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Abstract

Multifidelity forward uncertainty quantification (UQ) problems often involve multiple quantities of interest and heterogeneous
models (e.g., different grids, equations, dimensions, physics, surrogate and reduced-order models). While computational
efficiency is key in this context, multi-output strategies in multilevel/multifidelity methods are either sub-optimal or non-existent.
In this paper we extend multilevel best linear unbiased estimators (MLBLUE) to multi-output forward UQ problems and we
present new semidefinite programming formulations for their optimal setup. Not only do these formulations yield the optimal
number of samples required, but also the optimal selection of low-fidelity models to use. While existing MLBLUE approaches
are single-output only and require a non-trivial nonlinear optimization procedure, the new multi-output formulations can be
solved reliably and efficiently. We demonstrate the efficacy of the new methods and formulations in practical UQ problems
with model heterogeneity.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

A central task in forward uncertainty quantification (UQ) is estimating the expectation of output quantities of
interest (Qol). When the same Qol is the output of different models of varying fidelity, multilevel and multifidelity
Monte Carlo algorithms [1-9] efficiently estimate its expectation via sampling: by exploiting the correlations
between models, these algorithms reduce the estimator variance for a fixed cost (or, equivalently, reduce the total
cost to obtain an estimator with a given level of variance). Multilevel and multifidelity methods require selecting
which models to sample and the number of samples to be drawn, a choice that can impact efficiency if sub-optimal.
But setting up these methods optimally is a non-trivial operation, especially when UQ problems involve multiple
Qols and heterogeneous models, as is often the case in many engineering and scientific applications. We say models
are “heterogeneous” if they are constructed through different approaches (e.g., varying grids, equations, dimensions,
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or physics, or using surrogate and reduced-order models) or if their output structure varies (e.g., if models have
different Qols). Since it is crucial to design estimators that are as efficient as possible, in this paper we extend
multilevel best linear unbiased estimators (MLBLUEs) [8,9] to the multi-output case and propose a fast, reliable
strategy for their optimal model selection and sample allocation.

There are many multilevel and multifidelity estimators available in the literature [1-9], each differing in the
way they exploit the statistical relations between models. A key ingredient of any multilevel/multifidelity algorithm
is a strategy for optimal model selection and sample allocation: given a set of available models with different
characteristics, it is important to determine which models actually lead to a performance benefit, and how much
these models should be sampled. The optimal model selection and sample allocation problem (MOSAP) depends
on both the method and on the set of available models. In some specific cases the MOSAP is trivial to solve; the
model selection largely simplifies when all models belong to the same discretization hierarchy [2,4]. However, in
the general case in which models are highly heterogeneous, the MOSAP is an NP-hard nonlinear mixed-integer
programming problem, and its complexity increases exponentially with the number of available models.

In this paper we focus on MLBLUEs, and specifically on techniques for solving their MOSAP. MLBLUESs were
presented by Schaden and Ullmann in [8,9], and have the appealing property of being provably optimal among all
multilevel linear unbiased estimators' [8,9]. Furthermore, while multilevel Monte Carlo (MLMC) [1,2,4] can only
couple? models in pairs, and multifidelity Monte Carlo (MFMC) [3,6] requires all models to be coupled together,
MLBLUESs have no coupling restrictions and can work with any combination of models [8].

Nevertheless, setting up a MLBLUE presents challenges. The MOSAP formulation in [8] is a (weakly) convex
nonlinear problem with linear constraints, but its objective function is defined via the inverse of a matrix that may
be singular. This is handled by adding a small positive term to the diagonal of the matrix, but the resulting problem
is still not strongly convex in general and may be ill-conditioned, making the MLBLUE MOSAP a hard problem to
solve. For instance, the generic optimization solver fmincon is used in the numerical tests of [8, Section 6], but it
fails in several cases. Another limitation of the existing MLBLUEs is that they have been designed only for a single
output. Extending these estimators to multiple Qols, while trivial in theory, can be very challenging in practice since
any difficulties in the MLBLUE MOSAP optimization are likely to be exacerbated in the multi-output case.

In this paper we make the following contributions.

e We reformulate the MLBLUE MOSAP as a semidefinite programming (SDP) problem. SDPs and linear
programming are both conic optimization problems, a special class of convex optimization [10]. SDPs have
been an area of intense study in the optimization community since the mid-1990s, and powerful algorithms
and software have been developed [10-14]. Our SDP reformulation does not require taking the inverse of a
possibly ill-conditioned matrix, nor does it require a positive shift to ensure positive definiteness of this matrix.
We prove the equivalence between the SDP reformulation and the original MOSAP problem with zero shift
from [8].

e The original MLBLUE MOSAP minimizes the estimator variance for fixed cost [8]. We present a SDP
reformulation minimizing the MLBLUE cost for a given statistical error tolerance. Depending on the UQ
problem, either formulation may be useful, and they can both be solved efficiently.

e We introduce a multi-objective MOSAP SDP formulation that permits computation of Pareto points defined
by the two objectives of statistical error and cost. This is the first such formulation in the literature and is of
practical relevance in cases where an appropriate limit on the computational budget is not known a priori.

e We extend MLBLUE:s to the multi-output case and present an SDP reformulation for the multi-output MOSAP
that can be solved efficiently. We show that this multi-output estimator outperforms MLMC and MFMC in
numerical experiments.

e We demonstrate numerically that MLBLUEs maintain their efficiency when the prohibitive cost of high-fidelity
models imposes sample restrictions and/or prevents the estimation of all model correlations.

This paper is structured as follows. In Section 2 we introduce MLBLUEs and their MOSAP and we discuss their
properties. We reformulate the single-output MLBLUE MOSAP as an SDP in Section 3, where we also present a
new formulation in which the total MLBLUE cost is minimized subject to a statistical error constraint and a new
multi-objective MOSAP formulation. In Section 4 we extend MLBLUEs and their MOSAPs to the multi-output
case. Numerical experiments are presented in Section 5, and Section 6 contains some concluding remarks.

' This includes most multilevel and multifidelity methods and all previously mentioned methods.
2 We denote a group of models to be “coupled” if the algorithm samples all these models with the same input.
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Notation. We adopt the following notation:

Scalars, vectors, matrices, sets. We indicate scalars with lower-case letters (e.g., a, b, c), vectors with lower-case
bold letters (e.g., a, b, ¢), matrices with upper-case letters (e.g., A, B, C), and sets with calligraphic upper-case
letters (e.g., A, B, C). Random variables and vectors are indicated in the same way. We indicate with 24 the power
set of A, i.e., the set of all possible subsets of A.

Linear algebra. Given a matrix A, we indicate with null(A), col(A), and row(A) its nullspace, column and
row space respectively. Furthermore, we denote with A7, A~! and A" its transpose, inverse, and Moore—Penrose
pseudo-inverse, and we write A > 0 to indicate that A is positive semi-definite. Let {a;}/_,, {a;}'_,, and {A;}}_, be
ordered sets of scalars, vectors and matrices respectively. We indicate with [a,-]f:], [ai]f:l, and [A,-]f:, the vectors
and the matrix obtained by vertically stacking the elements (assuming that matrix dimensions are compatible).

Random input parameters. We indicate with w a generic input parameter which is modeled as random from a
known distribution. We indicate independent identically distributed input parameter samples with different subscripts
and superscripts, e.g., w;, ; or a)f< , 0}, where the samples are independent if i # j or if k 7 s.

Random variables, expectation, variance, covariance. We indicate random variables and vectors as functions
of the random input w, e.g. p(w) for a scalar random variable or p(w) for a random vector. We indicate with E[-],
V[-] and C(-, -) the expectation, variance, and covariance operators. We always assume that the random quantities
involved have finite variance.

2. Background on multilevel best linear unbiased estimators

To set the scene for the later discussion, we introduce the single-output MLBLUEs by Schaden and Ullmann [8,9],
and discuss their formulation of the MLBLUE MOSAP. This section summarizes the technical approach presented
in [8].

In forward UQ the objective is to approximate the expectation E[p(w)] of a scalar Qol p(w) which is modeled
as a random variable of finite variance. For this purpose, we consider a set of £ different models M = {/\/li}f=1
of different accuracy/fidelities, so that for all i =1, ..., £, model M; admits the random variable p;(w) as output,
where p; & p. Here we indicate with M, the highest-fidelity model whose output p; best approximates p. Model
M typically has the highest cost across the model set.

Remark 2.1. We present MLBLUES in a multifidelity setting [15] in which p; is taken as the best model we have
access to. In this setting it is not possible to refine p; further. Since the bias error |[E[p — p;]| cannot be reduced,
it is only taken into account when determining a suitable statistical error tolerance and otherwise ignored. This is
in contrast to what we call a multilevel setting [2] in which it is always possible to refine models further to reduce
the bias. We remark that MLBLUEs — as well as MLMC and MFMC - can be used in both settings [8,9].

Given a set G C 2™\ # of allowed model groupings, MLBLUEs approximate E[p;] by combining independent
samples of the model groups in G, where by “sample of a model group” we mean that the models in the group are
sampled with the same input (i.e., same w). We order model groups by size and then lexicographically by model,
and we indicate the kth group in G with G, for k = 1, ..., |G|. For instance, for £ = 3 and all groupings allowed,
we would have G = {gk}zzl, where

G ={Mi}, G ={My}, G3={M;s},
Gy = {Mi, Mz}, Gs ={M;, M3}, Gs={M>, M3},
G7 = {M1, Mo, M3}.

Now, let p = [I[*][p,-]]f:1 € R’ be the vector of the expectations of all model outputs. Then a sample
PM(w) = [pi(w)] M;eg, from the kth group G, € G satisfies the linear model
P (@) = E[p"]+ (p"(@) — E[p"]) = Repe + e (o), M

where R; € RI9%/*¢ is a boolean restriction matrix (made up of rows of the £ x £ identity matrix corresponding to
the elements of G;) such that Ryu = E[pk], and ef = pk(w) — E[pk] € RI9%! is a zero-mean random vector with
covariance matrix C; = C(p*, p").

The starting point for constructing a MLBLUE is to build on (1) and account for multiple independent samples
from all feasible groups. We define the set of group indices KC := {1, ..., |G|}, the number of samples from each
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group 1, k € K, and the sample set for each group to be J* = {1, ..., n;}. The vector of these sample sizes — the
key variable to be determined in our MOSAP formulation — is r = [n;]icxc € N1, Using this notation, we can
extend (1) by vertically stacking all samples from all groups into a vector p such that p = [p¥ (a)_’]‘-)] jegk kek» Where
p"(a)’]‘.) denotes the jth sample of model group k and pk(a)’;) and p*(w?) are independent if s # k or if i # j. The
vector p satisfies the linear model

p(w) = Rp + e(w), (2a)
where R = [Riljc gt kerc» €= [Ek(wlj)]jeﬂ,keic (2b)

By construction, & is a zero-mean vector with block-diagonal covariance since it contains n; i.i.d. samples of &*
for all k € K (J* is the set of sample indices and |7¥| = n;). Accordingly, the matrix R contains n; copies of Ry
for each k € K. Similarly, we define

Ce == C(e, &) = diag({C} je g# kerc)s 3)

where this block-diagonal matrix contains n; copies of Cy, for each k € K. So far n has been considered fixed.
A MLBLUE is found by computing the best linear unbiased estimator (BLUE) of the linear model (2), and then
optimizing it with respect to n.

Remark 2.2. Schaden & Ullmann [8] call the BLUE resulting for any linear model such as (2) that includes
multilevel/multifidelity samples a MLBLUE. With the purpose of simplifying the exposition by reducing the number
of acronyms, we here call MLBLUE only a model selection and sample allocation optimal BLUE for p (termed
sample allocation optimal MLBLUE or SAOB in [8]).

Note that there is a closed-form expression for the BLUE of (2) independently of whether R and C, are full-rank
or not, see e.g., [16]. To proceed, we however make the following simplifying assumption that is also adopted in [8].

Assumption 2.1. The covariance matrices Cj are non-singular for all k € K.

Remark 2.3. Assumption 2.1 can be removed at the cost of a more complex technical and algorithmic treatment,
but is of little importance in practice. Indeed, as shown in [16], a singular C; implies that there exists a linear
combination of outputs from the different models in the set G; that is a.s. constant. If this happens, then at least
one model is redundant. Once the redundant models are removed from Gy, the resulting ensemble of models would
have a covariance matrix that is full-rank. Thus, Assumption 2.1 is not restrictive.

Remark 2.4. In practice, the matrices Cj often have to be estimated via pilot samples. Since a sample covariance
computed with n samples cannot have more than rank n, one must therefore take enough samples to ensure that the
sample covariance is not artificially singular. If a singular matrix is nevertheless obtained, one can either remove
the redundant models or to reset the zero eigenvalues to a small positive constant.

Under Assumption 2.1, we can invoke the generalized Gauss—Markov—Aitken theorem [16] and find the BLUE
by solving the generalized least-square problem for the estimation of the mean, which admits a closed-form solution
given by (cf. [17])

fi(n) = R"C;'R)T'RTC; p = w(m)” 3(n), 4)
where ¥(n) € R™¢ and y(n) € R are given by
W) =R"C;'R=" m(R) (Co)'Ri., (5)
kelC
) =R"C;'p=) (RO'(CO™" Y preh). (5b)
kel jeJk

Eq. (4) is the BLUE for the full vector . Since in practice we are only interested in estimating u; = E[p;], we
can write the BLUE for p; and its variance as

Elpil~ e] fi(n) = e] ¥(n)"'$(n), Vie] a(n)] =e] ¥(n) e, (6)
4
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where e; = [1,0...,0]” e R It can be shown [16,17] that this estimator for E[p,] is also a BLUE and well-
defined as long as e; is in the column space of R”, col(RT), which is always satisfied as long as we are sampling
the high-fidelity model at least once.

To complete the construction of a MLBLUE, we must find the optimal model selection and the optimal number
of samples to draw for each model group. Note that both problems can be addressed by finding the optimal value
of n while allowing some of its entries to be zero: a model that is sampled zero times is this way automatically
discarded. To obtain the MOSAP, we minimize the BLUE variance in (6) with respect to r for a fixed positive
computational budget b, i.e., we solve

mi(r)l elT v Yn)e;, st nlec<b, @)
n>
where ¢ € RI9! is the cost vector such that ¢ is the cost of drawing one realization of model group k. Problem
(7) is typically solved by allowing n to take real values, and then projecting the result to integers. After continuous
relaxation, problem (7) becomes a weakly convex nonlinear optimization problem [8]. In fact, it can be shown that
even when ¥(n) is nonsingular for all n, the Hessian of the objective function in (7) has rank at most £, typically
much less than the number of model groups |G|. We remark that for the feasible set of (7) to be non-empty the
budget must satisfy

b> min ¢y, (8)

k:M€Gy

i.e., we have enough budget to sample the cheapest group containing M at least once. The resulting algorithm for
constructing a MLBLUE is presented in Algorithm 1.

Remark 2.5. We remark that problem (7) is only weakly convex and, as such, admits an infinite set of optimal
solutions that are feasible and have the same objective value (cf. [8]). As a consequence, MLBLUESs are not unique.

Algorithm 1: Model and sample allocation optimal MLBLUE.

1. Given a set G of allowed model groupings, estimate the group correlations {Cy}ieic, €.., by taking npje € N
pilot samples of all models.
2. Solve the MLBLUE MOSAP (7) (or the improved MOSAP formulations we present in the next sections) to
obtain the optimal sample vector n*.
. Sample the model groups according to »* and stack the samples into a vector p*.
4. Compute the MLBLUE as i} = e] ¥(n*)"'RTC_! p*, cf equations (5) and (6).

W

Problem (7) may be affected by severe ill-conditioning. The reason is that ¥ (n) is, in general, only positive semi-
definite and becomes singular (see next section) whenever a model is discarded. Schaden and Ullmann address this
problem by adding a shift and replacing ¥ (n) by ¥s(n) = ¥(n)+ 51 for some § > 0, where the value of § must
be carefully chosen: a large § artificially increases all entries of n and leads to oversampling, while a small § leads
to ill-conditioning. (Although the matrices Ws(n) are nonsingular for all n, the rank of the Hessian of the objective
function in (7) remains at most £, so the problem is still highly degenerate.) We will show in the next section how
we can reformulate MLBLUEs so that no shift parameter is required and so that no issues arise when ¥ is singular
or when models are discarded.

Remark 2.6. The number of possible model groupings grows exponentially fast with the number of models ¢,
which might make the MOSAP solution challenging. For instance a model set of size £ > 20 would lead to n
having over a million entries. A solution in this case is to restrict the set G of allowed groupings. For instance
Schaden and Ullmann [8] restrict the maximum size of the allowed groupings to a fixed integer x and show that
in practice little accuracy or efficiency is lost by only using groups of size at most five.

MLBLUEs have three advantages compared with other multilevel/multifidelity estimators. (1) MLBLUEs are
provably optimal across all multilevel/multifidelity methods. (2) Unlike most multilevel/multifidelity methods,
MLBLUE:sS are flexible in the sense that they can work with any selection of model groupings and with any model

5
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set structure. In contrast, methods such as MLMC and MFMC are restricted to specific model combinations (see
Example 2.1). (3) The MLBLUE optimal model selection is automatically found together with the optimal sample
allocation without need for a brute-force enumeration approach.

As we will see in Section 4, the multi-output MLBLUESs we introduce inherit the same advantages as the single-
output case. We will also see how, thanks to the contributions of Sections 3 and 4, we can add a fourth advantage:
(4) The construction of multi-output MLBLUESs and the solution of their MOSAPs can be performed reliably and
efficiently. Furthermore, we will numerically demonstrate in Section 5 how MLBLUE is robust to the grouping and
sample restrictions arising in the common scenario in which the higher-fidelity models are prohibitive to sample.

Example 2.1. Let us clarify point (2) with an example. We take ¢ = 3 and, without loss of generality, we order
the models by cost. Assuming that the best MLMC and MFMC estimators that can be constructed for this problem
use all three models, we obtain the estimators

AmMLme = L "Z‘ (P1(@)) = pa(@)) + L ”Zz (p2(@)) = p3(a)) + L i p3(@))
nl 1 1 nz 1 1 n3 > 1/

i=1 i=1 i=I

1 my 1 my 1 my 1 m3 1 my
fveve = — ) pirl@) +aa | — ) pawi) — — > paw) | +os | — D p3w)—— ) pi@)],
where 0 < ny,np,n3, 0 < m; < my < ms, and o, and o3 are real parameters that depend on the covariances
between the model outputs. We refer the reader to [3,4] for further details on MLMC and MEFMC respectively.
Recalling that samples with different input parameters are independent, it is readily seen from the above estimators
that MLMC and MFMC use the following model groupings:

gMLMC = {{Mlv Mz}’ {M27 M3}7 {M3}} )
gMFMC = {{Mlv MZ’ M3}’ {sz M3}s {M3}} ’

i.e., MLMC combines models in pairs, while MFMC samples all models together. We remark that the same holds for
larger £: MLMC must work with pairs, and MFMC must be able to sample all models together. If this is not possible,
e.g., because estimating correlations is too expensive or, in the multi-output case, simply because a model does not
yield that Qol, then the model set must be pruned and adjusted so that an estimator can be constructed. On the other
hand, MLBLUEs do not have such restrictions (nor most of the other model restrictions of these methods, cf. [3,4]):
it can work with any set of allowed groupings without needing to discard any models, and it will automatically
find the best groups for the estimation problem at hand together with the optimal sample allocation. Generally
speaking, while the model set structure could significantly affect the performance of other estimators (see e.g., [7]
for a discussion), MLBLUE always retains its optimality. This is why we say that MLBLUEs are flexible.

3. Semidefinite programming reformulation of the MLBLUE model selection and sample allocation
problem

While the MLBLUE MOSAP is (weakly) convex, it is still non-trivial to solve in practice, especially when |G|
is large. Near-singularity of ¥(n) causes the problem to be ill-conditioned, even when the shift § is added to form
Us(n). Efficient methods should use second-order information, which can be expensive to calculate. In this section,
we show how the solution of the MLBLUE MOSAP can be simplified and accelerated by reformulating (7) as a
semidefinite programming (SDP) problem.

Semidefinite programming is a powerful paradigm for formulating and solving a wide range of problems in
statistics, data science, and control. The problem class most relevant to the MOSAP is experimental design (see for
example [18, Section 7.5]) in which the objective is some function of a matrix that is a weighted sum of rank-1
matrices, with the weights being the variables in the problem. (In the MOSAP, the matrices in the sum (5) that
defines ¥(n) are not rank-1, but the SDP formulation techniques still apply.) Efficient interior-point algorithms
have been available for SDP since the mid-1990s, and are now included in commercial packages such as MOSEK
[13] and open-source packages such as CVXOPT [19].

The first step in the reformulation is to replace ¥~! with the Moore—Penrose pseudo-inverse ¥ so that

=9y CG, p= v )
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This is a standard procedure whenever ¥ is singular and still leads to a BLUE for u under Assumption 2.1 [17,20],
but has the advantage of not requiring the § shift parameter used in [8] (cf. Section 2) without leading to ill-
conditioning or ill-posedness of the resulting MOSAP. However, using the pseudo-inverse on its own is still not
sufficient to ensure that e] p is also BLUE. As previously said, we also need e; to be in the column space of
RT [17]. This property can be imposed by requiring that model M is sampled at least once. Problem (7) can then
be equivalently reformulated as

migelT WT(n)el, st. nfe<b, nTh>1, (10)
n>

where h € R!9! is a known boolean vector such that 4, = 1 if and only if M; € G;. The new constraint on the
right-hand side imposes that the high-fidelity model is sampled at least once and thus ensures that the estimator
is a well-posed BLUE. Since it is necessary for well-posedness of the resulting estimator, this constraint does not
exclude any sensible solution of the MOSAP. In particular, the standard Monte Carlo estimator is still feasible for
problem (10), ensuring that the feasible set is non-empty (also see Theorem 3.6 in [8]).

Before proceeding we need two auxiliary results. Under Assumption 2.1, Schaden and Ullmann [8] proved that
if p contains samples from all £ models, then ¥ is positive definite. We further extend their result to show that ¥
can only be positive definite if all models are sampled, as well as providing a characterization of the null-space of
v.

Theorem 3.1. Let Assumption 2.1 hold. Then ¥ is positive definite if and only if p contains samples from all
£ models. More specifically, let Vi, = {v € R® : v; = 0 Vi s.t. M; € Gy}, then the null-space of ¥ satisfies
null(¥) =N V. In particular, if model M; € M is never sampled, then the ith row and column of ¥ and W1
are zero.

ng>0

Proof. Let By = (R;)"(Cy)"'R; for all k. Since Cy is positive definite for all k, then By is positive semidefinite,
and so is ¥, cf. (5). Since (C)~! is positive definite and R has full row rank, v € R¢ is in the null-space of By if
and only if Ryv = 0, which only happens if v € V.. We then conclude that ¥ is singular if and only if there exists
v € R? such that (recall: X ={1,...,|G|})

vTWv:anvTBkvzo & Vk e Keitherngy =0o0rve,, (11)
kel

since n; and v” Byv are both non-negative for all k. In particular, this means that the null-space of ¥ is given by
mnk >0 Vk'

We first prove that if a model is not sampled, then ¥ is singular. Let e; with (e;); = §;;, (§;; is the Kronecker
delta) be the canonical basis vector. If a model M; is not sampled, we have that n; = 0 for all k such that M; € Gy,
and e; € V for all k such that M; ¢ G, therefore e; is in the nullspace of ¥, which is therefore singular with
zeros in its ith row and column. The same property holds for ¥, since ¥ and ¥’ have the same null-space.

We now prove the reverse statement and we show that if all models are sampled, then ¥ is invertible. In this
case, for all k corresponding to sampled groups we have n; > 0, and it is readily seen that since we are sampling

all models (1, _o Vi = {0}. Hence the null-space of ¥ is trivial and ¥ is invertible. [J

The second auxiliary ingredient is the following result by Albert [21]:

Theorem 3.2 (Result (i) in Theorem I in [21]). Let A € R"*", B € R™*™ be symmetric, let C € R™"™, and let

@:[éT g} (12)

Then & > 0 if and only if A = 0, AATC = C and B — CTATC > 0.
Let # € R be a scalar slack variable. We are now ready to reformulate (10) as a SDP as follows:

U(n) e

min ¢, s.t. @(t,n) =
7, m) [ el ¢

t,n>0

}50, n'e<b, n"h=>1. (13)

This is indeed an SDP since ¥(n) is linear in n and thus @(¢, n) is linear in (¢, n).

7
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Theorem 3.3. Let Assumption 2.1 hold. Then problems (10) and (13) are equivalent.

Proof. By Theorem 3.2 we have that
b0 & V>0, Ulle,=e, t>el Ule. (14)

The first of the three conditions is automatically satisfied since ¥ is non-negative definite. To complete the proof
it is sufficient to prove that the second condition also always holds. In fact, this would imply that ¢ > 0 if and
only if ¢ > elT Tte,, and taking the minimum of the latter expression over ¢ would then yield the thesis, since
min, t = elT ¥te,. Note that the spaces col(¥) and row( ¥) coincide since ¥ is symmetric. For the second condition
on the right-hand side of (14) to hold it is sufficient that e; € col(¥) since W¥' is the orthogonal projector onto
col(¥). Note that since col(¥) = row(¥) = null(¥)*, it is sufficient to demonstrate that e; is orthogonal to
null( ), which, by Theorem 3.1, is given by null(¥) = ﬂn >0 V. We observe that the last constraint in (10) and
(13) ensures that model M is sampled at least once. Hence, if we let k index the sampled groups (i.e., those for
which ng > 0) that include M, we have

nll(#) = (Ve € (Vi SveR" : v =0} =span(e))". (15)
k

ng>0
Hence e; € null(¥)* = row(¥) = col(¥), and hence ¥¥'e; = e, and the theorem is proved. [

We have now proved that the MLBLUE MOSAP can be formulated as the SDP (13), which can be solved reliably
and efficiently. In practice it is also often useful to solve an alternative MOSAP in which the user prescribes a
statistical error tolerance £ and minimizes the computational expense subject to this restriction. This new MOSAP
reads

mi})l nlec, st elT WT(n)el <&, n'h>1, (16)
n>
which is a straightforward modification of (10). Problem (16) appears harder to solve than (10) since the nonlinear
variance function now appears as a constraint. Again, we can reformulate (16) as a SDP as follows

Un) e

min n’¢, st P n) = [ o 2 } =0, n'h>1. (17)
1

n>0

Corollary 3.4. Let Assumption 2.1 hold. Then problems (16) and (17) are equivalent.

Proof. In the proof of Theorem 3.3 we have already shown that &(¢, n) > 0 if and only if e,T Ut(n)e; < t. Setting
t = &? yields the thesis. [

Note that (17) is also a SDP and it is as easy to solve as (13). In fact, the two problems are strongly related: by
introducing a parameter T > 0 we can trace out the Pareto frontier defined by the two objectives of statistical error
and cost as follows:
¥(n) e

el ¢

t,n>0

min 7 +tn’ec, st &(t,n) = [ :| =0, n'h>1. (18)
There are values of 7 that produce the solutions of (13) and (17). This problem (18) is also a SDP and can be
solved as easily as the other two formulations.

Remark 3.1. It was shown in [8] that some approximate control variate methods, such as the ACV-IS estimator
of [7], are BLUEs for a specific set of allowed model groupings. However, it is nontrivial to solve the sample
allocation problem in [7] numerically. Formulations (13) and (17) can be used to accelerate and simplify the set up
of any estimator that is also a MLBLUE.

Remark 3.2. The SDP formulations of MOSAP in (13), (17), and (18) can incorporate additional linear constraints
(e.g., on the number of samples) while remaining SDPs. For instance, in Section 5 we consider a scenario in
which the high-fidelity models are prohibitive to sample and the maximum number of high-fidelity samples is thus
restricted.
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An advantage of formulating the MOSAPs as SDPs is that they can easily be extended to the multiple output
case without impacting their numerical solvability, as we show next.

4. Multi-output multilevel best linear unbiased estimators

In this section we extend MLBLUE:s to the multi-output case and introduce SDP formulations for their MOSAPs.
We tackle the multi-output estimation problem by simultaneously constructing m MLBLUE:s, one for each output,
and setting up two multiple-output SDP MOSAPs, the first minimizing the total cost, and the second minimizing
the maximum statistical error.

Consider a single model set M = {Mi}le, corresponding now to m different output sets indexed by s =
1,...,m, so that pj is the output of the ith model corresponding to the sth Qol. We do not assume that all the
outputs p; can actually be sampled, since models might not necessarily produce all outputs. For this reason, we
construct m separate model coupling sets G* C oM \ @ for s =1, ..., m, each containing the possible or feasible
model groupings for the sth Qol.

We now simultaneously construct m MLBLUE:s, each starting from its feasible set G° obtaining the estimators

Elpjl~elp' =el W]y, Vie[p'l=el ¥ler, s=1,....m, (19)

where y,, ¥, are constructed in the same way as in the single-output case. We still consider each ¥, to be of size
£-by-£ even if not all £ models are used: if model i cannot be used to estimate the sth Qol, we simply set the ith
row and column of ¥ to zero. With this strategy, we can incorporate models that output only some of the Qols
within the standard MLBLUE construction, so that optimality is still ensured. Note that a ¥, constructed this way
remains consistent with the properties of the matrix ¥ discussed in Theorem 3.1.

To set up all m estimators concurrently, we need to design and solve a multi-output MOSAP. We have three
options: (1) fix a computational budget and minimize the maximum estimator variance. (2) Fix a statistical error
tolerance 2 for each output and minimize the total cost. (3) Trace out a Pareto frontier defined by the two objectives
of maximum estimator variance and cost. The resulting formulations are as follows.

(1) Minimizing the maximum estimator variance for a fixed budget. We write the multi-output MOSAP as

min 1, st el wimye, <t, n"h>1, n'e<b, s=1,...,m. (20)
t,n>

Its corresponding SDP reformulation reads:

Ws(") €]

t,n>0 elT t

min #, st D(t,n) = |: :| >0, n'h*>1, nfe<b, s=1,...,m. 2D
We now have m different positive semidefiniteness constraints, one for each output, but otherwise this is similar to
the single-output MOSAPs (10) and (13). Let G = | JI__, G* be the set of all possible model groupings across all
estimators. Then the vector n is of size |G| and the vectors h* € R!9! are constructed in the same way as before:
for all Gy € G, set hy = 1 if M € G, € G* and h; = 0 otherwise. Following the same approach as in the proof of
Theorem 3.3 it is easy to see that for any pair (¢, ) that is feasible for problem (21) we have that elT M (n)e; <t
for all s, and therefore the two optimization problems (20) and (21) are equivalent.

Remark 4.1. Minimizing the maximum statistical error across all outputs as in (21) is not the only option and other
objective functions can be considered. For instance, if we introduce a slack vector ¢ € R™, with ¢, corresponding
to the statistical error of output s, we can replace @(¢, n) in (21) with &,(¢,, n), and then minimize a linear or
convex quadratic function® of ¢, e.g., [|£]|1, ||£]lw = Y_ wst, for some positive vector of weights w, or [|£],.

(2) Minimizing the total cost for fixed statistical error tolerances. An alternative MOSAP formulation can be
obtained by setting a separate statistical error tolerance ¢2 > 0 for each output s, and then minimizing the total cost
of all m estimators. This yields the two equivalent formulations:

mi{)l nfe, st elT Qj(n)el < 8?, n'h>1, s=1,...,m, (22)
n>

3 A convex quadratic objective would add a second-order cone constraint to (21); the resulting problem is still a conic program and is
no more difficult to solve than the original SDP [22]. For example, to minimize ||¢|,, we introduce a scalar variable 7 and the constraint
£ > ||t|l2 (which can be expressed as a second-order cone constraint), and define the objective to be 7.

9
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U(n) e s
efT) gé:|50, n'h =1, s=1,...,m 23)

min nle¢, st @S(sf,n) = |:
5

n>0
The formulations (22) and (23) extend (16) and (17), respectively, to the multi-output case.

(3) Trace out the Pareto frontier between the two objectives of maximum estimator variance and total cost. A third
possibility is to introduce a nonnegative parameter T and consider the MOSAP

mir}) t+nle, st elT W;r(n)el <t, n'RE>1, s=1,...,m. (24)
t,n>

Its corresponding SDP reformulation reads:

Us(n) e

min r+tnle, st @S(t,n):[ o7 ;
1

t,n>0

}zo, nTh>1, s=1,...,m. (25)

Eq. (25) is the multi-output equivalent of (18). Its solution will match that of (21) for some nonnegative value of
7. For the variant of (23) in which we define ¢; to have the same positive value for all s = 1,2, ..., m, there is
also a nonnegative value of t for which the solutions of (25) and (23) coincide.

We highlight the fact that these multi-output MLBLUESs leave the model selection completely to the MOSAP
without need for the user to make any prior decision about the quality of the models or the structure of the model
set. This is a convenient feature which becomes essential when models are heterogeneous and there is no clear
distinction as to which ones are more suitable for the joint estimation problem. We also remark that multi-output
MLBLUE:S are the first instance of a multi-output multilevel or multifidelity estimator that simultaneously constructs
a separate estimator for each Qol.

Remark 4.2. Note that the MLBLUE:s in (19) are all BLUE if considered independently, but they are not BLUE if
the multi-output estimation is considered jointly. One could account for the correlations between different outputs
and construct a single multi-output MLBLUE in which different outputs are treated as different “models”. However,
this would lead to a total of up to m{ possible models, one for each (model, output) combination, causing the number
of possible groupings to scale like O(2™%) and considerably increase the cost of solving the MOSAP.

Remark 4.3. We remark that single and multi-output MLBLUEs (and all multifidelity methods based on
covariances) can be extended to handle infinite-dimensional Qol with minor modifications. Provided that the output
belongs to a Bochner space £2(f2, V) for a suitable sample space {2 and a Hilbert space V, it is sufficient to define

the covariance operator (and consequently variance and correlation operators) as the inner product (-, -) z2(g;.y) Of
L2(02,V), ie.,

C(X,Y)=(X,Y) 20 = EI(X —E[X], Y —E[YDy], V¥X,Y e LX2,V), (26)

where (-, -)y is the inner product in V. The above is a natural generalization: by taking ¥V = R we recover
the standard covariance operator between scalar random variables. This approach has the advantage of yielding
scalar-valued covariances that can be used in multifidelity methods in the same way as in the scalar case.

5. Numerical results

In this section we test both the new SDP formulations of the MLBLUE MOSAP and the single- and multi-
output MLBLUEs. The aim is to demonstrate the advantages of the new MOSAP formulations and of MLBLUEs
themselves in problems that reflect the complexity of typical computational engineering applications. Specifically,
we will show how the improved efficiency of MLBLUEs results from their ability to work with any selection of
model groupings. Here we only compare MLBLUE with MLMC and MFMC: performance comparisons between
MLBLUE and other estimators such as the ACV methods for a single Qol are available in [8,9] and extending other
estimators to multi-output problems is beyond the scope of this work.

We implemented the single- and multi-output MLBLUEs (as well as single- and multi-output MLMC and
MFMC) into an open-source Python software, BLUEST, which is publicly available on GitHub at https://github.
com/croci/bluest. BLUEST allows users to easily wrap Python models (and, by extension, any model that can be
called from Python), and supports MPI sample parallelization of serial and MPI-parallelized models.

10
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T2 Ft
rn| Oa Qe D, T,
Fb T

Fig. 1. The domain of Problem 1. The rectangle has length |I}| = |I;| = 2.2 and width |I7| = || = 0.41. The two obstacles C; and C,
have centers at (0.2,0.2) and (1.0, 0.2) and radii 0.05 and 0.08 respectively. I and I are the inflow and outflow boundaries respectively
and the other boundaries are walls.

5.1. Model heterogeneity

We start by considering two problems with heterogeneous model sets: Problem 1 uses global and local grid
refinement to define the models while Problem 2 uses global grid and timestep refinement as well as a combination
of different PDE and ODE models. The objective here is to demonstrate the improved efficiency of multi-output
MLBLUESs and of the new SDP formulations. We first investigate the computational efficiency of the MLBLUE,
MLMC, and MFMC methods constructed for each problem and then describe the computational advantages of the
new MOSAP formulations.

5.1.1. Problem 1: Steady Navier—Stokes flow past two cylinders
Problem description. As a first test problem we consider a steady flow past two cylindrical obstacles of different
sizes, as described by the steady Navier—Stokes equations:

—v()Au+uVu+Vg=0, V-u=0, xeD,,
ulr, = ulr, = ulspc, = ulsc, =0, v()Vulr,n—qlr,n =0, (27)
- T

ulr, = (401 P un(@)x( ] = x2), 0)° . x = (0,2,
where the domain D, is described Fig. 1. Here u is the flow velocity and g its pressure, and » denotes the outer
unit normal vector of the boundary. The viscosity v and the maximum inlet velocity u;, are modeled as uniform
random variables, with v(w) € [5 x 107%, 1.5 x 1073] and u;, € [0.1, 0.5]. This leads to a Reynolds number which
is also random (albeit not uniform), and given by
umean(a)) |C_2|

viw) T

where Umean = %uin is the mean inlet velocity and |C;|/m is the diameter of the largest obstacle.

Re(w) = . Re(w) € [7.1, 106.6].

Quantities of interest. We consider six Qols: the drag and lift coefficients around each obstacle

- 2
@ e =—L | wVu-phpds, i=1,2, (28)
drag> “lift u2 |Cl | ac

mean

as well as the difference in pressure before and after each cylinder
Ac,q =q(0.15,0.2) — g(0.25,0.2), Ac,g =¢(0.72,0.2) — ¢(0.88, 0.2). 29)

Model set. We construct twelve grid-based models for this problem as follows. First, we construct three base
meshes, one coarse, one medium, and one fine. Then we locally refine each base mesh in three different ways:
around both obstacles, around C; only, or around C, only. We then have three base grids with four configurations
each (three types of local refinements 4 no refinement), for a total of twelve grids, which we show in Fig. 2. We build
the meshes with the open-source software Gmsh* (version 4.10.5) and the mesh-generating scripts are available in
the BLUEST open-source repository.” Note that the grids refined around a single obstacle improve the approximation

4 Available at https://gmsh.info/.
5 See mesh_generator.py in the bluest/examples/navier-stokes folder in the BLUEST repository.
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Fig. 2. The grids used to define the twelve models for Problem 1. Each column corresponds to a different “base” mesh: fine (left), medium
(center), coarse (right). The actual “base” meshes are in the last row.

of the Qols defined on that obstacle, but not of those defined on the other cylinder. We design the model set in
this way to investigate the performance of multi-output MLBLUE:s in a setting in which some low-fidelity models
yield good approximations of only some Qols. While Problem 1 is a simple example, a conceptually similar setting
often arises in multi-physics problems where low-fidelity models are defined by simplifying some of the physics.
In such problems, the low-fidelity models will yield poor approximations of the Qols related to the physics that
were simplified.

Covariance estimation. We take 100 pilot samples of all models to estimate model covariances. This is a larger
amount than needed in practice in most cases [3]; we choose a high number to sanitize our results from pilot
sampling errors.

Solver and model costs. We solve (27) over all grids with the FE method using the Taylor-Hood FE pair and
the FEniCS library [23] using a direct linear solver. As to costs, we use the number of degrees of freedom
as a proxy for simplicity: we set these pseudo-costs to be (nfiofs)z, where néofs is the number of degrees of
freedom of model i, and we have assumed a quadratic cost complexity for the nonlinear solver used to solve
(27). Going from top to bottom and from left to right in Fig. 2, the number of degrees of freedom for each grid are
{68619, 47952, 53817, 33114} (fine grids), {18512, 12875, 14471, 8924} (medium grids) {5225, 3932, 4274, 3026}
(coarse grids). We do not account for pilot samples in our cost computations since all the methods we compare
(MLBLUE, MLMC and MFMC) benefit from more accurate estimates.

Estimator setup. We solve the statistical-error-constrained SDP MOSAP (23) with tolerances &, = 10_3,/V[p§]

for s = 1,...m = 6, where V[p{] is estimated from the pilot samples. Here we consider all model groupings of
size at most x = 7 (cf. Remark 2.6). For constructing the MLMC and MFMC estimators, we proceed as follows.
For each possible model combination that includes the high-fidelity model, we loop over all Qols s = 1, ..., m.

For each Qol, we order the models (by cost for MLMC [4] and by correlation for MEMC [3]) and compute the Qol
optimal sample allocation satisfying the tolerance &, by using the MLMC/MFMC single-output analytic expression.
We then take the maximum number of samples across all Qols and use the result to compute the corresponding
total multi-output estimator cost for that model combination. Finally, we select the model group corresponding to
the minimum total cost. Note that by setting up MLMC and MFMC this way there is no need to provide any model
ordering a priori. For MFMC, if for any model combination there is a Qol for which the MFMC model ordering
constraints [3] are not satisfied, then that model combination is discarded. (Note that MLMC does not have an
equivalent restriction on the variances® [4].) In all methods, once a real-valued sample allocation n* is found, we
project it to an integer-valued solution (cf. Remark 5.2).

6 MLMC variances are often assumed as decaying in MLMC convergence theory. However, this is not a requirement of MLMC itself [4].
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Sampling cost x 100
y e %y

MFMC

MLMC

Global mesh size and local refinement (LR) around cylinders

I Fine mesh V24 LR: Left & Right vz LR: Right
1 Medium mesh KXY LR: Left 1 LR: None

_ | Coarse mesh

Fig. 3. Total cost of the MOSAP-optimal MLBLUE, MLMC, and MFMC methods for Problem 1. Colors denote the “base” meshes (darker
= finer), while the patterns indicate the local refinements around obstacles. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Results: total estimation cost. Once the optimal MLBLUE, MLMC and MFMC estimators have been constructed,
we compute their total cost so that we can compare their efficiency. Results are shown in Fig. 3. MLBLUE is
roughly three times more efficient than MLMC and two times more efficient than MFMC for the same statistical
error tolerances. The higher efficiency of MLBLUE derives from a better management and exploitation of the
cheaper local refinement models: MLBLUE exploits all coarse grid models and only takes a few samples of the
expensive medium grid models. In contrast, MLMC and MFMC draw many medium grid model samples, which
account for a considerable portion of their total cost.

Results: Pareto frontier optimization. We solve the Pareto formulation of the MLBLUE MOSAP (25) to analyze the
trade-off between the two constraints of budget and accuracy. Fig. 4 shows the Pareto-optimal points corresponding
to different values of the Pareto parameter . We take 7 = f||c||;1, where T = 10’ for i = —7,...,4. The points
are plotted in the total MLBLUE cost vs normalized error plane, where

. Viel @'\
normalized error = max { ———— . 30)
$ V[P;]
For s = 1,...,m, the high-fidelity model output variances V[p}] are estimated from pilot samples and V[e] ']

is the estimator variance computed from the MOSAP solution using (19). For large enough t, accuracy becomes
unimportant and the MOSAP yields the cheapest, least accurate estimator satisfying the constraints in (25), namely,
a single Monte Carlo sample of the high-fidelity model. On the other hand, as t — 0, the Pareto frontier becomes
a line in the loglog plot with a slope of —% as expected for a Monte Carlo simulation: error = cost™!/2. For the
values of T between these two extremes, the behavior of the frontier is less obvious, and in this low-to-moderate-
budget regime, it provides precise quantitative information about the available tradeoffs. Here we have aggregated
the MLBLUE error across all Qols for simplicity. For more precise calibration, it may be beneficial to compute
separate Pareto frontiers for each output.
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Fig. 4. Points on the Pareto frontier MLBLUE for Problem 1. Here 7 = t||c|2, where T is the Pareto parameter from (25) and ¢ is the
model cost vector. From right to left, the points in the figure correspond to 7 = 10" for i = —7,...,4.

5.1.2. Problem 2: Hodgkin—Huxley model
Problem description — Hodgkin—Huxley high-fidelity model. As a second test problem we consider the Hodgkin—
Huxley equations for neuron membrane action potential in 1D on the unit interval:

(v, =)+ () Av + gkat(vg — v) + gnaB’Y (Ve — V) + gi(v —v), 1 € [0, 20].

o = ¢ (V)1 — o) — Yo (v)ex, G1)
B = ¢p(v)(1 = B) — Yp(v)B,
1z = ¢, ()1 —y) =¥, (v)y,
1 1—v/10 e v/80
Poe(v) = @%, Yo (v) = g
35 (v) = m’ Vp(v) = de/18, (32)
¢y(v) — O.O7€_U/20, wy(v) =1+ 6‘3_11/10)_1.

The boundary conditions are v, (¢, 0, w) = v(z, 1, w) = 0 for all w, ¢ (homogeneous Neumann and Dirichlet on the
left and right boundary respectively), and the initial conditions are given by
hu(v — Ueq)

Puw(v — Ueq) + Yu(v — Ueq)’
where vq is the equilibrium potential, whose value is given in Table 1 together with the values of all the deterministic
parameters used for this problem. We refer the reader to [24] for a derivation and description of the original
Hodgkin—Huxley model in ordinary differential equation (ODE) form and its PDE extension, which was studied
in [25].

In (31), v = v(t, x, w) is the action potential across a neuron membrane, which depends on the difference in
the concentration of sodium (Na) and potassium (K) ions inside and outside of the neuron cell. These differences
in concentrations are maintained by active transport mechanisms such as sodium—potassium pumps. In (31), these
mechanisms are modeled by the variables « = a(t, x, w), 8 = B(t,x,w), y = y({t,x,w), with 0 < o, 8,y < 1,
which represent the activation and inactivation of gated ion transport channels. The variable « is the potassium gated
channel activation, and the variables 8 and y are the sodium gated channel activation and inactivation respectively.

v(0,x, w) =veq, w(0,x,0)=

for w € {a, B, y}, (33)
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Table 1

Parameters used in the Hodgkin—Huxley model (31) and their values. The
units S, V, F, and A indicate siemens, volts, farads and amperes respectively.
The acronym “p.u.a.” stands for “per unit area”.

Parameter Meaning Value

8gNa Sodium conductance p.u.a. 120 mScm™—2
gK Potassium conductance p.u.a. 36 mScm~?
8l Leakage conductance p.u.a. 0.3 mScm ™2
UNa Sodium Nernst potential 56 mV

VK Potassium Nernst potential —77 mV

i Leakage Nernst potential —60 mV

Vegq Equilibrium potential —67.38614 mV
co Membrane capacitance p.u.a. 1 uFem™2

€0 Neuron fiber conductance 0.33616 mS
I Applied current p.u.a. 33.6 mAcm 2

Additionally, we model the membrane capacitance c(w), the neuron fiber conductance €(w) and the applied current
per unit area ((w) as random variables defined by:

c(w) = (co +0.2z3(w)) WFem™2,  e(w) = €2 mS,  (w) = 1o x 5~ mAecm™?, (34)

where z;(w) and v(w) are standard Gaussian and uniform random variables respectively, and z;(w) is a Gaussian
random variable with mean and variance chosen so that E[e?2] = ¢ and V[e?2]'/? = 0.2¢.

Problem description — FitzHugh—Nagumo low-fidelity model. As a low-fidelity model, we take the FitzHugh—
Nagumo model, which is obtained by introducing the simplifying assumptions that 8 and « + y are constant in
time and space with 8 = 8 and « + y = y. The values of § and 7 are obtained from the initial conditions (33).
The resulting FitzZHugh—Nagumo equations read

(35)
oy = ¢o (V) — &) — Y (V)ex,

where the initial and boundary conditions for v and « are the same as for the Hodgkin—Huxley model. We refer
the reader to [24] for further information about this model.

{C(w)vt = Uo) + €(@)Av + gxa*(vk — V) + gnaB> (7 — ) (na — V) + gi(vr — V),

Quantities of interest. As Qols, we choose the peak membrane potential vpeak(w) = max; , v(¢, x, ), and the net
total membrane, potassium, sodium, and leakage currents, which are respectively given by:

20 1 20 1
Lme(w)=/0 /0 (o) + €(w)Av) dx dt, tNa(w)=/0 /0 gnaBd(vny — v) dx dt, (36)

20 1 20 1
k(@) = f f gxa*(vg — v) dx dt, u(w) = f f g(v, — v) dx dt. (37)
0 0 0 0

Model set. We consider four base models: the Hodgkin—-Huxley PDE model (31), the FitzHugh-Nagumo PDE
model (35), and the corresponding ODE models obtained by setting ¢ = 0 and taking v, «, 8, and y to be constant
in space. From each of these models, we consider three different types of grid and timestep refinements: we discretize
the equations in time and space (PDE models only) using uniform grids with mesh size and timestep respectively
given by Ax = 2%+ and Ar = 2Ax for i = 1,2,3. This yields a model set comprised of twelve models in
total, in which the Hodgkin—Huxley PDE model with the finest grid and timestep is the high-fidelity model. This
model set is an example of a heterogeneous model set in which again not all models are good for all outputs. For
instance, the ODE models are unlikely to accurately approximate ¢y, (the diffusion term is zero for the ODEs), and
the FitzHugh—Nagumo models are unlikely to yield accurate samples of in, (it involves quantities approximated as
constants).

Covariance estimation. As for Problem 1, we take 100 pilot samples of all models to estimate model correlations.
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Sampling cost x108
0 2 4 6 8 10 12
MEFMC
MLMC
MLBLUE

Model type
B finc grid PDE models 1 coarse grid PDE models
T medium grid PDE models [ 1 ODE models

Fig. 5. Total cost of the MOSAP-optimal MLBLUE, MLMC, and MFMC methods for Problem 2. The three darkest colors correspond to
the PDE models with darker tints indicating finer grids and timesteps. The lightest color corresponds to the total computational effort spent
on all the ODE models. Here we do not distinguish the use of the Hodgkin—Huxley versus the FitzHugh—-Nagumo models for the sake of
clarity, but we present the detailed sample data in Table 2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Solver and model costs. We discretize the PDEs in space with the FE method using piecewise linear elements in
FEniCS [23] and both ODEs and PDEs in time using the backward Euler method. We set the model costs to be
given by Einisnéofs, where ni; and néofs are the number of timesteps and of degrees of freedom used by model i
respectively (ny . is the number of equations in the ODE models). Here the ¢; factor is 1 for the ODE models and
8 for the PDE models, and accounts for the fact that PDEs have a slightly higher cost per degree-of-freedom than
ODEs. The values of ¢; were estimated from CPU times.

Estimator setup. We use the same setup as for Problem 1. Again, we set the statistical error tolerances for the SDP
MOSAP to be g, = 10‘3,/V[p{] for s =1,...m =4 where V[p{] is estimated from pilot samples.

Results: total estimation cost and number of samples. Results are shown in Fig. 5, where we show the total cost
of each method, and in Table 2, where we report the number of samples taken for each model. For Problem 2
MLBLUE is roughly five times faster than MLMC and two times faster than MFMC. Again, MLBLUE employs
a different model selection strategy than the other methods. In fact, MLBLUE is the only method that uses the
FitzHugh—Nagumo models and the ODE models, which are much cheaper. These models yield poor approximations
to some of the Qols, causing the model selection procedure (cf. Section 5.1.1) of MLMC and MFMC to discard
them. In contrast, multi-output MLBLUE includes these models in the estimation and exploits their correlations,
thus considerably reducing the total number of high-fidelity samples.

Remark 5.1. While not required for the examples considered in this section, the model selection procedure must
account for models that do not admit some of the Qols as output. For multi-output MLBLUE, this situation is
handled automatically by constructing the ¥, matrices as described at the beginning of Section 4. Nevertheless,
manual model pruning could still be beneficial to restrict the number of possible model groupings, cf. Remark 2.6.
For MLMC and MFMC, a simple (though suboptimal) option is to simply discard such models from the estimator.
Another option would be to combine multiple single-output MLMC/MFMC estimators within a single joint
optimization procedure. We leave the investigation of such a strategy to future work.
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Table 2

Number of samples taken from each model by the MOSAP-optimal MLBLUE, MLMC and MFMC methods for Problem 2. “H-H” is
short for “Hodgkin—Huxley” and “F-N” for “FitzHugh—-Nagumo”, while “coarse”, “med.”, and “fine” correspond to the grid and timestep
refinement levels i = 1, 2, 3 respectively. MLMC and MFMC only use the Hodgkin—Huxley PDE models, while the fine- and medium-grid

FitzHugh-Nagumo PDE models are discarded by all methods (hence not shown).

H-H PDE F-N PDE H-H ODE F-N ODE
fine med. coarse coarse fine med. coarse fine med. coarse
MLMC 11959 169150 3856682 0 0 0 0 0 0 0
MFMC 3561 43181 1792145 0 0 0 0 0 0 0
MLBLUE 626 24527 1249805 95652 938 6441 259634 69746 69121 6356360
109 7 =10° @ Large 7 = 1 high-fidelity sample
o
o
- F=10° @
e
5 o
210
S ®
= °
3 T=1
Z [ ) N
o
[ J 61-1,
102 o
® st
(0%
[
F=10"*
10! 10° 10°

Total cost

Fig. 6. Pareto-front optimization of MLBLUE for Problem 2. Here 7 = t||c|2, where 7 is the Pareto parameter from (25) and ¢ is the
model cost vector. From right to left, the points in the figure correspond to 7 = 10’ for i = —4,...,6.

Results: Pareto frontier. We employ the MOSAP (25) to trace the Pareto frontier of MLBLUE for Problem 2.
Results are shown in Fig. 6 where we plot the Pareto points corresponding to 7 = 7lcl|, !, where T = 10’ for
i = —4,...,6. Other than the chosen values of 7, the quantities in the figure are computed in the same way as
for Fig. 4. The behavior is similar to what we observed for Problem 1 with the exception that the transition to the
asymptotic regime appears to be smoother for this problem.

5.1.3. Numerical optimization of the MOSAPs

The objective of this subsection is to benchmark the efficiency and robustness of the new SDP MOSAP
formulations against the standard formulations. We consider Problems 1 and 2, and all possible model groupings
of size at most x with x € {3,5,7} (cf. Remark 2.6).

We solve the SDPs (13), (17), (21) and (23) using the conelp solver in the CVXOPT open-source conic
optimization software package’ [19]. For the standard MOSAP formulations (10), (16), (20), and (22), we use the
trust-constr trust-region constrained optimization solver from SciPy® and the open-source black-box interior-
point optimization solver IPOPT’ [26]. We set an absolute error tolerance of 10~° for all optimization solvers. For

7 Available at https://cvxopt.org/.
8 Available at https://scipy.org/.
9 Available at https://coin-or.github.io/Ipopt/.
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Table 3
CPU time (in seconds) needed to solve the MLBLUE MOSAPs to optimality on a Dell XPS 13 laptop (processor: Intel i7-1185G7 3 GHz,
RAM: 32 GB). The SDP MOSAPs are solved with CVXOPT, while the standard MOSAP formulations are solved with IPOPT.

Problem MOSAP Minimize statistical error Minimize total cost
x=3 x=5 x=1 x=3 x=5 X =
SDP 1.67 66 540 1.2 37 340
Problem 1 (12 models, 6 Qols) std 1.96 215 2500 3.04 627 5000
SDP 1.42 56 518 1.14 44 292
Problem 2 (12 models, 4 Qols) std 1.54 163 2580 1.85 314 8983

the budget-constrained MOSAPs we set the budget b = 10* max(c), where ¢ is the cost vector for all problems. For
the statistical-error-constrained MOSAPs we select ¢, = 1073/V] pil, for s =1,..., m, where m is the number of
Qols in the problem and ,/V[p{] is the estimated standard deviation of the sth Qol of the high-fidelity model.

We report that the trust-constr method fails to converge to the optimal solution in 5000 iterations for both
problems and all values of x. IPOPT does converge, but often fails unless its solver parameters are set accordingly.
In particular, we had to set bound_relax_factor to 107° and honor_original bounds to yes. The CVXOPT
SDP solver always converges in less than 100 iterations. The only problem for which CVXOPT requires a change
in the default solver parameters is the budget-constrained MOSAP formulation of Problem 1 for which setting the
feasibility tolerance feastol to 1073 is needed to ensure convergence.

We show the IPOPT and CVXOPT SDP solver timings in Table 3. The new SDP formulations can robustly be
solved in a matter of seconds or minutes depending on the problem size and are much faster to solve than the
standard formulations.

Remark 5.2. MLBLUE is more sensitive than MLMC and MFMC to integer projections. In fact, we note that
taking the ceiling of the real-valued MOSAP solution n* is generally a bad idea since n* has often many entries
that are not close to an integer. A better approach, which we employ in BLUEST, is to take the floor or ceiling
of all such entries and try out all feasible combinations. This procedure can be accelerated and made reliable via
heuristics that we do not describe here for the sake of brevity. We leave the investigation of a more sophisticated
approach, using perhaps a branch and bound algorithm, to future research.

5.2. Coupling restrictions

In this section we consider the third and last test problem. The objective here is to demonstrate that MLBLUE
can automatically handle coupling restrictions. In particular, Problem 3 represents a common scenario in scientific
computing in which the high-fidelity models are prohibitively expensive and cannot be simulated more than a
handful of times. We will also investigate two different approaches for model covariance estimation in this context.

5.2.1. Problem 3: linear random diffusion with restricted high-fidelity samples
Problem description. As our final test problem we choose a standard linear diffusion partial differential equation
(PDE) with random field diffusion coefficient in 2D:

—V - (a(x, )Vu(x,w)) = f(x), x €D;=(0,1)?

(38)
u(x, w) = g(x, o), x €93D;.

Here, f(x) = exp(—|lx — 0.5]|3) and g(x, ®) = 0;(w)x} + 02(w)x3 + 203(w)x1 X2, Where 0y, 65, 05 are independent
zero-mean Gaussian random variable with variance 27*. We set the diffusion coefficient to be a = ¢%, where
Zz = z(x, w) is a Gaussian field with a Matérn covariance matrix with smoothness parameter v = 1 and correlation
length A = 0.2. We choose the mean and standard deviation of z so that E[a] = 1.0, and V[a]'/? = 0.3 for all
x € D;. For the definition and properties of Matérn Gaussian fields, we refer the reader to [27]. For sampling the
Matérn field, we use the stochastic PDE approach by Lindgren et al. [28] combined with the linear cost-complexity
sampling technique by Croci et al. [29,30].
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Quantity of interest. We consider a single Qol given by p = fDl u? dx.

Model set. We define our model set by simple grid refinement using a hierarchy of £ = 7 uniform triangular grids
so that model i € {1,..., 7} corresponds to a grid with 28~ cells in each spatial direction.

Solver and model costs. We solve (38) with the finite element (FE) method using the open-source FE library
FEniCS [23] and piecewise-linear Lagrange elements using the conjugate gradient method preconditioned with
algebraic multigrid. Cost estimation via CPU timings yields a roughly linear solver cost complexity and we thus
define the model sampling costs to be the number of degrees of freedom in each FE model for simplicity.

Coupling restriction. We restrict the number of samples of the two highest-fidelity models to a fixed number
nyr € {2,4,8,16} and investigate how the results vary with nyg. For a study of how MLBLUE performs for
a similar diffusion problem, but without any sampling restrictions, we refer the reader to the original papers by
Schaden and Ullmann [8,9]. We remark that their work also includes efficiency comparisons between MLBLUE
and other estimators, including MLMC, MFMC and ACV methods, which MLBLUE outperforms.

Covariance estimation. We compare two approaches for estimating covariances.

(a) We take nyr pilot samples of all models and compute sample covariances with these samples.
(b) We take 16 pilot samples of the low-fidelity models, compute their sample covariances, then use extrapolation
to approximate the covariances of the high-fidelity models. Specifically:

1. With the low-fidelity pilot samples, compute all low-fidelity model covariances, as well as the variance
of the difference between model pairs, ie., V[p; — p;l forall i, j € {3,...,7},i # j.

2. Draw a single deterministic sample of all models by fixing a = 1, 8; = 6, = 63 = 0 (their average
values), and estimate the convergence rate r with respect to the model degrees of freedom.

3. Use Richardson extrapolation with rate 2r to extrapolate the values of V[p;] and V[p; — p;y;] for
i =1,2and j = 1,...,d from their low-fidelity values. Here d is an integer parameter satisfying
1 < d < £—2 that determines how many covariances are being extrapolated: we estimate the covariances
between each high-fidelity model and the next d lower-fidelity models. We will be varying d in our
experiments.

4. Approximate the high-fidelity model covarialnces using the formula C(p;, pi+;) = %(V[ pil+Vpiyil—
Vipi — pivjD fori=1,2and j=1,...,d.

In step 2 we use the fact that for PDEs with random coefficients the variance convergence rate is typically twice
the deterministic convergence rate, see e.g., [31]. Note that in steps 3—4 we do not necessarily approximate
the covariances between all models, hence some model groupings will not be allowed. Nevertheless, restricted
model couplings are not problematic for MLBLUEs.

Estimator setup. We proceed as follows. First, we fix a value of nyr € {2, 4, 8, 16}, and either Approach (a) or (b).
Then, we solve the budget-constrained MOSAP (13) with budget given by the cost of sampling all models 27 = 128
times, with maximum allowed model group size x = 4 (cf. Remark 2.6), and with the additional restriction that
the high-fidelity models cannot be sampled more than nyp times.

Results: estimator efficiency. After denoting with 6 the set of pilot samples taken, we compute the log of the
resulting MLBLUE normalized estimator efficiency:

E©) *(Bex)
020 (i) = e (71 ) )

where E(0) is the estimator efficiency defined as

1
EO bV[n]’ 0
and i, = [i;(9) is the MLBLUE constructed from a single realization 6 of the pilot samples, with V[](6) being its
variance. Here E(0) = (be2(Bex))! and £2(64) is the variance of a MLBLUE estimator with nyr = oo constructed
from an exact model covariance estimation using 1000 pilot samples. E(6.x) essentially represents the efficiency
of the best MLBLUE that can be constructed for this problem with the prescribed budget. We call the quantity
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Fig. 7. Half-violin plots of the normalized estimator efficiency (39) for the approaches for Problem 3 described in Section 5.2.1 versus the
number of restricted high-fidelity samples npr. The light-blue areas depict kernel-density estimates of the probability density function of
(39) with respect to 6. Values close to O indicate near-best efficiency. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

in (40) “estimator efficiency” since the inverse product between a Monte Carlo estimator cost and its variance
indicates whether an increased budget leads to a more accurate estimator. In fact, the accuracy of any Monte Carlo
estimator for an unbiased Qol is proportional to the inverse square root of the cost, i.e., ¢ = O(cost™!/2). Therefore,
the efficiency E = (cost ¢2)~! is always an order-1 quantity in the estimator cost. Nevertheless, a more efficient
method will lead to a higher accuracy, a smaller value of ¢, and a higher value of E. Note that the closer (39) is
to 0, the closer the efficiency of the constructed MLBLUE will be to the best estimator efficiency.

Since poor values of 6 may lead to underestimating or overestimating the estimator variance, we draw 50
independent realizations of the estimator to approximate V[2;](6). In Fig. 7, we study the effect of the high-
fidelity sample restrictions and of the model covariance estimation approaches described in Section 5.2.1 across 50
independent realizations of the pilot samples 8. We see how Approach (a) leads to poor estimator performance for
nur € {2, 4}, suggesting that this is not a good approach when the high-fidelity samples are severely restricted.
Approach (b) with d = 1 performs well in general, but it is not robust to an inaccurate pilot sample estimation. In
fact, some realizations of @ lead to a poor estimator efficiency. On the other hand, Approach (b) for d > 1 yields
good results for all values of nyr indicating that extrapolation of multiple model cross-covariances, when possible,
should be preferred. We report that for both approaches the estimator efficiency does not improve further as nyg
increases beyond 16. This result indicates that MLBLUE can handle coupling restrictions with little effect on its
efficiency.

Remark 5.3. The values of (39) in Fig. 7 that are larger than O are likely due to noise in the estimation of V[fi].
To produce this experiment we sampled 50> = 2500 independent estimators. Making the estimation of the estimator
variance more accurate, while prohibitively expensive, would hardly change the qualitative behavior of these results.

Remark 5.4. A consequence of not knowing all correlations in Approach (b) with d = 1 is that the only allowed
model groups that include the two highest-fidelity models M and M, are

{M1}7 {Mz}s {MhMZ}’ {MZs M3}v
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i.e., the two models can only be sampled on their own or coupled in pairs. On the other hand, all the groupings
between the low-fidelity models M3, ..., M5 are allowed. This coupling structure could be seen as a way of
combining a MLMC estimator on the high-fidelity models (coupled in pairs) with a MFMC estimator on the low-
fidelity models (all coupled together), cf. Example 2.1. The MLBLUE algorithm can automatically find such an
estimator with little input from the user.

6. Conclusions

MLBLUE:S are optimal across all multilevel and multifidelity linear unbiased estimators and they should thus be
preferred in principle over any other such method. However, MLBLUE:s (as well as all multilevel/multifidelity Monte
Carlo methods) may lose efficiency if their MOSAP is not solved exactly or if the model covariance estimation is
prohibitive.

In this paper we addressed both issues. We formulated the MLBLUE MOSAPs as semi-definite programs that
can be solved reliably and efficiently and we showed that these estimators are robust with respect to limited and/or
restricted pilot samples. Further, we have extended MLBLUE to the multi-output case by concurrently setting up
multiple estimators for all Qols, thus making MLBLUESs the only methods with an optimal strategy for handling
multiple outputs. Consequently, this work enables the fast, reliable design and setup of MLBLUESs for forward
UQ problems involving one or more Qols. Numerical experimentation shows the resulting MLBLUES to be more
efficient than MLMC and MFMC. MLBLUE:s can also deal efficiently with heterogeneous model sets.

Additional work is still needed to design a comprehensive MLBLUE algorithmic framework: Integer program-
ming strategies for the MOSAP could be beneficial since the continuous relaxation of the MOSAP may be far
from optimal for some problems (cf. Remark 5.2). Furthermore, specific strategies should be designed to decrease
the cost of offline estimation and/or allow pilot sample reuse. For instance, Qols with large kurtosis require a large
number of pilot samples [4] which, if re-used within MLBLUE, would make the estimator biased [8], and hence not
necessarily optimal. Finally, MLBLUE advanced estimation strategies for rare-event simulation, nested expectations,
and non-smooth Qols are yet to be investigated.

While the most efficient method for a given application is, in general, problem-dependent, single- and multi-
output MLBLUEs are optimal whenever the above challenges are not relevant and should thus be the methods
of choice. MLBLUE is currently the only method with an optimal multi-output strategy and that is capable of
automatically addressing model selection, making it a powerful addition to the forward UQ toolbox.
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