and 10% for training and
testing respectively. The training results are presented in Fig. 8.
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Fig. 8: Offline pretraining error convergence of memristor and
digital AMC systems.

The memristor based training converged a little slower than
traditional digital computing systems. After each epoch the
testing dataset was used for model validation. Fig. 9 presents the

accuracy vs. epoch curve of a pretrained model. The pretrained
model achieved 98.4% and 97.2% accuracy respectively for
digital and memristor based analog processors. This accuracy is
recorded after 100 epochs of training for both systems.
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Fig. 9: Accuracy vs. epoch of the pretrained AMC models.

B. Online Training

The online learning model for AMC is presented in Fig. 1.
Tx-1 transmits the dictionary sequence of predetermined
wireless modulation signals with a constant -30dB gain. Tx-2
transmits a jamming signal that interferes with Tx-1’s
transmissions and makes it challenging for Rx to classify the
modulations used by Tx-1. This is because the pretrained
network on Rx (Net-1) may not have had the current
configuration of interference in its training dataset.

The online learning technique equips the receiver radio with
knowledge about the current environment and thus allows it to
adapt to the interference signals. The receiver can fine tune the
AMC network for better performance using the dictionary sent
by the transmitter. Although the online learning helps to
improve the performance in jamming environments compared
to the pretrained AMC model, the wireless detection accuracy
does decline with higher interference (ie Tx-2 gain). as the
jamming signal becomes stronger and learning on this signal
becomes more challenging. Implementing more complex DNN
networks could help to maintain better accuracy, but it will be
an expensive computation on the edge devices.

Fig.10 presents the accuracy for varying Tx-2 gain. Tx-2
transmits a 128 QAM modulation signal from -28 dB to 0 dB.
At the beginning, Tx-2 was in OFF mode, meaning there was no
jamming signal, and thus the AMC detection accuracy was
similar for the pretrained and online learning models. Once the
adversarial jamming signal was applied, the accuracy of the
pretrained AMC model dropped down to 15% and 12% for
digital and memristor based systems at 0 dB. On the other hand,
with online learning, the AMC accuracy dropped down to 71%
and 69% for digital and memristor systems respectively at 0
dB. At -12 dB gain on Tx-2, the online learning AMCs have
shown 85% and 81.5% accuracy. The accuracy of the online
learning network could be improved by using deeper networks,
but these require much more powerful computing facilities. The
higher energy costs related to the deeper networks would likely
make them too expensive for edge applications.
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Fig. 10: Online learning and AMC wireless detection accuracy
vs. strength of jamming signal.

VII. SYSTEM PERFORMANCE AND ENERGY ANALYSIS

Energy consumption and performance analysis is crucial for
measuring the robustness of any hardware. We estimated the
energy, power, and processor performance using detailed
system evaluations. In the analog processor design, the data
conversion modules, and memory modules were the most
expensive pieces of hardware. The system needs 357 KB of on-
chip memory for training a modulation signal. This is needed to
store intermediate training parameters generated in the forward
pass and to be consumed during the backward propagation. To
compute the energy consumption of the memory module, both
the static and dynamic energy consumptions are considered for
more realistic energy estimation. We found that memory
modules consume and data conversion modules take about 48%
and 31% of total energy respectively in the memristor system.

Table II shows the high-level hardware parameters of the FP16
and memristor based analog in-memory and neuromorphic
computing processors with 10-bit ADC/DAC. We see that
memristor in-memory computing systems perform about 20
times more operations/sec for wireless modulation spectrum
training operations while consuming 50.6 times less energy than
the FP16 system in one training epoch.

TABLE II. PERFORMANCE AND COST OF MEMRISTOR AND FP-16
TRAINING SYSTEMS

Parameters Memristor FP-16
Energy/Epoch (J) 0.098 4.96
Time/sample (us) 26.1 2069
Power (W) 0.0023 0.075
Performance (GOPS) 258 13.2
Power Efficiency (TOPS/W) 5.67 0.82
Area (mm”"2) 5.49 6.76

Performance/unit area

(GOPS/mm"2) 254 1.66

The FP16 system needs more memory for storing
intermediate training parameters and weight gradients. In this
system, the memory occupies about 80% of the total chip area.
The ALU arrays, control units, data bus, and other digital

circuits occupy the remaining 20% of the FP16 chip area. As the
memristor system stores the weight matrix within the memristor
crossbars, this chip needs less memory than the FP16 chip. Note
that the memristor systems still needs I/O buffer memory, which
is about 47% of the overall chip area.

Fig. 11 presents the energy consumption vs. accuracy loss of
a memristor based neuromorphic computing system and an
FP16 processor when training on the same network and dataset.
The data shows that to reach an accuracy loss of 2.8% in the
pretrained model, the FP16 chip consumes 40 times more energy
than a memristor based analog processor
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Fig. 11: Energy consumption vs. accuracy loss during training
operation. Energy consumption for memristor and FP-16
systems 10.08 J and 400 J to reach 2.8 % accuracy loss.

VIII. CONCLUSION

In this article we have developed a low power memristor
based analog computing processor with online learning
capability. We have applied it to wireless modulation signal
classification under adversarial jamming environments. Our
results show with the main transmission at -30dB and the
jamming at 0dB (both at the same distance from the receiver and
using the same center frequency), our online learning algorithm
was able to achieve a modulation classification accuracy of
69%, while a pretrained system had an accuracy of only 12%.
We also compared our memristor based online learning chip
with a digital FP16 chip, and show that to achieve the same level
of accuracy, the memristor system needed 40 times less energy
than the FP16 system. Finally, the memristor system had a 20
times higher throughput compared to the FP16 system, leading
to faster training speeds. This makes the memristor system
significantly more efficient than the digital system.
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