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Abstract— A memristor based neuromorphic processor for on-

chip training is presented. Additionally, a novel approach utilizing 

in-situ learning to improve wireless signal modulation 

classification under adversarial jamming is described. The 

neuromorphic system is over 50× energy efficient than optimized 

digital systems at this wireless signal modulation task for similar 

accuracy levels.  
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I. INTRODUCTION  

Wireless communication uses various types of modulation 
techniques, such as Phase Shift Keying (PSK), Frequency Shift 
Keying (FSK), Quadrature Amplitude Modulation 
(QAM).  Modulation techniques help to compress the signal, so 
that the message can be sent with limited band widths. 
Automatic Modulation Classification (AMC) is a technique to 
detect the wireless signals and identify the modulation class. 
AMC has a wide range of applications in intelligent and 
Cognitive Radio (CR) [2]. CR networks detect the received 
signal without knowing the type of modulation technique used. 
AMC classifies the modulation types from complex-valued raw 
radio signals without knowing the signal or the channel 
parameters. 

The state-of-the-art approach of AMC technique is utilizing 
artificial intelligence, in particular Deep Neural Networks 
(DNN) for better performance in dynamic spectrum access [3]. 
However, the DNN training is performed in Graphics 
Processing Units (GPU) based high power computing facilities, 
such as in cloud computing or data centers. These are expensive 
computing facilities and these GPU based computing facilities 
are not feasible for low powered edge devices. 

The traditional pretrained DNN models for AMC are 
severely affected by various noise interference, and thus their 

performance deteriorates after deploying. This is particularly 
problematic in adversarial jamming situations, where a strong 
interference signal is used to prevent communications. To 
address this issue, Zhang et al [4] recently proposed an online 
learning approach to help improve AMC in a strong interference 
or jamming situation. In this approach, the transmitter 
periodically sends out a known “dictionary” of the different 
modulations it uses, and the receiver uses this dictionary to train 
a neural network that is customized for AMC in the current high 
interference environment. The receiver knows when the 
dictionary will be sent out and is thus able to assign class labels 
to the signals received in order to carry out the training. 

Deep network learning is computationally expensive and 
thus is typically done on high performance computing systems. 
In a high interference environment, however, communications 
to the cloud would be disrupted and thus the receiver would have 
to do the training directly on its own hardware. This would 
require highly energy efficient on-chip training DNN chips. No 
commercial edge processor offers online learning for deep 
learning applications so far. 

This work proposed an extremely low power AMC system 
with online learning capabilities in a wireless adversarial 
jamming environment. The system utilizes the emerging 
memristor devices for developing the Computing in-Memory 
(CIM) neuromorphic processor for on-chip training. The 
memristor crossbar circuit is capable of computing 
multiplication and addition simultaneously in highly parallel 
fashion to perform the dot-product of artificial neural networks. 
This work used a transposable two-column memristive kernel 
circuit for implementing Convolutional Neural Networks 
(CNNs).  Analog to digital converters (ADCs), digital to analog 
converters (DACs), and on-chip memory units are also needed 
to perform on-chip training in the analog domain. We developed 
a custom python-numpy platform to determine the training 
accuracy in such memristor systems. We compared the 
performance of the memristor system with a highly energy 



efficient digital computing system that would be computing in 
16 bit floating point (FP16) precision. We assumed a 40 nm 
process technology was used for both memristor and digital 
systems.  

Our experimental setup used two physical transmitters and a 
physical receiver for the online learning experiment. We 
generated our own dataset and used it for training our networks. 
One transmitter sends a sequence of 12 modulation classes while 
the second transmitter sends an adversarial jamming signal to 
block the original signal. Both transmitters were at the same 
distance from the receiver and the jamming signal was much 
stronger than the main transmission (0dB vs -30dB). Both 
transmitters used the same center frequency. The receiver used 
two LeNet-5 networks [5] to identify the modulation class. 
LeNet-5 was used to reduce the training simulation time in 
memristor based systems. One of the networks was 
preprogrammed, while the other was trained online during at 
real-time in the adversarial jamming environment. 

We found that the AMC system using the pretrained network 
did poorly at AMC during jamming, with its accuracy dropping 
from 97% down to down to 15% and 12% for digital and 
memristor based systems at 0 dB interference. On the other 
hand, with online learning, the AMC accuracy dropped down to 
71% and 69% for digital and memristor systems respectively at 
0 dB interference.  At -12 dB interference, the online learning 
AMCs have shown 85% and 81.5% accuracy. 

Our memristor based online learning chip design was much 
more efficient than the digital FP16 chip design. We show that 
to achieve the same level of accuracy, the memristor system 
needed 40 times less energy than the FP16 system. Additionally, 
the memristor system had a 20 times higher throughput 
compared to the FP16 system, leading to faster training speeds. 
This makes the memristor system significantly more efficient 
than the digital system. 

As far as we know, this is the first study of using memristor 
based analog neuromorphic computing paradigm for 
implementation of DNN based AMC systems for wireless 
modulation signal detection in  an adversarial jamming 
environment. The rest of the article is organized as 
follows:  section II presents the related works. Section III 
described the wireless modulation dataset, section IV presents 
memristor based analog computing systems. Section V presents 
the experimental setup of online learning. Section VI describes 
the results of this study, and section VII presents the processor 
performance and energy efficiency, and section VIII presents a 
brief conclusion.   

II. RELATED WORKS 

Traditional approaches for AMC include likelihood and 
feature based techniques [6]. The drawback of these is that they 
need precise understanding of received signals and are 
computationally expensive. Recently, deep learning based 
approaches for AMC have become popular due to their better 
performance.  

F. Meng et al. is one of the pioneers of using DNN models 
for implementing AMC. They achieved about 63% accuracy 
with 24 modulation classes [7]. T. Huynh-The et al. and S. -H. 
Kim et al. used asymmetric kernels and customized 

convolutional blocks to achieve 93.59% and 94.94% accuracy 
respectively [8]. Almost all of the recent works on AMC using 
DNNs are based on pretrained models and their performance 
declines in real-world applications due to noise interference. To 
address this, S. Zhang et al. proposed an AMC model with 
online learning capabilities to maintain a good automatic 
spectrum detection accuracy [4]. Their experiments used a 
complex ResNet network model for the experiment. This model 
is difficult to train at the edge at ultra low power because of the 
huge amount of intermediate data produced during training, and 
the large amount of computations needed for this data. 

The works described above are implemented in DNN 
frameworks and trained in GPU based high performance 
computing systems. This work proposed a memristor based non-
von Neumann hardware implementation of a deep learning 
based AMC system with online learning capability. The 
memristor based analog CIM neuromorphic system is presented 
in our prior work [9]. This work is the first implementation of 
memristor based AMC systems. Our proposed work 
implemented online training of an intelligent AMC system for 
edge platforms.  

III. WIRELESS SPECTRUM DATA 

The dataset for this study was obtained using a three 
PlutoSDR radio setup as shown in Fig. 1. Further details on this 
are available in [4]. Two radios were set up as transmitters (Tx-
1, and Tx-2) and one as a receiver (Rx). In this experiment, both 
transmitters are situated at the same distance from the 
receiver.  In this setup, transmitter Tx-1 is the primary source 
that receiver Rx is trying to communicate with. Transmitter Tx-
2 is an interference source to jam the communications between 
Tx-1 and Rx. Radio Tx-2 transmitted a 128-QAM interference 
signal with a gain that was varied from -28 to 0 dB and the target 
transmitter (Tx-1) sent signals with a constant gain of -30dB. 
The 12 modulation classes shown in Table I were used in this 
study by transmitter Tx-1. The radios transmit signals with a 902 
MHz center frequency. 

 

Fig. 1: Experimental setup consisting of three Analog Devices 
PlutoSDRs, with transmitter, and source, and receiver unit.  

To allow adaptability to the radio environment, transmitter 
Tx-1 periodically sends out a dictionary of training data at 
predetermined times. This dictionary consists of the signals of 
different modulations being transmitted in a predetermined 
sequence for a predetermined amount of time, as shown in Fig. 



2. As the receiver knows what modulation classes each of the 
dictionary samples received is, it can assign class labels and train 
on the received dictionary signals.  

Once the dictionary is received by the receiver, the in-phase and 
quadrature components of the signal are split into 2×1024 arrays 
analogous to RADIOML 2018.01A dataset [10]. The dataset has 
a total of 30,000 samples with 2500 in each modulation 
spectrum class. Three sets of transmissions are collected, a clean 
signal transmission (with only Tx-1 transmitting), a dictionary 
transmission under interference (with both Tx-1 and Tx-2 
transmitting),  and a jammed signal transmission (with both 
transmitters transmitting).  

Fig. 3 an organizational view of our setup. Receiver Rx uses two 
separate DNN networks: one pretrained (Net-1) and one online 
trained (Net-2). Net-1 is a pretrained model, which is trained 
offline, perhaps using a large dataset on powerful computing 
systems. It is capable of detecting a large variety of modulation 
distortions. Net-2 is programmed through online learning using 
the dictionary transmitted by Tx-1. As a result, Net-2 is able to 
adapt to a specific network environment and thus have better 
accuracy than Net-1 for unknown or unusual jamming 
situations. 

 

Fig.2 Data sequence for neural network training. 

 

Fig. 3: Online training in wireless jamming environment.  

TABLE I.  WIRELESS MODULATION SPECTRUM CLASSES 

Class Number Modulation Category 

1 BPSK 

2 QPSK 

3 8PSK 

4 16QAM 

5 64QAM 

6 GFSK 

7 CPFSK 

8 PAM4 

9 B-FM 

10 DSB-AM-WC 

11 DSB-AM-SC 

12 SSB-AM 

 

IV. MEMRITOR BASED ANALOG COMPUTING SYSTEMS 

Memristors are resistive memory devices, whose resistive 
state can be programmed and they then retain this resistance 
level. State-of-the-art memristor devices can be programmed up 
to thousands of states for deep learning applications 
[11].  Memristors are generally used in crossbar circuits to 
perform neural network computational primitives of Matrix-
Vector-Multiplication (MVM) in the analog domain. A simple 
crossbar kernel or neuron circuit is presented in Fig.4. This is a 
two column kernel representation to accommodate positive and 
negative synaptic weights. The algebraic difference of 
conductance of two adjacent devices represents a synaptic 
weight. Op-amp circuits are used as summing amplifiers for 
carrying out the resultant dot-product of the neural system and 
give a corresponding voltage output. The crossbar circuit 
outputs can be represented as Eq. (1). Fig. 5 is composed of M 
kernels connected to form a neural network layer.  

A DNN model can be mapped onto multiple inter-connected 
crossbar circuits.  A transposable crossbar circuit is 
implemented in Fig. 5 for performing CNN training operations. 
The crossbar maps the M kernels with the dimension of k. The 
input feature has C channels which gives a (k×k×C) by M 
crossbar size for computing a convolution layer in one shot. The 
crossbar circuit is orchestrated with digital to analog converters 
(DAC), analog to digital converters (ADC), weight update 
circuits, buffer storage for storing activations, and analog 
sensing circuits to read column outputs. The details of all these 
circuit elements are outside the scope of this study. Instead, we 
focus on the CNN training process on memristor systems for 
online learning and its application to adaptive wireless spectrum 
detection. 

𝑦𝑗 = 𝑓(∑ 𝑥𝑖 . (𝜎𝑖
+ − 𝜎𝑖

−)

𝑁+1

𝑖=1

 ) 

 

Fig. 4: Memristor based analog computing kernel circuit. 



 

Fig. 5: The crossbar circuit presenting a CNN layer with M 
number of Kernels and input channel width C.  

Fig.6 presents the layout of a memristor based analog in-
memory computing processor. The design of the processor level 
architecture is inspired by H. Jiang et al. [12]. The high-level 
architecture consists of an array of interconnected tiles and each 
tile consists of multiple process engines. A process engine may 
contain one or multiple crossbar array(s). The processor has 
separate activation, pooling, and weight update units. The 
accumulator unit is an array of op-amp circuits that work as 
summing amplifiers. The I/O buffer and global buffer are used 
for storing intermediate parameters during the on-chip training 
processes. No off-chip memory is used in the current 
architecture to remove the off-chip access energy and data 
transmission latency. The weight update module is activated 
during the weight update phase of a DNN layer.  

 

Fig.6: Layout of memristor based on-chip training system.   

V. EXPERIMENTAL SETUP FOR ONLINE LEARNING 

In this study, we assumed a memristor and digital system for 
evaluation. All the hardware parameters were estimated based 
on a 40 nm process technology. The memristor system was 
specified in detail (see below) while the digital system is 
described at the end of this section.  

In this study, we used the LeNet-5 network with three 
convolutional layers, two average pooling layers, and two fully 
connected layers to process the wireless modulation data. The 
feature space of the wireless modulation spectrum is an 
asymmetric vector array, which is 2×1024. Thus, asymmetric 
kernels are implemented in the crossbar array. The layer-wise 
kernel dimensions are (1×3)×1×32, (1×3)×32×64, and 
(2×3)×64×64 and the average-pooling window is 1×2. There are 
two fully connected layers, one with 64 and the other with 12 
output neurons. The full CNN architecture implementing LeNet-
5 is presented in Fig. 7. 

 The crossbar sizes for three convolution layers are 
3×(32×2), 92×(64×2), and 384×(64×2). The output feature size 
after the third convolution layer is 252, which makes the weight 
matrix size 16128×(64×2) for FC-1 and the array size for FC-2 
is 64×(12×2) as the classification layer. The ADC and DAC bit-
widths are set to 10-bits for both forward and backward 
propagation. The high resistive state and low resistive state of 
the memristor devices are considered 2 MΩ and 5KΩ.  The 
experiment computes the activation and error gradient in the 
digital domain. The training system assumes there are M ADCs 
for the faster training process.  

For both the pretrained (Net-1) and the online trained (Net-
2) networks in Fig 3, we calculated the accuracy for modulation 
classification. For the digital system, we used TensorFlow to 
calculate the accuracies. For the memristor systems, we 
calculated the accuracies using a custom software we developed.  

The use of ADCs in the memristor circuits leads to a 
quantization of the op-amp outputs and reduces the training 
accuracy of the memristor system compared to a digital training 
system. It is essential to capture the effect of this to ensure 
accurate modeling of training in memristor circuits. Thus we 
developed a python-numpy based deep learning training 
software that modeled the training of the LeNet-5 network in our 
memristor crossbar based training circuits. This software is 
flexible enough to model other types of networks and 
ADC/DAC bit widths. 

 

Fig. 7: LeNet-5 architecture with 3 convolutional layers, 2 
fully connected layers and 2 average pooling layers.  

For the digital system, we considered only the energy 
consumption of key memory and compute elements. We 
assumed that both the memristor and digital systems were able 
to compute the same number of operations per cycle, due to the 
digital system having an array of compute units. The array sizes 
for the digital system were the same as the memristor crossbar 



sizes specified below. The digital compute arrays perform 
MVM operations in FP16 systems but all the parameters are 
stored using an off-chip memory. The memory and digital arrays 
are connected with the data bus system.  A controller controls 
all data movement and MVM operations. We have considered 
SRAM memory utilized for storing training parameters in both 
memristor and FP16 systems. The energy consumption of the 
control system is not considered, but the area is. 

For the digital system, but took only the memory or 
computation energies for that system. We ignored all other 
energies, including control. Thus our digital system energy 
would be the equivalent of a highly optimized digital system. All 
digital computations were assumed to be done in FP16 for 
energy and timing considerations. However the accuracies for 
the digital system were calculated using TensorFlow, which is 
using FP64. 

The computing speed of the FP16 system was estimated 
using parameters from L. Li et al. [13]. The memory energy 
consumption was estimated with a 40 nm ultra-low leakage 
memory SRAM memory design by J. Wang et al. [14], and the 
memory area was estimated with Hewlett Packard’s CACTI-P 
memory estimation software [15].  The ADCs are often one of 
the most energy hungry pieces of hardware in analog processors. 
The ADC energy consumption and area was scaled and 
estimated based on the experimental results from Y. -H. Tsai et 
al. [16]. 

VI. RESULTS AND DISCUSSION 

A. Offline Pretraining and Performance 

The offline training is performed both in memristor and 
digital computing systems in Net-1 (see Fig. 3). The digital 
computing utilized traditional deep learning frameworks. The 
memristor systems performed analog MVM computing with 10-
bit ADCs and DACs. The minibatch training methodology is 
utilized with a minibatch size of 64. The received dataset had 
30,000 samples, and was split 90% and 10% for training and 
testing respectively.  The training results are presented in Fig. 8.  

 

Fig. 8: Offline pretraining error convergence of memristor and 
digital AMC systems.   

The memristor based training converged a little slower than 
traditional digital computing systems. After each epoch the 
testing dataset was used for model validation. Fig. 9 presents the 

accuracy vs. epoch curve of a pretrained model. The pretrained 
model achieved 98.4% and 97.2% accuracy respectively for 
digital and memristor based analog processors. This accuracy is 
recorded after 100 epochs of training for both systems.  

 

Fig. 9: Accuracy vs. epoch of the pretrained AMC models. 

B. Online Training  

The online learning model for AMC is presented in Fig. 1. 
Tx-1 transmits the dictionary sequence of predetermined 
wireless modulation signals with a constant -30dB gain. Tx-2 
transmits a jamming signal that interferes with Tx-1’s 
transmissions and makes it challenging for Rx to classify the 
modulations used by Tx-1. This is because the pretrained 
network on Rx (Net-1) may not have had the current 
configuration of interference in its training dataset.  

The online learning technique equips the receiver radio with 
knowledge about the current environment and thus allows it to 
adapt to the interference signals. The receiver can fine tune the 
AMC network for better performance using the dictionary sent 
by the transmitter. Although the online learning helps to 
improve the performance in jamming environments compared 
to the pretrained AMC model, the wireless detection accuracy 
does decline with higher interference (ie Tx-2 gain).  as the 
jamming signal becomes stronger and learning on this signal 
becomes more challenging. Implementing more complex DNN 
networks could help to maintain better accuracy, but it will be 
an expensive computation on the edge devices. 

Fig.10 presents the accuracy for varying Tx-2 gain. Tx-2 
transmits a 128 QAM modulation signal from -28 dB to 0 dB. 
At the beginning, Tx-2 was in OFF mode, meaning there was no 
jamming signal, and thus the AMC detection accuracy was 
similar for the pretrained and online learning models. Once the 
adversarial jamming signal was applied, the accuracy of the 
pretrained AMC model dropped down to 15% and 12% for 
digital and memristor based systems at 0 dB. On the other hand, 
with online learning, the AMC accuracy dropped down to 71% 
and 69% for digital and memristor systems respectively at 0 
dB.  At -12 dB gain on Tx-2, the online learning AMCs have 
shown 85% and 81.5% accuracy. The accuracy of the online 
learning network could be improved by using deeper networks, 
but these require much more powerful computing facilities. The 
higher energy costs related to the deeper networks would likely 
make them too expensive for edge applications. 



 

Fig. 10: Online learning and AMC wireless detection accuracy 
vs. strength of jamming signal.  

VII. SYSTEM PERFORMANCE AND ENERGY ANALYSIS 

Energy consumption and performance analysis is crucial for 
measuring the robustness of any hardware. We estimated the 
energy, power, and processor performance using detailed 
system evaluations. In the analog processor design, the data 
conversion modules, and memory modules were the most 
expensive pieces of hardware. The system needs 357 KB of on-
chip memory for training a modulation signal. This is needed to 
store intermediate training parameters generated in the forward 
pass and to be consumed during the backward propagation. To 
compute the energy consumption of the memory module, both 
the static and dynamic energy consumptions are considered for 
more realistic energy estimation.  We found that memory 
modules consume and data conversion modules take about 48% 
and 31% of total energy respectively in the memristor system.  

Table II shows the high-level hardware parameters of the FP16 
and memristor based analog in-memory and neuromorphic 
computing processors with 10-bit ADC/DAC. We see that 
memristor in-memory computing systems perform about 20 
times more operations/sec for wireless modulation spectrum 
training operations while consuming 50.6 times less energy than 
the FP16 system in one training epoch.   

TABLE II.  PERFORMANCE AND COST OF MEMRISTOR AND FP-16 

TRAINING SYSTEMS  

Parameters Memristor FP-16 

Energy/Epoch (J) 0.098 4.96 

Time/sample (us) 26.1 2069 

Power (W) 0.0023 0.075 

Performance (GOPS) 258 13.2 

Power Efficiency (TOPS/W) 5.67 0.82 

Area (mm^2) 5.49 6.76 

Performance/unit area 

(GOPS/mm^2) 25.4 1.66 

 

The FP16 system needs more memory for storing 
intermediate training parameters and weight gradients. In this 
system, the memory occupies about 80% of the total chip area. 
The ALU arrays, control units, data bus, and other digital 

circuits occupy the remaining 20% of the FP16 chip area. As the 
memristor system stores the weight matrix within the memristor 
crossbars, this chip needs less memory than the FP16 chip. Note 
that the memristor systems still needs I/O buffer memory, which 
is about 47% of the overall chip area. 

Fig. 11 presents the energy consumption vs. accuracy loss of 
a memristor based neuromorphic computing system and an 
FP16 processor when training on the same network and dataset. 
The data shows that to reach an accuracy loss of 2.8% in the 
pretrained model, the FP16 chip consumes 40 times more energy 
than a memristor based analog processor 

 

Fig. 11: Energy consumption vs. accuracy loss during training 
operation. Energy consumption for memristor and FP-16 
systems 10.08 J and 400 J to reach 2.8 % accuracy loss.  

VIII. CONCLUSION 

In this article we have developed a low power memristor 
based analog computing processor with online learning 
capability. We have applied it to wireless modulation signal 
classification under adversarial jamming environments. Our 
results show with the main transmission at -30dB and the 
jamming at 0dB (both at the same distance from the receiver and 
using the same center frequency), our online learning algorithm 
was able to achieve a modulation classification accuracy of 
69%, while a pretrained system had an accuracy of only 12%. 
We also compared our memristor based online learning chip 
with a digital FP16 chip, and show that to achieve the same level 
of accuracy, the memristor system needed 40 times less energy 
than the FP16 system. Finally, the memristor system had a 20 
times higher throughput compared to the FP16 system, leading 
to faster training speeds. This makes the memristor system 
significantly more efficient than the digital system.     
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