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ABSTRACT. This work contributes to nonlocal vector calculus as an indispens-
able mathematical tool for the study of nonlocal models that arises in a variety
of applications. We define the nonlocal half-ball gradient, divergence and curl
operators with general kernel functions (integrable or fractional type with finite
or infinite supports) and study the associated nonlocal vector identities. We
study the nonlocal function space on bounded domains associated with zero
Dirichlet boundary conditions and the half-ball gradient operator and show
it is a separable Hilbert space with smooth functions dense in it. A major
result is the nonlocal Poincaré inequality, based on which a few applications
are discussed, and these include applications to nonlocal convection-diffusion,
nonlocal correspondence model of linear elasticity, and nonlocal Helmholtz
decomposition on bounded domains.
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1. INTRODUCTION

In recent decades, nonlocal models that account for interactions occurring at
a distance have been increasingly popular in many scientific fields. In particular,
they appear widely in applications in continuum mechanics, probability and finance,
image processing and population dynamics, and have been shown to more faithfully
and effectively model observed phenomena that involve possible discontinuities,
singularities and other anomalies [4, 9, 13, 26, 30, 35, 45].

One type of nonlocal problem is featured with generalizing the integer-order
scaling laws that appear in PDEs to scaling laws of non-integer orders. This type
of problem usually involves integral operators with fractional kernels that are sup-
ported in the whole space (i.e., with infinite nonlocal interactions), such as the
fractional Laplace operator that models non-standard diffusion of a fractional or-
der [5, 33, 40]. Another type of nonlocal problem focuses on finite range interactions
and connects to PDEs by localization of nonlocal interactions [18, 19]. A prominent
example is peridynamics, a nonlocal continuum model in solid mechanics, which is
shown to be consistent with the classical elasticity theory by localization [42, 48, 50].
Other nonlocal models in this type include nonlocal (convection-)diffusion and non-
local Stokes equations with finite nonlocal interactions that are inspired by peridy-
namics. Nonlocal vector calculus is developed in [20] and is used for reformulating
nonlocal problems under a more systematic framework analogous to classical vector
calculus [19, 29]. See [16, 23] for surveys on connecting the fractional and nonlocal
vector calculus.

There are two commonly used frameworks in nonlocal vector calculus [20]; one
involves two-point nonlocal (difference) operators and another involves one-point
nonlocal (integral) operators. The two-point nonlocal gradient operator and its ad-
joint operator are used to reformulate nonlocal diffusion and the bond-based peridy-
namics models [18]. The one-point nonlocal gradient operator, on the other hand,
is also used in a variety of applications including nonlocal advection equation, non-
local Stokes equation and the peridynamics correspondence models [21, 22, 37, 49].
In some sense, the one-point nonlocal operators, including nonlocal gradient, diver-
gence and curl operators, are more convenient to use as modeling tools since they
can be directly used in place of their classical counterparts appearing in PDEs.
However, the mathematical properties of nonlocal models involving these operators
are not readily guaranteed without careful investigation. For example, instability of
the peridynamics correspondence model is observed in which nonlocal deformation
gradient is used to replace the classical deformation gradient, and is later explained
in [21] as a result of lack of conscious choice of the interaction kernels in the non-
local gradient operators. Singular kernels are proposed in [21] for the remedy of
instability which resembles the kernel functions in the Riesz fractional gradient in
terms of singularity at origin [8, 46]. Later on, nonlocal gradient operators with
hemispherical interaction neighborhoods are used in [38] so that the singularity in
kernel functions is no longer a necessity for the corresponding nonlocal Dirichlet
energies to be stable. Both [21] and [38] work on functions defined on periodic cells
to facilitate Fourier analysis. The starting point of this work is to establish a func-
tional analysis framework that extends the Fourier analysis in [38] and apply it to
nonlocal Dirichlet boundary value problems. With a general setting, we work with
kernels that include both the Riesz fractional type (with infinite support) and the
compactly supported type inspired by peridynamics. We remark that in a recent
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work [8], the authors consider the truncated Riesz fractional type kernels defined
with full spherical support and study the properties of the corresponding function
spaces by establishing a nonlocal fundamental theorem of calculus, and no such
formula exists for kernels with hemispherical interaction neighborhoods which are
our main focus in this work.

The major contribution of this work is the study of the functional analysis prop-
erties of the nonlocal space associated with the half-ball nonlocal gradient operator
defined on bounded domains. We show that the space is a Hilbert space, and more
importantly, it is separable with smooth functions dense in it, a property on which
many applications are based. Another major result is the Poincaré inequality on
functions with zero Dirichlet boundary conditions. We spend two whole sections
on the proof it, one for the case of integrable kernels with compact support and
another for more general kernels, including non-integrable kernels and kernels with
infinite supports. Poincaré inequality is crucial for the study of boundary value
problems. Indeed, we illustrate its use in three applications. The first application
is the well-posedness of a class of nonlocal convection-diffusion equations defined
via nonlocal half-ball gradient and divergence. Secondly, we study the nonlocal
correspondence model of linear elasticity, where we also show a nonlocal Korn’s
inequality for functions with Dirichlet boundary conditions. Note that the conver-
gence of Galerkin approximations to these equations is natural, although we do not
illustrate it in detail due to the length of the paper, as a result of the separability
of the associated nonlocal energy spaces. The last application is a nonlocal version
of Helmholtz decomposition for vector fields defined on bounded domains, a result
of the solvability of the nonlocal Poisson type problem and some nonlocal vector
identities involving gradient, divergence and curl which we also established in this
paper. We remark that Helmholtz decomposition for one-point nonlocal operators
is also studied in [15, 31, 38|, but only periodic domains or the whole space are
considered in these works.

Outline of the paper. We start with the principal value definition of the non-
local half-ball gradient, divergence and curl operators for measurable functions in
Section 2, and the corresponding distributional gradient, divergence and curl oper-
ators are followed. Fourier symbols of these operators are studied for later use and
some nonlocal vector identities for smooth functions are established in the section.
In Section 3, we define the nonlocal function space associated with the Dirichlet
integral defined via the distributional nonlocal half-ball gradient, an analogue of
the H} Sobolev space in the local case, and show it is a separable Hilbert space.
Ingredients such as closedness under multiplication with smooth functions, conti-
nuity of translation and mollification are established to prove the density result.
In addition, we show that the distributional divergence and curl are well-defined
quantities in the L? sense in the nonlocal function space for vector fields, an ana-
logue of the fact that H! C H(div) and H! C H(curl) in the local case. Thus
the vector identities also hold for functions in the nonlocal function spaces. The
nonlocal Poincaré inequality is proved for integrable kernels with compact support
in Section 4, based on which the nonlocal Poincaré inequality is shown for more
general kernels in Section 5. Section 6 contains three applications of our functional
analysis framework, including applications to nonlocal convection-diffusion, nonlo-
cal linear elasticity, and nonlocal Helmholtz decomposition on bounded domains.
Finally, we conclude in Section 7.
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2. NONLOCAL HALF-BALL VECTOR OPERATORS

We introduce the nonlocal half-ball vector operators in this section and discuss
their properties. In the following, we let ¥ € R? be a fixed unit vector. Denote
by x.(2) the characteristic function of the half-space H, = {z € R?: z - v > 0}
parameterized by the unit vector v.

Throughout the paper, we adopt the following notations in linear algebra. For
two column vectors a,b € R = R¥>1 @ . b is the dot product and a x b is the
cross product if d = 3. If a € R? and b € RY, then the tensor product of a
and b is a d x N matrix, given by a ® b = (a;b;)1<i<d,1<j<n. For two matrices
A, B € My, n(R), we define A: B =37" 3770 | aijbij.

2.1. Definitions and integration by parts. Following the notion of nonlocal
nonsymmetric operator defined in [38], we define the nonlocal half-ball vector op-
erators as follows.

Throughout the paper, we assume that w satisfies the following conditions:
(1)

w € L, (RN\{0}), w >0, w is radial;

there exists ¢y € (0,1) such that w(x) > 0 for 0 < |z| < €;

mmuﬂm@Mw:/

w(x)|z|de —l—/ w(x)dr =: ML+ M2 < oco.
|| <1

R4 |x|>1

Remark 2.1. There are two typical types of kernels used in the literature that
satisfy eq. (1). One type of kernel is those with compact supports, e.g., supp w C
Bs(0) for some § > 0, where § represents the finite length of nonlocal interactions.
Compactly supported kernels are used in peridynamics and the related studies, see
e.g., [8, 18, 38, 49]. Another type of kernel has non-compact supports, e.g., w(x) =
Clz|=4=% for a € (0,1), which relates to the Riesz fractional derivatives studied
in [8, 46, 47]. For d = 1 with w(x) = Clz|~1~%, the nonlocal half-ball operators
in this work directly relate to the Marchaud one-sided derivatives studied in |2,
34, 51]. Tempered fractional operators are discussed in [16, 44] where w(x) =

CeMl|x| == for A > 0 and a € (0,1).

Definition 2.1. Given a measurable vector-valued function u : R* — RN the
action of nonlocal half-ball gradient operator G, on w is defined as
(2)

v . y—x
Gru(z) := lim Xo(y — @) - —— @ (u(y) —u(@)w(y —z)dy, zeR,

=0 Jra\ B, (x) ly — x|

where GXu : R — R¥*N  Given a measurable matriz-valued function v : R% —
RI*N the action of nonlocal half-ball divergence operator DY, on v is defined
as

(3)
yT — 2T T
Dyv(z) = lim Xo(y—x) | ZT——(v(y) —v(x))| w(y-=z)dy, =ecR’,
€0 Jra\ B, (x) ly — x|

where D¥v : RY — RN, Ifd = 3 and v : R — R3, then the action of nonlocal
half-ball curl operator C¥, on v is defined as

(4)

. y—x
CL’,Um:zhm/ xu(y —x
(@) =0 Jrs\ B, (x) vl )|y—m|

x (v(y) —v(@))w(y — z)dy, =R’
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where CYv : R3 — R3.

Remark 2.2. Suppose supp w C B1(0). For the affine function u(x) = Az + b
where A € RV*? and b € RN, it follows that

Gou(x) = /Bl(o) Xu(z)m ® (Az)w(z)dz

:./ o (2)|zw(z) = @ Z-dz | AT
B.1(0) |z| ||

where we used

z z
X (2)|zlw(2) = @ —dz
/]31(0) || ||

=/ X_,,(z)|z|w(z)i ® = dz (change of variable 2’ = —z)
B1(0) || ||

1 2 .
=5 /Bl( |Z|w(z)m ®mdz (xw(2) + X-u(z) = 1)

0)
I d
== r“w(r)n ® ndndr
2 0 §d—1
1 1

1
=3 (/0 rdw(r)dr> Ewd,lfd

Ml
=—214.
2d
Here wq_1 is the surface area of (d — 1)-sphere S%=1 and 1 is the d x d identity
matriz.

One may further show that the localizations of these nonlocal operators are their

1
local counterparts multiplied by a constant %, which justifies this definition. Spe-

cially, let ws(x) = sFrw(%) and u € C2(RY), then by Taylor expansion one can
prove that
Ml
Gusu(x) — 2—Z;Vu(cc), §—0, VxecRe

a .
where Vu(x) = (Bizi(m))1<i<d 1<G<N

pose of the Jacobian matriz of u. Similarly, for v € C?(R4;RY),

is the gradient matrix of u, i.e., the trans-

Ml
Dy, v(x) — 2—;’V v(z), 60, VxeR%

d (?’Uji

_ 18 a column
J=1 Oz; )1§i§N

where the divergence vector of v given by V-v(x) = (Z

vector in RN, and if d = N = 3,

Ml
Cosv(x) — T;curlv(m), §—0, VreR’
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Note that in Definition 2.1, the integrals are understood in the principal value
sense. For smooth functions with compact support, the above integrals are just
Lebesgue integrals, and moreover, the action of nonlocal operators yields smooth
functions whose derivatives are LP functions for 1 < p < co. We summarize these
results in the following lemma. The proof is similar to that of Proposition 1 in [15]
and hence omitted.

Lemma 2.1. Suppose that u € C*(R?) and v € C°(R%RY). Then G¥u, D¥v
and Chv (d =3) are C* functions with

) Gutw) = [ vy - ()~ u(e)uty ~ )y, = <R

6 Dho@)= [ -t o) @)y =)y, R

and if d = 3,
M) @)= [l -a) B« oly) ~vle)uly - =)y, B

For p € [1,00] and multi-index o € N, there is a constant C depending on p such
that the following estimates hold:

(8) IDGYul| Lo (rarey < C (My [V Dul| poraray + My | Dul| Loy 5

9) 1D DYl poae) < € (MLIVD 0| g gagona) + MDD | oz
and if d =3,
(10) HDQCZUHLp(Ra;Rs) <C (M&)HVDO‘UHLp(Rs;Rsm) + Mi”Da’UHLp(Rs;Rs)) .

If we replace smooth functions with compact support by WP functions, then
the action of nonlocal operators still yield L? functions and the equalities (5)-(7)
hold for a.e. x € R%. The proof uses some ideas of Proposition 2.1(2) in [43] and is
left to the appendix.

Lemma 2.2. Letp € [1,00]. Then GY : WLP(RY) — LP(R;RY), DY - WhP(RY; RY) —
LP(RY) and C¥ : WHP(R3;R3) — LP(R3;R3) are bounded linear operators. More-
over, there exists a constant C > 0 depending on p such that

(11) HQZUHLF’(RUZ;RUZ) <C (M&JHVUHLP(R‘%R"[) + M’31||u||LP(Rd)) S Wl’p(Rd)a

(12)

D50 Loay < C (M [ V0| Lo (respaxay + My |[0]l oagsy) , v € WHP(REGRY),
and if d =3,
(13)

||C;vHLp(R3;]R3) < C (M&)HVUHLp(Rs;Rsm) + Mil|v”LT’(R3;R3)) s v E Wl’p(RS;R3).
In addition, equalities (5)-(7) hold for a.e. x € R?.

Analogous to the local operator, the integration by parts formula holds. Here
we provide three types of integration by parts with proofs in the appendix. Note
that the corresponding conditions in Proposition 2.1 (1)(2)(3) hold provided v €
C®RYGRY), u € O (RYGRN) and u € O (R3; R3), respectively.

Proposition 2.1 (Nonlocal “half-ball” integration by parts).
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(1) Suppose u € LY(REGRY), and w(xz—1y) |u(x) — u(y)| € LY(RExRY). Then
G¥u € LY(RYGR>*NY and for any v € CL(RY;RIXN),

(14) y Ghu(x) : v(z)de = — /Rd u(z) - D, v(x)dx.

(2) Suppose u € L*(REG RPN and w(z — y) |u(z) —u(y)| € LY(R? x R?).
Then D¥u € L*(R%:RY) and for any v € CLREGRY),

(15) /Rd Dl u(x) - v(x)de = — /Rd u(x) : G, v(x)dx.

(3) Letd = 3. Suppose u € L'(R3;R3), and w(z —y) |u(z) — u(y)| € L*(R3 x
R?). Then C¥u € L'(R?;R?) and for any v € C}(R3;R3),

(16) / Cru(x) - v(x)dr = / u(x) - C,"v(x)dx.

R3 R3
Remark 2.3. As seen from the proof of Proposition 2.1 in the appendix, an equiv-
alent definition of the divergence operator in eq. (3) is given as

yT — 2T T

DY v(z) = lim [— (oY — 2)0(y) + xo(@ — o) | wy—o)dy,
=0 Jrd\ B, (z) ly — x|

for ¢ € R?,

We point out that nonlocal gradient, divergence and curl can be defined for
complex-valued functions via eq. (2), eq. (3) and eq. (4), respectively, where the
dot product in eq. (3) is understood as the inner product in C%, i.e., z - w := 27w
for z,w € C?, and the cross product in eq. (4) is understood as the cross product
in C?. This extension will be useful in the proof of Proposition 4.2.

2.2. Distributional nonlocal operators. Previously, we defined nonlocal non-
symmetric operators in the principal value sense. It turns out that this notion is
not enough to define nonlocal Sobolev spaces. Instead, we need the notion of distri-
butional nonlocal gradient as the notion of weak derivative in the local setting. One
way to define it is via its adjoint operator, i.e., nonlocal nonsymmetric divergence
operator defined in the last subsection.

Following the idea in [43], we define the distributional nonlocal operators as
follows.

Definition 2.2. Let 1 < p < co. Given u € LP(Rd;RN), we define the distribu-

tional nonlocal gradient & u € (C (R4 RN)) gs

(1) (@ud) = [ u@) DGz, o e CEERERIY),
R

Given uw € LP(RG;RN) | we define the distributional nonlocal divergence
D¥u € (CX(RLGRN)) as

(18) (DY u, @) == — /Rd u(z): G d(x)dx, Vo € CZ(REGRY).

If d = 3 with w € LP(R3;R?), we define the distributional nonlocal curl €% u €
(C(R*R%))" as

(19) (@, ) = / ule) Corpl)de, e OF(RSRY).
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Remark 2.4. For u € LP(RY), &Y u is indeed a distribution as for any compact
set K C R? and ¢ € O (R4 RY) with support contained in K,

(%, @) < [l pogen D5 &l o ey
< O (MY VOl aaxay + a9l o gy ) [l oy

1
< CIK|? (My||VP| Lo aspaxay + M| @l Lo (ra:ray) [[ull Loray,

where p' = ﬁ (0 =00 forp=1andp =1 forp=o00) and eq. (9) is used in the
above inequalities. Similarly, it can be shown that DY w and € u are distributions
using eq. (8) and eq. (10).

From the integration by parts formulas in Proposition 2.1, we immediately have
the following results when the distributional operators &% u, ©% u and €% u coincide
with Gy u, Dru and C;u, respectively.

Corollary 2.1.
(1) Suppose u € LY(RGRY) and w(z — y) |u(x) — u(y)| € L1 (RY x RY), then
G¥u = &Y u in L1(RYG RN,
(2) Suppose u € L*(RY: RN and w(z — y) [u(z) —u(y)| € LY(R? x RY),
then D¥u = DY u in L*(RYRY).
(3) Suppose u € L'(R%R3) and w(z — y) |u(z) — u(y)| € L} (R x R3), then
C¥u = % u in L'(R?).
2.3. Fourier symbols of nonlocal operators. In this subsection, we study the
Fourier symbols of nonlocal operators defined in the previous subsection. These

results will be used in the analysis in the subsequent sections.
Define

(20) AV (&) = /Rd xu(z)|?z|w(z)(e2”5'z —1)dz, &€ R

It is immediate that A ¥ (€) = —A¥ (€) for € € R%. In fact, AY is the Fourier symbol
of G, Dy, and CZ in the sense described below. We now present this fact without
proof since the proof is straightforward. Indeed, first prove the result for smooth
functions with compact support and then use (11)-(13) for p = 2 and density of
C(R?) in H'(R?). Similar results can also be found in [38].

Lemma 2.3. Letu € H' (R RY) and v € HY (R4 RYN). The Fourier transform
of the nonlocal gradient operator GY, acting on u is given by

(21) F(Gru)(€) = Ay (&) @ u(f), &R,
and the Fourier transform of the nonlocal divergence operator DY, acting on v is
given by

174 174 - T
(22) F(Dyo)(€) = (AL (§)T0(6)) . €eR™
If, in particular, d = 3 and v € H'(R3;R3), then the Fourier transform of the
nonlocal curl operator CY, acting on v is given by

(23) F(Cov)(€) = N (€) x 0(§), &eR’
Now we write out the real and imaginary part of A¥ (€) explicitly and show that
the imaginary part is a scalar multiple of £&. Moreover, the upper bound of A¥ (&)

is linear in |€|. The proof of the following lemma is omitted since it follows from
Lemma 2.3 and the last part of Theorem 2.4 in [38].
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Lemma 2.4. The Fourier symbol AY (€) can be expressed as

AL (&) = R(AL)(€) +iS(AL)(8),

where

(24) ROL)E) = [ xle) Fule)eos(zeg - 2) ~ 1)z
(25) SO = [ ) Frulz) sin(ant - 2)dz,
and S(XE)(€) = Au([€]) g with

(26) Au(€]) :%/R wl(zzl)zl sin(27 €|z, )dz.
Moreover,

(27) (O] < V2 (2rMLE|+ M2),  VE € R

In the following, we present two other observations of the Fourier symbol A
that are useful in Section 4. The first result concerns the positivity of |AY | away
from the origin, and the second result asserts that AY is a smooth function.

Proposition 2.2. For every d x d orthogonal matriz R,

(28) ALY (€) = R (RTE), VE#O.
The same formula holds for both R(AY)(€) and F(AY)(€). Consequently,
(29) (AL(8)] >0, vE#£0.

Proof. Equation (28) can be easily seen from a change of variable. For a fixed unit
vector v € R?, there exists an orthogonal matrix R, such that v = R,e;. By (28),

for € £ 0,
AL (E)] =[RS (R E)| = AT (RLE)] > (NG (RLE) - ea| > [R(A (RE) - e1)

= / iw(z) (1 —cos (2m(RLE - 2)) dz > 0,
{z1>0} ||
where the last inequality holds because the integrand is nonnegative and the set
{zeR: 2, >0, (RT¢) -2 €2}
is a set of measure zero in R?. Thus, (29) holds. O

Proposition 2.3. Suppose the kernel function w satisfies eq. (1), and in addition,
the support of w is a compact set in RY. Then the Fourier symbol X%, € C>(R%; C?).

Proof. Notice that for any multi-index v with |y| > 0,

DY(AY) (&) = / X,,(z)iw(z)(27riz)762”£'zdz.
Rd 2|
Since w is a compactly supported kernel function, the integrand on the right-hand
side of the above equation can be controlled by the integrable function |z|w(z).
Hence, A% € C=(R%;CY). O
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2.4. Nonlocal vector identities for smooth functions. In this subsection, we
present some nonlocal vector identities for smooth functions with compact support.
These results will be generalized for a larger class of functions in Section 3 and
become crucial for applications in Section 6.

The following lemma shows that C o G = 0 and D}, o C;, = 0, analogous to
curl o grad = 0 and div o curl = 0 in the local setting.

Lemma 2.5. Let d = 3. Then for u € C°(R3) and v € C2°(R3;R3),

(30) CYG%u(x) =0, ae xR
and
(31) DYC¥v(x) =0, a.e xR

Proof. First note that by Lemma 2.1, G¥u € H'(R?;R3) and C¥v € H'(R3;R3).
Then the conditions for Lemma 2.3 hold and one can apply the Fourier transform
to L? functions C¥G¥%u and D¥C%v. By Lemma 2.3, eq. (30) and eq. (31) follows
from

AV X (Ava)=0
and
(ALY x 9) =0
respectively. O

Next, we show two nonlocal vector identities analogous to the following vector
calculus identities in local setting?:

(32) V- (Vv) =V(V-v) - Curl Curl v, d=2;

(33) V- (Vv) =V(V-v) — Curl Curlv, d=3.

Lemma 2.6. For u € C°(R?; R?),
—vpov, _ ovpy—V, 0 1 —v v 0 1
(34) D, Gou=G,D, "u <_1 0) G, Dy, K_l O) u} .

Proof. As remarked at the beginning of the proof of Lemma 2.5, it is valid to apply
the Fourier transform. Applying the Fourier transform and Lemma 2.3, the left

1n eq. (32), the two types of curls in 2D are defined as

T
Curl v := 6& - % and Curl ¢ := (%,—%) ,
Oxr1  Oxa Oxo Ozt

for a vector field v and a scalar field ¢. In eq. (33), the curl of a vector field v in 3D is defined as

_(%_% v _ v %_%)T
0z dx3’ O3 dx3’ dx1 0z ’
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hand side of eq. (34) becomes —|A¥ (£)|?@(€) and the right hand side becomes

XL (EA(€) ale) ( Vo) eenser (X g)a

o

2
A1 A1(€) A2 —X2(&) A2 A2(&) M .
- - (her® AQEgAQ §)* < MS)AQ o Zione)©
= —IXL©)Pu(8).
Therefore, eq. (34) holds for u € C2°(R?;R?). O
Lemma 2.7. For u € C>(R3;R?),
(35) D, Gou =GrD, Yu—C,"Chu.

Proof. Applying the Fourier transform to eq. (35) and using Lemma 2.3 yield
F(GeD, u — C*”C”u)(é)
= AL(OALT(€) a(€) — ALY (§) x (AL(§) x u(§))
— XA (O al) <x (&) (€)N (€) + An” ()TN (E)u(€)
= —[AL©Pa€) = F(DL” (Grw))(€),
where we used A, Y (&) = —A¥ (&). O

Ta(g
Ta(¢

3. NONLOCAL SOBOLEV-TYPE SPACES

In this section, we define the nonlocal Sobolev-type spaces in which we prove the
Poincaré inequality. The notion is defined via the distributional nonlocal gradient
introduced in the previous section, motivated by the definition of classical Sobolev
spaces. A similar notion was introduced in [12] for fractional gradient. For simplic-
ity, we only consider the case p = 2, while the definitions and results in Section 3.1
below can be extended to a general p € [1,00).

3.1. Definitions and properties of nonlocal Sobolev-type spaces. For the
rest of the paper, we adopt the convention that a domain is an open connected set
(not necessarily bounded). Let 2 C RY be a domain and N € Z7 a positive integer.
Given a kernel function w satisfying eq. (1) and a unit vector v € R?, define the
associated energy space S¥(€; RY) by
(36)

SY(URY) := {u € L*(R:RY) tu = 0 ae. on RN\Q, &¥u € L2(RG RN},

equipped with norm

1/2
HUHS;(Q;RN) = (Hu||2L2(Rd;RN) + HﬁzuH%%Rd;Rde)) )

as well as the corresponding inner product. For any Q C R, it is not hard to
see that S¥(Q;RY) is a closed subspace of S%(R%;RY). When N = 1, we simply
denote S¥(Q) := S¥(£%;R). Notice that any function in 8% (€;RY) is a vector field
where each component of it is a function in S¥(€2). For the rest of this section,
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we will show S¥(€2;RY) is a separable Hilbert space for certain domain . Since
functions in S%(Q;RY) can be understood componentwise as functions in S¥%(1Q2),
we will work with S¥(€2) for the rest of this subsection and the following results
also hold for 8% (2;RY) where N € ZT. The results of this subsection can also be
easily extended to a general p € [1, 00).

Remark 3.1. S%(Q) is a nonlocal analogue of the Sobolev space H (). If the
kernel function w has compact support, e.g., supp w C Bs(0) for § > 0, then &% u
vanishes outside Q5 := {x € R : dist(x, Q) < §}. In this case, we may equivalently
define S% () as functions in L*(Qas) that vanish on Qas\Q with &% u € L?(Qs; RY).

Theorem 3.1. Let Q C R be a domain. The function space S¥(RQ) is a Hilbert
space.

Proof. Tt suffices to prove that S¥(R?) is complete. Let {ux}ren be a Cauchy
sequence in S¥(R?). Since {uy}ren is a Cauchy sequence in L?(R%), there exists
u € L?(RY) such that ux — u in L?(RY) and v € L2(R%;RY) such that &% ur — v
in L2(R4;RY). Now we show &Y u = v in the sense of distributions. By definition,
for any ¢ € C°(R%; RY), it suffices to show

(37) - /Rd u(x)D," ¢(x)dx :/ v(x) - p(x)dz.

Rd
For k € N, we have

(38) - /]Rd up(x)DyY ¢(x)dx = /]Rd &Y u(x) - dp(x)de.

Since ¢ € C®(R%;RY), by Lemma 2.1, we know D,¥¢ € L*(R?). Then taking k
to infinity in (38) yields (37). Thus, &%u = v € L}(R% R?) and uj, — u in 8% (R9).
Hence, S¥(R%) is a Hilbert space. Since S¥(f2) is a closed subspace of S¥(R?), the
normed space S (£2) is also complete. O

We next present a density result on S¥(€2) which is crucial in many applications.
If Q # R?, the density result holds for domains that are bounded with continuous
boundaries or epigraphs. We say () is an epigraph if there exists a continuous
function ¢ : R~ — R such that (up to a rigid motion),

Q={x=(z,zq4) €R |z > ()}

If Q is a bounded domain with a continuous boundary, then its boundary can be
covered by finitely many balls where each patch is characterized by an epigraph.

Theorem 3.2. Let Q be a bounded domain with a continuous boundary, an epi-
graph, or R%. Let C>°(Q2) denote the space of smooth functions defined on R? with
compact support contained in Q. Then C°(Q) is dense in S¥(£2).

The main ingredients of the proof of Theorem 3.2 are several lemmas stated
below about cut-off, translation and mollification in nonlocal Sobolev spaces which
we present in the following. First of all, a generalized ‘product rule’ for the nonlocal
operators is useful.

Proposition 3.1. For ¢ € C°(RY) and ¢ € CZ (R4 RY),
(39) D" (p¢) = D, ¢+ Gup - ¢+ S(p, @),
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where S(p, @) : RY — R is a function given by

(40
o) i= [ | (o)) e (y-2)0(@)) (o(u) (@) wly—a)dy.
Similarly,
Gy (pv) = eGub + VG + S, ¥), Ve, ¢ € CZ(RY),
where
So(er0)(@) 1= [ xul2) 5 (ol +2) - pl@) 0@+ 1)~ vi@)ul)is, @ e R

Proof. We only prove the produce rule for D ¥ as the product rule for GY, is similar
and simpler. First note that the function S(p, ¢) is well-defined with the pointwise
estimate

(41)

1S(, @) (x)| < /Rd 2| @l oo (resray - 2/ @llwr.oo (may min(l, |y — z)w(y — x)dy < oco.
Observe that for 2,y € R? and € > 0,
X[e.00) (|Y — ZD{xw (2 — Y)p(¥)(y) + X0 (y — z)p(z) ()}
= Xie,00)([Y — ZD{ X0 ( — ¥)D(y) + X0 (y — x)p(2)]0(T) + X0 (z — Y)D(y) (P(y) — ¢(x))}
= Xeoo) ([¥ = Z){[xe (. — ¥) () + xu (y — T)b()]0(x) + X0 (y — ) P(2)(2(Yy) — @())
+ (@ —y)o(y) — xo(y — x)p(x)](0(y) — p(x))}.

Therefore

/ Y22 (@ — y)e@)v(y) + xuly — 2)p(@)v(@)w(y — =)dy
R\ B, () ly — x|

= xr ﬂ T — v —X)v\x))w — &
o) [ e ()l — @)y )iy

y—:c
ly — x|

T () / oo (¥ — ) (pw) — 0(@) L= Z w(y — w)dy
R\ B (x)

" / . = 2 wl@ - y)dy) — xwly — 2)d(@))(o(y) — pl(@)uly — z)dy.
RI\B, (2) [Y — |

Thus, taking the limit as € — 0, by definition of the nonlocal gradient operator in
eq. (2) and the equivalent form of the divergence operator in Remark 2.3, we have

(42) D" (#9)() = p(2)D," ¢(x) + Gup(®) - p(x) + S(p, @) (@),

where we used

lim Y22 (@ —9)by) — xuly — 2)d(@)(0(y) — o(@))uwly —)dy
€20 JRd\ B, (x) ly — x|
= Ja 7@ - Z (@~ 9)(Y) - xu(y — 2)6(@))(0(y) - ¢(@)w(y - z)dy.

Indeed, similar to (41), for every x € R?,

o (Y — w|>ﬁ (o (@ — 9)D(Y) — (¥ — 2)b(@))(p(y) — (@) w(y — )

<4 @l oo (rasra) | @l w00 (rey min(1, |y — z|)w(y — x),
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so the above limit is justified by the dominated convergence theorem. O

The generalized produce rule presented above is helpful in showing the following
result, which says that S¥(R?) is closed under the multiplication with C°(R%).

Lemma 3.1 (Closedness under multiplication with bump functions). For u €
SY(RY) and p € CX(RY), pu € S¥(RY) and

43)  lleullsyme) < Cllellwro g lullsy @), Vo € C2(RTY), u € SHRY),

where C' depends on d, M} and M2. As a result, for u € S%(Q) and ¢ € C>(RY)
with suppp C Q, pu € S¥(Q) for any domain Q C RY.

Proof. First, notice that
lloullL2ray < el Loo ey 1wl L2 (ray-

Therefore we only need to show &Y (¢u) € L%(R%R?). The rest of proof in fact
shows a ‘product rule’ for nonlocal distributional gradient &% using the ‘product

rule’ of nonlocal divergence D_¥ derived in Proposition 3.1. Since u € S¥(R?),
there exists w = &% u € L?(R%;R?) such that

(44) (@) - pla)dz = — / u(@) Dy d(e)dz, Ve € C(RERY).
Rd R4

To show &Y (pu) € L2(R%; R?), it suffices to find v € L2(R¢;RY) such that

(19) [ o) daie = [ el@u@D e, Vo e CXRERY.
Rd Rd
By Proposition 3.1, we have

¢D, ¢ =D,  (pp) — G- & — S(p, @),

thus, for any ¢ € C°(R?%;RY),

- / pl@)ul@)D, plz)d
—— [ u@py oo+ [

R4

u(@)Lip(a) - d@)dz+ [ u(a)S(e. ¢)(@)da

R4

= W(fv)w(w)'¢(fv)dfv+/ w@)Gyp(x) - d(x)de + | H(u,p)(z) - ¢(x)de,

R4 R4 R4

where we use p¢ € C° (R4 R?) and H(u, ¢) : R — R? is a vector-valued function
whose expression will be given in a moment. Comparing this with (45), we notice
that the vector-valued function v should be

(46) v(@) = w(x)p(x) + u(@)Gy () + H(u, p)(x).
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It remains to show this function is in L2(R%;R9). By the definition of S(y, ¢),

S(p, o) ()
- /Rd ﬁ (@ — Y)Y) — xoly — 2)p(@))(0(y) — p(@))w(y — z)dy
- /Rd |z = ; Xo(@ —y) - d(y)(p(y) — p(@))w(y — z)dy

- /Rd ﬁxu(y —)(p(y) — o(@))w(y — z)dy - p(z)

F Hi(p, @)(2) + Ha(p)(2) - ().
Note that both Hy (i, @) and Ha(p) are well-defined maps on R? due to the similar

reason for the the pointwise estimate (41) for S(y, ¢). For example,

M@ = |- [ Ay - 2)(e() - @)y — o)y

47
D < [ ol Xtz (0) + IVl =l o ()l — )y

<2l pllwroo(may (M, + M7), x € R4,
Observe that by Fubini’s theorem

[ w@io. )@z
- /R “(a”)/]R T2 @ —y) ¢ (e(y) — o(@)wly — z)dydz

Xv
a |y — x|
- [ ow) - Flu )@y,
where F(u, ) : R? — R? is given by
y—x
Fluo)w) = [ ul@) 2=2x(@ - y)(ely) - ol@)uly - o)da.
R4 ly — |
Using Holder’s inequality, one can show F(u, ) € L?(R%;R?). Indeed,

( [ 1F w)(y)IQdy)
R4
2 3
< 2l (ry ( / \ / (@) min(L, ly — @)y — @)d dy>
R4 R4
< 2l gy (M + M2) ( / [ @) winly - @ty - m)dmdy>

< 2]l @llwroe ey (M, + M)l L2(ray < oo

1
2

Combining the above discussions, we obtain
(48) H(u, 9)(@) = F(u,¢)(@) + u(@) Ha(p) (@),
with
[1H (u, 0) || L2 ®a;ra) < [|1F'(; 0)l| 2(rare) + [[H2(9) || oo (mejra) [ull L2 (ma)
< Al @llwr.oo ey (My, + M2)||ull L2 (ra)-
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Therefore, by (46), v = wp + uG¥%p + H(u, ) € L?(R%;RY) and

||v||L2(Rd;Rd)
< |wllp2garae) ol Lo ey + [[ull L2®ay |Gl Lo (ma;ra)y + [1H (U, 0) || L2 (Ra;R4)
< |lwll L2 esray ol Lo rey + HUHL2(R‘1)O(M&1 + Mi)”‘PHWLW(Rd)

+ 4||90||W1v°°(]Rd)(M7}; + Mi)HUHL?(Rd)
< Cllllwrcorayl|ull sy rays

where we have used Lemma 2.1. This combined with the L? estimate on u leads
to eq. (43). O

Next, we present two results regarding the translation and mollification of func-
tions in ¥ (R?), which are standard techniques useful for proving density of smooth
functions. For f:R? — R and a given vector a € R, denote the translation op-
erator 7o f(x) := f(x 4+ a). In addition, we let 5. be the standard mollifiers for
€>0,ie n(x) = Ln(%) where n € C°(R?) and [, n(z)de = 1. The statement
of the following two lemmas are new but the proofs follow the standard arguments
of similar results in the classical Sobolev spaces. We therefore leave their proofs in
the appendix.

Lemma 3.2 (Continuity of translation). For u € S%(RY) and a € RY, ,u €
S¥(R?) and
li

— =0.
||IL10||TaU U||55(Rd)

Lemma 3.3 (Mollification in S¥%(R%)). For u € S¥(R?) and e > 0, n. xu € S¥(R?)
and

(49) lim [[ne * v = ul| sy ga) = 0.

With the necessary components presented in Lemmas 3.1, 3.2 and 3.3, the proof
of Theorem 3.2 uses the standard mollification and partition of unity techniques (see

[1, 24] for instance). Here we present its proof for completeness. Similar arguments
can be found in [25] or [27] (Theorem 3.76(i)).

Proof of Theorem 3.2. We prove the result for €2 being a bounded domain with
continuous boundary. The other two cases are more straightforward. Since 0f is
compact, there exist @; € 9Q, i =1,--- , N and r > 0 such that

N
09 C | B ja(m:),

i=1
and

QN By (x;) ={x = (z',24) € Br(x;) | za > (2}

Q°N Br(x;) = {x = (', 24) € Byr(x;) | 2qg < G(2')}
for some continuous functions ¢; : R9~! — R up to relabelling the coordinates. Let
Q7 )5 = {z € Q:dist(x,00) > r/2}. Then,

N
Qc|B(z) U,

=1
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Let {¢;}V, be a smooth partition of unity subordinate to the above constructed
sets. That is we have ¢; > 0, Zfio i = 1 and po € CF()),) and ¢; €
C®(By(xi)), 1 <i < N. Let u € §4(2) and define

u':=p;u  forallie{0,---,N}.
By Lemma 3.1, u’ € 8%(Q). For p > 0, we define

wl (@) =u' (', xq—p) for i€{l,--- N}, &= (2 ,zq) € R
Fix ¢ > 0, by Lemma 3.2, there exists x € (0, 3 mini<;<x dist(supp ¢;, 9B (x;)))

such that
o

[y, — u'[| sy (ray < N1 V1 <i<N.
| " positiv
min; <; < dist(supp w),,02)/2. Indeed, since suppu,, C W: C QN B,.(x;), where

Wi :={z=(2',24) € Br(;) : 24 — p > Gi(2')}, 1 <i < N,

Fix this p, it follows that ne * u!, € C(f2) for a positive number € less than

supp (7. * uL) C B(0) + supp ui, C .

Since uf, € S¥(R%), by Lemma 3.3, . * u}, € S%(R?) and there exists € > 0 such
that n. * u® € C(Q),

i i g
l|me * U, — uyHS;jJ(Rd) < m
and
0 0 g
7 * u” —u HS;(Rd) < m
Let ve := ne * u® + sz\il ne * ul,, we have v, € C°(Q) and [jve — ul| sy (ray < 0.
Therefore, the lemma is proved. ([

3.2. Nonlocal vector inequalities and identities. In this subsection, we derive
a number of results for Sobolev-type functions using Theorem 3.2. The first two
results are the analogs of H! C H(div) and H! C H(curl) in the local setting. We
assume € is a bounded domain with a continuous boundary, an epigraph, or R? so
that the density result holds.

Proposition 3.2. For u € S¥(Q;R?), DfVu € L2(R?) and
H@i”uHLz(Rd) < || B85l L2raraxay.

Thus, DEY : 8% (Q;RY) — L2(R?) is a bounded linear operator with operator norm
no more than 1. In addition, there exists {u(™}22, C C=°(;R?) such that u(™ —
w in S%(Q;RY) and DEYu™ — DEYu in L2(RY) as n — co.

Proof. We first show the inequality for smooth functions with compact support,
that is, assuming u € C°(€; RY),
(50) 1D ull L2ray < 1Goull L2 e gaxa)y-

We only prove eq. (50) for D,¥ since the result also holds for D¥ by noticing that
Guull 2 (rasrixay = Gyl L2(re;raxay using Plancherel’s theorem. For 1 <i < d
and a scalar function p : R? — R, we introduce the notation G; given by

g’ll:)p = (glpa o 7gdp)T'
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We use Fourier transform to show that
d

(51) D0l = D (Gt Gyus) oy

i,j=1
which implies the desired result by Young’s inequality for products. By Lemma 2.3
and A ¥ (&) = =AY (€), for £ € RY,

F(D,"u)(€) == ) _Xi(§)ui(§) and  F(Giuy)(§) = Mi(§)a;(§), 1 <i,j <d,

-

I
=

3

where the Fourier symbol

A (€)= (M), - Aa(€)T

Therefore, by Plancherel’s theorem, we conclude the proof of eq. (50) as

d d
> (Giuy, Giwi) pogay = Y, (F(Gittg), F(Gjui)) 1 ga,cay
ij=1 ij=1
Jd ’ d d
=5 [ neuenEnEE = [ Y X@n© > s
ij—17 R Rd 55 i—1
= ||]:(D1;Vu)||i,2(Rd;Cd) = HD;”“H;(W)'

By Theorem 3.2, there exists {u(™1}%, Cc O®(Q;R?%) such that u(™ — wu in
S¥(; R?), and in particular, G¥u(") — &¥wu in L?(R?; R**?) as n — co. Applying
eq. (50) fo u(™, {DEYu(™}, cy is a Cauchy sequence in L?(R?), and thus has a
limit in L?(RY) by completeness. Since u(™ — w in L*(R%R?), by applying
Proposition 2.1(2) to u(™ one derives that the limit is ®F¥u € L?*(R?) with the
desired estimate. g
Proposition 3.3. Let d = 3. For u € S¥(;R3), ¢ ¥u € L?(R3R?) and
€5 vl L2 (rore) < (1O ul| 2o o xs).

Thus, €V : SY(Q;R3) — L2(R3;R3) is a bounded linear operator with operator
norm no more than 1. In addition, there exists {u(™}22, C C(Q;R3) such that
u™ — u in SY (G R?) and CEYu™ — €V in L2(R%R3) as n — oo.

Proof. Using the density result Theorem 3.2 and integration by parts formula
Proposition 2.1(3) as in the last paragraph of the proof of Proposition 3.2, it suffices
to show

(52) [CE¥ul 2 ga ey < |Gl 2 (ma;maxs)

for u € C2°(;R?). To show eq. (52), by Fourier transform, it suffices to show that
IF(Cu)ll2msms) < H-F(QZ;U)HL2(R3;R3X3)'

Since |a x b| < |a]|b| for a,b € C3, by Lemma 2.3 eq. (52) holds as

Il = [ €)@l e < [ NG a(e)Pde

3
-3 /R IN(€)i (€ = | F(Gh) [ s
&
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O

Recall that D ,%v € (C(R?)) C (C(Q)) for v € L2(R%;R?). By Theorem 3.2
one can define D v € (S%(Q))* for v € L*(R% R?). More precisely, given u €
S¥ (), define

(53) (D, v, u) = —/ v(x) - 6 u(x)de.
Rd
Then
(D, v, u)| < vl L2@aray 185 ull L2 @erey < V]| 2@emellullsy @)

implies that D, Yv € (S%(Q))*. Therefore, D, : LZ(R%4GRY) — (SY(Q)* is a
bounded linear operator with operator norm no more than 1. The same property
holds for 8% and € using Proposition 3.2 and Proposition 3.3, respectively. We
summarize this observation in the following proposition.

Proposition 3.4. 7" : L?(R% R?Y) — (SE(Q))* defined by eq. (53) is a bounded
linear operator with operator norm no more than 1. We can similarly define
&Y . L2(RY) — (SY(Q;RY)* and €Y @ L2(R%R3) — (SY (L R3)* and they
are bounded linear operators with operator norms no more than 1.

Based on the above results, the nonlocal vector identities in Section 2.4 hold for

functions in the space S¥(£2;RY). The vector identities shown below are crucial
for establishing the nonlocal Helmholtz decomposition in Section 6.3.

Lemma 3.4. Let d = 3. Then for u € S%(Q) and v € S¥(Q;R3), in the sense of
distributions,

(54) CY &Y u =0,
and
(55) DY eEY v = 0.

Proof. Sinceu € 8%(Q), 8% u € L*(R?;R?). By definition, €% &% u € (C>(R3;R3))’

and for ¢ € C°(R3; R3),

(56) (C¥ B u, p) = / &Y u(x) - Cp¥ dp(x)dx = lim Gru™(x) - Co¥ o(x)de,
R3

n—o0 [ps3

where the sequence {u(")}zo:l C C°(R3) is chosen according to Theorem 3.2 such
that G¥u(™ — &¥u in L?(R% R3). By integration by parts formula,
/ Guu™ (x) - C¥ p(x)da = / u™ (2)D¥ o p(x)da.
R3 R3
Since D,¥C,¥¢ = 0 by Lemma 2.5, we have €% &%u = 0 € (C>°(R?*R3))". Then
by Proposition 3.4, €2&¥u = 0 € (S¥(;R3))*. Equation (55) can be shown

similarly. O

Remark 3.2. Ford = 2, one can show by similar arguments as those in Lemma 2.5

and Lemma 3.4 that
(0 1\ .,
D5 (_1 0 Gou=0

for uw € 8%(R), which can be seen as a 2d version of eq. (54) or eq. (55).
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Lemma 3.5. For u € S¥%(Q;R?),
—Vvpr, _ gUN—V, 0 1 —-vywv 0 1
(57) DV u =06 Yu <_1 0) & VoY [(_1 0) u} .

Proof. Notice that the left hand side and the right hand side of (57) are understood
as elements in (8% (Q; R?))* by Proposition 3.4, i.e., for any v € 8% (£2; R?), we need

(58) (&Y, QSZJ'U)L2(R2;R2X2) = (D,"u, D, 0) 22y + (D Ju, D, J) 12(r2,R2),

where J = _01 (1)> First notice that eq. (58) holds for all functions v €

C(Q;R?) by Lemma 2.6 and the definitions of &% and ®¥. Now for any v €
S¥(Q;R?), using Theorem 3.2 and Proposition 3.2, there exists a sequence v e
O (Q;R?) such that G¥v™ — &¥v in L?(R%,R?**?) and DEYv™ — DE¥v in
L?(R?%). Then eq. (58) holds for v € 8%(Q;R?) by taking limits. O

Lemma 3.6. For u € S%(Q;R3),
(59) D, 6ru=86"9 Yu—C YT u.

Proof. Notice that the left hand side and the right hand side of (59) are understood
as elements in (S¥(2;R3))*. The proof is similar to the proof of Lemma 3.5 by
using Lemma 2.7. O

4. NONLOCAL POINCARE INEQUALITY FOR INTEGRABLE KERNELS WITH
COMPACT SUPPORT

In this section, we prove the Poincaré inequality for integrable kernels with com-
pact support. Throughout this section, we assume that w € L*(R?) and

(60) supp w C K for some compact set K C R,

We also assume for the rest of this paper that Q C R? is a bounded domain. Our
major result in this section is the Poincaré inequality stated below.

Theorem 4.1 (Poincaré inequality for integrable kernels with compact support).
Let Q@ C R? be a bounded domain. Assume that w € L'(RY) and satisfies (60),
then the Poincaré inequality holds for v € S¥ (). That is, there exists a constant
IT = II(w, Q,v) > 0 such that

(61) lullL2e) < |G ull2raprae),  Vu € SP(),
where &Y u = GYu € L*(R%; RY).

In the following, we establish necessary ingredients for the proof of Theorem 4.1.
We first give a list of new notations that will be used in this section.

e For the kernel w, let ¢ be a constant depending only on w defined as

(62) ¢ = / iw(z)dz > 0.
{z1>0} |Z|
e For a fixed unit vector v € R?, define a vector-valued function 8" : R? —
R? by
z
(63) BY(z) = xu(2)—w(2).

||
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e Let ¢, be a constant vector depending only on w and v defined as
z

(64) c, = y BY(z)dz = /]Rd X,,(z)mw(z)dz.

e Lot F,G : RY — R? be vector-valued functions. Define their convolution
as the following scalar-valued function

(FxG)(x):= | F(z-y) Gy)dy.
R
There are a few properties related to the above defined quantities. We list these
properties here without proof since they are not hard to see.

e For any d x d orthogonal matrix R,
(65) cry = Re,.
Consequently,
(66) c, = Cv.
e From Young’s convolution inequality, for 1 < p < oo we have
I F * G|l pora) < [|F| 21 (Resra) |Gl Lo (ra R

With the integrability assumption of w, we notice that Gy is well-defined on
LP(RY), DY is well-defined on LP(R%; R9), and the limiting process in the definition
of G¥ and DY can be dropped. In addition, each of G¥ and DY can be rewritten as
a convolution operator plus a multiplication operator using the notations 8% and
¢, above. These lead to a stronger version of integration by parts formula and an
equivalent characterization of S¥(2).

Proposition 4.1. The following statements are true.
(1) For 1 < p < oo, G¥ : LP(R?) — LP(R%RY), DY : LP(RY;RY) — LP(R?), and
C¥ : LP(R3;R3) — LP(R3;R3) are bounded operators with estimates

1Gwull Lreray < 2wl Ly gayl|wll Le e,
1Devll L ey < Cllwl|pr@eyl|v]| Lr®a;ray,
[Covllr®s sy < Cllwll L gs) ||Vl e s rs)-

for some C = C(d) > 0. Moreover, for u € LP(R?) and v € LP(R%; R?),

(67) Grou(x) = /Rd B (y — z)u(y)dy — cyu(x), a.e. xeR?

(68) D %v(x) = —BY xv(x) + ¢, -v(x), ae xeR
(2) Suppose u € LP(RY) and v € LY (R%R?), where p = 5 and 1 < p < o0
(=00 forp=1andp =1 for p=oc). Then
GYu(x) - v(x)de = —/ u(x)D, v(x)de.
R4 R4
Similarly, for w € LP(R3;R3) and v € LP (R3;R3),

Clu(x) - v(x)der = / u(x) - C,Yv(x)dx.

R3 R3
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Proof. Notice that since w € L!(R?), the integrand in eq. (2) is Lebesgue integrable
on R? for u € LP(R?), and therefore the limiting process can be dropped. The
characterizations (67) and (68) follow directly from Definition 2.1, (63) and (64).
For instance, (68) holds as

D;”v(w):/R L= (@ —y)(v(y) — v(@)uw(y — z)dy

aly — x|

_ o ETY z-v(x)
= /Rd Xv(x —Yy) - y|w(y x) - v(y)dy + /Rd Xv(z |z| ———w(z)dz
=—pF"xv(x)+c, -v(z) in LP(Rd),

where the convolution term is well-defined thanks to the Young’s convolution in-
equality and the fact that w € L'(R?). Suppose 1 < p < oo. For p=1 and p = oo
we can show the estimate similarly. Using Holder’s inequality, we obtain

[ gtut@rds = [ | [ i) - @) 2=ty - 2y
< [ ([ 1w - steluty - 0iy) " dz

< [ ([t aan) ’ ([ oty - @)utw) - @iy )

< 2P~ 1||wHL1(]Rd / / y —x)(Jul’(y) + |ul’(x))dyde

— 2w} e < | ureiy [ ww-ade+ [ ur@de [ - m)dy>

< 2%||wl7,

p
dx

Rd)H“HLp Rd)

where p’ = p/(p — 1). This shows (1). The estimates for D¥v and CXv can be
shown similarly.

The integration by parts formulas in (2) can be shown by a change of integration
order via Fubini’s theorem, for example,

[ gtuta)v@yiz = [ [ = o)) - ue) Euly - =) - v@)dyde

ly — z|

= / / —xv(z — y)u(x) Y : i w(y — x) - v(y)dydx
R JRd ly — x|

y—=x
_ /Rd /Rd Xv(y — z)u(x) oy m|w(y —x) - v(z)dydz
= _/ uw(x)D,, " v(x)dx.
Rd

Here Fubini’s theorem is justified since |u|(y)|v|(x)w(y — x) € L'(R? x RY) for
ue LP(RY) and v € LP (R%; R?). Indeed,

[ [ @iel@ty - e)yde = [ jultw)w o))y
Rd JRd R4

< oy o # Folll o ety

< CHUHLT’(RUZ)”wHLl(Rd)”'UHLP/(Rd;Rd) < 0,
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where we used Young’s convolution inequality and C'is a constant only depending
on the dimension d. The second integration by parts formula in (2) can be shown
similarly. (I

An immediate result from Proposition 4.1 is the following equivalent character-
ization of S ().

Corollary 4.1 (An equivalent characterization of S¥(Q2)). With the integrability
assumption of w, G¥u = &%u for u € L*(R?) with u = 0 a.e. in Q°, and the
function space S¥(Q) defined by eq. (36) satisfies
SY(Q) ={ue L*RY) :u=0 a.e. in Q°}.
We next show a crucial result for proving the Poincaré inequality. It claims that

the operator G restricted to S%(2) is injective.

Proposition 4.2. Assume that w € L*(R?) and satisfies (60). If u € S¥(Q)
satisfies GXu(x) = 0 for a.e. x € R, then u = 0.

Proof. Note that the nonlocal integration by parts formula in Proposition 4.1 also
holds for complex-valued functions. That is, for u € LP(R% C) and v € L*' (R%; C9)
with p and p’ given by Proposition 4.1,

(69) (g;u, 'U)LZ(]Rd;Cd) = —(u, D;V/U)LQ(Rd;(C),

where the L2-norm is given by
(F,G)r2gacn) :/ F(x)"G(z)dx, VYF,G c L*(R%:C"), n=1,d.
Rd

Thus, for any ¢ in the Schwartz space .7 (R%; C%) C L?(R¢; C?), we have
0= (Q;u, (P)L2(]Rd;(cd) = —(u, D;u<p)L2(Rd;C)
= _(]:uv]:(D;VQO))LQ(Rd;C) = —(a, ()‘;V)Tsa)Lz(Rd;C)v
where @ = Fu € L*(R%; C) since u € L2(RY) and D ¥y € L?*(R%;C) by eq. (69).
Since L2(R%;C) C ' (R%C), we view & = Fu € %' (R%C) as a tempered
distribution. Now we prove the following claim:
(71) (i,) =0, V¢ € CX(RN\{0};C),
Let ¢ : R — C¢ be defined as

v
=F ! = .
? (M”)

Since [AL¥ (&) > 0 for & # 0 by Proposition 2.2 and ¢(€) = 0 in a neighborhood
of & = 0, ALY (&)(€)/IA,Y(€)]? is a well-defined vector-valued function on R€.
Moreover, A" (€)p(€)/| ALY (€)2 € C*(R4\{0},C%) C Z (R4 CY) since A¥ €
C>=(R4;C%) by Proposition 2.3 and ¢ € C(R%\{0},C). Hence ¢ € .7 (R%C?)
since F is an isomorphism on .#(R%; CY%). Observing that A ”(€)T (&) = ¢(€),
the claim follows from eq. (70).

Now from the claim, we have supp @ C {0}. Then by Corollary 2.4.2 in [28], u

is a polynomial, i.e.,
u(x) = Z o™

lal<k

(70)
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for some nonnegative integer k and real numbers a,, for |a| < k. Since u = 0 in €,
it follows u = 0. g

The last ingredient of the proof of the Poincaré inequality is the weak lower
semicontinuity of the Dirichlet integral [o,|G¥u(x)[*dz. To establish this result,
we need Proposition A.3 in [6] which is stated as a lemma below.

Lemma 4.1 (Proposition A.3 in [6]). Let & C R™ be bounded open, and let H :
R® — RU {£o0} be convez, lower semicontinuous and bounded below. Let 0;, 0 €

LY R®) with 0; = 0 (i.e., [ 0;¢dx — [, 0¢dx for all ¢ € C.(Q)). Then

H(f(xz))dx <liminf | H(#;(x))dx.

Q j=oo Jq

Proposition 4.3. Suppose that {u,} converges weakly to u in S%(Q). Then
(72) / |G u( |2dcc < hmlnf/ |G (2 |2dcc

Proof. Let H(z) := |z|?>. Then H is convex, continuous and bounded below. Let
On(x) := G¥un(x) and O(x) := GYu(x). Then for any open and precompact set
D c R%, 0,,0 € L'(D;R?) because

[ gzutayae < ( [ oz Qdm)émw»

For any ¢ € C.(D), 1 < k < d, define a linear functional Fdlf :S¥(Q)) > R by

F¥(u) = /D (G2 ()b

where [G¥u(z)]), denotes the k-th component of G. Then F} is a bounded linear
functional since

|FE )| < / 6% |2dw>2-( /D |¢><w>|2dm)2 < Clullsya

Now since u, — u in 8¥(2), we have Fdlf(un) — Fdlf(u) as n — oo. Therefore
0; = 60 € L'(D;R?) and this yields

/ |Grru( |2dcc < hmlnf/ |G )|2da} < 1iminf/ |g;un(m)|2dw'
Rd

n—r oo

Nj=

< 0.

by Lemma 4.1. Since D C R? is arbitrary, eq. (72) is true. O
Finally, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We argue by contradiction. Suppose there exists {u,} C
Su(Q) with [Jun|[z2(0) = 1 such that [|[GYun| p2ra;pay — 0. Then [jup|sv(q) is
bounded. Since S¥ () is a Hilbert space by Theorem 3.1, there exists a subsequence
of {uy}, still denoted by {u,} for convenience, that convergences weakly to some
u € S¥(9Q).

In the first step, we show u = 0, i.e., u, — 0 in S¥(2). By the weakly lower
semi-continuous result in Proposition 4.3, we have

/ IG¥ u(x)|?dx <11m1nf/ |G un ()| da.
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Now that ||g;un”L2(Rd;Rd) — O,

/ |Q;u(w)|2d:v =0,
]Rd

and thus G%u(z) = 0 for a.e. * € R?. By Proposition 4.2, u = 0 and the first step
is done.

In the second step, we show u,, converges to 0 strongly in L2, which contradicts
the assumption ||uy,||z2q) = 1.

Using the integration by parts formula and the characterizations of D_* and G,
consecutively in Proposition 4.1, it follows that (recall that u,, = 0 in Q°),

||gZUnHiz(Rd;Rd)

_ / wn (@)D" 0 Gun (z)d
Rd

= [ (@) (87 » Glual@) — e Glun(@) do
(73)
— /Rd un(x) (BY * G¥uy) (x)dz

- /Rd un(x)ey - (/Rd B (y — x)un(y)dy — c,,un(:v)) dx
=(un, BY * Goyun)o + |CV|2HunH%2(Q) — (tn, Kun)o

where (-, -)q denote the L?(Q) inner product and K : L?(Q) — L?*(Q) is defined as
Ku(a) = [ e 8y = )uly)dy.

Note that K is well-defined as |Ku| < |e,|w * |u| € L?(R?). Now notice that by
Young’s convolution inequality
(un, B4Giyun) < lunllL2@) 18" *Giunl L20) < Vdllwll i o) | Geun | 12 amay — 0.

as n — oo. In addition, |c,|? = |¢[> > 0 by egs. (62) and (66). Therefore, if
(tn, Kup)o — 0, then we reach a contradiction since eq. (73) implies ||u,[/z2q) —
0. In the following, we proceed to show (u,, Ku,)q — 0 as n — oo.

Notice that by definition

Kulw) = /Q v Xy — 2) 2wy — @)uly)dy

ly — |
N N ¢ k) BV
= [ ety =o)Xty — )ty

=: / k(x — y)u(y)dy,
Q

where we have used eq. (66) and k(z) := ¢ xu(—2) V"(z_lz)UJ(z) > 0. Notice that

k€ LY(R?) as w € LY(RY), it follows from Corollary 4.28 of [11] that K : L2(Q) —
L?(f2) is compact. From the first step we have u,, — 0 in S¥(2) and thus u, — 0
in L2(R%). Thus Ku,, — 0in L*(Q) as K : L?(Q) — L?(Q) is compact. Therefore,

|(un,Kun)Q| < ||un||L2(Q)||KunHL2(Q) — 0, n — oo.

Hence the proof is completed. O
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5. NONLOCAL POINCARE INEQUALITY FOR GENERAL KERNEL FUNCTIONS

Our main goal in this section is to prove the Poincaré inequality for general kernel
functions beyond the integrable and compactly supported ones used in Section 4.
Throughout this section, we assume that the kernel function satisfies eq. (1) and
the assumptions given as follows.

Assumption 5.1. Assume that w satisfies eq. (1), and either one of the following
conditions holds true:
(1) fou ltlu(@)de < oo;
(2) there exists R > 0 such that w(x) = IMC% for some ¢y > 0 and o € (0,1]
when |z| > R.

We use w to denote the radial representation of w, i.e., W : [0,00) — [0, 00) satisfies
W(|x|) = w(x) for z € R

Remark 5.1. Notice that Assumption 5.1 covers many cases of kernel functions
seen in the literature. For example, compactly supported kernels, the fractional
kernel w(zx) = Clz|~4~* used to study the Riesz fractional derivatives in [46, 47,
as well as the tempered fractional kernel w(zx) = Ce~N®l|z| =4 in [44].

Under Assumption 5.1, we can show the following result.

Theorem 5.1 (Poincaré inequality for general kernel functions). Let Q) be a bounded
domain with a continuous boundary. Under Assumption 5.1, the Poincaré inequal-
ity holds, i.e., there exists a constant I = I(w,Q,v) > 0 such that

(74) lullz2(@) < MG ull2mare), Vu € S7(Q).

For general kernel functions, we do not have a direct analogue of eq. (73) since
the single integral defining DY cannot be separated into two parts. Motivated by
the fact that singular kernels usually correspond to stronger norms than integrable
kernels, e.g., the Riesz fractional gradients lead to Bessel potential spaces [46], it is
a natural idea to choose an integrable and compactly supported kernel by which w
is bounded below, i.e., a kernel ¢ satisfying eq. (1) and

(75) 0 < ¢(x) <w(x), supp ¢ C B1(0) and 0 < o(x)dx < 0o,
Rd

and utilize the Poincaré inequality for integrable kernels with compact support.
This further requires a comparison of the norms ||&% ul| L2ge;rey and [|SFul| L2(rara)
which is not a trivial task. Here, we resort to the Fourier analysis. Let be AY and
A% be the Fourier symbols are defined by eq. (20). Notice that if there exists a
constant C' = C(w,d) > 0 independent of v such that

(76) IAL(E)] = CIN(€)], Ve eRY,

then we have for any u € C°(Q),
IG5 ey = [ | ING(OF (e P

v 2. v
> [ N ae)Pde = C2Igulaeanar

and the Poincaré inequality for general kernels can be further inferred.
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Lemma 5.1. Assume that w satisfies Assumption 5.1. Then there exists a kernel
function ¢ satisfying eq. (1) and eq. (75) such that eq. (76) holds, where XY, and X
are the Fourier symbols defined by eq. (20).
Proof. We divide the proof of eq. (76) into two steps. Along the proof, the desired
kernel function ¢ will be constructed, and more precisely, is defined by eq. (85).
Without loss of generality in the following steps we assume d > 2. The case for
d =1 is similar.

Step I. We prove that there exists N; = Ny(w,d) € (0,1) and Cy = C1(w,d) >0
such that

(77) (A% = CLIAZ(E)], VIEl < Ni.

Since ¢ is integrable and satisfies eq. (75), there exists C' > 0 depending on w (as
¢ itself depends on w) such that for |£] < 1,

(78) IX5(8)] < 2v2rlg| . ¢(z)dz = Clg].

z|<1
Observe that S(AY)(€) is a scalar multiple of % as a result of Lemma 2.4, i.e.,
() (&) = Aw(|€ |)%| where A,, is given by eq. (26). Using polar coordinates, we
obtain

Ay (l€)) = / / cos(0)w(r) sin(27|€|r cos(0))r? L sin? =2 (0)drd6
T ™ 2
/ sin~ 3(<P1)d901/ Sind%(@z)d@r“/ Sin(@d—a)dwd—s/ dpd—2
0 0 0 0
= lwd_g/ / cos(0)w(r) sin (27 |€|r cos(h))rt ! sin?=2(0)drdh

= wq_ 2/ / cos(#) sin?=2(0)r~'w(r) sin(27|€|r cos(6) ) drdb,

where wg_1 = F(d/;) is the surface area of (d — 1)-sphere S~1. Now we claim that
for w in Assumption 5.1,

Aw(l€]) = Clw, d)[€],  V[E] < N1

Then eq. (77) holds by eq. (78) and [AY (&)| > [(AX)(€)| > Aw(|€]). We prove the
claim by two cases to conclude Step I.
Case (i). Suppose w satisfies Assumption 5.1 (1). Then [ °r%w(r)dr < oo.

Since g(r, 0) := cos?(0) sin® *(0)rw(r) € L* ((0,00) x (0, %)), by dominated con-
vergence theorem,

Aw(l€]) _ —20gy d— .\ SIN27|E[r cos(6))
€ _2/ / cos?(6) sin?=2(0)r?w(r) 27 IE]r cos0) drdf

— 2Twg— 2/ cos? () sin? (9)d0/ riw(rydr >0, as |€] — 0.
0 0

Therefore, there exists Ny = Ny(w,d) € (0,1) such that the claim holds.

Case (ii). Suppose w satisfies Assumption 5.1 (2). Assume without loss of
generality that R = 1. Then fol rw(r)dr < oo and W(r) = - with o € (0,1]
for > 1. We estimate A, (|€]) by discussing » < 1 and » > 1. On the one
hand, since sinz > 1z for |z| sufficiently small, there exists N1 € (0,1) such that
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fol rd=1w(r) sin(27|€|r cos(0))dr > 7|€| cos() fol r4w(r)dr for |€] < Ni. On the
other hand, there exist C' = C(a, ¢p) and N1 = Ni(a) € (0,1) such that

o0

< . co . o o 1 .
/1 rd 1rd£a sin(27|€&|r cos(8))dr = cq|€](cos H) / Gmsm@m‘)dr

€] cos

> C¢|*(cos0)® > CJ€| cos(d), V|E| < Ny, 0 € (o, g) ,
where we used [;° —= sin(27r)dr € (0,00) and dominated convergence theorem
for the second last inequality. Combining both cases for r < 1 and r > 1 yields the
claim.

Step II. We prove that there exist No = Nay(w,d) > 1 and Cy = Ca(w,d) > 0
such that

(79) (AL = Co|AL(8)],  VIE| > Na,

and C3 = C3(w,d) > 0 such that

(80) AL ()] = C5|AZ(E)],  VIE] € [Ny, No].

Since ¢ is integrable,

(51) X©I<2 [ oz =L £
j2/<1

where Iy := [pq4¢(2)dz € (0,00) depends on w. Denote £ = %I Recall that
v = Rye;. Then

(AL = [RAL)E)] = [v - RAT)(E)]
= /{ uw(z)(l — cos(27€ - z))dz

z-v>0} |z|

(82)
_ / ﬂw(z)(l — cos(2w|€|(RZé) - z))dz.
{z1>0} ||

For any f € L'(R?), we define a function I : Ry x S9! — R by
I(p,m) := /Rd f(2)(1 = cos(2mpn - 2))dz.

Claim. For w in Assumption 5.1, there exists f € L'(R%) depending only on w
such that

(83) 0 < f(2) < Xe, <z>§|w<z>
and
(84) I(gl,m) = C(d)Iy, VIE| > Nay e 9L,

Once the claim is proved, eq. (79) and eq. (80) follows. Indeed, eq. (79) holds
by eq. (81), eq. (82), eq. (83) and eq. (84). Notice that I is a continuous func-
tion and I(|¢],m) > 0 for any [¢| € [N1,Na] and n € S9!, eq. (80) holds as
minpy, n,)xsé-1 [(p,m) > 0 and Iy > 0. We prove the claim to conclude Step II
and thus finish the whole proof.

Proof of the claim. We choose ¢ as

(85) ¢(z) = min(1, w(@)xp, o) (2))-
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Then ¢ satisfies eq. (1) and eq. (75). Let f(2) 1= xe, (2) 2 ¢(2), then f € LY(R?)

Ell

satisfies eq. (83) and for V := (0,00) x (0,7/2) x (0,7)473 x (0, 27),

2!

9 f(z)dz = /{21>0} m¢(z)dz

- // cos(i21)B(r)r" sin®2 (1) sin®*(i22) - - sin(pu_o)drdipr digs - - - dipa_od
:

s

:wd_2/2 cos(gol)sindd(gol)dcpl/ rdiquﬁ(r)dr
0 0

- Wd—2
B (d - 1)wd_1 /Rd d)(z)dZ,

where ¢ is the radial representation of ¢. Note that the above computation holds
for d > 3 and can be easily done for d = 1 or 2. Then by Riemann-Lebesgue lemma,
there exists No = Na(w, d) > 1 such that V|£| > Na,

1
/ f(z)cos(2m|€|n - z)dz < —/ f(z)dz, V¥ngeSit
R4 2 Jpa
Then for |£] > Ny and n € S,

1elm) = [ | 20 = cost2migln- 2z > 5 [ flade = C@ly,

where C(d) = 57-155,—- Then the claim is proved. O

Now we are ready to prove the the Poincaré inequality for general kernels.

Proof of Theorem 5.1. For any u € C°(2), we have 8% u = G¥u. By Lemma 5.1
and the comment below eq. (76), there exists a kernel function ¢ satisfying eq. (1)
and eq. (75) such that

&% ull L2rare) = [GullL2®are) = CllGgull L2Rare)

for some C' = C(w,d) > 0. Therefore, using Theorem 4.1 for the integrable and
compactly supported kernel ¢, we obtain

HU‘HLQ(Q) < H((ba v, Q)”g;uHLz(Rd;Rd) < C_1H(¢7 v, Q)”@ZU”L?(W;W)a Yu € CSO(Q)

Denote II(w,v,Q) := C~1I(¢,v,Q). By the density result in Theorem 3.2, for
every u € Sp(1), there exists {u;}52, C C(Q) such that u; — wu in Sy (Q).
Hence,

luj —ullL2() = 0, and ||&%u; — QﬁzjuHLP(Rd;Rd) —0, j— oo
Since
HujHLQ(Q) < H(’LU, v, Q)||®Zuj||L2(Rd;Rd)v

letting j — oo yields (74). O
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6. APPLICATIONS

In this section, we provide some applications of the nonlocal Poincaré inequality.
Assume that w is a kernel function satisfying Assumption 5.1, v € R? is a fixed
unit vector, 2 C R? is an open bounded domain with a continuous boundary. Note
that by the nonlocal Poincaré inequality Theorem 4.1 and Theorem 5.1, the full
norm |[|ul|sv () is equivalent to the seminorm || &% ul| 12(ra;rae) for u € S (). Thus
in this section we abuse the notation and use || - || s» (o) to denote the seminorm.

6.1. Nonlocal convection-diffusion equation. In Section 2 we have defined
nonlocal gradient and divergence operator for the fixed unit vector v. It turns
out that one can define these notions corresponding to a unit vector field n = n(x)
as well. Specifically, for a measurable function u : R — R and a measurable vector
field v : R? — R, Gy : Q — R and Do : Q — R? are defined by

y—x

Gru(e) = limy | xnta) 0 = @)uly) — (@) = ruly — e)dy
and
Dl (@) = lim Y Xo) U= 2)0(0)+ X () (T — ) 0() 0 (y— )y,

=0 Jpa\ B, (x) [Y — T
respectively. Let ¢ be an integrable kernel with compact support satisfying eq. (1).
Then the integration by parts formula in Proposition 4.1 (2) holds for the vector
field n and kernel ¢. The proof is similar and thus omitted.

For a diffusivity function € = e(x) € L>(R?) with a positive lower bound €; > 0,
a vector field b € L*°(R%; R?) and a function f € (S¥(£))*, we consider the nonlocal
convection-diffusion model problem formulated as

{—@w%&ﬁﬂy+bggu=f in Q,

86
(86) u=0 in RH\Q.

Equation (86) is a nonlocal analogue of the classical convection-diffusion equa-
tion, see, e.g., [14, 39, 53, 52| for related discussions. The new formulation using
DY (e®¥ u) for the nonlocal diffusion allows the possibility to explore mixed-type
numerical methods for eq. (86) in the future.

Remark 6.1. If the kernel function w has compact support, the boundary condition
in eq. (86) only needs to be imposed on a bounded domain outside Q. For example,
assume supp w C Bs(0) for 6 > 0, then for the first equation to be well-defined on
Q, we only need u =0 on Qa5\Q where Qo5 = {x € R : dist(x, Q) < 26}.

We define the bilinear form b(-,-) : S¥(Q2) x S¥ () — R associated with eq. (86)
by
(87) b(u,v) = (e u, B v) 2 (rera) + (b GFu,v)2ra).
Then the weak formulation is given as follows.

Find u € S}(£2) such that:
(88) blu,v) = (f,v), Vv e SL(Q).

The vector field n is given in terms of b by the following relation

b
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To establish the well-posedness of the model problem (86), we give an additional
assumption on the velocity field b.

Assumption 6.1. Assume the velocity field b € L (R%; R?) satisifies either one
of the following assumptions:

(i) Dy™ b<0, or
(i) |Dy™ b| < n where n < 2€1 /T1%.

We further present a result on the convection part of the bilinear form b(u,v).
Similar result can be found in [39].

Lemma 6.1. Let v € S(2) and n be defined as eq. (89). Then
1
(b-Ggv,v)p2 ) > ——( ;Dy™b) L2 (0.
Proof. By the integration by parts formula for vector field n,
(b . gg’U ’U)Lz(Q) = (b . gg’U, 'U)L2(Rd) = —(’U, D;n(bv))Lz(Rd)

- / / — (Xn(y) (& — y)b(y)v(y)+
Rd R4 |y :E|
Xn(a:)(y - m)b(m)v(m))¢(y - m)dydw

=5 0w = @) I o @~ @)+

Xn(a:)(y - m)b(m)v(m))¢(y - m)dydw
- // o) — v(@)o(@) L2 (i (@ — 1)b(y)+

R2d |y |
Xn(m)(y —z)b(x))¢p(y — x)dydx

+ % /Rd /Rd(v(y) —v(x))? |z : Z Xy (® — Y)b(Y)d(y — x)dyda

B _% /R /R ly —a] C,;| * (Xn(y) (@ = Y)B(Y) + Xn(z) (y — 2)b(@))d(y — x)dydx
* % /R /R (v(y) —v(x))” |z — z| Xn(@) (Y — 2)b(x)d(y — x)dydz

= —% /Q v(@)*D;™ b(x)dw
* % /Rd /{(y_m)'n(mm} (v(y) — v(x))? ; — g| b(2)d(y — )dyde

2 —% /Q v(@)*D,"™ b(w)dz.

where we used eq. (89) in the last inequality. O

Use the above lemma, we can establish the coercivity of the bilinear form and
the well-posedness of eq. (86) further by the Lax-Milgram theorem.

Theorem 6.1. Assume that Assumption 6.1 is satisfied. The nonlocal convection-
diffusion problem (88) is well-posed. More precisely, for any f € (S¥(2))*, there
exists a unique solution u € S (Q) such that

lullsx ) < cllfllisz @)
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where ¢ = c¢(e, b, w, p,v, Q) is a positive constant.

Proof. Notice that b(-,-) is coercive under Assumption 6.1. Indeed, if Assump-
tion 6.1 (i) is satisfied, then by Lemma 6.1, b(v,v) > eja(v,v) = 61HU||§,,(Q),
Vv € 8%(2). On the other hand, if Assumption 6.1 (ii) is satisfied, then by the
nonlocal Poincaré inequality,

1 B 1 1 )
§|(U279¢nb)m(sz)| < 577|\U||2Lz(9) < 577H2||Q5wv||2L2(Q;Rd),

where II = II(w, v, Q) is Poincaré constant. Hence, by Lemma 6.1,
n 1 — 1 v
(b-Gyv,v)r2) > _§|(027D¢nb)L2(Q)| > —577H2||Q5wv|\%2(9;w)-

Therefore if Assumption 6.1 (ii) is satisfied, we have b(v,v) > (€3 — %771_12)”1)”?%(9),
Yv € 85 ().
The boundedness of b(-, -) follows from the nonlocal Poincaré inequality and the
estimate
1G5l L2®amay < 201l 1@y 0l L2ay, Vo € L2(RY),
which is an analog of Proposition 4.1 (1) for n when p = 2. Finally, the Lax-
Milgram theorem yields the well-posedness of eq. (88). ([

6.2. Nonlocal correspondence models of isotropic linear elasticity. For
u € S¥(Q;RY), define distributional nonlocal vector Laplacian

(90) Liu =D, "6 u.

Then L%u € (SY(LRN))* and £Y @ SY(Q;RY) — (S¥(Q;RY))* is a bounded
linear operator with operator norm no more than 1 by Proposition 3.4. For the rest
of the paper, we consider N = d.

For a displacement field w : R* — R%, we study the elastic potential energy given
by

1 bt 74 v
(91) E(w) = AP (W)l may + plled (W72 gagaxa),

where A and p are Lamé coefficients such that x> 0 and A + 24 > 0 and e¥ (u) is
the nonlocal strain tensor

B u+ (6hu)”

(92) et () ;
We also introduce the nonlocal Naviér operator P;, acting on u as
(93) P () = —plhu — (A + 1) &40, u

in . The goal of this subsection is to show the well-posedness of the following
equation

Pr(u)=f in 9,
(94) Ca i md
u=0 in RY\Q.
Similarly as Remark 6.1, when the kernel function w is supported on B;s(0), we only

need the boundary condition to be imposed on Q95\Q. The associated function
space to the problem is

SZ(QaRd) = {u = (u17u25' o aud)T tu € S;(Q)vl = 1527" : 7d}
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The weak formulation of the problem is given by
(95) {Find u € S¥(Q;R?) such that:

B(u,v) = (f,v), Yo e SY%(Q;RY),
where f € (S¥(Q;R?))* and the bilinear form B(-,-) : S%(;R?) x S¥(Q;R?) — R
is defined as

d
B(’LL, v) =N Z(@Z’U,J, QSZUj)L?(Rd;Rd) + ()\ + /L) (@;VU, @;V’U)Lz(Rd).
j=1

To make sense of the weak formulation, one need to show that D Yu € L%(R?)
for u € S¥%(£; R?). This is proved in Proposition 3.2.
The following lemma verifies that £ is indeed the energy for the problem (95).

Lemma 6.2. For u € S%(Q;RY),

(96) B(u,u) = 2E(u).

Proof. Note that B(u,u) = u||Q§1‘j,uH%2(Rd;Rdxd) —i—(A—l—u)H@;”uH%z(W). By Propo-
sition 3.2, there exists {u(™}22, C CX®(QR?) such that G¥u™ — &Yu in
L2(R% R>4) and Dy¥u™ — ©7Yu in L2(R?) as n — oo. Therefore, it suffices

to show B(u(™, u(™) = 2€(u(™) and let n tend to infinity. Using the notation G;
and eq. (51) in the proof of Proposition 3.2, we obtain

d 2
n 1 n n
2ek ()32 ey =2 Y /R (5 (giug. () + G;ul )(:13))> dx

i,j=1
d
:Hg;u(n)H%z(Rd;Rdxd) + Z /Rd giug_")(m)gjul(_")(m)dw
ij=1
:Hg;u(n)H%?(Rd;RdXd) + ||D;Vu(n)||%2(Rd)'
Thus,
26 (u™) = AIDZu™ ey + 1 (1956 e e gy + 15w 2z

=B (u(”),u(”)) .
Letting n — oo finishes the proof. O

Now we are ready to establish the well-posedness of problem (95). In fact, an
analogue of the classical Korn’s inequality holds in the nonlocal setting.
Lemma 6.3 (Nonlocal Korn’s inequality). There exists a constant C = L min(\ +

2
2u, 1) > 0 such that

(97) E(u) 2 O||S%ullf2gagaxay, Yu € SHQGRY).

Proof. By Lemma 6.2 and Theorem 3.2, it suffices to show

Blu,w) > min(A -+ 20, 1) | G5l 3 sy, Yu € C2(RY),
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Using the notations and Plancherel’s theorem as in the proof of Proposition 3.2
yields

) /LnguHLz Re;Rdxd) (/\ + U)||D;”u|‘%2(Rd)
u —v T 2
_M/ A (€)1 |a(€)[ de + (A + 1) /Rdm GRIGIR

> min(A + 2p, p) /d XY (&) [@(€)]” dé = min(A + 2u, w)[|GYw]F 2 gagaxay-
R
O

Theorem 6.2. The nonlocal linear elasticity problem (95) is well-posed. More
precisely, for any f € (S (Q;RY))*, there evists a unique solution u € S¥(Q;R?)
such that

ullsvirey < cllfll sy rey«

-1

where ¢ = min(A + 2u, )~ s a positive constant.

Proof. The bilinear form B(:,-) is coercive by Lemma 6.2 and Lemma 6.3, and is
bounded by Proposition 3.2 and Theorem 3.2. Applying the Lax-Milgram theorem
yields the result. ([

6.3. Nonlocal Helmholtz decomposition. In this subsection, we always assume
that d = 2 or d = 3. The nonlocal vector calculus identities in Section 3.2 will be
used to obtain the nonlocal Helmholtz decomposition for d = 2 and d = 3. These
results extend similar studies in [38] for periodic functions.

Theorem 6.3. Let u € (S¥%(Q;R?))*. There exist scalar potentials p*, ¢ € L*(R?)
such that

°L o) B € (L)

-1 0/ * WA '

In addition, there exists a constant C' depending on the Poincaré constant I1 such
that

u=Q55,p"+<

HpV”L2(R2) + ||(J"HL2(R2) < OH'“’”(S;(Q;]R?))*-

Proof. Applying Theorem 6.1 with ¢ = 1 and b = 0 componentwise, it follows that
there exists a unique function f € 8%(Q;R?) such that —£ f = u with

| fllsy r2) < cllullsy(@r2))-,
where ¢ = ¢(w, v, ) > 0. Let

By Proposition 3.2, we have p¥,¢¥ € L*(R?), and |[p”||r2m2) + [|¢” |22y <

C'||f||55(g;Rz) < Cllull(sy (@r2))<- Then by Lemma 2.6 we obtain

v o v, v 0 v u
- _‘Cw.f - 6u;p + ( 1 0) 6
This finishes the proof. O
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Theorem 6.4. Let u € (S¥(;R3))*. There exist a scalar potential p* € L*(R3)
and a vector potential v¥ € L*(R3;R3) such that

(98) u=06yp" +C, v,
with
(99) DrvY =0,

where the above equations are understood in (S¥(S;R3))* and (S,%(Q))*, respec-
tively. In addition, there exists a constant C depending on the Poincaré constant
II such that

HPVHL2(R3) + ||vu||L2(]R3;]R3) < OH”||(S;(Q;R3))*-

Proof. As in the proof of Theorem 6.3, there exists f € S¥%(Q;R3) such that
—LY f =wu and
(100) [l sy sme) < cllullsy @ire))--
We choose
p¥ =—-9.,Yf and v¥ =} f,
and use eq. (35) to derive eq. (98). The computation is staightforward and thus

omitted. By Lemma 3.4, eq. (99) holds. Similar to the proof of Theorem 6.3, the
final estimate follows from Proposition 3.2, Proposition 3.3 and eq. (100). O

Remark 6.2. If the kernel function w is integrable, then by Proposition 4.1, for
any v € L*(R?) and v € L*(R%GRY), we have 8%u = GYu € L*(R%R?) and
¢y = C¥%v € L?(R%;RY). Therefore, the two components in the Helmholtz decom-
position in Theorem 6.3 or Theorem 6.4 are orthogonal in L?>(R%R%) as a result
of integration by parts together with Remark 3.2 (d =2) or Lemma 3.4 (d=3).

Remark 6.3. If the kernel function w has compact support, then the potentials in
Theorem 6.3 and Theorem 6.4 vanish outside a compact set. More specifically, if
supp w C Bs(0) for § > 0, then the p¥,q” € L*(Qs) and v¥ € L?*(Qs;R3) where
Qs = {x € R4 : dist(x,Q) < J}.

7. CONCLUSION

In this paper, we have studied nonlocal half-ball gradient, divergence and curl
operators with a rather general class of kernels. These nonlocal operators can be
generalized to distributional operators upon which a Sobolev-type space is defined.
For this function space, the set of smooth functions with compact support is proved
to be dense. Moreover, a nonlocal Poincaré inequality on bounded domains is estab-
lished, which is crucial to study the well-posedness of nonlocal Dirichlet boundary
value problems such as nonlocal convection-diffusion and nonlocal correspondence
model of linear elasticity and to prove a nonlocal Helmholtz decomposition.

This work provides a rigorous mathematical analysis on the stability of some
linear nonlocal problems with homogeneous Dirichlet boundary, thus generalizes
the analytical results in [38] where the domains are periodic cells. While we mainly
focused on the analysis of these nonlocal problems, standard Galerkin approxima-
tions to these problems are also natural based on the Poincaré inequality and the
density result. It would also be interesting to investigate Petrov-Galerkin methods
for the nonlocal convection-diffusion problems [39], as well as mixed-type methods
for them [17]. Other problems such as nonlocal elasticity models in heterogeneous
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media and the Stokes system in [22, 38] may also be studied in the future. As
for the analysis, our approach relies heavily on Fourier analysis which is powerful
but limited to L? formulation. The nonlocal L? Poincaré inequality for half-ball
gradient operator on bounded domains is still open to investigation. In addition,
Poincaré inequality for Neumann type boundary is also interesting to be explored
in the future. We note that in this work the dependence of the Poincaré constant
on the kernel function is implicit as a result of argument by contradiction. Fur-
ther investigation on how the constant depends on the kernel function is needed,
and following [41], a sharper version of Poincaré inequality may be considered by
establishing compactness results analogous to those in [10]. Last but not least, it
remains of great interest to develop nonlocal exterior calculus and geometric struc-
tures that connect the corresponding discrete theories and continuous local theories
[3, 7, 32, 36].
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APPENDIX A.

Proof of Lemma 2.2. Let u € WP (RY). To use Lebesgue dominated convergence
theorem to show the principal value integral coincide with the usual Lebesgue in-
tegral, we construct the majorizing function

92 (y) = lu(y) — u(@)lw(y — =), yeR,

and show that g, € L'(R?) for a.e. & € R%. This follows from the fact that the
function @ — [;, g=(y)dy € LP(R?). When p = oo, this is obvious. To show this
fact for 1 < p < oo, first note that

/]Rd /Rd 9(y)dy e /Rd /lymlﬂgm(y)dy + /ywlgm(y)dy
< 21)_1/11@ (/Iy_m|<1gm(y)dy>pdw+/w (/y_m>lgm(y)dy>pdm.

Then by Hélder’s inequality,

/Rd (/y_m<lgm(y)dy>pdw
N /]Rd </z|<1 e Tz)|_ e |Z|W(Z)dz> p -

p—1
lu( + z) — u(z)|
< </|z<1 |z|w(z)dz> /Rd /|z<1 |z|w(z) PR dzdx

<(My)?|[Vul|

p

dx

p
Lp(Rd)
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where we used inequality (see Proposition 9.3 in [11])

ulx +z) —ulx
[ e < |Vl 2 € R}

Applying the same techniques it follows that

/Rd (/lym|>lgm(y)dy>pdw
o [ < [ - m)dy>p - ( [ @ w)dy>pdm

<2 (M2l g

Combining the above estimates, there exists a constant C' > 0 depending on p such

that
P
/ 9=(y)dy
R

(101)
(/.

Therefore, g, € L'(R?) for a.e. € R? and by Lebesgue dominated convergence
theorem, equalities (5) hold for a.e. z € R%  Since |Ghu(z)| < [pu 9=(y)dy,
the estimate (11) follows from (101). Similar proofs hold for D% and C}, and are
omitted. (]

1
d:c) < C (MplIVull poray + M2llull poray) . uw € WHP(R?).

Proof of Proposition 2.1. (1) Since w(z —y) |u(x) — u(y)| € L'(R? x RY) and
v € CLH(R4 RN one can show by Lebesgue dominated convergence the-
orem that

i : T = lim x)w P u(y)—u(x)) : v(z T
| Gente) oterie =t ] oly-uty—e) S e ) i) @y

e—0

where R2? := R? x R\ {(z,y) € R??: |x — y| < ¢}. Similarly,

- [ ule) Dirv@)in =~ | ule)- i o(@)da

——1in Jf @) [ — (@ — )o(w) + o ly - e)o(a))] "ty — )iy

e—0

where

T _ T T
a@) = [ e - p)ew) - v@)| -

yT _ :BT T
= / [f(Xu(.’B - y)v(y) + X,,(y - CC)'U(:I}))] w(y _ Cc)dy
R\ B ( ly — |

T T T
Yy —x
— —v(x w(y — x)dy
/]Rd\Bé(m) |: |y—w| ( ):| ( )

y' — T T
B /Rd\B (@) [W(X”(w —yely) +ly - w)v(fv))] w(y — x)dy
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where we have used x, (z —y)+xu(y—x) = 1. The change of order of limi-
tation and integration is again justified by Lebesgue dominated convergence
theorem due to w € L*(R%;RY) and v € CL (R4, R*N).

Therefore, it suffices to prove that

[t =auty -0 L= o (u(y) - u@) : via)dyda

ly — x|

T

YT — o7
— [ u@ |5 e - o) + ety - @o@)] uty - aldyde
R2d ly — x|

Applying Fubini’s theorem completes the proof as

Ity =2t o) A= (i)~ u@) : vl@dyde

ly — z|

= // Xv(y —x)w(y — x) y-ev ®@u(y) : v(x)dyde
R2d ly — |

- // oy — @)uly — )2 — L 9ulx) : v(x)dyde
R24 ly — x|

. // o (@ — oy — ) L2 @ u(w) : v(y)dyd
R2d ly — |

ly — x|

_//R Yoy — @)uly - 2) T D u(e) : v(@)dyde

= o) [S=E e = ot oty -t wty - i

(2) Since w(z — y)lu(z) — u(y)| € L'(R? x RY) and v € CHR%GRY), by
Lebesgue dominated convergence theorem one can show that
D” (x) - v(x)dx
103 yT T T
i // el =@ty ) [ £ =2 uty) - u(e)| - v(e)dyda,
R2

e—0 |y— m|

where R?? := R? x RN\ {(z,y) € R?? : |z — y| < ¢}. Similarly, by the same
reasoning as in the proof of Proposition 2.1(1),

- [ ut@): Ghola)is

=— lim //de Xv(y — 2)w(y — x)u(z) : =% & (v(y) — v(z))dyde.

=0 ly — x|

Therefore, it suffices to prove that

yl — T T
[ o=zt - o) = i) ~ u(a) | -viz)yis

ly — |
— [ty - 2l - Dute) s L2 s o(y) - v(a)dyda.
R2d ly — x|

Applying Fubini’s theorem as in the proof of Proposition 2.1(1) gives the
desired result.
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(3) By similar reasoning as the proof of Proposition 2.1(1) and Proposition 2.1(2),

we have

| ctute)viade = i [ Xy ety ) < (uly) () vl dyda,
and

| wterecrvterie = tin @yt = o) o) u(wiyds.

Using Fubini’s theorem and the two identities x,(z — y) + xu(y — ) = 1
and a - (b x ¢) = —c- (b x a), one can show

[ oty =@t = o) 2= (uly) — w(@) - o) dyde

ly — z|

- //]de Xu(ilf B y)w(y - w)u x (v(y) - 'U(ilf)) : U(il!)dydm,

ly — z|

for any € > 0, and therefore the desired result is implied.
O

Proof of Lemma 3.2. Note that 7,u € L?(R?) is obvious. To show mqu € S¥(R%; RY),
it suffices to show &Y (tqu) € L?(R% R?). We claim that &Y (tqu) = 74(B%u) €
L?(R%;RY). Indeed, for any ¢ € C°(R%;RY),

[ raute)D,* $lalde = | (@)D, )@ - a)de
R4 R4
- / u(@)(r_aDy" §) (x)da
R4
~ [ u(@)(D," (- a0))()de
R4
= —/ &Y u(x) T_qp(x)dx
R4
- [ (@) g(e)da.
R4

where DY (T_q¢) = T_aD,,” ¢ can be easily checked. Therefore, the claim is true
and thus 7,u € S¥(R?).
To show the continuity, first note that

lim [|7qu — ul|p2@e) =0

|la]—0

by continuity of translation in L?(R%). Then using the claim above and the conti-
nuity of translation in L?(R%;R?), we have

&4 (Tau) — Q51VUUHL2(Rd;Rd) = [|7a (& u) — ®Z;U||L2(]Rd;]Rd) -0, la] = 0.

Hence,

li — v =0.
|a1|11>10 [ Tau u”Sw(Rd)
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Proof of Lemma 3.3. Since u € L?(R?), by the property of mollification, 7. * u €

L?(R?) and
lim f[ne * u = ul| L2(ey = 0.

We claim that
&Y (e * u) = ne x 8% u € L*(RY;RY).
To show the claim, we need to prove that
(104)
[ s etn@el@ide = - [ o@D g, v e O RYRY)
Rd Rd
For the right-hand side, we use Fubini’s theorem to get

- [rn@ns@ie =~ [ [ -y, s
— [ uto) [ty =)Dy by

__ / w(@)(n. = D" ¢)(@)d
Rd

For the left-hand side, use Fubini’s theorem again to obtain

/Rd(’”"j u)(®) dw—/Rd/Rdnew— 8% u(y)dy - ¢ (x)dx

_/Rd Y u(y )-/R ne(y — @) (x)dwdy
_ / Blu(y) - (e x $)(y)dy

—— [ u)Dy (e $)w)dy
R
One can check that DY (ne * ¢)(x) = (ne * DY ¢)(x) and therefore

/ (e * &%) (@) () dz = — / u(y) (e * D37 ) (w)dy.
Rd Rd

Comparing the left-hand and right-hand side, eq. (104) is proved and &Y (n. xu) =
Ne ¥ ®Yu € L2(R% R?). Therefore

lim ||®Z)(77€ * ’U,) - @Z’UJHLz(Rd.Rd) = lim ||’I7E * 6;11, - ®;U||L2(Rd.Rd) = 0,
e—0 ! e—0 !

and thus the lemma is proved.

REFERENCES

(1] R. A. Adams and J. F. Fournier. Sobolev Spaces. Academic Press, San Diego, CA, second
edition, 2003.

[2] M. Allen, L. Caffarelli, and A. Vasseur. A parabolic problem with a fractional time derivative.
Archive for Rational Mechanics and Analysis, 221(2):603-630, 2016.

(3] D. Arnold. Finite Element Exterior Calculus. Number 93 in CBMS-NSF Regional Conference
Series in Applied Mathematics. STAM, Philadelphia, PA, 2018.

[4] E. Askari, F. Bobaru, R. Lehoucq, M. Parks, S. Silling, and O. Weckner. Peridynamics for
multiscale materials modeling. In Journal of Physics: Conference Series, volume 125, page
012078. IOP Publishing, 2008.



[5]
[6]
7]

(8]

[9]

(10]

(11]

(12]

13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]
23]
[24]
25]
[26]
27]
(28]

(29]

NONLOCAL HALF-BALL VECTOR OPERATORS ON BOUNDED DOMAINS 41

O. G. Bakunin. Turbulence and Diffusion: Scaling versus Equations. Springer Science &
Business Media, 2008.

J. Ball and F. Murat. W1 P-quasiconvexity and variational problems for multiple integrals.
Journal of Functional Analysis, 58(3):225-253, 1984.

L. Bartholdi, T. Schick, N. Smale, and S. Smale. Hodge theory on metric spaces. Foundations
of Computational Mathematics, 12(1):1-48, 2012.

J. C. Bellido, J. Cueto, and C. Mora-Corral. Non-local gradients in bounded domains moti-
vated by continuum mechanics: Fundamental theorem of calculus and embeddings. Advances
in Nonlinear Analysis, 12(1), 2023.

D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert. Application of a fractional
advection-dispersion equation. Water resources research, 36(6):1403-1412, 2000.

J. Bourgain, H. Brezis, and P. Mironescu. Another look at Sobolev spaces. In Optimal Control
and Partial Differential Equation. Conference, Paris , FRANCE (04/12/2000), pages 439—
455. IOS Press, Amsterdam, 2001.

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universi-
text. Springer, New York, NY, 2011.

E. Brué, M. Calzi, G. E. Comi, and G. Stefani. A distributional approach to fractional
Sobolev spaces and fractional variation: Asymptotics II. Comptes Rendus. Mathématique,
360(G6):589-626, 2022.

A. Buades, B. Coll, and J.-M. Morel. Image denoising methods. A new nonlocal principle.
SIAM review, 52(1):113-147, 2010.

M. D’Elia, Q. Du, M. Gunzburger, and R. Lehoucq. Nonlocal convection-diffusion problems
on bounded domains and finite-range jump processes. Computational Methods in Applied
Mathematics, 17(4):707-722, 2017.

M. D’Elia, M. Gulian, T. Mengesha, and J. M. Scott. Connections between nonlocal operators:
From vector calculus identities to a fractional Helmholtz decomposition. Fractional Calculus
and Applied Analysis, pages 1-44, 2022.

M. D’Elia, M. Gulian, H. Olson, and G. E. Karniadakis. Towards a unified theory of fractional
and nonlocal vector calculus. Fractional Calculus and Applied Analysis, 24(5):1301-1355,
2021.

L. Demkowicz, T. Fiihrer, N. Heuer, and X. Tian. The double adaptivity paradigm:(How to
circumvent the discrete inf-sup conditions of Babuska and Brezzi). Computers & Mathematics
with Applications, 95:41-66, 2021.

Q. Du. Nonlocal Modeling, Analysis, and Computation, volume 94. SIAM, 2019.

Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou. Analysis and approximation of nonlocal
diffusion problems with volume constraints. SIAM review, 54(4):667-696, 2012.

Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou. A nonlocal vector calculus, nonlocal
volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods
in Applied Sciences, 23(03):493-540, 2013.

Q. Du and X. Tian. Stability of nonlocal dirichlet integrals and implications for peridynamic
correspondence material modeling. STAM Journal on Applied Mathematics, 78(3):1536-1552,
2018.

Q. Du and X. Tian. Mathematics of smoothed particle hydrodynamics: A study via nonlocal
Stokes equations. Foundations of Computational Mathematics, 20:801-826, 2020.

Q. Du, X. Tian, and Z. Zhou. Nonlocal diffusion models with consistent local and fractional
limits. arXiv preprint arXiv:2203.00167, 2022.

L. Evans and R. Gariepy. Measure Theory and Fine Properties of Functions, Revised Edition.
Chapman and Hall/CRC, 2015.

A. Fiscella, R. Servadei, and E. Valdinoci. Density properties for fractional Sobolev spaces.
Ann. Acad. Sci. Fenn. Math, 40(1):235-253, 2015.

M. Fuentes, M. Kuperman, and V. Kenkre. Nonlocal interaction effects on pattern formation
in population dynamics. Physical review letters, 91(15):158104, 2003.

G. F. F. Gounoue. L2-Theory for Nonlocal Operators on Domains. PhD thesis, Bielefeld
university, 2020.

L. Grafakos. Classical Fourier Analysis. Graduate Texts in Mathematics. Springer New York,
2014.

M. Gunzburger and R. B. Lehoucq. A nonlocal vector calculus with application to nonlocal
boundary value problems. Multiscale Modeling & Simulation, 8(5):1581-1598, 2010.



42

(30]
(31]
32]
(33]
(34]
(35]
(36]

(37)

(38]

(39]

[40]

[41]

[42]
[43]
fa4]
[45]
[46]
[47]
48]
[49]
[50]
[51]
[52]

(53]

ZHAOLONG HAN AND XIAOCHUAN TIAN

Y. D. Ha and F. Bobaru. Characteristics of dynamic brittle fracture captured with peridy-
namics. Engineering Fracture Mechanics, 78(6):1156-1168, 2011.

A. Haar and P. Radu. A new nonlocal calculus framework. Helmholtz decompositions, prop-
erties, and convergence for nonlocal operators in the limit of the vanishing horizon. Partial
Differential Equations and Applications, 3(3):1-20, 2022.

A. N. Hirani. Discrete Exterior Calculus. PhD thesis, California Institute of Technology, 2003.
M. Kassmann and A. Mimica. Intrinsic scaling properties for nonlocal operators. Journal of
the European Mathematical Society, 19(4):983-1011, 2017.

A. A. Kilbas, O. Marichev, and S. Samko. Fractional Integrals and Derivatives: Theory and
Applications, 1993.

J. Klafter and I. M. Sokolov. Anomalous diffusion spreads its wings. Physics world, 18(8):29,
2005.

T. D. Le. Nonlocal Exterior Calculus on Riemannian Manifolds. PhD thesis, Pennsylvania
State University, 2013.

H. Lee and Q. Du. Asymptotically compatible SPH-like particle discretizations of one di-
mensional linear advection models. STAM Journal on Numerical Analysis, 57(1):127-147,
2019.

H. Lee and Q. Du. Nonlocal gradient operators with a nonspherical interaction neighborhood
and their applications. ESAIM: Mathematical Modelling and Numerical Analysis, 54(1):105—
128, 2020.

Y. Leng, X. Tian, L. Demkowicz, H. Gomez, and J. T. Foster. A Petrov-Galerkin method
for nonlocal convection-dominated diffusion problems. Journal of Computational Physics,
452:110919, 2022.

M. M. Meerschaert, J. Mortensen, and S. W. Wheatcraft. Fractional vector calculus for frac-
tional advection—dispersion. Physica A: Statistical Mechanics and its Applications, 367:181—
190, 2006.

T. Mengesha and Q. Du. The bond-based peridynamic system with Dirichlet-type volume con-
straint. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 144(1):161—
186, 2014.

T. Mengesha and Q. Du. Nonlocal constrained value problems for a linear peridynamic Navier
equation. Journal of Elasticity, 116(1):27-51, 2014.

T. Mengesha and Q. Du. Characterization of function spaces of vector fields and an application
in nonlinear peridynamics. Nonlinear Analysis, 140:82-111, 2016.

F. Sabzikar, M. M. Meerschaert, and J. Chen. Tempered fractional calculus. Journal of
Computational Physics, 293:14-28, 2015.

E. Scalas, R. Gorenflo, and F. Mainardi. Fractional calculus and continuous-time finance.
Physica A: Statistical Mechanics and its Applications, 284(1-4):376-384, 2000.

T.-T. Shieh and D. E. Spector. On a new class of fractional partial differential equations.
Advances in Calculus of Variations, 8(4):321-336, 2015.

T.-T. Shieh and D. E. Spector. On a new class of fractional partial differential equations II.
Advances in Calculus of Variations, 11(3):289-307, 2018.

S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces.
Journal of the Mechanics and Physics of Solids, 48(1):175-209, 2000.

S. A. Silling. Stability of peridynamic correspondence material models and their particle
discretizations. Computer Methods in Applied Mechanics and Engineering, 322:42-57, 2017.
S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and constitutive
modeling. Journal of Elasticity, 88(2):151-184, 2007.

P. R. Stinga and M. Vaughan. One-sided fractional derivatives, fractional laplacians, and
weighted sobolev spaces. Nonlinear Analysis, 193:111505, 2020.

H. Tian, L. Ju, and Q. Du. Nonlocal convection—diffusion problems and finite element ap-
proximations. Computer Methods in Applied Mechanics and Engineering, 289:60-78, 2015.
H. Tian, L. Ju, and Q. Du. A conservative nonlocal convection—diffusion model and asymp-
totically compatible finite difference discretization. Computer Methods in Applied Mechanics
and Engineering, 320:46-67, 2017.



NONLOCAL HALF-BALL VECTOR OPERATORS ON BOUNDED DOMAINS 43

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093, UNITED
STATES
Email address: zhhan@ucsd.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DiEGO, CA 92093, UNITED
STATES
Email address: xctian@ucsd.edu



	1. Introduction
	2. Nonlocal half-ball vector operators
	2.1. Definitions and integration by parts
	2.2. Distributional nonlocal operators
	2.3. Fourier symbols of nonlocal operators
	2.4. Nonlocal vector identities for smooth functions 

	3. Nonlocal Sobolev-type spaces
	3.1. Definitions and properties of nonlocal Sobolev-type spaces
	3.2. Nonlocal vector inequalities and identities

	4. Nonlocal Poincaré inequality for integrable kernels with compact support
	5. Nonlocal Poincaré inequality for general kernel functions
	6. Applications
	6.1. Nonlocal convection-diffusion equation
	6.2. Nonlocal correspondence models of isotropic linear elasticity
	6.3. Nonlocal Helmholtz decomposition

	7. Conclusion
	Acknowledgements
	Appendix A. 
	References

