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MONOTONE MESHFREE METHODS FOR LINEAR ELLIPTIC
EQUATIONS IN NON-DIVERGENCE FORM VIA NONLOCAL
RELAXATION

QIHAO YE AND XIAOCHUAN TIAN

ABSTRACT. We design a monotone meshfree finite difference method for linear elliptic
equations in the non-divergence form on point clouds via a nonlocal relaxation method.
The key idea is a novel combination of a nonlocal integral relaxation of the PDE prob-
lem with a robust meshfree discretization on point clouds. Minimal positive stencils are
obtained through a local [;-type optimization procedure that automatically guarantees
the stability and, therefore, the convergence of the meshfree discretization for linear ellip-
tic equations. A major theoretical contribution is the existence of consistent and positive
stencils for a given point cloud geometry. We provide sufficient conditions for the existence
of positive stencils by finding neighbors within an ellipse (2d) or ellipsoid (3d) surround-
ing each interior point, generalizing the study for Poisson’s equation by Seibold (Comput
Methods Appl Mech Eng 198(3-4):592-601, 2008). It is well-known that wide stencils are
in general needed for constructing consistent and monotone finite difference schemes for
linear elliptic equations. Our result represents a significant improvement in the stencil
width estimate for positive-type finite difference methods for linear elliptic equations in
the near-degenerate regime (when the ellipticity constant becomes small), compared to
previously known works in this area. Numerical algorithms and practical guidance are
provided with an eye on the case of small ellipticity constant. At the end, we present
numerical results for the performance of our method in both 2d and 3d, examining a range
of ellipticity constants including the near-degenerate regime.

This work has been published in Journal of Scientific Computing. Please refer to
the official publication for citation.

1. INTRODUCTION

In this work, we consider numerical approximations to the second-order elliptic equations
in non-divergence form

d

—Lu(x) == — a’(x)o;ju(zx) = f(x) x e
(1.1) 132:31

u(x) = g(x) x € 09,

for a bounded domain Q C R, A(zx) = (a¥ (ar:))f’j:1 is a bounded and measurable matrix-

valued function and is assumed to be symmetric and positive definite satisfying the uniform

ellipticity condition
(1.2) MNeEP < eTA(x)e < AE]?  VEcRY Yz eQ
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for positive constants A and A. Notice that by dividing both sides of the first equation in
(1.1) by A, we can assume without loss of generality that A = 1 and the ratio ¢ := A\/A =
A < 1. Notice that if the coefficient matrix A is differentiable, then the non-divergence form
equation (1.1) can be recast into a divergence form convection-diffusion equation. However,
when A is not differentiable, such reformulation no longer exists. In this work, we only
assume A is bounded and measurable so that a variational formulation is not available.

Linear elliptic equations in non-divergence form arise in various applied domains including
probability and stochastic processes [28]. They are also recognized as the linearization of
fully nonlinear PDEs such as the Monge-Ampeére equation, which arises in applications
to the optimal transportation problem and geometry [11, 41, 65], and Hamilton-Jacobi-
Bellman (HJB) equations with applications to stochastic optimal control and finance [28].
In many practical scenarios, the coefficient matrix A(x) lacks smoothness or continuity,
and therefore cannot be recast into a divergence form [10, 11, 25, 28]. PDE theories for
non-divergence form elliptic equations are well-established in the literature. Existence,
uniqueness and regularity theories are established for different notions of solutions including
classical solutions, strong solutions, and viscosity solutions [14, 33, 48, 58].

In terms of numerical methods, non-divergence form elliptic PDEs are much less discussed
than the divergence form PDEs because of a lack of variational formulation aforementioned.
Discussions on finite element methods can be found in [24, 26, 39, 52, 55, 61] and the ref-
erences therein. We pursue the direction of the positive-type finite difference method for
elliptic PDEs which has guaranteed convergence as a result of consistency and monotonic-
ity /stability. Such pursuit dates back to Motzkin and Wasow [51], Kuo and Trudinger [38],
and Kocan [37]. What was found in these works was that consistent and positive-type
finite difference schemes exist for a given elliptic operator, but the stencil size grows with
o — 0, and therefore the so-called wide stencil is a necessary feature of monotone finite
difference methods even in the case of linear elliptic equations. Wide-stencil methods are
later developed also for fully nonlinear elliptic PDEs [30, 57, 56, 54], and a few recent de-
velopments on monotone finite difference methods for nonlinear elliptic PDEs are found in
[27, 29, 36]. For the linear elliptic PDEs, Kocan [37] gives an estimate of the stencil width

for the existence of positive-type finite difference method, and it grows linearly with ="' in

1'in 3d, which severely impacts the practical use of the scheme

2d and superlinearly with ¢~
for small ratio p. In a more recent work [49], a positive-type finite difference scheme with
anisotropic stencils is discussed but their stencil width estimate in 2d is also at the scale of
ot

Our work is inspired by the recent development of meshfree methods for nonlocal mod-
els [20, 22, 42, 64]. The fundamental new idea of numerical approximation to (1.1) is a
continuous nonlocal relaxation of the PDE problem followed by asymptotically compatible
discretizations. More specifically, we first define a family of nonlocal operators {Ls}s~o as
continuous approximations to the elliptic operator L, and then seek for robust discretiza-
tions {£§}5>0,h>0 by which the discretization parameter h is allowed to be proportional to

the nonlocal length parameter 4, i.e., h = ©(J), for the convergence to the elliptic problem



MONOTONE MESHFREE METHODS FOR LINEAR ELLIPTIC EQUATIONS 3

(1.1). In our work, Lsu(x) is defined by an integral over an elliptical region depending on
A(z) where 0 > 0 denotes the bound of the semi-major axis of it. We note that a similar
integral approximation to the linear elliptic operator is used in [55], while a non-robust
discretization is employed so that a stronger relation, h = o(¢), is needed for convergence.
In contrast, the idea of asymptotically compatible schemes [62, 64] could significantly im-
prove the efficiency of numerical methods via nonlocal relaxation. We note that nonlocal
integral relaxation to PDEs is a natural idea linked with meshfree discretization and has
been utilized in numerical schemes such as the smoothed particle hydrodynamics (SPH)
[21, 34, 45], vortex methods [5, 12] and other particle methods [6, 13, 63]. The basic idea of
the meshfree discretization is an [1-type local optimization method for obtaining minimal
positive stencils on point clouds. The major theoretical contribution (cf. Theorem 3.10)
is an estimate of the elliptical searching region, parametrized by é > 0, for guaranteeing
the existence of consistent and positive stencils. There are two main takeaways from The-
orem 3.10. First, for a fixed ratio o > 0, § can be chosen as a constant multiple of h,
leading to discretizations of asymptotically compatible type. Second, for small ¢ > 0, our
theorem guarantees the existence of positive-type finite difference method within a stencil
width of O(o~'/?), which is a substantial improvement of the known theoretical results
in [37, 49]. In terms of numerical algorithms, the size of the searching region determines
the computational complexity of the local minimizations problems, and the near-optimal
elliptic searching area estimate allows a practical assembly process in both 2d and 3d. In
addition, the /1-type minimization leads to minimal stencils with at most six points in 2d
and ten points in 3d, thus the resulting linear system is sparse and can be solved efficiently
by iterative methods. One notable feature of our approach is that it is the first numerical
method, as far as we are aware, that has been successfully implemented in both 2d and 3d
for the solution of linear elliptic equations with a wide range of o € (0,1], including the
near-degenerate regime when p < 1. We emphasize that our approach takes an innovative
path that could have a potential impact on how meshfree and particle methods can be de-
signed to enhance their mathematical properties as well as practical performances. Indeed,
many traditional meshfree methods and data analysis algorithms unanimously suffer the
restrictive condition h = o(J) on the two length-scales h and §, see e.g., [5, 13, 32, 43]. Our
work exemplifies the possible approach to improving the performance of meshfree and par-
ticle methods via nonlocal relaxation and robust discretizations. Extension of the approach
to other interesting problems will be considered in the future.

The rest of the paper is organized as follows. We first define a family of § > 0 parame-
terized nonlocal integral approximations to eq. (1.1) in Section 2. The consistency errors of
the continuum nonlocal model to the elliptic equation with respect to § are discussed. In
Section 3, we present the meshfree discretization based on the nonlocal regularized prob-
lem. An [i-type local optimization method is proposed in search of positive stencils in an
elliptical neighborhood surrounding each node. A major theoretical result concerning the
neighborhood criteria for guaranteeing the existence of consistent and positive stencils is

presented in Theorem 3.10. Convergence of numerical solutions in terms of the discretization



4

parameter h is then followed by monotonicity and the relation of 4 and A in Theorem 3.10.
In Section 4, we discuss point cloud generation and management, the assembling process,
and provide complexity analysis and practical guidance for the implementation of the nu-
merical method. Since the feasibility condition in Section 4 contains an implicit constant
¢ = c¢(d) > 0, we estimate the constant numerically in this section and provide the search-
ing neighborhood estimate that can be used in practice for d = 2 and d = 3. Finally, we
present the 2d and 3d numerical results in Section 5, and make the conclusion and further
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discussions in Section 6.

2. NONLOCAL RELAXATION TO ELLIPTIC EQUATIONS

TABLE 1. Table for major notations.

Definition

S&h,p

S5,h,p

second-order elliptic operator

a bounded domain

coefficient matrix in L such that \|€|? < €T A(x)¢ < Al€|?
component of coefficient matrix A(x)

(A(=))V/2

ellipticity ratio \/A

nonlocal regularization parameter

fill distance (discretization parameter)

nonnegative kernel with / ly>v(ly|) dy = 2d

B1(0)

{y e RY: M(x)"*(y — z) € Bs(0)} (ellipse centered at z)

x € Bs(x;) : xlv > cone in Bs(x;))

— o}
ey (L) det(Mﬁwfrl
~ 1 Y
Euto) = [ sz (W) totw) — @)

(nonlocal Laplace operator)

nonlocal approximate Laplace operator

L) = [ (e +y) () dy

(nonlocal elliptic operator)

nonlocal approximate elliptic operator

nonlocal approximate elliptic operator in extended space
{{wjﬂ-} twji > 0and Lhu(x;) = Lou(x;)Vu € Pp(Rd)}
(feasible set)

{{Wj,i} twj; > 0 and £§7Qu(azi) = Lsu(x;)Vu € Pp(Rd)}
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In this section, we discuss the nonlocal integral approximation to eq. (1.1) on which our

numerical methods are based. Major notations used in this paper are listed in Table 1.

2.1. Nonlocal elliptic operators in non-divergence form. Nonlocal models have gained
much interest in recent years [3, 8, 19]. In [17, 20], a nonlocal Laplace operator with a pa-
rameter dependence on J > 0 is used as an approximation to the classical Laplace operator
A (when A(x) = I). The nonlocal Laplace operator is given by

Euie) = [ e () o)~ uG@piy

where 7 is a nonnegative kernel with
(23 | 1wy = 2a
B1(0)

It can be shown that as 6 — 0, /jw(a:) — Au(x) for a sufficiently smooth function u. Here
we consider a more general nonlocal elliptic operator that approximates the classical elliptic
operator L in eq. (1.1) in the § — 0 limit. Following [55], we define the nonlocal elliptic
operator parameterized by ¢ as

1 M(z)™! _
e cote) = [ (B dear@) e+ v) - uw)ay
g2(0) 0T 0
where M(z) := (A(z))"/? is a positive definite matrix and £¥(z) denotes an ellipse with
definition
(2.5) £8(2) = {y € RY: M(2) " (y — 2) € Ba(0)}.

Notice that by our assumption on A(x), £5(z) is an elliptical region centered at z with

b>6./0

FIGURE 1. An illustration of £ (z) in 2d.

semi-axes being {51/ \i(x)}%_; where \;(x) denotes the i-th smallest eigenvalue of A(x).
By our assumption, o < A\j(x) < --- < A\g(x) < 1. Figure 1 shows a 2d example where the
semi-major axis of the ellipse is 5)\§/2(ac) < § and the semi-minor axis is 5)\}/2(:3) > 0,/0.
For convenience, we define

T -1
(26) ps(an) = sz () den(ar @)

and simply write Lsu(x) = fé’g(o) ps(x,y)(u(x + y) — u(x))dy.

In the next, we show the consistency between L5 and L on sufficiently smooth functions.
The first result asserts that Lsu agrees with Lu for all polynomials up to the third order,
and the second result gives pointwise truncation error for sufficiently smooth functions.
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Similar calculations can be found in [55], here we present them for completeness and for the

convenience of analyzing our numerical method in Section 3.

Lemma 2.1. Let Pp(Rd) denote the space of all polynomials up to order p and a =
(1,02, ,aq) € (ZY U{0})? with |a| =Y, ;. Then for any € RY,

(2.7) / ps(x,y)y*dy =0
£¢(0)

if || is an odd number and

(2.8) Lsu(x) = Lu(z) Yu € P3(RY).

Proof. Consider € R? fixed. If |a| is an odd number we have

1 | M (x) 'y 1
ps(x,y)y“dy = / v ( det(M(z))  y“dy
/s:;(m gx(0) 0412 Y

= /Bé(o) 56%7 <%> (M ()y)™dy
= 0.

This last equality above is due to the symmetry of the integration domain and anti-symmetry
of the integrand.

Now it is easy to see that Lsu(x) = Lu(ax) = 0 when u is a constant or u(z) = (z — x)*
with |a| being an odd number. On the other hand, notice that

[yl 2 / Iyl
cdy — 2dy =2 Vi.

/ o ps(z,y)(y ® y)dy = 5d+2

and

We have

)dm@ﬂ)Yﬂy®yMy

35(0
Q(M)y®wd)M@>

(55

= < ) x)y @ M(x)y)dy
< d+
=24

=(()

and thus Lsu(x) = Lu(x) when u(z) = (z — ac)"‘ with || = 2. Since Ls(x) agrees with
Lu(x) for u(z) = (z — x)® with |a| < 3, eq. (2.8) is true. O

We now consider an open bounded domain  C R?. For & € Q near the boundary of €,
the definition in eq. (2.4) requires the values of u outside €2. Therefore nonlocal equations
on bounded domains are usually accompanied by volumetric constraints ([20]) imposed over

a boundary layer surrounding 2. In our case, we need to define the boundary interaction
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layer as
Qz, = {x € RA\Q : dist(x, Q) < 6}.
We then denote the extended domain 5 := QUS)z,. The consistency of L5 to L is indicated

in the following lemma.

Lemma 2.2. Let Lsu be defined by (2.4) and C' > 0 being a generic constant. Let §g > 0

be a fixed number.

(1) If u € C*(Qs,), then |Lsu(x) — Lu(x)| — 0 as § — 0 for all x € €.
(2) If u € C**(Qs,) for k=2 or 3 and o € (0,1], then

|Lsu(x) — Lu(x)| < C|U|Ck,am—%)5k—2+a

for all x € Q and § < .

Proof. Notice that

1 1
u(x +y) —u(x) = /0 %u(m + ty)dt = /0 Vu(x + ty) - ydt.

Therefore

1
Lou(@) = / ps(@, y)y” / V(e + ty)dtdy
£2(0) 0

1
_ / po(a )y - / (Vu(e + ty) — Vu(z))didy
£2(0) 0

where we have used |, £2(0) ps(x,y)ydy = 0 for the second line above. Then use

1
Vu(x +ty) — Vu(z) = / D?u(x + sty) - tyds,
0
we have

1 1
Louw) = [ lay)yew)s [ ¢ Dute sty)dsdray
£2(0) o Jo

for all € Q. On the other hand, from calculations in Lemma 2.1, one can show for « € 2,

_ (yoy)
Lu(w) = [ o @S Doy

1 1
= [ twwwen): [ 1] Du@sidy
£5(0) o Jo

For u € C*(Qy,), we have D?u(z + sty) — D?u(x) as § — 0 since y € £¥(0). Therefore
case (1) holds. For u € C%%(Qs,), we have

D2l + sty) — D*u(@) oo < [uloma g 5ty
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So

Lsu(a) ~ Lu@)| < Clulguory) [ pol@y)ly*dy

£2(0

8

< Clulga o™ [ WX
5
o 1 Y|
= C|u|c2,a(Q_60)5 /]36(0) W% <7> yTA(ac)ydy

o 1 Y|
< C|u|02,a(9—60)5 /]36(0) sar2 8 <7> ly[*dy
= 2d0|u|02,a(9760)5a.

Finally, if u € C3%(Qs, ), then we can write

Lsu(x) — Lu(x)

1,1
[ mewwey): [ [ (Dusty) - Du@)dsitdy
£2(0) o Jo
1 1 1
:/ ps(x,y)(yRyy) :/ t2/ s/ D3u(x + rsty)drdsdtdy
£2(0) 0 o Jo

1 1 1
= / ps(x,y)(yRyRy): / t2/ S/ (Dgu(m + rsty) — D*u(z)) drdsdtdy.
£x(0) 0 0 0
Therefore, by the same reasoning as before, we have

Lsul) — Lu()| < Clulgs.gry / )pé(m,ywsmdy < 20l g 5

£2(0

3. MESHFREE DISCRETIZATION

Meshfree methods have been widely used in simulations of scientific problems. There are
many existing meshfree approaches for solving PDEs on scattered datasets, such as vortex
methods [12], smooth particle hydrodynamics (SPH) [34], radial basis functions (RBF)[9],
moving least squares (MLS) / generalized moving least squares (GMLS) [40, 50, 69], and
reproducing kernel particle method (RKPM) [46]. The key idea in MLS and GMLS is a local
fitting of data using least squares approximation. They can also be written as a weighted
lo-type local optimization under certain reproducing conditions. In [59, 16], weighted ;-
type optimization was discussed for the sparsity of stencils. It was shown that using /;1-type
optimization, the number of nonzero weights generated is at most the number of constraints
in the reproducing condition. Such property is important to keep the linear system sparse,
especially when the elliptic problem is nearly degenerate (0 < 1), in the case of which
the searching region becomes large (cf. Theorem 3.10). For the rest of this section, we
discuss the meshfree method for solving eq. (1.1) based on the nonlocal relaxation and the

convergence of the numerical method.
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3.1. Optimization based meshfree discretization. Our numerical method is inspired
by the meshfree finite difference method presented in [59] for solving the classical Poisson
equation. The focus here is on the generation of positive stencils which lead to monotone
schemes. The desirability of positive stencils was observed in other meshless methods, see
e.g., [18, 44], although there was no guarantee of positive stencils in these works. We now
present a reformulation of the meshfree method in [59] as a nonlocal relaxation method on
which a generalization to elliptic equations is based. Given a point cloud X = {x;} C R¢
with h being its associated fill distance to be defined later, it is proposed in [59] to discretize

the Laplace operator by
(3.9) Au(m;) ~ Apu(a) = Y Bjalu(a;) —u(=y)),

x;€Bs(x;)
where the weights {f;;} are determined by the following linear minimization problem in

order to achieve the so-called minimal positive stencils:

I
(3.10) i) argmmzj: W(lz; — )

st. B > 0 and Apu(z;) = Au(z;) Yu € Py(RY)

In [59], the polynomial space P,(R?) is taken to be Pa(R?) with p = 2. The parameter § in
eq. (3.9) is determined in relation to h such that the feasible set of the minimization problem
is non-empty. The weight function W (r) is suggested in [59] as W(r) = r=* for a« > 0. It
is not hard to see that when we choose the nonlocal kernel function v(r) = Cr=%x <1}

& —i |

that satisfies eq. (2.3), then by letting f3;; = Jd%’y ( 5 ) wj i, the minimization problem

(3.10) is equivalent to

{w;i} = argmin Z wji
(3.11) j
s.t. wj; > 0 and Lhu(x;) = Lyu(a;) Yu € Pp(RY).

where Zg‘ is the nonlocal approximate operator defined by

(.12 Bue)= Y s (255 wnstutey) — u(w)

x;€Bs(x;)

Based on this observation, we propose the discretization of nonlocal elliptic operator (2.4)
as

(3.13) Lhu() = Y pslwi,xj — m)wji(ula;) — ulz)).

x; Eé';i ()
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where ps(xi, x; — x;) = (Sd%’y (M) det(M(z;))~!. The weights {w;;} in
eq. (3.13) are solved by the minimization problem
{wj;} = argmin Z wji
(3.14) j
s.t. wj; >0 and Llu(x;) = Lou(z;) Yu € Py(RY).

The well-posedness (3.14) is guaranteed only if the feasible set is non-empty. We will discuss

in Section 3.4 the neighborhood criteria for non-emptiness of the feasible set
(3.15) Sshp(xi) = {{w],} twji > 0 and Lhu(x;) = Lsu(x;) Yu e Pp(]Rd)} .

Remark 3.1. Notice that the constrained optimization problem presented in eq. (3.14) can
be categorized as a linear programming problem. This type of problem can be efficiently

solved using the simplex method [15]. Moreover, Ls coincide with L when p < 3.

3.2. Boundary treatment. For an open and bounded domain  C R? we take a point
cloud X = {x;}M, C Qs and define its associated fill distance

3.16 h:= sup min |z — x;

(3.16) swp min [z -

following the convention in [69]. Assume that {z;}}Y, C Q. For z; € Q near the boundary
of 09, the defintion in eq. (3.13) may require the value of u(x;) for x; € Qz;. Therefore,
extensions of the boundary values from 0f2 to €2z, are needed. However, it is usually hard
to find an easy way to do the extension, especially in higher dimensions, to guarantee a
second-order convergence rate for nonlocal solutions. We propose an alternative way for

the boundary treatment.

| W— . .
\ x; associated with i,

\
\
\
Tiy b

o0N

FiGURE 2. Illustration of the projection

For z; € Q and x; € £ (x;), we define T; = x; if x; € Q, otherwise T; € 9Q is defined
as the projection of x; onto 92 such that the line from @; to Z; is contained in Q. Notice
that the projected point Z; depends on both x; and x;. Here for notational convenience,
we have omitted the dependence on 7 and simply denoted the projected point as ;. See

Figure 2 as an illustration of the projection. We then define the approximate operator
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associated with §, h and ) as

(3.17) £§7Qu(mi) = Z po (i, Tj — xi)wji(u(@;) — ulz;))

x; eg?i (ml)
where {w;;} is solved from

(3.18) {wji} =  argmin Zwm
) g

{w),i}€Ss,n,p (@i

where S5, ,(;) is the feasible set defined as
(3.19) Ssnp(@i) = {{wﬂ} twj; > 0and Eg‘@u(mi) = Lsu(x;) Yu € Pp(Rd)} .

We will address in Section 3.4 the feasibility of the minimization problem (3.18).
With the definition of the discrete operator £§7Q, we define the discrete problem as to
find a function uf : {z;}Y, U9 — R such that
—L}qui (@) = f(zi) @; €Q
(3.20) { ’ N
ug(x) = g(x) =€ o
Notice that in the above equation, the boundary condition is imposed on the boundary
set 0. The discrete problem is well-posed provided that the weights {w;;} in eq. (3.17)
are nonnegative. In the subsequent subsections, we will first prove the discrete maximum
principle for eq. (3.20) (which implies the well-posedness of the discrete system) assuming
the existence of nonnegative weights, and then discuss sufficient conditions to find the

positive stencils.

3.3. Convergence analysis. We first provide a truncation error analysis for the discrete
operator Eg"g and then the convergence is followed by the monotonicity of the numerical
scheme. In this subsection, the errors are presented in terms of §, which denotes the upper
bound of the semi-major axis of the elliptical neighborhood of each point. Following the
neighborhood criteria in Section 3.4, the convergence errors are finally presented in terms
of h.

Lemma 3.2. Take a point cloud X = {x;}M, C Qs with {z;}}¥, C Q. Assume also that
Ss.np(xi) is not empty and C > 0 is a generic constant.
(1) If p > 2 and u € C%(Q), then ]/L?Qu(a},) — Lu(z;)| = 0 as 6 — 0 for all z; € Q.
(2) If p>2 and u € C>*(Q) for a € (0,1], then |Eg‘Qu(mZ) — Lu(x;)| < C’|u|02,a(§)5°‘
for all x; € Q.
(3) If p>3 and u € C3*(Q) for a € (0,1], then |£§Qu(ml) — Lu(x;)| < C’|u|03,a(§)51+0‘
for all x; € Q.

Proof. Consider a fixed x; € ). The proof follows closely from the proof of Lemma 2.2 by
noticing that {w;;} € Sspp(x;) implies that

(3:21) /gw.( ) po(xi )y dy = > ps(@i Tj — @) (TG — 1) “wji
(0
[

x; eg;”i (ml)
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for a = (a1, a2, -+ ,aq) € (ZT U{0})? with |a| =, a; < p. O

Remark 3.3. In practice, we often observe superconvergence for p = 2, which is likely due
to symmetry. When p = 2 and u € C>*(Q), a more precise error estimate for x; € Q is
given by

Lk qua;) — Lu(a,;)| < C (\uycg(ﬁ)crg(mi) + \uycg,a@)(;ua)

where Tg(wi) = MaX|q|=3 | Eij(c;?i(mi) P(S(miam_j - mz)(m_J - mi)awj,i|

Lemma 3.4 (Discrete maximum principle). Let 2 C R? be an open, bounded and simply
connected domain. Take a point cloud X = {x;}M, C Qs with {z;}Y, C Q. Assume that
there exists @; € Q0 such that £ (z;) NQ° # 0. Ifu € C({x;} X, UIN) and £§7Qu(azi) >0
for all x; € Q, then

. < .
max u(x;) < max u(z)

Proof. First notice that maxgzeon u(x) is well-defined since 0f2 is a closed set and u is
continuous on J€. Assume that maxgz,cou(x;) > maxzegn u(x), then there exists xy € Q
such that

u(xy) = magu(mi) >u(x) Va e {x )}, Uo0.
x;c

Therefore

ﬁg"gu(a}k) <0.
By the assumption, we must have Lsqu(zy) = 0 and u(z;) = u(xy) for z; € £ (z)) N Q.
Continue this process we can shown that u is constant on {z;}; C Q. Choose z; €
such that there exists x; € &5 (x;) N Q°, so T € IN. However, since we can argue
that £§7Qu(mi) = 0, it implies u(x;) = w(T;), which is contradiction to maxg,co u(x;) >

maxgecon u(T). O

Theorem 3.5. Take a point cloud X = {z;}M, C Qs and assume that S5, p(x;) is not
empty. Let u and ult be the solutions to egs. (1.1) and (3.20) respectively.

(1) If p > 2 and u € C**(Q) for a € (0,1], then
h (e’
ma u(@:) — (@) < Clulcan)

(2) If p >3 and u € C3>*(Q) for a € (0,1], then

N — ul(x, _ slta
max [u(;) = 13 (@:)] < Cluloamd .

Remark 3.6. Using the truncation error estimate in Remark 3.3, one can show that if
p=2 and u € C3%(Q), then
h 1+
max u(@,) — u(@i)| < Cllul sy + 1l @d™*).
where

T = max T3(x;)
x; €Q

In practice, T might be a very small number depending on the point cloud. Therefore,

superconvergence may be observed.
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Proof of Theorem 3.5. We only show the proof for the first case and the second case can
be similarly shown. Denote ef(z) = u(z) — ul(z) for € {z;}}¥; UOQ and Tl (z;) =
EgL’Qu(a},) Lu(zx;) for x; € Q. Notice that £6 ael(x;) = T} (z;) for x; € Q. By Lemma 3.2,
we have
i hi... _ sa
K = max 75" ()| < Clulpr.ag)d®

Take x* € Q such that Q C Bgr(x*) for some R > 0. Then define ®(z) = (z — =*)? (z —
x*)/(2d), we have

ﬁ?,ﬂ‘p(w) = A(xz): D

d 1d
Z EZZT T)ei = A,

where e; € R? is the unit vector with the i-th component equal 1. Therefore we have

&IH

K
ESL,Q (XCD + e?) (x;)) >0 Vo, €Q,
and by Lemma 3.4, we have

(%@(mi) + ef;‘(:ci)> < max <§<I>(w) + efs‘(w>>

i) <
K KR? CR?
= — d < — < a(on 0
N o @) < 757 < g Mee@
Similar estimates can be done for —ef(z;) and therefore the proof is complete. O

3.4. Neighborhood criteria. In this subsection, we will discuss the neighborhood criteria
that guarantee positive stencils. We only discuss the case p = 2 in this subsection. The
case p = 3 is much harder to characterize which will be left for future work.

First of all, there is a sufficient criterion for positive stencils for solving the Laplace
equation, and it is presented as a cone condition in [59] for d = 2 or d = 3. For any x; € Q

and unit vector v € R, we define an associated cone C¥(z;) in Bs(x;) by

(3.22) Ci(x;) := {w € Bs(z;) : xTv > \/%—O_d\wp}

where 04 = v/2 — 1 (a cone with total opening angle 45°) for d = 2 and o4 = /(3 — v/6)/6
(a cone with total opening angle 33.7°) for d = 3. With a rephrasing of words, we quote
the result in [59, Theorems 9 and 10] in the following lemma.

Lemma 3.7 (Theorems 9 and 10 in [59]). Take a point cloud X = {x;}M, c Q5 C R? and
let x; € Q be fived. If for any unit vector v € R, C¥(z;) N X \{x;} # 0, then the feasible
set to problem (3.11) with p = 2 is not empty.

To discuss the neighborhood criteria for our problem, we first notice that for ; € €2, one

can define a one-to-one mapping between Bj(x;) and &' (x;) by

Tix =x; + M(acl)(a: — acl) xT € B(;(acl)
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The inverse of T; is then given by
T e =x + M(x) Nz —x;) xc EF ().

We also denote T;(D) = {y = Tjx : ® € D} and T; (D) = {y = T, 'z : € D} for any
set D C R4

Bs(w:) &5 (xi)

Cy (=)

T._l

FIiGure 3. Ilustration of T; and Ti_1

Lemma 3.8. Take a point cloud X = {w,}f\il C Qs C R? and let &; € Q be fized. For any
x; € EF (x;) N X \{x;}, we write &; = T, 'x;. Let Liu(z;) be defined by eq. (3.13) and

(3.23) Lhu(x;) = Z 5d1+27 <\55] ; wz|> @i i(w(@;) — u(z;)).

fij GB(;(:EZ‘)

The following statements are equivalent.

(1) There exists {wj; > 0} such that Zgu(mz) = Lsu(x;) Yu € Py(RY).

(2) There exists {w;; > 0} such that Llu(z;) = Lsu(x;) Yu € Pa(RY).
Proof. By definition, we see that for any x; € £ (x;) <= &; € Bs(x;). We show that
(1) and (2) are equivalent by letting @;; = det(M (x;)) 'w;;. Assume that (2) is true, then
since Lsu = 0 if u € P(R?), we have

0— Z 1 ., <|M(m¢)—1(mj - m¢)|> det(M (z;)) ' w; i M (;) " (@) — ;)

§d+2 Ky
z €5 (i)
1 %»—mi _ -
= Y s (B dear(@) i@, - )

&8, (=)

By letting @;; = det(M (x;))"*wj;, we see that /:'?u(w,) = 0 = Lsu(x;) Yu € P(R?). Next
by using Liu(x;) = Lsu(x;) = A(z;) : D?u(z;) for u € P2(RY), we have

2= M(x;) " (2A(;)) M ()"
1 M (z;) N (x; — x;
:M(mz’)_l Z 5d+27 <| @) 5( : )|>

x; G(‘::;Bi (ml)

det (M () " wj; (2 — ;) @ (x; — @) M ()"

1 5-—:1:2- - . -
= 2 5d+27<|]5 |>wj,i(wj—mi)®(mj—mi)-

x; ES? ()




MONOTONE MESHFREE METHODS FOR LINEAR ELLIPTIC EQUATIONS 15

This implies that /:'gu(wz) = Lsu(z;) = Au(ex;) when u € Py(RY). Therefore (2) implies
(1). Similarly, we can show (1) also implies (2). O

The following result is an implication of Lemma 3.7 and Lemma 3.8.

Corollary 3.9. Take a point cloud X = {x;}, C Qs C RY and let z; € Q be fized. If
for any unit vector v € RY, T;(C¥(z;)) N X \{x;} # 0, then Sspo(x;) and Ssp2(z;) are not
empty.

Proof. First of all, from Lemma 3.7 and Lemma 3.8, it is easy to see that T;(Cy (x;)) N
X\{z;} # 0 for all unit vector v € R? implies S5 2(x;) (as defined in eq. (3.15)) is not
empty. Now if we define a new point cloud X by replacing all ; € X N & (x;)\{z;} with
z; in X. Then since T; lies on the line connecting x; and x;, we see that

T;(C5 () N X\{&i} # 0 = T,(C5 (%)) N X \{xi} # 0,

and the latter implies §5,h72(wi) is not empty by the same reasoning. See an illustration of
the sets T;(C¥ (z;)) N X\{z;} and T;(C¥(x;)) N X \{z;} in Figure 4. O

FIGURE 4. Illustration of Corollary 3.9.

Although Corollary 3.9 is a complete characterization of a sufficient condition for the
well-posedness of eq. (3.18). It is hard to use in practice. In the following, we proceed to
give a sufficient condition that is easy to use in the case d = 2. We leave the proof of the
following theorem in Appendix A.

Theorem 3.10. Let d = 2 or d = 3 and h be the fill distance defined in eq. (3.16).
Let \1 = A (x;) denote the smallest eigenvalue of A(x;). Then there exists a constant
¢ = c(d) > 0 depending only on d such that if

6> ch(M) Y2,

then Ssp2(x;) and §5,h72(wi) are not empty. Since A1 < o, this implies the existence of

positive stencils given § > ch(g) /2.
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Remark 3.11. Notice that for a given point x, the elliptical searching region surrounding x
has semi-aves {5/ \i(x)}L, where \;i(x) denotes the i-th smallest eigenvalue of A(z;). The
estimate in Theorem 3.10 is near-optimal in the sense that the semi-minor axis & \/W of
the searching neighborhood can be made proportional to h asymptotically for the existence
of positive stencils. By Theorem 3.10, we can choose an elliptical neighborhood of x whose
volume is proportional to hd(Hg 0))~ Y2, where 0; = oi(x) = M(x)/N(x) > o. This
implies that the number of points within the searching neighborhood of x is proportional to
92_1/2 < 072 in 2d and (gggg)_1/2 < o7 in 3d. However, we do not have an explicit
estimate of the constant ¢ = ¢(d) in Theorem 3.10. In practice, we estimate this constant

numerically which is described in detail in Section 4.3.

Combining Theorem 3.10 with Theorem 3.5, one can take § = cho'/? and then the

convergence rate is given in terms of h. This is summarized in the following Corollary.

Corollary 3.12. Let § = cho~'/? where ¢ = ¢(d) is the constant in Theorem 3.10, then
with a generic constant C' > 0,

(3.24) max Ju(a;) — ul ()| < C‘u’c%k,a(ﬁ)Q_(k+°‘)/2hk+°‘.

fork=0ork=1 and a € (0,1].
4. ALGORITHM DESIGN & COMPLEXITY ANALYSIS

In this section, we explain our algorithms in detail, mainly focusing on point cloud
generation and matrix assembly.

4.1. Point cloud generation. In order to perform numerical experiments, some criteria
need to be given on the point cloud geometry. For this, we first need to define two geometric
quantities with respect to point clouds in addition to the fill distance defined in eq. (3.16).
For a point cloud X = {wz}f‘il C Qs, we define the separation distance { as

1 .
(4.25) (= 3 1§2¥2;1%M lx; — x;j].

In addition, for the points {wz}f\il inside €2, we denote x the minimum distance to the

boundary, i.e.,
(4.26) k:= min dist(x;, 0N).
1<i<N

With these geometric quantities, we now define proper point clouds to be used in numerical
experiments.

Definition 4.1. Let X = {w,}f\il C Qs be a point cloud with its geometric quantities h,
and Kk defined in egs. (3.16), (4.25) and (4.26), respectively. Given a set of positive constants
{cn, cc e}, we say X is a proper point cloud (with respect to the constants {cp,c¢,c}) if
it satisfies the following conditions:

(i) h< e (127
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(iii) Kk > cxh.

Notice that |Q2s| denotes the d-dimensional Lebesque measure of Qs and |X| = M.

Remark 4.2. Condition (ii) in Definition j.1 essentially requires the point cloud to be
quasi-uniform ([69]), and condition (iii) requires a certain distance from the interior points
to the boundary set so that interior points would not be too close to the boundary points after
the mapping described in Section 3.2 (this allows numerically solving eq. (3.18)). Notice that

1/d
if (ii) is satisfied, then there exists C' = C(c¢,d) > 0 such that h < C (%) . In practice,
we impose condition (i) with a chosen constant ¢, > 0 to have explicit control over the
fill distance. In our numerical experiments in Section 5, we take ¢, = 1, ¢ = 0.175, and

c. = 0.25.
Discussion on the generation of proper point clouds is found in Appendix B.

4.2. Matrix assembly. The major effort in matrix assembly is the generation of the
weights {w;;} defined in eq. (3.18). Notice that with respect to each point cloud and
coefficient matrix A(x), we need to solve N number of linear minimization problems to get
the weights where N denotes the number of interior points. For each x; € €2, we first need
to find all the points inside the searching area, i.e., the domain &5 (x;) for a given a § > 0,
then solve the linear minimization problem to get the stencil.

We now describe the process of finding points inside an elliptical searching area. Notice
that the proper point cloud is quasi-uniform, an easy way to accelerate this procedure is
dividing the domain into same-size axis-aligned blocks [59, 69]. We call these blocks voxels.
Alternatively, point clouds can also be managed by k-d trees [7, 69]. To search neighbors in
the given elliptical area Egai (z;), we first compute which voxel contains the current point x;,
then search all the neighboring voxels that intersect non-trivially with €57 (x;). If a voxel
that intersects non-trivially with the searching area is contained in that area, then we add
all the points in the voxel to the result set; otherwise, points in the voxel need to be checked
one by one. The intersection algorithm of voxels with ellipses/ellipsoids is crucial and we
now describe it below.

Let H denote a d-dimensional (hyper)rectangle and £ a d-dimensional ellipsoid. H and
& are both open sets. We present an intersection detection algorithm in Algorithm 1 that
distinguishes the following cases:

Case 1. ‘H does not intersect with &;

Case 2. ‘H is contained in &;

Case 3. ‘H intersects with £ but is not contained in £.

Notice that in Algorithm 1, the most time-consuming part is the intersection detection of
faces of H with £. In 2d, the faces of a rectangle are line segments. Intersection detection
of a line segment with an ellipse is relatively easy to carry out. One can first find the
intersection (if exists) of the underlying line with the ellipse, which is a line segment (see
fig. 5a as an illustration), by solving a quadratic equation. Then the intersection of two line

segments can be easily checked. In 3d, to check whether a face of a 3d rectangle intersects
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Algorithm 1: Intersection detection of hyperrectangles with ellipsoids.

function intersection(H, &)
if the center of H is inside £ then
if all the vertices of H are inside € then
| return Case 2;
else
| return Case 3;

else if the center of £ is inside H then
| return Case 3;

else

if any one of the faces of H intersects with £ then
| return Case 3;
else

| return Case 1;

with an ellipsoid, we first find the intersection area (if exists) of the underlying plane with
the ellipse. Then since the intersection area (see fig. 5b as an illustration) is an ellipse,
the problem is then reduced to the intersection detection of two-dimensional rectangles
with ellipses. This can be further extended to higher dimensions, and a d-dimensional
intersection problem can be reduced to a d — 1-dimensional problem by this reasoning. Let
Q1(d) denote the complexity of the intersection algorithm in d dimensions. Notice that a

d-dimensional hyperrectangle has 2d faces, we can then deduce the recurrence relation
Qi(d) < cdQi(d—1)  with  Q;(1) = O(1).
for some constant ¢ > 0 independent of d. Finally, the recurrence relation leads to

(4.27) Qr(d) = O(4dY).

/N

(A) d =2, ellipse intersects with line (B) d = 3, ellipsoid intersects with plane

FIGURE 5. Intersection illustration

Remark 4.3. The recursive algorithm for face-ellipsoid intersection detection gives a com-
plexity (eq. (4.27)) that grows quickly with dimension. In this work, we only consider d = 2
or d =3 so that Qr(2) or Qr(3) can be treated as constants. It will be of future interest to
explore better intersection detection algorithms in higher dimensions.
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Remark 4.4. The complexity for testing whether a hyperrectangle is contained in an el-
lipsoid is less than Qr(d). In fact, since a hyperrectangle has 2¢ vertices, this gives the
complexity (’)(2dd2). Notice that when the ellipsoid is not aligned with the azres, we need to
do the mapping with complexity O(d?) first, and then check with complexity O(d) for each
vertex.

For z; € Q, let ¢(x;) denote the number of points in the searching area £ (x;), then the
corresponding searching process needs O(q(x;)) intersection detections. For point clouds
managed by k-d trees, it can be shown that O(gq(x;)log M) intersection detections are
needed for such range query [69]. Once we find all the points inside £ (x;), we proceed
to solve the linear minimization problem eq. (3.18). Recall that the constrained linear
minimization problem eq. (3.18) is a linear programming problem, hence we adopt the
simplex method [15], which on average has a linear complexity in g(«;) when the dimension
is fixed [60].

Combining the above discussions, when the dimension d is fixed, the total average com-
plexity of finding a stencil for a given interior point x; is O(g(x;)). Note that by the
ACD]

hd

quasi-uniform assumption (condition (2) in Definition 4.1), we have ¢(x;) < C for

some C' > 0. The volume |£J(x;)| depends on ¢ and the coefficient matrix A(x;). In

W = O(1) considering A(x)

to be fixed. As a result, the total complexity of searching for neighbors near a given point

practice, we take h to be proportional to §, and therefore

can be considered as a constant. In the near degenerate case, i.e., o < 1, ¢(x;) may grow
with the decrease of ¢ as mentioned in Remark 3.11.

Traversing all N number of interior points, we can get all the weights {w;;} to complete
the matrix assembly process. Therefore, the whole complexity of assembling a matrix is
given by O(N) for a fixed problem. In addition, notice that the weights generation process
is embarrassingly parallelizable, the actual computational time can be further reduced by

parallelization.

Remark 4.5. From the ly type minimization problem, we get a minimal positive stencil,
and therefore the assembled matriz is sparse. It is also recommended that a reindexing
process be applied to the point cloud to reduce the bandwidth of the assembled matriz. The
sitmplest way to do this is to sort all the interior points by coordinates so that the index

distance between two close points is not too large.

Remark 4.6. One may encounter memory issues using exact solvers when the linear system
gets large. Iterative methods can be used in the case of large and sparse linear systems. We
use the biconjugate gradient stabilized method (BiCGSTAB) [66] to approzimately solve the
sparse linear system when N is large.

4.3. Searching area estimate. Theorem 3.10 does not specify the constant ¢ = ¢(d) > 0
which determines the searching neighborhoods. Here we discuss how to determine the

—1/2 where

searching neighborhoods in practice. For a given fill distance h, we let § = ch(p)
the determination of ¢ > 0 is described below. Then the searching neighborhood of a point

x is the domain &£ ().
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We now discuss the choice of ¢ > 0 in practice. We first discuss the 2d case, and then use

the 2d result to approximately estimate the searching area in 3d. Without loss of generality,

Ale;) = (é’ 2) .

According to Lemma A.1, we need to find the smallest radius of the inscribed circles of

we fix x; € Q and assume that

the domains {7;(C§ (%)) }yer? jv|=1- The problem is a rescaling of the case § = 1, as
illustrated by fig. 6. Therefore we only need to consider the case 6 = 1 and find r(p) :=

rescale

FIGURE 6. An illustration of T;(C§ (x;)) and its inscribed circle as a rescaling
from the § =1 case.

minyeg2 |y|=1 Ti(CY (x;)). The detailed procedure for finding r(¢) numerically is provided in
Appendix C. One may choose ¢ = max,¢(g,1) /2/7(¢) and then by letting § = ch(o0)™/? we
have the desired relation h < dr. In practice, we find that the \/0/r(¢) is a bit smaller with
smaller p > 0 using the estimate of (o). Since smaller constant ¢ leads to a smaller searching
neighborhood, we, therefore, suggest taking different ¢ for different values of p € (0,1]. In
particular, in 2d, by numerical approximations, we have the following estimate of c,

c = cad(0) = 2.836x(0,0.01] (@) + 2.901x(0.01,0.1 (@) + 3.614x(0.1,1(0)-

In 3d, it is difficult to estimate the radius of the inscribed ball in T;(C§ (x;)). Therefore, we
only take the intersecting ellipses of a given ellipsoid with the three planes that go through
its principal axes, and perform the 2d estimate described above to obtain an estimate of
the constant ¢ > 0 in 3d. The result is given as follows.

¢ = c3da(0) = 3.623x(0,0.01 (@) + 3-776Xx(0.01,0.17(2) + 4.450x(0.1,17(0)-

In practice, we find that solutions often exist for even smaller searching areas and this
means that one may take even smaller values of ¢ > 0 to further decrease the computational
cost. We suggest taking ¢ = %@d(g) ~ 0.58¢2q(0) in 2d and ¢ = 5,/—11—863(1 ~ 0.38C34(0)
in 3d first, and if no solution exists resetting ¢ = caq(0) in 2d and ¢ = ¢3q(p) in 3d. This

procedure could reduce the number of points in a searching neighborhood by a large factor.
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5. NUMERICAL RESULTS

In this section, we report the results of numerical experiments for the study of the nu-
merical accuracy of our method. We present 2d numerical results in Section 5.1 and 3d

numerical results in Section 5.2.

5.1. 2d numerical tests. We test our numerical algorithm in 2d using two domains. The
first domain is a unit disk given by {z% + x3 < 1}, and the second domain is an L-shaped
domain given by (—1,1)?\[0,1]2. For the kernel function, we use a truncated fractional
kernel y(r) = Cor™*X{jr|<1} With a € (2,d + 2) that satisfies eq. (2.3). By [59, Theorem 6],
« > 2 is necessary for the linear programming problem to select points close to the central
point. For both 2d and 3d, we use @ = 3 in our numerical experiments. Other choices
such as the truncated Gaussian kernel ([2]) may also be used and one can observe similar
convergence rates with proper parameter tuning of the truncated Gaussian kernel. Detailed
discussions of other kernel selections are omitted. We implement the numerical algorithm
with p = 2. Smooth manufactured solutions are used in our tests with the right-hand side
of eq. (1.1) computed based on them.

5.1.1. Tests for continuous coefficient matrices. We first test our algorithm for continuous
coefficient matrices. Our baseline is Ag(x) = I with p = 1. A list of coefficient matrices

used in numerical experiments is given below.

# A(x) 0
1 L= 0.5z 0 0.2500
0 0.25 + 0.25|22 |
2 1 (2= = 0-5 0.0864
221\ 05 0.5+ 0.5z
1-0.
3 0.5lz1] 0 0.0250
0 0.025 + 0.025|z2|
4 1= 05| 0 0.0025
0 0.0025 + 0.0025|z|
1 (2—|z:(0.5 — x5)| 0.025 0.0014
2.001 0.025 0.01 + 0.0025z1 exp(2) '

Notice that the value g is computed approximately in the domain [—1,1]?, which contains
both the unit disk and the L-shaped domain as subsets. Numerical results are presented
in figs. 7 to 9. We observe second-order convergence in h for all cases, which is better
than the theoretical analysis in Theorem 3.5 for p = 2. This superconvergence phenomenon

may likely be due to the cancellation of terms as mentioned in Remarks 3.3 and 3.6. In

figs. 7 and 8, we test our method on two manufactured solutions ugzd) (x1,22) = T122 +
cos(r1) exp(z2) and uézd) (x1,22) = (w1 + 22)* cos(x1(x1 + 222)). The numerical errors

in these graphs grow as p becomes smaller as predicted by theory. In some very special

cases, the numerical errors may behave differently as ¢ — 0, and one example is with
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u§2d) (71,72) = 22 + sin(xy) exp(x2 — 1) illustrated by fig. 9. The reason for this abnormal

behavior is because the elliptic operator degenerates to 8%1 as ¢ — 0 by our choices of A(x)
and the exact solution in this case is a second-order polynomial in 1 which can be exactly

reproduced by our method.

Unit Disk Domain, d =2,p =2, ugm) Unit Disk Domain, d =2,p =2, ugzd)
T TTTT] TTTTTT] TTTTTT] 1007\\\\\\\ T T TTTT] T T TTTT] o
;-' 1072 -
o o
= par
E E 10—2
—4 | [ —
E 10 st order E st order
o =
: :
1076 o 02500 1074 | o= 0200 | |
é ——— = 00864 § 0= 0.0864
order 0= 0.0250 order 0= 0.0250
g 0= 0.0025 = 0=0.0025
1078 i I rd\ O\rd\e\r\u\ | TT7T \\(7\\:0.0014 1076 7\ Ll I rd\ O\rd\e\r\\\\ | TT171 HA’HZO'OOM Bl
1073 1072 107t 1073 1072 10t
fill distance fill distance
FIGURE 7. 2d tests on the unit disk domain with continuous coefficient
matrices
L-shaped Domain, d =2,p = 2 u?? L-shaped Domain, d = 2,p = 2, u{*?
) bl y Y1 p ) 7p y L9
T T T T T T
1 -2 L
- s 10 ]
E 10—4 [ 5
E st order E 10_2 st order n
3 3
= 10-6 | 2= 1.0000 = 2= 1.0000
B 0 =0.2500 % 1074 [ 0=102500 ||
2 0 = 0.0864 2 0= 0.0864
E order 0= 88(2129 E order 0= 88(2];9
0 =0.0025 0 =0.0025
1078 7\ Ll I rd\ O\rd\e\r\u\ | TT171 HA’HZO'OOM 10*6 S e I rd\ O\rd\e\r\u\ | | HE"TO'OOM =
1073 1072 10t 1073 1072 10t

fill distance

fill distance

FIGURE 8. 2d tests on the L-shaped domain with continuous coefficient
matrices

5.1.2. Tests for discontinuous coefficient matrices. We now show numerical results for dis-
continuous coefficient matrices. Notice that when A(x) is discontinuous, the elliptic equa-
tion in the non-divergence form cannot be recast into a variational form. Therefore, non-
variational methods are especially important in this case. We divide the computational
domains into smaller blocks and define piecewise constant coefficient matrices with respect
to the blocks. More specifically, for n € N, we divide the domain [—1,1]? into (2n + 1)?
blocks, and define the corresponding piecewise constant coefficient matrix

Ay(x,n) = (By(x,n) + Bg(w,n) +41I)/8,
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Unit Disk Domain, d =2,p = 2, ugd)
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FIGURE 9. 2d tests for a separable function

where By (x,n) is genereated by mt19937[47] (a pesudorandom number generator) with

seed ¢(x,n) := round(x; * n) x 2 + round(xs * n) * 3 mod

232

. Here round(x) maps z to

the closest integer. A list of coefficient matrices used in our experiments is given below.

i
6

7
8

In addition, we have the last example matrix:

Ag(a}) = {

A(x) 0
Ay (x,101%)  0.2500
Ay(z,10%)  0.2500
Ay(x,10%)  0.2500
As(x), x1 <0
As(x), otherwise

description

dense blocks

medium blocks

loose blocks

with

o = 0.0250.

Numerical results are presented in figs. 10 and 11. We observe similar second-order conver-

gence in h for all cases.
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FIGURE 10. 2d tests on the unit disk domain with discontinuous coefficient

matrices

5.2. 3d numerical tests. 3d numerical tests are performed over the unit sphere given by

{2? + 22 + 2% < 1} and a 3d L-shaped domain given by (—1,1)3\[0, 1] x

-1,

1] % [0,1]. The
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FIGURE 11. 2d tests on the L-shaped domain with discontinuous coefficient
matrices

nonlocal kernel function is chosen to be the same one as in the 2d case. We again test our

algorithm for smooth manufactured solutions and p = 2.

5.2.1. Tests for continuous coefficient matrices. For the test on continuous coefficient ma-
trices, we use the following list of coefficient matrices. Notice again that our baseline case
is Ao(x) = I with o = 1.

i A(z) 0
1 —0.5|z| 0 0
1 0 0.5 — 0.25|z2| 0 0.2500
0 0 0.25 + 0.25|z3|
) 2 — |z1] 0 0.5
2 291 0 0.5 + 0.5|z2| 0 0.0864
0.5 0 1—0.5|z3]
1 — 0.5z | 0 0
3 0 0.05 — 0.025|z2| 0 0.0250
0 0 0.025 + 0.025|z3)|
1 — 0.5z | 0 0
4 0 0.005 — 0.0025|z2| 0 0.0025
0 0 0.0025 4 0.0025|z3|
) 2 — |21(0.5 — x9)] —0.02 0.005
2,001 —0.02 0.005 + 0.005|z1 + 3| —0.001 0.0014
0.005 —0.001 0.01 4 0.0025z9 exp(z3)
Here the value o is computed approximately in the domain [—~1,1]3. Numerical results
are presented in figs. 12 and 13 for the two manufactured solutions uggd) (r1,29,23) =

12T + w123 + X223 + cos(x1) exp(xg + x3) and uégd) (x1,22,23) = (x1+ 22+ 23)* cos(xy (z1 +

2x9 + 2x3)). We observe similar second-order convergence in h for all cases and numerical

errors grow as ¢ becomes smaller.
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FIGURE 12. 3d tests on the unit sphere domain with continuous coefficient
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FIGURE 13. 3d tests on the 3d L-shaped domain with continuous coefficient

matrices

5.2.2. Tests for discontinuous coefficient matrices. We now show numerical results for dis-

continuous coefficient matrices. Again, we divide the computational domains into smaller

blocks and define piecewise constant coefficient matrices with respect to the blocks. More
specifically, for n € N, we divide the domain [—1, 1] into (2n + 1) blocks, and define the

corresponding piecewise constant coefficient matrix

Ay(x,n) == (By(x,n) + Bg(m,n) +41)/10,

where By, (x,n) is generated by mt19937 with seed ¥(x,n) := round(x; * n) * 2 +round(z *

n) * 3 +round(zz *n) *5 mod 232. A list of coefficient matrices used in our experiments is

given below.

i
6
7
8

A(x)
Aw(m, 1010)
Aw(a}, 104)
Aw(m, 100)

0 description
0.1847  dense blocks
0.1847 medium blocks
0.1847  loose blocks
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In addition, we have the last example matrix:

As(x), x1 <0
Ag(x) = with 0 = 0.0250.
As(x), otherwise
Numerical results are presented in figs. 14 and 15. We observe similar second-order conver-

gence in h for all cases.
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FIGURE 15. 3d tests on the 3d L-shaped domain with discontinuous coeffi-
cient matrices

6. CONCLUSION

In this paper, we have presented a monotone meshfree finite difference method for linear
elliptic equations in non-divergence form via integral relaxation. Minimal positive sten-
cils are found through an [/;-type minimization problem within a local elliptical searching
neighborhood of each point in a meshfree point cloud. For the treatment of Dirichlet bound-
ary conditions, a mapping strategy near the boundary is incorporated into the numerical
scheme. Convergence is guaranteed by the consistency and monotonicity of the scheme and

efficient solvers can be designed by the sparsity of the resulting linear system. It is essential
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to characterize the shape and size of the elliptical searching neighborhood for the guarantee
of positive stencils. Our theoretical result improves the previously known result for the
stencil sizes when p, the ratio between the smallest and the largest eigenvalues of the coef-
ficient matrix, is a very small number. More precisely, our theory predicts that within an
elliptical region with a semi-major axis proportional to 0~ Y/2h, we are able to find a positive
stencil. The searching region determines the size of the [1-type minimization problem, and
therefore the efficiency of our algorithm. Owur theory predicts that the number of points
within the searching neighborhood grows with 1/¢ with a rate not worse than O(p~/2) in
2d and O(p™ ') in 3d.

We present algorithms for point cloud management and matrix assembly. We also give
practical guidance for finding the elliptical searching neighborhood and present numerical
experiments. Numerical tests are presented in both 2d and 3d for several different domains
and coeflicient matrices, including the near degenerate cases when ¢ < 1. While theo-
retical convergence in h for the numerical method (when the polynomial order p = 2) is
only first order, we observe second-order convergence in all cases for manufactured smooth
solutions. The super-convergence is likely due to the cancellation of odd order terms for the
stencils obtained from the /1-type minimization problem. A rigorous explanation for this
phenomenon is still an open question.

Our current study focuses on the case of p = 2 and d € {2,3} with Dirichlet boundary
conditions. Future work includes higher order methods, problems in higher dimensions, and
Neumann boundary value problems. Our convergence theorem assumes that the exact so-
lution exists at least in C2. Further questions on the convergence of the method to viscosity
solutions can be discussed, following the approaches discussed in [4, 23, 52]. Extending the
study to surface PDEs is also a natural direction for future research. While we only test our
algorithm for smooth manufactured solutions, adaptive methods will be useful when solu-
tions display singularity. For adaptive point cloud management, some data structures that
support fast insertion and deletion may be needed, for instance, R-tree [35] and scapegoat
k-d tree [31]. Furthermore, a possible future research direction is the study of monotone
numerical schemes for elliptic equations with heterogeneous coefficients [1]. The topic of
monotone schemes for solving PDEs has a long history in numerical analysis. While our
new ideas, inspired by the recent development of nonlocal modeling and meshfree methods,
are presented for the linear elliptic equations, extending them to other types of PDEs is

also possible for future research.
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APPENDIX A. PROOF OF THEOREM 3.10

We show the proof of Theorem 3.10 in Appendix A. We begin with some useful lemmas
before proving the theorem.

Lemma A.1. Let r(v,x;) denote the radius of the inscribed ball in T;(C§ (x;)) and h be the
fill distance asscociated with X = {x;}, C Q5. If

h< min r(v,x;),
veER? Jv|=1

then Sspo(xi) and Sspo(xz;) are not empty.

Proof. Notice that by the definition of the fill distance in eq. (3.16), there are no holes with
a radius larger than h. Suppose Sspo(x;) or Sspa(x;) is empty, then by Corollary 3.9,
there exists v such that T;(C§ (x;)) contains no point in X\{x;}. Therefore the inscribed
ball in T;(C§(x;)) is a hole with radius larger than h by the assumption, which gives a
contradiction. O

From the lemma above, our goal is then to get a lower bound for min,cga |,|=1 7(v, Z;) for
each x; € (). We first present a result in 2d which will also be useful for the 3d estimates.
In 2d, we assume that C§(x;) is a cone with total opening angle 2¢. In addition, without

loss of generality, we fix x; € (2 and assume that

(A.28) Alz;) = (9 0) .

01
From symmetry, we only need to consider v(#) = (cos(f),sin(d)) for 6 € [0, T].

Lemma A.2. Consider d =2 and A(x;) given by eq. (A.28). Assume that C§(x;) is a cone
with total opening angle 2¢ for ¢ € (0,%], and r(v,x;) denote the radius of the inscribed
circle in T;(C§ (x;)). In addition, let v(0) = (cos(8),sin(f)) for 6 € [0, Z]. Then, there exists
a constant K = K(¢) > 0 such that
i 0),z;) > Kd\/o.
Gg[l(}’ng}r(v( ) i) = Ké\/o

Proof. We try to fit a cone in T,-(Cg(e)(a:i)) and then find the inscribed circle in the cone.

First, notice that for a cone with a radius R and total opening angle a € (0, 7), the radius
of the inscribed circle is given by the formula

sin(a/2) 1.
H—T(OZ/Z)R > 3 sin(a/2)R.
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Notice that sin(a/2)R increases with a € (0,7) and R. Now for 6 € [0, Z], we let I'(9)
denote the opening angle of T; (CZ;(G) (x;)) and define

R(@):= min dy/ocos?(¢)+sin(p) = min  5y/o+ (1 — o)sin?(y),
0) Voo (g) +sint(e) = _min 5\/o+ (1~ g)sin’(y)

then it is easy to see that a cone with radius R(6) and total opening angle I'(#) is contained
in TZ-(C;’(O) (x;)). Therefore we have

min r(v(0),2;) > min_ = sin(T'(0)/2)R(0).

0€[0,5] 0€[0,5]

By calculation we have

arctan(y/o~tan(f + ¢)) — arctan(y/o~tan(0 — ¢)), 6 € [0,7/2 — ¢),
re) =
7+ arctan(y/o~ ! tan(f + ¢)) — arctan(y/o~ ' tan(d — ¢)), 0 € (7/2 — ¢, 7/2),
and

5\/57 9 € [07 ¢]7

R(9) =
S\Jot+ (1—)sin?(0—¢), 0o/,

For 6 € [0, ¢], I'(#) decreases and R(#) = 6,/0, so
o1 1 sin(¢)
Qi 3 sin(T'(6)/2)R(0) = 5 sin(l'(4)/2)0v/e 2 ——0V/e

where we have used 2¢ < T'(¢) < 7/2.
For 6 € [r/2 — 2¢,7/2], T'(0) decreases and R(f) increases, so

1
i —sin(I'(0)/2)R (0
ee[w/gglw/zﬂsm( (6)/2)R(0)

> Lain(0(r/2)/2) R(x /2 — 20) > gsin(F(ﬂ/Z)/2) sin ( /8)

_ sin(m/8)d L S sin(m/8) N
2 Vo+tan?(m/2 — ¢) — 24/1+ tan?(37/8) '
where we have used ¢ < 7/8 and I'(7/2) = 2arctan(,/o cot(m/2 — ¢)).
Now for 6 € [¢, m/2—2¢], we use the formulas for I'(f) and R(6) to compute § sin(I'(6)/2)R(6).

Denote o = arctan(y/ o~ tan(f + ¢)) and § = arctan(y/o~! tan(f — ¢)). Use the formula

n <a ; ﬁ) _ \/1 — cos2(a -8 _ \/1 — cos(a) cos(ﬂz) — sin(a) sin(5)7

and the fact that

N |

sin(a) = o tan(0 + ¢) cos(a) = !
V14 o Ttan?(6 + ) V14 o Ttan?(6 + )
sin(8) = —= o~ tan(t — ¢) cos(f3) !

T Vlro a0 - g) T VThe (- g)



30 QIHAO YE AND XIAOCHUAN TIAN

we can obtain the formula for 3sin(I'(9)/2)R(0) where 6 € [p,7/2 — 2¢]. In particular,
denote g1 (0) = tan?(0 — ¢), g2(0) = tan?(0 + ¢), and g3(6) = sin?(§ — ¢), we fine

% sin(T'(6)/2) R(6)

6 e+ a1(0)(o+ g200) — 0 — /91(0)g2(0)
N

(0+(1—0)g3(9)))

V(e+g1(0)(e+ 92(0))
NG ((91(6))% = (92(6))/%)* (0 + (1 — 0)95(6)))
2\ Vet g1@)(e + g200)) (\/(@ +91(0)) (0 + 92(0)) + o + \/91(9)92(9)>
:'%ﬁG(g, 0).

Notice that G(p,0) defined in the above is a continuous function on (p,0) € [0, 1] X [¢, /2 —
2¢]. Therefore it attains a minimum value at some (¢*,6*) € [0,1] x [¢p,7/2 — 2¢]. Next
we show that we must have G(o*,0*) > 0. Indeed, if ¢* > 0, then it is easy to see that
G(p*,0%) > 0. Now if p* = 0, then

(9182 — (92(6))1/2)? g5(6)
c(0.6) = \/ 21(0)9(9)

= (tan(0 + ¢) — tan(f — ¢)) 5 tan(;iil(z)zai)(@ + )
= (tan(0 + ¢) — tan(0 — ¢)) % =Y

for any 0 € [¢, /2 — 2¢]. Therefore, we can take

_ min sin(¢) sin(7/8) . x

for the claim to be true. ]

Proof of Theorem 3.10. Let A\; = X\j(z;) denotes the j-th smallest eigenvalue of A(x;). For
d = 2, we apply Lemma A.2 with ¢ = /8 on a rescaled ellipse of T;(Bs(x;)), we get

min T‘(’U(Q),$Z‘) > 015\/ )\2“ % = 015\/ )\1,
2

0€l0,5

where C1 = K(7/8).

Now consider d = 3. First of all, we can assume without loss of generality that A3 = 1
by the method of rescaling. By the discussions at the beginning of Section 3.4, C¢(x;) is a
3d cone with total opening angle 33.7° for a given unit vector v € R?. Let P, C R3 be a
2d plane that contains the vector v, then we see that P, N Bs(x;) is a circular domain and
P,NCy (z;) is a 2d cone with total opening angle 33.7°. With the transform 7;, we see that
T;(Py N Bs(x;)) is a 2d ellipse and T;(P, NC§ (x;)) is a section of the ellipse. Therefore, the
2d calculations in Lemma A.2 can be applied. Notice that for each P,, there exists p; and ps
with A1 < p; < pg <1 such that the lengths of the semi-axes of the ellipse T; (P, N Bs(x;))
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are given by /pr and /p2. We can then rescale the the ellipse T;(P, N Bs(x;)) and use
Lemma A.2 with ¢ = 33.7°/2 we see that the radius of the inscribed circle in T; (P, NCY (;))

has a lower bound
C(0y/pa), /% > C5y/N,
2

where C' = K(33.7°/2) > 0. Notice that P, is an arbitrary plane that contains v, and
in addition, the average length of the line segments that connect T;(x;) and the edge of
T;(Py, NCY(x;)) is at the same scale for different plane P,. Therefore, it can be shown that
there exists Cy > 0 such that

min r(v(0),x;) > Cad\/ 1.
0€[0,5

At last, by Lemma A.1 and the above discussions, there exists C = C(d) > 0 such
that whenever h < C§ \/W, Ssno(xi) and Sspo(x;) are not empty. Therefore taking
¢(d) = 1/C(d) the conclusion is true. By our assumption, ¢ < Ay (x;) for all x;, and therefore
o> ch(g)_l/ 2 implies the existence of positive stencils. O

APPENDIX B. POINT CLOUD GENERATION AND ADJUSTMENT

In this appendix, we discuss the generation of proper point clouds that satisfy Defini-
tion 4.1. We first initialize a random point cloud using the Quasi-Monte Carlo method [53]
(see fig. 16a), then adjust this point cloud to make it proper. Adjustment contains three
steps in each loop:

Step 1. add points until h satisfies condition (7) (see fig. 16b);

Step 2. map points until x satisfies condition (iii) (see fig. 16¢);

Step 3. merge points until ¢ satisfies condition (i7) (see fig. 16d).

Adjustment stops when the conditions in Definition 4.1 are satisfied. In practice, it usually

takes a few loops to make the point cloud proper.

Remark B.1. Since the domain Q5 may be irreqular, in practice, we always generate point
clouds on a larger bounding box of Qs, for 6 € (0,0¢], as indicated by figs. 16a to 16d. The
formulas for the fill distance in eq. (3.16) and condition (i) Definition 4.1 are then modified
accordingly. In practice, &g is determined by the largest discretization parameter as well as
the ratio o as indicated by neighborhood estimate in Section 3.4 and Section 4.5.

Remark B.2. One can also use the Quasi-Monte Carlo method for generating the initial
point cloud and perform only step 2 without the adding and merging steps. Our adjustment
algorithm provides explicit control over the fill distance and the separation distance and it
leads to smaller fill distances for the same number of interior points compared with point
clouds without adjustment. This is a trade-off situation, namely, one can save memory by

using extra time adjusting the initialized point cloud, or vice versa.

APPENDIX C. INSCRIBED CIRCLE SEARCH ALGORITHM

We show the details of finding the radius of the inscribed circle in T;(C7 (x;)) that con-
tained in an ellipse given by x2/0+ y? = 1. Let (0, o) be the center of the inscribed circle
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FIGURE 16. The process of proper point cloud generation. The grey circular
domain is Q. The square domain is a bounding box of €25, for some dy > 0.
(A): initialize a point cloud by the Quasi-Monte Carlo method. (B): use the
Voronoi diagram [67, 68] for the calculation of the fill distance, and then add
the green points to the point cloud so that h satisfies condition (7). (C): map
points near the boundary of 2 to the interior so that k satisfies condition
(73). (D): merge points whose distances are less than 2c¢h so that ¢ satisfies
condition (77). Notice that after merging of points, the fill distance may
increase, as a result, the adjustment loop may be needed again.

with radius r, then it can only sit on the angle bisector of T;(C} (x;)). Let (z1,y1) and (x2,y2)
represent the two corner points of T;(CY (x;)). Then by some elementary calculations, there
exists some ¢ > 0 such that

(o, y0) =1 (\/1‘3 + Y321 + /2% + yiws, \/l’% +ysy1 + /a1 + y%yg)

and

r = tlz1ys — Y122l

To determine t > 0, we find the closest point to the circle center on the ellipse and choose

t > 0 such that the point is also on the circle. The closest point to the circle center on the
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ellipse can be found by the minimization problem

min | (y/2cos(9), sin(9)) — (zo, y0) 3,

which can be solved by, e.g., Newton’s method. At last, one may use a numerical method,

e.g.

(1

, the bisection method, to determine ¢ > 0 such that the point is also on the circle.
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