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Abstract

This paper proposes a novel approach for learning a data-driven quadratic manifold from high-
dimensional data, then employing this quadratic manifold to derive efficient physics-based reduced-order
models. The key ingredient of the approach is a polynomial mapping between high-dimensional states
and a low-dimensional embedding. This mapping consists of two parts: a representation in a linear sub-
space (computed in this work using the proper orthogonal decomposition) and a quadratic component.
The approach can be viewed as a form of data-driven closure modeling, since the quadratic component
introduces directions into the approximation that lie in the orthogonal complement of the linear sub-
space, but without introducing any additional degrees of freedom to the low-dimensional representation.
Combining the quadratic manifold approximation with the operator inference method for projection-
based model reduction leads to a scalable non-intrusive approach for learning reduced-order models of
dynamical systems. Applying the new approach to transport-dominated systems of partial differential
equations illustrates the gains in efficiency that can be achieved over approximation in a linear subspace.

1 Introduction

Dimensionality reduction plays an important role in compressing high-dimensional datasets and in deriv-
ing reduced-order models that provide computationally efficient approximations of complex system dynam-
ics. Dimensionality reduction via projection onto a low-dimensional linear subspace underlies a large class
of methods, including principal component analysis (PCA) and proper orthogonal decomposition (POD).
While linear dimension reduction is effective in a broad range of applications, many problems do not admit
a fast decaying Kolmogorov n-width, which limits the reduction that can be achieved using a linear sub-
space approximation [1]. To address this limitation, nonlinear dimensionality reduction techniques employ
nonlinear manifolds, introducing richer structure to the low-dimensional representation. In this paper, we
propose a new approach for learning a quadratic manifold from high-dimensional data via the solution of
a linear regression problem. We show how the quadratic manifold approximation can be combined with a
non-intrusive model reduction approach to learn efficient physics-based reduced-order models of dynamical
systems. While the quadratic manifold approximation method proposed here has general applicability, our
particular focus is on the reduced-order modeling of systems governed by parametrized partial differential
equations (PDEs).

Our work is inspired by the quadratic manifold approaches developed for projection-based reduced-order
models in structural dynamics problems featuring geometric nonlinearities [2–4]. That work builds reduced-
order models using quadratic manifolds comprised of vibration modes and modal derivatives, found through
the solution of a generalized eigenvalue problem. The manifold is tangent to a subspace spanned by the
most relevant vibration modes, and its curvature is provided by modal derivatives obtained from sensitivity
analysis of the eigenvalue problem. Here, we seek a more general nonlinear manifold representation that
can be employed to approximate the high-dimensional states that arise in parameterized PDEs. The key
ingredient in our work is a nonlinear mapping, postulated in polynomial form, which provides a basis for
reduction. The mapping can be constructed in non-intrusive fashion using linear regression and is driven
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by physics-based training data. A similar concept was explored in [5], where a kernel principal component
analysis is used to find a nonlinear manifold with lower dimensionality. In that work, the approximation
space is enriched with element-wise cross-products of the snapshots, thereby establishing globally curved
manifolds. Our approach differs from [5] in that we explicitly derive a data-driven basis to represent the
quadratic components of the manifold.

In this paper, we derive the approximation manifold from a representative set of snapshot data. In the
dynamical system setting, each snapshot represents the solution of the underlying governing equations at
different points in time and/or different parameters. Snapshot-based approaches such as PCA and POD
use the singular value decomposition of the snapshot matrix to compute a linear subspace defined by a set
of basis vectors. The corresponding singular values quantify the dimension of the low-dimensional linear
subspace (i.e., number of basis vectors) required to achieve a given level of accuracy in approximating the
high-dimensional state snapshots. Transport-dominated problems form one class of applications for which
approximation in a linear subspace is typically inadequate, due to slow decay of the singular values. Past
approaches to address this challenge include transforming the basis to improve its approximation power.
Such methods include “freezing” [6], shifting of the POD basis [7], and manifold calibration/transformation
techniques [8–15]. These approaches typically rely on substantial additional knowledge about the underlying
problem, such as the particular advection phenomena that govern the basis shifting.

Several approaches have been pursued to address the n-width limitation of linear subspaces from a more
general perspective. These nonlinear model reduction methods aim to break the Kolmogorov barrier by
seeking approximations on nonlinear solution-manifolds instead of in a linear subspace. Such constructions
are characterized by a more rapid decay of the error with respect to number of degrees of freedom [16]. Some
nonlinear methods rely on online adaptive model reduction [17,18] and leverage the local nature of problems
to derive efficient reduced models. Other nonlinear model reduction techniques rely on the use of multiple
linear subspaces (also dictionary approaches) for constructing local approximation subspaces, instead of a
single global approximation [19–22]. More recently, efforts have been made to describe solution-manifolds
through artificial neural networks [23–30]. These methods compute the nonlinear manifold in an offline stage
and project the dynamical system onto this manifold in an online stage. While these methods are becoming
popular for reduced-order modeling of PDE models, questions about scalability and interpretability persist.

Our contribution in this paper is a novel reduced-order modeling framework for dynamical systems based
on nonlinear solution-manifolds. The nonlinear mapping is driven by physics-based training data. It uses
least-squares (possibly regularized) to infer a quadratic mapping operator from the error that remains after
projection onto a low-dimensional linear subspace of the full-order model. The nonlinear manifold can thus
be constructed efficiently in a non-intrusive manner from off-the-shelf solvers. The manifold approach is
then integrated with the operator inference method from [31] to infer reduced-order model operators from
time domain simulation-data. The overall strategy is a flexible framework for nonlinear reduction of low-
order polynomial systems. The non-intrusivity property of the proposed method does not imply a black-box
formulation; rather, we use outputs of the full-order model, without having access to the code that produced
the simulation data, and explicit knowledge in the form of a high-fidelity problem definition [32].

Our methodology can be interpreted alternatively as a closure model, in that the reduced-order model of
the original dynamical system is augmented with an additional term that accounts for the modeling error that
remains after modal truncation. The closure problem has a rich history in computational fluid dynamics and
is typically motivated and justified by invoking physical insights or mathematical arguments [33]. Closure
modeling has been employed in the reduced-order modeling of complex PDE systems, where it emulates
the effect of the discarded modes on the reduced model dynamics [34–37]. This property is particularly
important because an indirect consequence of truncation is that the truncated models ignore the nonlinear
interactions between the discarded and retained modes [38], so the inferred reduced models can fail to
preserve all the solution features of interest in the dynamical system. The formulation presented here
explicitly accounts for the discarded modes through the inclusion of a data-driven closure term. Importantly,
this term is computed from observational data in a physics-agnostic fashion without requiring additional
phenomenological arguments.

The paper is structured as follows. In Section 2 we describe the data-driven construction of nonlinear
solution-manifolds for dimensionality reduction, including an approach to reduce the number of basis func-
tions used to define the nonlinear components of the manifold. Section 3 discusses how these nonlinear
constructions can be leveraged to learn reduced-order models for high-dimensional dynamical systems. In
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Section 4 we present numerical experiments for two dynamical systems arising from the discretization of
linear PDEs. Conclusions and proposed future developments are described in Section 5.

2 Data-driven learning of nonlinear manifolds for dimensionality
reduction

Dimensionality reduction seeks a low-dimensional representation of a high-dimensional dataset. In this
section, we first review the widely used approach of representation in a low-dimensional linear subspace and
then describe a nonlinear dimensionality reduction technique that uses a data-driven quadratic manifold. To
approximate the high-dimensional state s(t) ∈ Rn, we seek a mapping Γ : Rr 7→ Rn with reduced dimension
r ≪ n such that

s(t) ≈ Γ(ŝ(t)), (1)

where the vector ŝ(t) ∈ Rr denotes the reduced state coordinates of dimension r, and t denotes some
parameter on which the state depends. The mapping Γ constitutes a transformation function that remains
to be defined. Sections 2.1 and 2.2 will discuss explicit linear and nonlinear formulations for Γ, respectively.
An implementation of the quadratic manifold constructs and the numerical experiments carried out in this
section are publicly available at https://github.com/geelenr/quad_manifold.

2.1 The linear dimensionality reduction framework

Linear dimensionality reduction can be achieved via the singular value decomposition (SVD) using principal
component analysis (PCA) [39]) or (as it is known in the reduced-order modeling literature) the proper
orthogonal decomposition (POD) [40–42]. We define the data matrix S ∈ Rn×k, whose jth column is the
state s(tj) := sj (referred to as the jth snapshot), with a total of k snapshots, where k < n. Scaling of the
data is important in obtaining an adequate basis. To this end we introduce a reference matrix Sref, each of
whose (identical) columns is reference state sref that shifts the training data. The reference state is chosen
in a problem-specific manner. The singular values of S− Sref are denoted by σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0. The
POD basis vectors are the left singular vectors of S−Sref corresponding to its r largest singular values. The
original space is then reduced to the space spanned by an r-dimensional orthonormal set of basis vectors
through the mapping

Γ(ŝ(t)) := sref +Vŝ(t), (2)

where V = [v1 | . . . |vr] ∈ Rn×r is the POD basis matrix spanning a r-dimensional linear subspace to which
the states are restricted, typically with r ≪ n, and vj ∈ Rn, j = 1, . . . , r, denotes the jth POD basis vector.

The POD basis minimizes the least-squares error of snapshot reconstruction. The familiar singular value
decomposition result yields the projection error as being the sum of the squares of the singular values
corresponding to those left singular vectors not included in the POD basis:

∥∥E∥∥2
F
=

k∑
j=r+1

σ2
j , (3)

where
E := (I−VV⊤)(S− Sref) := V⊥V

⊤
⊥(S− Sref) ∈ Rn×k (4)

is the part of S − Sref not captured by the linear basis matrix V. In (4), I is the identity matrix of size n,
and V⊥ ∈ Rn×(n−r) is the orthogonal complement of V in Rn. The jth column of E , given by εj , denotes
the difference between the shifted snapshot sj − sref and its orthogonal projection onto a linear subspace V,
which is spanned by the columns of V, as shown in Figure 1.

In many datasets, driving the projection error (3) to an acceptably low value requires large r, render-
ing inefficient or impractical a reduction using linear techniques. In the following section we introduce
a nonlinear dimensionality reduction approach that addresses this challenge by constructing a quadratic
solution-manifold that incorporates directions in V⊥ in a data-driven fashion.
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V = range(V)

sj − sref

VV⊤(sj − sref)

εj

Figure 1: Projection error using linear techniques for dimensionality reduction.

2.2 Data-driven quadratic solution-manifolds

In this section we derive a nonlinear manifold approach tailored for problems in which, for a desired reduced
dimension r, the reconstruction error from (3) is non-negligible. We write

s(t) = sref +Vŝ(t) + ε(t) ∈ Rn, (5)

where ε(t) denotes the error associated with the projection of s(t)− sref onto the linear subspace V. While
many different manifold constructs are conceivable, we focus on a quadratic mapping between the high-
dimensional data samples and their lower-dimensional representations. Explicit nonlinear mappings with
a polynomial structure were originally proposed in manifold learning [43], but similar formulations have
emerged recently in model reduction [2,3,5,44,45]. Our attention will be restricted to the case of quadratic
Kronecker products:

ε(t) ≈ V(ŝ(t)⊗ ŝ(t)), (6)

where V ∈ Rn×r2 is a matricized quadratic mapping operator and ⊗ denotes the Kronecker product.1 The
nonlinear transformation function is then

Γ(ŝ(t)) := sref +Vŝ(t) +V(ŝ(t)⊗ ŝ(t)). (7)

This type of nonlinearity yields data compression that improves on linear dimensionality reduction methods.
The approach readily generalizes to formulations with higher-order polynomial dependence.

The operator V is inferred from the optimization problem

V = argmin
V∈Rn×r2

k∑
j=1

∥∥sj − sref −Vŝj −V(ŝj ⊗ ŝj)
∥∥2
2
, (8)

which means that the mapping-inferred operator satisfies the equations

sj ≈ sref +Vŝj +V(ŝj ⊗ ŝj), j = 1, . . . , k, (9)

at the optimum of the objective of (8). In this representation, V is defined by the POD approach described
in the previous subsection and ŝj is the reduced-order representation of the jth snapshot sj , defined by
ŝj = V⊤(sj − sref). By transposing the terms in the norm in the objective of (8) and inserting the definition
of the linear projection error, (4), the sum over the states can be written as a Frobenius norm:

V = argmin
V∈Rn×r2

1

2

∥∥∥W⊤V
⊤ − E⊤

∥∥∥2
F
, (10)

1The operator ⊗ denotes the Kronecker product which for a column vector s = [s1, s2, ..., sn]⊤ is given by s ⊗ s =[
s21, s1s2, . . . , s1sn, s2s1, s

2
2, . . . , s2sn, . . . , s

2
n

]⊤ ∈ Rn2
.
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where E is defined in (4) and

W :=

 | | |
ŝ1 ⊗ ŝ1 ŝ2 ⊗ ŝ2 . . . ŝk ⊗ ŝk

| | |

 ∈ Rr2×k. (11)

In the independent and simultaneous work [45], a formulation that is mathematically identical to our Eq. (10)
is presented and employed in a nonlinear model reduction approach. In the remainder of this section our
work deviates from [45] in our analysis of the properties of V and our numerical treatment of the optimization
problem. Our deployment of the quadratic manifold approximation in reduced-order modeling also differs,
as we discuss further in Section 3.

The optimization problem (10) finds the mapping operator V that minimizes the error remaining after
we use the columns of W to fit the residual E from the linear-manifold approximation, in a least-squares
sense. In essence, we learn a more expressive mapping from a set of high-dimensional system-states to a
low-dimensional subspace using the projection error E as the driving mechanism. In matrix-vector format
the terms in the norm in the objective of (10) can be written as

W⊤V
⊤ − E⊤ :=


(ŝ1 ⊗ ŝ1)

⊤

(ŝ2 ⊗ ŝ2)
⊤

...

(ŝk ⊗ ŝk)
⊤


︸ ︷︷ ︸

k×r2


v⊤
1

v⊤
2

...

v⊤
r2


︸ ︷︷ ︸
r2×n

−


ε⊤1
ε⊤2
...

ε⊤k


︸ ︷︷ ︸
k×n

, (12)

from which it can be inferred that (10) is an overdetermined linear least-squares problem if k > r2. By
eliminating redundancy in the Kronecker products (ŝj ⊗ ŝj), we can reduce the number of columns in V
from r2 to r(r + 1)/2, and the condition for overdeterminedness becomes k > r(r + 1)/2. Note that we
can solve a vector least-squares problem for each row of V in turn: a total of n such problems, each with
r(r + 1)/2 unique reduced operator coefficients to be inferred. Strictly speaking this means that we are
working with a version of V now that has dimension n× r(r+1)/2, not n× r2 as in (10)–(12). We can solve
(10) explicitly via normal equations to obtain

V
⊤
= (WW⊤)−1WE⊤ =⇒ V = EW⊤(WW⊤)−1 ∈ Rn×r(r+1)/2. (13)

By combining this formula with the definition of E from (4), we obtain

V = (I−VV⊤)(S− Sref)W
⊤(WW⊤)−1 = V⊥

[
V⊤

⊥(S− Sref)W
⊤(WW⊤)−1

]
∈ Rn×r(r+1)/2, (14)

from which it follows immediately that each column of V is in the column space of V⊥, so that the orthog-
onality condition V⊤V = 0 holds.

Ordinary least-squares estimators can suffer from noise amplification when the amount of training data
is relatively small. This results in coefficients with large amplitudes, which are prone to overfitting the noise
in the training set. A popular approach to avoid this problem is to add regularization to the least-squares
cost function, which penalizes the norm of the coefficient vector. This promotes solutions that yield a good
fit to the data using linear coefficients that are not too large. A commonly adopted strategy is Frobenius
regularization, which replaces problem (10) by

V := argmin
V∈Rn×r(r+1)/2

(
1

2

∥∥∥W⊤V
⊤ − E⊤

∥∥∥2
F
+

γ

2

∥∥V∥∥2
F

)
, (15)

where γ is a scalar regularization parameter. This problem remains separable into n vector least-squares
problems. The explicit solution becomes

V = EW⊤(WW⊤ + γI)−1 ∈ Rn×r(r+1)/2, (16)

where the same argument yields that V⊤V = 0.
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Remark 1 (Simultaneous optimization of V and V). The approach described above learns the quadratic
mapping operator V from the misfit of the linear dimension reduction with basis V. In theory, one could also
pose the manifold learning problem to determine the operators V and V and the reduced-order representations
ŝj, j = 1, 2, . . . , k simultaneously. While such an approach would yield improved approximation accuracy,
the formulation of this simultaneous determination is a difficult constrained nonlinear optimization problem.
Taking our cue from (8), the simultaneous optimization problem would be

min
V,V,Ŝ

k∑
j=1

∥∥sj − sref −Vŝj −V(ŝj ⊗ ŝj)
∥∥2
2
, (17)

where
Ŝ :=

(
ŝ1 ŝ2 . . . ŝk

)
∈ Rr×k.

If we retain the property of V having orthonormal columns, require V to satisfy V⊤V = 0, and separate the
minimization w.r.t. Ŝ from minimization w.r.t. V and V, we obtain

min
V,V

V⊤V=I
V⊤V=0

min
Ŝ

k∑
j=1

∥∥sj − sref −Vŝj −V(ŝj ⊗ ŝj)
∥∥2
2
= min

V,V

V⊤V=I
V⊤V=0

k∑
j=1

min
ŝj

∥∥sj − sref −Vŝj −V(ŝj ⊗ ŝj)
∥∥2
2
. (18)

By using the fact that for any vector a we have by orthonormality of V that ∥a∥22 = ∥V⊤a∥22+∥(I−VV⊤)a∥22,
and using V⊤V = 0 we can rewrite (18) as

min
V,V

V⊤V=I
V⊤V=0

k∑
j=1

min
ŝj

{∥∥V⊤(sj − sref)− ŝj
∥∥2
2︸ ︷︷ ︸

linear fit terms

+
∥∥(I−VV⊤)(sj − sref)−V(ŝj ⊗ ŝj)

∥∥2
2︸ ︷︷ ︸

quadratic fit terms

}
. (19)

In our proposed method, we obtain an approximate minimizer of (19) in two steps. First, we choose V and
ŝj, j = 1, 2, . . . , k as the POD solution satisfying (3) and (4). (Note that this choice minimizes the sum of
the linear fit terms in (19), in fact, it makes each of these terms zero.) Second, we substitute these values into
the quadratic fit terms in (19), and minimize the sum of these terms with respect to V, yielding the formula
(13), for which the constraint V⊤V = 0 is satisfied. Each of these steps is well defined and tractable, and
yields a reasonable approximate solution to the problem (17). It remains an area of future work to assess

the tradeoff between the potential improved approximation quality of joint optimization of (V, V, Ŝ) and the
increased computational complexity of solving this problem.

2.3 Data-driven learning of quasi-quadratic manifolds

The number of columns in V scales as O(r2). Are all these basis functions necessary? Could we span a
nonlinear manifold adequately with a subset of the basis functions that suffice to define the nonlinear aspect
of the manifold? To this end, we explore the use of column selection to reduce the number of columns in
V. We will use a well known technique for group-sparse regularization, treating each column as a “group.”
The technique is to add a multiple of the sum-of-ℓ2 regularization function to the objective, with each term
in the sum being the ℓ2 norm of a single column of V. We obtain

V := argmin
V∈Rn×r(r+1)/2

1

2

∥∥∥W⊤V
⊤ − E⊤

∥∥∥2
F
+ γ

r(r+1)/2∑
j=1

∥vj∥2

 . (20)

The sum-of-ℓ2 regularizer induces sparsity in a similar way to the ℓ1 norm of a vector, except that instead
of producing element-wise sparsity, it induces sparsity by groups. By contrast, if we were to square each of
the terms ∥vj∥2, we would obtain the squared Frobenius norm of (15), which does not sparsify V at all. An

appropriate choice of the positive scalar parameter γ forces several or many columns of V to be zero at the
minimizer of (20). Details of the algorithm for solving (20) are given in Appendix A.
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Once we have selected the columns of V (i.e. the rows of V
⊤
) that are nonzero at the solution of (20),

we perform a “debiasing” step, in which we solve a reduced version of (10) over just the columns of V that
were selected to be nonzero in (20). Since each column of V corresponds to a row of W, this reduced version
of V also involves a row submatrix of W. Essentially, we are replacing the quadratic mapping (7) with the
following quasi-quadratic mapping:

Γ(ŝ(t)) := sref +Vŝ(t) +V(ŝ(t) ⊗̃ ŝ(t)), (21)

where we have introduced the modified Kronecker product ⊗̃ that performs the usual Kronecker multipli-
cation, but then only takes a subset of size q of its components, chosen, for example, by using the column
selection procedure above. This parametrization leads to a least-squares problem of the form (10), but with

a data matrix W̃ ∈ Rq×k modified accordingly, where q < r(r + 1)/2 is a number of selected rows (the

columns of W̃⊤)

W̃ :=

 | | |
ŝ1 ⊗̃ ŝ1 ŝ2 ⊗̃ ŝ2 . . . ŝk ⊗̃ ŝk

| | |

 ∈ Rq×k. (22)

We continue to use V to denote the matrix, now in Rn×q, that defines the nonlinear aspect of the solution-
manifold. The terms in the norm in the objective of (10) can thus be rewritten as

W̃⊤V
⊤ − E⊤ :=


w̃⊤

1

w̃⊤
2

...

w̃⊤
k


︸ ︷︷ ︸

k×q


v⊤
1

v⊤
2

...

v⊤
q


︸ ︷︷ ︸

q×n

−


ε⊤1
ε⊤2
...

ε⊤k


︸ ︷︷ ︸
k×n

. (23)

The resulting problem is overdetermined if k > q and can, once again, be decomposed into n independent
linear least-squares problems, each involving a vector of length q. We note here that the earlier argument
based on normal equations suffices to show that the solution V of (23) will also satisfy the propertyV⊤V = 0.

More information about the formulation (20), including the proximal-gradient algorithm for solving this
problem, the debiasing step, the sparsifying effect of the regularization term, and the choice of γ can be
found in [46]. An earlier paper that used regularization like (20) is [47].

2.4 Constructing the quadratic manifold – An illustrative 3D trajectory

The following toy example illustrates the construction of quadratic solution-manifolds via the proposed
regression technique. Let s(t) ∈ R3 be a given trajectory parametrized by the variable t ∈ P , with P = [0, 2π]
a one-dimensional parameter space, as follows:

s(t) =

s1(t)

s2(t)

s3(t)

 =

 cos(t)

sin(t)

cos(2t)/2

 . (24)

A dataset is built by uniformly sampling the trajectory s(t) at k = 100 values of t. After computing the
singular value decomposition of the shifted data matrix S−Sref, where the columns of Sref are given by the
initial condition s(0), the left singular vectors are

v1 =

−0.93470

−0.3554

 ; v2 =

0

1

0

 ; v3 =

 0.3554

0

−0.9347

 . (25)

Representing the three-dimensional states in the POD coordinates ŝ(t) can be achieved through a linear
projection such as ŝ(t) = [v1,v2]

⊤s(t) ∈ R2, where we have chosen a reduced dimension of r = 2. The
original trajectory s(t) is then approximated through sapprox(t) = Γ(ŝ(t)).
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v1

v2

(a) Linear subspace approach, (2). (b) Quadratic manifold approach,
(7);(12) - no regularization.

(c) Quasi-quadratic manifold ap-
proach, (7);(23) - no regularization.

Figure 2: Comparison of the linear and nonlinear manifold approaches. The black markers denote the
sampled trajectory s(t), the solid lines correspond to their approximation sapprox(t), and the shaded surfaces
denote the linear and nonlinear manifolds. The latter are visualized by means of projection of points in R3

onto the manifolds.

We now focus on the quadratic manifold formulation from Section 2.2, leading to least-squares problem
(10) (i.e., with no regularization). Solving (10) with reduced space dimension r = 2 we obtain the r(r+1)/2 =
3 basis vectors associated with the nonlinear part of the solution-manifold:

v1 =

−0.06810

0.1792

 ; v2 =

0

0

0

 ; v3 =

 0.3154

0

−0.8296

 , (26)

which correspond to the terms ŝ21, ŝ1ŝ2, and ŝ22, respectively. It can be seen that for this example, there
exist only two basis vectors along which the linear subspace should be warped to optimally represent the
training data in a least-squares sense. In this example, v2 is the zero vector because including ŝ1ŝ2 in the
quadratic manifold representation does not improve the approximation accuracy of the training data. This
is confirmed by the error metric from Table 1. The redundant basis vectors in such a construction will
therefore be represented by zero-vectors.

We illustrate the quasi-quadratic nonlinear manifold formulation from Section 2.3 for the scenario in
which q = 1 and we only employ the last column of W⊤, corresponding to the term ŝ22. This column was
identified by the column selection algorithm (Appendix A) to be the most essential in spanning the quadratic
solution-manifold. The basis matrix V obtained by the procedure above consists of a single column, v given
by

v =

 0.1638

0

−0.4308

 , (27)

which is not among the set of basis vectors (26) computed without column selection, but has a similar
direction to v3.

Figure 2 compares the reconstruction of the trajectory using the linear subspace approach (Section 2.1),
the quadratic manifold approach (Section 2.2), and the quasi-quadratic manifold approach (Section 2.3).
When the trajectory is restricted to the linear subspace spanned by the leading singular vectors v1,v2

(Figure 2a), the approximate reconstruction of the full three-dimensional trajectory incurs a large projection
error. The nonlinear manifold approaches induce a curving of the linear subspace without introducing
additional degrees of freedom in the reduced-dimension representation. The full quadratic manifold provides
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an accurate approximation of the full trajectory (Figure 2b). For the quasi-quadratic formulation we consider
only one additional basis vector. This still leads to curving of the solution-manifold, but now along a single
axis, as shown in Figure 2c. Table 1 lists the relative state prediction error for the different manifold
approximations.

Table 1: Comparison of the relative state prediction error for the linear subspace and quadratic manifold
approaches. For the quadratic manifold approaches we indicate which of the columns of W⊤ are used. We
do not employ Frobenius regularization in this setting.

Reduction technique Selected columns ∥S− Sapprox∥F /∥S∥F
Linear manifold / 0.4032

Quadratic manifold

{1} 0.3971

{2} 0.4032

{3} 0.3042

{1, 2} 0.3971

{2, 3} 0.3042

{1, 3} 0.0258

{1, 2, 3} 0.0258

As expected, it can be seen that the linear subspace approach produces the largest error. The fully
quadratic manifold that takes into consideration all three columns of V produces the lowest error. As the
number of columns in W⊤ increases, the state prediction error drops and approaches the fully quadratic case
where the data matrix is constructed using full Kronecker products. Because v2 is a zero vector, it suffices to
only consider the first and last columns. Indeed, the error in this case is the same as for the fully quadratic
formulation. Furthermore, these results confirm that the third column (corresponding to ŝ22) is indeed the
most essential in spanning the quadratic solution-manifold, as identified by the SpaRSA algorithm.

While strictly speaking regularization is not necessary if least-squares problem (10) is well-conditioned,
we do advocate for its adoption: in practical problems we found that adequate regularization is a necessity
in building stable and accurate data-driven reduced-order models, to be discussed next.

3 Nonlinear manifolds for non-intrusive model reduction

We now show how the nonlinear manifold approximations introduced in Section 2 can be employed to derive
reduced-order models for dynamical systems. Section 3.1 derives the form of a projection-based reduced
model that results from the quadratic manifold approximation (7). Section 3.2 then proposes a quadratic
manifold operator inference method in which the reduced models are learned from snapshot data in a non-
intrusive fashion.

3.1 Projection-based model reduction with nonlinear manifolds

Consider the high-dimensional dynamical system

d

dt
s(t) = f(t, s(t)), s(0) = s0, (28)

where in this section t ∈ (0, T ] denotes time (with T being the final time), the system state s(t) ∈ Rn is
time-dependent with specified initial condition s0 ∈ Rn, and the right hand side is the nonlinear mapping
f = [f1, f2, . . . , fn]

⊤
: (0, T ] × Rn → Rn. High-dimensional systems of the form (28) often result from

discretization of partial differential equations. We will refer to (28) as the full-order model.
A reduced-order model of (28) is obtained by introducing the low-dimensional approximation (1) and

enforcing a Galerkin or Petrov-Galerkin orthogonality condition on the resulting residual. Given a left-
projection matrix Φ ∈ Rn×r, the reduced model is

Φ⊤ d

dt
Γ(ŝ(t)) = Φ⊤f(t,Γ(ŝ(t))); ŝ(0) = ŝ0 (29)
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where ŝ0 is the representation of the initial condition s0 in the reduced space coordinate system. Consider
linear dimensionality reduction where the basis V in (2) is computed via the POD as described in Section 2.1.
Employing this linear approximation of the state together with a Galerkin projection (that is Φ := V) yields
the reduced-order model

d

dt
ŝ(t) = V⊤f(t, sref +Vŝ(t)); ŝ(0) = V⊤(s0 − sref). (30)

Consider instead quadratic dimensionality reduction (7) with V the POD basis and V computed as in
Section 2.2. Again setting the left basis to be Φ := V, we have the reduced-order model

V⊤
(
V

dŝ

dt
+V

d(ŝ⊗ ŝ)

dt

)
=

d

dt
ŝ(t) = V⊤f(t, sref +Vŝ(t) +V(ŝ(t)⊗ ŝ(t))); ŝ(0) = V⊤(s0 − sref), (31)

where we have employed the orthogonality properties of the basis matrices (i.e., V⊤V = I and V⊤V = 0).
Most existing model reduction methods employ the form (30); in (31) we introduce the additional quadratic
terms to the state approximation, however the dimension of the reduced-order model remains r in both
cases—that is, the quadratic manifold approximation does not introduce any additional degrees of freedom
into ŝ(t), although additional directions play a role in the state approximation through V.

Consider now a linear dynamical system, that is, f(t, s(t)) = As(t), giving the full-order model

d

dt
s(t) = As(t); s(0) = s0, (32)

with A ∈ Rn×n the full-order linear operator. The Galerkin reduced-order model of (32) with linear approx-
imation then takes the familiar form

dŝ

dt
= ĉ+ Âŝ; ŝ(0) = V⊤(s0 − sref), (33)

where the reduced operators are ĉ = V⊤Asref and Â = V⊤AV. Employing instead the quadratic approxi-
mation (7), the Galerkin reduced-order model of the linear system (32) takes the form

V⊤
(
V

dŝ

dt
+V

d(ŝ⊗ ŝ)

dt

)
= V⊤Asref +V⊤AVŝ+V⊤AV(ŝ⊗ ŝ); ŝ(0) = V⊤(s0 − sref). (34)

Introducing the reduced matrix operators ĉ, Â, Ĥ as the constant, linear and quadratic components of the
reduced-order model equation, and exploiting the orthogonality properties of the bases, (34) then simplifies
to

dŝ

dt
= ĉ+ Âŝ+ Ĥ(ŝ⊗ ŝ); ŝ(0) = V⊤(s0 − sref), (35)

where
ĉ = V⊤Asref, Â = V⊤AV, Ĥ = V⊤AV. (36)

The quadratic manifold formulation transforms linear problem (32) in the full state into a reduced system
with quadratic state dependence. Correspondingly, if the full-order model had quadratic state dependency,
approximation in the quadratic manifold would introduce a quartic state dependency in the reduced-order
model.

The proposed approach may also be viewed as a form of data-driven closure modeling. In projection-
based model reduction, closure modeling seeks to account for the effects of truncated modes. Our approach
learns a data-driven closure term, V(ŝ⊗ ŝ) in (7), that introduces components in the range of V⊥ into the
approximation of s (recall that V⊤V = 0). In our approach we do not explicitly account for the effect of the
discarded POD modes on the retained ones (as in the scheme of [37] for instance). Instead, the unresolved

dynamics are implicitly represented via the quadratic term Ĥ(ŝ⊗ ŝ) in the reduced state dynamical system
(35).
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Remark 2 (Quasi-quadratic formulation). Using the quasi-quadratic formulation from Section 2.3 for in-
ferring the mapping operator V leads to the modified reduced model

dŝ

dt
= ĉ+ Âŝ+ H̃(ŝ ⊗̃ ŝ); ŝ(0) = V⊤(s0 − sref), (37)

where H̃ = V⊤AV ∈ Rr×q with q < r(r+ 1)/2. This leads to a more data-efficient model to learn, but note
that (33), (35) and (37) all have reduced state dimension r. In the next subsection we describe construction

of (35), but the algorithm applies to constructing (37), interchanging ⊗̃ with ⊗ and H̃ with Ĥ.

Remark 3 (Computational cost). While the quadratic (or quasi-quadratic) approximation does not introduce
additional degrees of freedom to the reduced state, it does incur additional computational cost. Consider a
linear mapping of the form (2) with reduced state dimension rℓ, and consider a quasi-quadratic mapping of

the form (21) with reduced state dimension rq and q columns in V. The reduced operators ĉ, Â and H̃ in
the quadratic manifold reduced model (37) require storage of rq + r2q + qrq elements. By contrast, the linear
subspace reduced-order model (33) requires storage of rℓ+r2ℓ elements. Solving the linear reduced-order model

(33) requires evaluating at each timestep the matrix vector product Âŝ, which entails 2r2ℓ FLOPS. Solving the

quadratic reduced-order model (37) requires evaluating at each timestep the matrix vector product Âŝ (2r2q
FLOPS), evaluating ŝ ⊗̃ ŝ (q FLOPS), and evaluating H̃(ŝ ⊗̃ ŝ) (2qrq FLOPS). For a given target accuracy
in representing the snapshot data, we expect rq < rℓ, since the quadratic manifold representation achieves
a given level of representation accuracy with a lower dimension. Whether the quadratic manifold reduced
model is cheaper to solve than the linear subspace reduced model will be problem specific, depending on the
compression from rℓ to rq. It will also depend on the particular problem structure and whether, for example,

it might be possible to factor H̃ in order to reduce online evaluation costs. Consideration of computational
costs highlights the importance of the quasi-quadratic formulation: with the full quadratic approximation, we
have q = rq(rq + 1)/2 and the worst-case cost of evaluating H̃(ŝ ⊗̃ ŝ) scales with r3q . In this case, the full
quadratic manifold reduced models are likely only to be competitive in cost for small rq; as rq grows their
cost will likely exceed that of a linear subspace reduced model that achieves the same level of accuracy with
rℓ > rq.

Remark 4 (Initial condition satisfaction). Satisfying the specified initial condition of the dynamical system
can be important for achieving an accurate approximation in a nonlinear manifold [23]. This requires the
initial reduced coordinates ŝ(0) := ŝ0 to satisfy Γ(ŝ0) = s0. In the case of quadratic solution-manifolds, as
described in Section 2, this implies

sref := s0 −Vŝ0 −V(ŝ0 ⊗ ŝ0). (38)

It can be shown in a straightforward manner that this condition is satisfied exactly if sref = s0. When dealing
with trajectories computed from simulations with multiple different initial conditions, one of these has to be
chosen as the reference state, sref, and exact satisfaction of initial conditions can no longer be guaranteed in
all cases.

3.2 Learning quadratic manifold reduced models with operator inference

Eq. (31) defines the quadratic manifold reduced model in the general nonlinear case and (35) defines the
quadratic manifold reduced model in the case of a linear full-order model. While in some applications it may
be possible to construct these reduced models intrusively (i.e., by explicitly computing the projected operators
V⊤f , V⊤A, V⊤AV and V⊤AV), introduction of the quadratic manifold approximation complicates the
implementation of an already time-consuming process. Eq. (35) also illustrates that the quadratic manifold
approximation changes the form of the reduced-order model, which further complicates implementation.
We therefore employ the non-intrusive operator inference method of [31], which infers the reduced model
operators directly from time-domain simulation data.

A non-intrusive model reduction method is defined in [32] as a method that computes the reduced model
using outputs of the full-order model without having access to the full-order operators (or to their action on
a vector). Non-intrusive methods are not necessarily black-box; they can exploit knowledge of the full-order
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problem definition and structure (in our case, the structure of the PDEs that govern the problem of interest).
Non-intrusivity is important for cases where modifying the full-order model source code that produces the
simulation data may be impractical or its internal access is restricted (e.g., legacy or commercial codes).
In our case, non-intrusivity simplifies the numerical process to compute the quadratic manifold reduced-
order model (35). Our use of operator inference with a quadratic manifold approximation differs from past
contributions such as [31,48–50], which all employ operator inference with linear dimensionality reduction.

Given a data set comprising k state snapshots s1, s2, . . . , sk and the corresponding time derivative data,
operator inference generates reduced state snapshots via projection with the basis matrix V, giving ŝj =
V⊤(sj− sref); j = 1, . . . , k. For the linear full-model form (32), operator inference then finds the quantities ĉ

and Â that define the reduced model that best matches these projected snapshot data in a minimum residual
sense, as follows:

(
ĉ, Â

)
= argmin

ĉ∈Rr,Â∈Rr×r

k∑
j=1

∥∥∥∥ĉ+ Âŝj −
dŝj
dt

∥∥∥∥2
2

+ λ
(
∥ĉ∥22 + ∥Â∥2F

)
, (39)

where the second term is a Tikhonov regularization term and λ > 0 is a scalar regularization parameter. The
time derivatives must be estimated, for example using a finite difference approximation. As shown in [31],
this optimization problem decouples into r independent linear least-squares problems, each involving a single
row of [ĉ Â]. The Tikhonov regularization term in (39) promotes stability and accuracy of solutions to the
operator inference problem and inhibits overfitting of the system operators to the data [49] in the presence
of noise, which can arise from error in the numerically estimated time derivatives, model misspecification,
and unresolved system dynamics.

Inferring the quadratic manifold reduced model (35) is straightforward in the operator inference frame-
work. We simply include the quadratic operator in the inference problem, to obtain

(
ĉ, Â, Ĥ

)
= argmin

ĉ∈Rr,Â∈Rr×r,

Ĥ∈Rr×r2

k∑
j=1

∥∥∥∥ĉ+ Âŝj + Ĥ(ŝj ⊗ ŝj)−
dŝj
dt

∥∥∥∥2
2

+ λ1

(
∥ĉ∥22 + ∥Â∥2F

)
+ λ2∥Ĥ∥2F , (40)

where λ1 and λ2 are scalar regularization parameters (we typically choose to weight regularization of Â and

Ĥ differently as they are characterized by different scales). We also exploit the symmetry of Ĥ to reduce
the number of inferred operator coefficients by not solving for its redundant terms. While the states remain
r-dimensional vectors, the total number of coefficients of the unknown reduced operators to be inferred in
(40) is greater than in (39).

As noted above, if the full-order model had quadratic form, the quadratic manifold reduced-order model
would have quartic structure. It is straightforward to formulate the inference of a quartic model in an
analogous way to (40) (noting that the operator inference minimization remains a linear least-squares prob-
lem); however, the number of operator coefficients to be inferred grows rapidly. Reduced-order models with
quadratic and quartic structure have O(r2) and O(r4) reduced operator coefficients to be inferred, respec-
tively, for each of the r independent least-squares problems. Even with column sub-selection, this may cause
the operator inference problem to be under-determined and/or ill-conditioned.

Algorithm 1 summarizes the complete approach for deriving a quadratic manifold reduced model of
a linear dynamical system. We emphasize that the algorithm requires only a set of state snapshots and
knowledge of the structure of the full-order model, not access to the full-order model code itself.

4 Demonstration of the approach

In this section we demonstrate the proposed quadratic manifold approach on two numerical examples: the
advection equation and the wave equation. The advection equation describes the transport of a substance or
quantity through advection, and is therefore of fundamental importance in physics and engineering sciences.
The wave equation arises in fields such as acoustics, electromagnetism, and fluid dynamics, and is commonly
used in studying various types of mechanical and electromagnetic waves. Both are transport-dominated
problems for which the Kolmogorov n-width is well known to be problematic for achieving efficient model
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Algorithm 1 Quadratic Manifold Operator Inference.

Input: Snapshot matrix S ∈ Rn×k, snapshot time derivatives Ṡ ∈ Rn×k, user-defined tolerance κ
Output: Reduced model operators ĉ, Â, Ĥ, basis matrices V,V

{Computing the linear POD basis}
1: Center the snapshot data about a reference state
2: Compute the SVD of S− Sref

3: r ← Determine linear POD basis dimension (informed by the singular value decay and tolerance κ)
4: V← The r leading left singular vectors of S− Sref

{Computing the quadratic manifold basis}
5: Represent states in POD coordinates: Ŝ← V⊤(S− Sref)
6: E ,W← Compute linear projection error (4) and quadratic data matrix (11)
7: if quasi-quadratic manifold formulation then

8: Column selection using the SpaRSA algorithm (2): W̃←W
9: end if

10: V← Solve regularized least-squares problem using (15) or (20)

{Operator inference for learning low-dimensional dynamical systems}
11: Represent time derivatives in POD coordinates:

˙̂
S← V⊤Ṡ

12: λ1, λ2 ← Set the regularization parameters
13: ĉ, Â, Ĥ← Solve regularized operator inference problem (40)

reduction in a static linear subspace [18]. We calibrate the hyper-parameters λ1, λ2, γ by choosing them to
minimize the relative error between the reduced-order model predictions and the available training data, as
in [49].

4.1 Linear transport equation

Let us consider the one-dimensional linear transport equation

∂

∂t
s(x, t) + c

∂

∂x
s(x, t) = 0, x ∈ R, (41)

with time t ∈ (0,∞), whose exact solution is given by s(x, t) = s0(x − ct), where c is a constant advection
velocity and s0(x) is the specified initial state at t = 0. The state s(x, t) might, for example, represent
the concentration of a pollutant being advected in the one-dimensional flow with constant velocity c. We
consider an initial condition of the form

s0(x) := s(x, 0) =
1√

0.0002π
exp

(
− (x− µ)2

0.0002

)
, x ∈ R, (42)

where µ is a one-dimensional parameter in the parameter space P.
In this experiment a training dataset is built by uniformly sampling the exact solution in the space-time

domain (0, 1) × (0, 0.1) considering n = 212 degrees of freedom for the spatial discretization and k = 2000
time instances. The time derivatives ∂s(x, t)/∂t are computed in closed form. The parameter µ varies in
the one-dimensional parameter space P = [0.05, 0.25]. Figure 3a shows the initial condition for µ = 0.10.
We consider Ntest = 50 testing-parameter instances, randomly sampled over P, to evaluate the constructed
reduced-order models on unseen data (see also [28]). We reiterate the importance of properly centering the
training data about an appropriate reference state sref. The choice of reference state can affect accuracy and
stability of data-driven reduced-order models based on quadratic manifolds. Here, we center the training
data about its time-averaged mean value. The normalized singular values of the centered data matrix are
plotted in Figure 3b. The decay of the singular values suggests that a reduced space of dimension r ≃ 200
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(a) Initial condition at µ = 0.10 and transport direction.
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(b) Singular values.

Figure 3: The one-dimensional advection equation with c = 10. Plot (a) shows the initial condition and the
direction of the transport. Plot (b) shows the decay of the singular values of the snapshot matrix spanning
all the initial conditions.
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Figure 4: The snapshot retained energy spectrum of the training dataset computed with (43) and (44). The
regularizer to compute V in (15) is chosen to be γ = 109.
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(a) t = .02
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(b) t = .04
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(c) t = .06
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(d) t = .08

Figure 5: Comparison of the simulated solutions at four different time instances t ∈ {.02, .04, .06, .08} com-
puted by solving the linear-subspace reduced model for r = 29 (blue lines) and quadratic-subspace reduced
model with the same value of r, using all r(r+1)/2 quadratic modes (red lines) with c = 10 at µtest = 0.12547.
The exact solution (black markers) is shown for reference. The plots show the reconstructed solutions for
reduced models where the basis accounts for 80.9% of the snapshot energy with the linear manifold approach
and 98.1% with the quadratic manifold approach, as computed by (43) and (44), respectively.
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(a) Exact (b) Linear manifold (c) Quadratic manifold

Figure 6: Comparison of the evolution of the solution field s(x, t) through space-time at testing parameter
µtest = 0.12547 for (a) the exact solution and the operator inference reduced-order models with (b) a linear
manifold and (c) a quadratic manifold using all r(r + 1)/2 coordinate combinations. The reduced models
employ r = 15 POD modes capturing 50.5% and 80.5% of the snapshot energy for the linear and quadratic
manifold approaches, respectively.

(a) Exact (b) Linear manifold (c) Quadratic manifold

Figure 7: Comparison of the evolution of the solution field s(x, t) through space-time at testing parameter
µtest = 0.12547 for (a) the exact solution and the operator inference reduced-order models with (b) a linear
manifold and (c) a quadratic manifold (using all r(r + 1)/2 coordinate combinations). The reduced models
employ r = 29 POD modes capturing 80.9% and 98.1% of the snapshot energy for the linear and quadratic
manifold approaches, respectively.
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Figure 8: Relative state prediction error (45) as a function of the number of basis functions spanning the
quadratic solution-manifold. The median and first/third quartile errors are plotted. All simulations use a
reduced-order model of dimension r = 29.

is necessary for approximating the trajectories s(x, t) in a linear subspace with a projection error of 10−8 in
the Euclidean norm.

A typical approach for linear dimensionality reduction techniques is to choose r such that approximation
in the r-dimensional basis V ∈ Rn×r yields

∥VV⊤(S− Sref)∥2F
∥S− Sref)∥2F

=

∑r
i=1 σ

2
i∑k

i=1 σ
2
i

> κ (43)

where κ is a user-specified tolerance κ and the σ2
i are the squared singular values of the shifted data matrix.

The left-hand side of (43) is often referred to as the “relative cumulative energy” of the system captured by
r POD modes. For the proposed manifold approach an equivalent snapshot “retained energy” metric can be
devised for choosing the reduced basis dimension:

∥VV⊤(S− Sref) +V(V⊤(S− Sref)⊙V⊤(S− Sref))∥2F
∥S− Sref)∥2F

> κ, (44)

where ⊙ denotes the column-wise Kronecker product of two matrices. Figure 4 plots the snapshot energy
spectra of the training data computed with (43) and (44) as a function of the reduced basis dimension r.
The quadratic mapping operator V in (44) is obtained from (15) with γ = 109, which provided adequate
regularization for the reduced-order models inferred from the training data. As can be seen from Figure 4,
the quadratic manifold accounts for a larger share of the total snapshot energy at a given reduced basis
dimension r compared to traditional linear subspace approaches.

We now employ quadratic manifolds of varying dimensions in the derivation of reduced-order models
using operator inference as described in Section 3.2. The reduced models are inferred by solving (40).
Simulations of the reduced-order models employ a semi-implicit Euler time integration scheme with time
step size ∆t = 10−6 and end time T = 0.08. Figure 5 shows representative simulation results for linear and
quadratic reduced-order models with reduced dimension r = 29, capturing 80.9% and 98.1% of the snapshot
energy, respectively. The exact solutions are shown for reference. While the reconstruction for both the linear
and quadratic models are subject to spurious oscillations in the solution field, they are less pronounced in
the quadratic formulation. The space-time evolution of a sample trajectory is shown in Figures 6 and 7
for reduced-order models of dimension r = 15 and r = 29, respectively. The performance of the operator
inference quadratic reduced-order models is good in both cases, although the r = 29 case is clearly more
accurate as the approximate solution becomes visually indistinguishable from the exact solution.

We now turn to the quasi-quadratic formulation from Section 2.3. Recall that the proposed quadratic
manifold approach does not introduce extra degrees of freedom in the associated state dimension of the
reduced-order models. Instead, we rely on a set of basis vectors, the columns of V, to define the nonlinear
aspects of the solution-manifold. In the baseline quadratic manifold approach (outlined in Section 2.2),
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Figure 9: Relative state prediction error (45) as a function of the reduced basis dimension, r, for the testing
dataset. Median and first/third quartile errors are shown. For the quasi-quadratic model, about 25% of the
r(r + 1)/2 modes were selected.

the number of additional basis vectors is 120 and 435 for the values r = 15 and r = 29, respectively. By
performing column selection via the regularized problem (20), we seek parametrizations that use only a
subset of these additional basis vectors. We can control the number of selected columns via the choice of
regularization parameter γ. Algorithm 2 is used to solve problem (20) for each value of γ. In Figure 8 we
plot the error in the r = 29 reduced-order model solution as a function of the number of columns in V,
denoted by q. We employ a relative error measure

e(µtest) =

√√√√ Nt∑
j=1

∥sj(µtest)− sj,approx(µtest)∥2
/√√√√ Nt∑

j=1

∥sj(µtest)∥2
 , (45)

where sj(µtest) denotes the exact solution sampled on the spatial discretization at time step tj using the
initial condition with parameter µtest, sj,approx(µtest) denotes the corresponding solution predicted with the
reduced model, and Nt is the number of time instances at which the solution is computed for each testing
parameter.2 When q is relatively small, we obtain predictions that improve only marginally over the linear
parametrization. However, in the limit as fewer of the columns are eliminated, we recover the accuracy
metrics from the baseline quadratic manifold approach. We note that for the largest value of q, here q = 351,
at some of the testing instances the reduced-order models were unstable and were therefore not included in
error measure (45) and Figure 8. We emphasize that all reduced models in Figure 8 have dimension r = 29;

reducing the number of columns in V reduces the dimension of the reduced-order quadratic operator Ĥ and
reduces the number of basis vectors that must be stored in order to reconstruct full-domain solutions, but
has little impact on the cost of simulating the reduced model.

We now study the behavior of the error (45) with respect to the reduced basis dimension r across all
testing parameters. Figure 9 shows results for the cases of linear, quadratic, and quasi-quadratic manifolds.
In the quasi-quadratic case, a regularizer γ was sought which reduces the number of columns in V to the
most significant 25% of the directions in V⊥, that is, q ≈ r(r + 1)/8. The plots show that increasing the
reduced basis dimension leads to a lower error for all reduction methods. Operator inference reduced-order
models constructed with the conventional linear subspace approaches produce the least accurate predictions,
while introducing the quadratic manifold leads to increased predictive accuracy across the range of r. The
quadratic manifold introduces a more rapid decay in error with r. This means that the same level of

2While this indicator is frequently used to assess the performance of reduced-order models, see [28] for instance, we note that
it can be sensitive to misalignments of the predicted solution relative to the ground truth in transport-dominated problems.
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accuracy can be achieved with smaller r. For instance, a quadratic manifold reduced model with r = 30
achieves roughly the same level of accuracy as a linear subspace reduced model with r = 60. The flattening
of the quadratic manifold error curve for r > 35 is due to the conditioning of the data matrix in the operator
inference regression problem. Poor conditioning is known to introduce numerical errors at components
corresponding to the less important POD basis vectors [31]. Errors for the quasi-quadratic manifold approach
are intermediate between the linear and quadratic manifold cases, since for this example, the reduction in the
number of columns of V incurs increased error in comparison to the fully quadratic representation. This is an
indication that for this problem all quadratic terms are important. In other applications, we might expect
the quasi-quadratic representation with column selection to introduce efficiencies into the representation
without compromising error.

4.2 Two-dimensional wave equation

For a second example, we consider the two-dimensional wave equation, a second-order hyperbolic linear PDE,
in a rectangular domain Ω = [0, 4π]× [0, 2π]. The wave equation has been studied previously as a benchmark
problem for nonlinear model reduction techniques in, for instance, [27, 51]. The governing equation is given
by

∂2

∂t2
s(x, t) = ∆s; (x, t) ∈ Ω× (0, T ], (46)

with initial conditions

s0(x) := s(x, 0) = exp

(
−∥x− x0∥2

0.0072

)
; ṡ0(x) :=

∂

∂t
s(x, 0) = 0, t ∈ [0, T ] (47)

and homogeneous Neumann boundary conditions assigned over the entire boundary of the domain:

∇s(x) · n(x) = 0; x ∈ ∂Ω, (48)

where n(x) is the unit outward normal vector to ∂Ω. Here the state s(x, t) might, for example, represent a
physical displacement field. The simulations are performed up to a final time T = 10. The initial condition,
a Gaussian pulse, will trigger the propagation of spherical waves about a point x0. Spatial discretization is
performed using the finite element method on a uniform mesh with quadratic triangular elements, resulting
in snapshots with n = 321, 201 entries each. For discretization in time we use Newmark implicit time
integration in generating k = 1000 training snapshots. The training snapshots are centered using their time-
averaged mean value. Figure 10a plots the singular values of the centered snapshot matrix. The singular
values drop by about three orders in magnitude at a reduced basis dimension of r = 200. The slow decay of
the singular values is a reflection of the transport-dominated dynamics of the problem.

We apply the proposed quadratic manifold operator inference approach from Section 3 to this problem.
The quadratic mapping operator, V, is obtained through solving (15). The numerical results presented here
are for a regularization hyperparameter of γ = 10−1 in (15). This value was selected by minimizing the
relative state error, (45), over the training data for the case of r = 40. The snapshot retained energy, as
defined in (43) and (44), is plotted in Figure 10b. As in the previous example, for a given reduced basis
dimension r we obtain a clear increase in the representation power of the quadratic manifold over the linear
POD subspace. For this problem, the quadratic manifold is computed for reduced basis dimensions r ≤ 44.
Beyond r = 44, at which point the retained energy is close to 100%, the least-squares problem associated
with inferring V becomes under-determined.

Because governing equation (46) contains a second-order time derivative, the reduced-order system using
the quadratic manifold state approximation (7) takes the form

d2ŝ

dt2
= ĉ+ Âŝ+ H̃(ŝ⊗ ŝ); ŝ(0) = V⊤(s0 − sref);

d

dt
ŝ(0) = V⊤ṡ0. (49)

The quadratic manifold formulation then leads to the following learning problem for inferring the reduced-
order operators directly from the training data:(

ĉ, Â, Ĥ
)
= argmin

ĉ∈Rr,Â∈Rr×r,

Ĥ∈Rr×r2

k∑
j=1

∥∥∥∥ĉ+ Âŝj + Ĥ(ŝj ⊗ ŝj)−
d2ŝj
dt2

∥∥∥∥2
2

+ λ1

(
∥ĉ∥22 + ∥Â∥2F

)
+ λ2∥Ĥ∥2F . (50)
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Figure 10: Two-dimensional wave equation example. Left: snapshot singular value decay. Right: snapshot
retained energy spectrum of the training dataset computed with (43) and (44). The regularizer to compute
V in (15) is chosen to be γ = 10−1.
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Figure 11: Comparison of the evolution of the solution field s(x, t) at selected time steps t ∈ {3, 6, 9} for the
full-order model (top row) and the non-intrusive operator inference reduced-order models with approximation
in a linear subspace (middle row) and the proposed quadratic manifold formulation (bottom row). Both
reduced model simulations are carried out using r = 40 POD modes, accounting for 60.1% and 98.1% of the
snapshot retained energy, respectively, as computed by (43), (44).

20



2 3 4 5 6 7 8 9 10

-0.01

0

0.01

0.02

Time t

S
o
lu
ti
o
n
s(
x
,t
)

Reference Linear manifold Quadratic manifold

Figure 12: Traces of the solution s(x, t) through time monitored at the center of the computational domain
for the linear and quadratic operator inference models. The trace of the full-order model (black dots) with
n = 321, 201 is shown for reference. The reduced basis dimension for both reduced-order models is r = 40.
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Figure 13: Absolute error in the states between the reference solution and the linear (top) and quadratic
(bottom) operator inference based reduced-order models at selected time steps t ∈ {3, 6, 9}.
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The second-order time derivatives in (50) are approximated from the state snapshots using a five-point central
difference stencil, which is fourth-order accurate. The first two and last two time derivatives are computed
using a one-sided six-point stencil to maintain the same level of accuracy. We infer the reduced-order
operators by solving linear least-squares problem (50). The same procedure applies for the reduced-order
models using a linear approximation subspace, the only difference being that there is no quadratic reduced
matrix operator Ĥ to be sought.

The inferred reduced models are simulated with an explicit central difference time stepping scheme (which
has second-order accuracy), time step size ∆t = 10−2, and end time T = 10. We show representative results
for reduced models with a basis dimension of r = 40, accounting for 60.1% and 98.1% of the snapshot energy
for the linear and quadratic models, respectively. Tuning of the regularization parameters is often critical
to the performance of the operator inference method. It was determined that a choice of λ1 = 10−2 and
λ2 = 8.6596 · 10−2 in (50) produces the most accurate results. For the linear reduced-order model we choose
λ = 7.4989 · 10−2. Figure (11) compares the computed solution fields for the linear and quadratic reduced-
order models at selected time steps. The same snapshots of a full-order model simulation are shown for
reference. The linear operator inference model does a reasonable job of capturing the wave propagation with
time, as well as handling multiple reflection and interference events. However, the wave amplitudes tend to
be underestimated and the model displays non-physical, oscillatory behavior throughout the computational
domain. The quadratic model, on the other hand, is able to find more truthful wave amplitudes and
suppresses much of the non-physical behavior away from the propagating fronts. This can be seen further in
Figure 12 where we plot the operator inference predicted solution over time, monitored at the center of the
computational domain. Figure (13) plots the absolute error in the solution at three time instances. While
the error for both models is concentrated around the wave fronts, the magnitude of the absolute error is
much smaller in the quadratic model.

5 Conclusions and future work

This paper proposes a new approach for nonlinear dimensionality reduction. The methodology learns a data-
driven quadratic manifold from high-dimensional data by solving a linear regression problem. Combining the
quadratic manifold state approximation with operator inference model reduction for linear problems leads to
reduced-order models that are effective for problems exhibiting slow decay in the Kolmogorov n-width. The
approach can be viewed as a form of data-driven closure modeling, since the quadratic component of the
manifold approximation introduces directions that lie in the orthogonal complement of the linear subspace,
but does not increase the number of degrees of freedom in the low-dimensional representation. For the
linear PDE examples presented in this paper, approximation in a quadratic manifold leads to a reduced-
order model with quadratic structure. Using operator inference, the approach is entirely non-intrusive—that
is, the manifold representation and associated reduced-order model operators can be learned directly from
snapshot data.

The paper also introduces a column selection algorithm that optimally selects a subset of quadratic terms
to be included in the manifold representation. This reduces the number of basis vectors required to represent
the quadratic terms and reduces the dimension of the reduced-order quadratic operator to be inferred. For
the examples considered in this paper, the quasi-quadratic representation incurs some error penalty and thus
represents a tradeoff between reduced model performance and the computational complexity of inferring the
reduced-order model.

The quadratic manifold approximation could also be used to derive reduced-order models for nonlinear
problems; however, a number of computational challenges must be addressed. One set of challenges relates to
the efficient representation of nonlinear terms in the reduced-order model. One way to address this is through
hyperreduction, as in [45], which introduces an additional layer of approximation beyond the state dimension
reduction. Another approach is to exploit structure of the nonlinear terms through lifting to higher-order
polynomial terms as in [48, 52], or through explicit treatment of non-polynomial nonlinear terms as in [50].
Determining how to combine these treatments of nonlinear dynamical systems with our quadratic manifold
approximations is an important direction of future work. We also note that the column selection method will
be essential when applying the approach to nonlinear PDEs, since the reduced models for those problems
will likely have higher-order polynomial structure. For example, using a quadratic manifold to reduce a PDE
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with quadratic operator structure will yield a reduced model with quartic structure. For such cases, it will
be essential to reduce the number of reduced operator coefficients to be inferred, by using column selection
to identify multi-way interactions between reduced-order state variables that can be neglected. A second
set of challenges in extending the approach to nonlinear problems relates to the algorithms to determine
the basis V. With increased complexity of dynamics in a nonlinear system, the dimension of the reduced
space is expected to grow, and it may become increasingly difficult to maintain a well conditioned least-
squares problem. Exploring alternative numerical formulations, including other strategies for regularization,
is another important direction of future work.
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A The SpaRSA algorithm

We now discuss a basic proximal-gradient algorithm for solving the sum-of-ℓ2 regularized problem (20). This
is essentially the SpaRSA algorithm described in [46]. The basic step of the algorithm moves from the current
estimate V to a new estimate V+ by solving the following subproblem for some step length α > 0:

V+ = argmin
V+∈Rn×r(r+1)/2

 1

2α

∥∥∥V⊤
+ −

[
V

⊤ − αW(W⊤V
⊤ − E)

]∥∥∥2
F
+ λ

r(r+1)/2∑
j=1

∥V⊤
+,j∥2

 , (51)

where V
⊤
+,j denotes the jth row of V

⊤
+. In fact, we can separate the objective in (51) according to rows of

V
⊤
+, and write it as

V+ = argmin
V+∈Rn×r(r+1)/2

r(r+1)/2∑
j=1

(
1

2α

∥∥∥∥V⊤
+,j −

[
V

⊤ − αW(W⊤V
⊤ − E)

]
j,.

∥∥∥∥2
F

+ λ∥V⊤
+,j∥2

)
. (52)

Defining Rα := V
⊤ − αW(W⊤V

⊤ − E) and Rα,j to be the jth row of Rα, we can rewrite (52) as

V+ = argmin
V+∈Rn×r(r+1)/2

r(r+1)/2∑
j=1

(
1

2α

∥∥∥V⊤
+,j −Rα,j

∥∥∥2
F
+ λ∥V⊤

+,j∥2
)
. (53)

The closed-form solution of (53) is

V
⊤
+,j =

0 if ∥Rα,j∥2 ≤ αλ(
1− αλ

∥Rα,j∥2

)
Rα,j , otherwise

, j = 1, 2, . . . , r(r + 1)/2. (54)

In most contexts, this algorithm is not applied for a single value of the regularization parameter λ but
rather a range of distinct values. The main loop in Algorithm 2 can be enclosed in an outer loop which
iterates over these λ values in decreasing order, with the solution V for one value of λ being used as the
starting point for the next smaller value of λ. The overall procedure is detailed in [46]. From among these
different solutions, some external criterion can be used to select the most desirable or appropriate. In the
current context, we might target a certain number q of nonzero columns in V.
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Algorithm 2 SpaRSA Algorithm for solving (20)

Given λ ≥ 0, Choose ᾱ > 0, V0;

α← ᾱ;

for k = 0, 1, 2, . . . do
Evaluate Rα with V = Vk and solve (54) for V+;

while Fλ(V+) ≥ Fλ(Vk) do
α← α/2;
Evaluate Rα with V = Vk and solve (54) for V+;

end while
Set Vk+1 ← V+ and α← min((3/2)α, ᾱ);
if k > 5 then

if
Fλ(Vk)−Fλ(Vk−5)

Fλ(Vk−5)
≤ ϵtol then

Terminate;
end if

end if
end for
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[27] M. Salvador, L. Dedè, and A. Manzoni, “Non intrusive reduced order modeling of parametrized PDEs
by kernel POD and neural networks,” Computers & Mathematics with Applications, vol. 104, pp. 1–13,
2021.

[28] S. Fresca, L. Dede, and A. Manzoni, “A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized PDEs,” Journal of Scientific Computing, vol. 87,
no. 2, pp. 1–36, 2021.

[29] T. Kadeethum, F. Ballarin, Y. Choi, D. O’Malley, H. Yoon, and N. Bouklas, “Non-intrusive reduced
order modeling of natural convection in porous media using convolutional autoencoders: Comparison
with linear subspace techniques,” Advances in Water Resources, vol. 160, p. 104098, 2022.

25



[30] S. E. Ahmed, O. San, A. Rasheed, and T. Iliescu, “Nonlinear proper orthogonal decomposition for
convection-dominated flows,” Physics of Fluids, vol. 33, no. 12, p. 121702, 2021.

[31] B. Peherstorfer and K. Willcox, “Data-driven operator inference for nonintrusive projection-based model
reduction,” Computer Methods in Applied Mechanics and Engineering, vol. 306, pp. 196–215, 2016.

[32] O. Ghattas and K. Willcox, “Learning physics-based models from data: perspectives from inverse
problems and model reduction,” Acta Numerica, vol. 30, p. 445–554, 2021.

[33] C. Meneveau and P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction. Scien-
tific Computation, Springer Berlin Heidelberg, 2006.

[34] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, “Proper orthogonal decomposition closure models for
turbulent flows: A numerical comparison,” Computer Methods in Applied Mechanics and Engineering,
vol. 237-240, pp. 10–26, 2012.

[35] S. Pan and K. Duraisamy, “Data-Driven Discovery of Closure Models,” SIAM Journal on Applied
Dynamical Systems, vol. 17, no. 4, pp. 2381–2413, 2018.

[36] A. Gouasmi, E. J. Parish, and K. Duraisamy, “A priori estimation of memory effects in reduced-order
models of nonlinear systems using the Mori–Zwanzig formalism,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 473, no. 2205, p. 20170385, 2017.

[37] B. Peherstorfer, “Sampling low-dimensional markovian dynamics for preasymptotically recovering re-
duced models from data with operator inference,” SIAM Journal on Scientific Computing, vol. 42, no. 5,
pp. A3489–A3515, 2020.

[38] S. E. Ahmed, S. Pawar, O. San, A. Rasheed, T. Iliescu, and B. R. Noack, “On closures for reduced order
models—A spectrum of first-principle to machine-learned avenues,” Physics of Fluids, vol. 33, no. 9,
p. 091301, 2021.

[39] K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,” The London,
Edinburgh, and Dublin philosophical magazine and journal of science, vol. 2, no. 11, pp. 559–572, 1901.

[40] J. L. Lumley, “The structure of inhomogeneous turbulent flows,” Atmospheric turbulence and radio
wave propagation, 1967.

[41] L. Sirovich, “Turbulence and the dynamics of coherent structures part I: Coherent structures,” Quarterly
of applied mathematics, vol. 45, no. 3, pp. 561–571, 1987.

[42] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition in the analysis of
turbulent flows,” Annual review of fluid mechanics, vol. 25, no. 1, pp. 539–575, 1993.

[43] H. Qiao, P. Zhang, D. Wang, and B. Zhang, “An Explicit Nonlinear Mapping for Manifold Learning,”
IEEE Transactions on Cybernetics, vol. 43, no. 1, pp. 51–63, 2013.

[44] P. J. Baddoo, B. Herrmann, B. J. McKeon, and S. L. Brunton, “Kernel learning for robust dynamic mode
decomposition: linear and nonlinear disambiguation optimization,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 478, no. 2260, p. 20210830, 2022.

[45] J. Barnett and C. Farhat, “Quadratic Approximation Manifold for Mitigating the Kolmogorov Barrier
in Nonlinear Projection-Based Model Order Reduction,” arXiv preprint arXiv:2204.02462, 2022.

[46] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse reconstruction by separable approximation,”
IEEE Transactions on signal processing, vol. 57, no. 7, pp. 2479–2493, 2009.

[47] B. A. Turlach, W. N. Venables, and S. J. Wright, “Simultaneous variable selection,” Technometrics,
vol. 47, no. 3, pp. 349–363, 2005.

26



[48] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, “Lift & Learn: Physics-informed machine learning
for large-scale nonlinear dynamical systems,” Physica D: Nonlinear Phenomena, vol. 406, p. 132401,
2020.

[49] S. A. McQuarrie, C. Huang, and K. E. Willcox, “Data-driven reduced-order models via regularised Op-
erator Inference for a single-injector combustion process,” Journal of the Royal Society of New Zealand,
vol. 51, no. 2, pp. 194–211, 2021.

[50] P. Benner, P. Goyal, B. Kramer, B. Peherstorfer, and K. Willcox, “Operator inference for non-intrusive
model reduction of systems with non-polynomial nonlinear terms,” Computer Methods in Applied Me-
chanics and Engineering, vol. 372, p. 113433, 2020.

[51] H. Sharma, Z. Wang, and B. Kramer, “Hamiltonian operator inference: Physics-preserving learning of
reduced-order models for canonical hamiltonian systems,” Physica D: Nonlinear Phenomena, vol. 431,
p. 133122, 2022.

[52] B. Kramer and K. E. Willcox, “Nonlinear Model Order Reduction via Lifting Transformations and
Proper Orthogonal Decomposition,” AIAA Journal, vol. 57, no. 6, pp. 2297–2307, 2019.

27




