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Abstract: Motivated by some variational problems from a nonlocal model of mechanics, this work

presents a set of sufficient conditions that guarantee a compact inclusion in the function space of Lp

vector fields defined on a domain Ω that is either a bounded domain in Rd or Rd itself. The criteria are

nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially

symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields

in that the conditions are based on nonlocal interactions involving only parts of the components of the

vector fields. The Lp compactness criteria are utilized in demonstrating the convergence of minimizers

of parameterized nonlocal energy functionals.
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1. Introduction and main results

1.1. Motivation

The present work is motivated by the study of nonlocal peridynamics models initially proposed by

Silling in [31]. In particular, the state-based peridynamics model given in [31–33] postulates that the

total strain energy for constitutively linear, isotropic solid undergoing deformation is given by

Wρ(u) = β

∫

Ω

(

Dρ(u)(x)
)2

dx + α

∫

Ω

∫

Ω

ρ(x′ − x)

(

D(u)(x, x′) − 1

d
Dρ(u)(x)

)2

dx′ dx (1.1)

where Ω ⊂ Rd is a bounded domain occupied by the solid material, the kernel ρ(|ξ|) is a nonnegative

locally integrable and radial weight function that measures the interaction strength between material



2

particles at position x and x′, u is a displacement field, D(u) is a rescaled nonlocal operator on u

defined by [11]

D(u)(x, x′) =
(u(x′) − u(x))

|x′ − x| · (x′ − x)

|x′ − x| =
(u(x′) − u(x))T(x′ − x)

|x′ − x|2 , (1.2)

representing a (unit-less) linearized nonlocal strain [32] and the operator Dρ is a nonlocal linear

operator (a weighted version of D [11, 12]), called ‘nonlocal divergence’, which is defined as

Dρ(u)(x) := p.v.

∫

Ω

ρ(x′ − x)D(u)(x, x′)dx′ (1.3)

which is a means of incorporating the effect of the collective deformation of a neighborhood of x

into the model. The positive constants α and β are proportional to the shear and bulk moduli of the

material, respectively. The quadratic energy in (1.1) is a generalization of the bond-based model that

was introduced in [31] and studied in [1,13,15,23,37] that takes in to account the linearized strain due

to the dilatation and the deviatoric portions of the deformation. Mathematical analysis of linearized

peridynamic models have been extensively studied in [10–13, 15, 23, 24, 37] along with results geared

towards nonlinear models in [3, 4, 9, 14, 19, 25].

For ρ ∈ L1
loc

, it is not difficult to show (see Lemma 2.3 below) that the energy space associated with

the energy functional Wρ, {u ∈ L2(Ω;Rd) : Wρ(u) < ∞}, is precisely

Sρ,2(Ω) =
{

u ∈ L2(Ω;Rd) : |u|2Sρ,2 < ∞
}

, (1.4)

where the seminorm |u|Sρ,2 is defined by

|u|2Sρ,2 :=

∫

Ω

∫

Ω

ρ(y − x)

∣

∣

∣

∣

∣

(u(y) − u(x))

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

2

dydx.

Notice that |u|Sρ,2 = 0, if and only if u is an infinitesimal rigid vector field. We denote the class of

infinitesimal rigid displacements by

R := {u : u(x) = Bx + v,BT = −B, v ∈ Rd}.

It has been shown in [23, 25] that Sρ,2(Ω) with the natural norm

‖u‖Sρ,2 = (‖u‖2
L2 + |u|2Sρ,2)

1/2

is a separable Hilbert space. In the event that ρ(ξ)|ξ|−2 ∈ L1
loc

(Rd), then the space Sρ,2(Ω) coincides

with L2(Ω,Rd). Otherwise, Sρ,2(Ω) is a proper subset of L2(Ω,Rd) that is, nevertheless, big enough to

contain W1,2(Ω;Rd) and there exists a constant C = C(d, 2,Ω) > 0 such that

|u|2Sρ,2 ≤ C‖Sym(∇u)‖2
L2‖ρ‖L1(R), ∀u ∈ W1,2(Ω;Rd)

where Sym(∇u) = 1
2
(∇u + ∇uT ) is the symmetric part of the gradient ∇u.

Under the additional assumption that ρ is positive in a small neighborhood of the origin, it is shown

in [23, Theorem 1], via an application of Lax-Milgram, that for any applied load f ∈ L2(Ω;Rd), the

potential energy

Eρ(u) = Wρ(u) −
∫

Ω

f · udx (1.5)
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has a minimizer over any weakly closed subset V of Sρ,2(Ω) such that V ∩ R = {0}. See also [25,

Theorem 1.1] for the more general convex energies of p-growth.

The analysis of the convergence of variational problems of the type in (1.5) associated with a

sequence of parameterized kernels has garnered a lot of attention in recent years. Namely, if we have a

sequence of locally integrable radial kernels ρn, how do the associated potential energies Eρn
, as well as

their minimizers behave as n → ∞? Clearly, this will depend first on the behavior of the convergence

properties of the sequence of kernels. In fact, it is shown in [25] that if the sequence of L1 kernels

{ρn} converge in the sense of measures to a measure with atomic mass at 0 (Dirac-measure at 0) and

for each n, r−2ρn(r) is nonincreasing, then the sequence {Eρn
} variationally converges to the classical

Navier-Lamé potential energy E0 given by

E0(u) = µ

∫

Ω

|Sym(∇u)|2dx +
λ

2

∫

Ω

(div(u))2dx −
∫

Ω

f · udx,

where µ and λ are constants that can be expressed in terms of α and β. This is what is called nonlocal-

to-local convergence and the result is used as a rigorous justification that state-based peridynamics

modeling recovers the classical linearized elasticity models in the event of vanishing nonlocality.

In this paper, we consider another type of convergence of sequence of kernels and study the

behavior of the associated energy functionals, which leads to nonlocal-to-nonlocal convergence. More

specifically, suppose we are given a nonnegative kernel ρ ∈ L1
loc

(Rd) with the property that

ρ is radial, ρ(ξ) > 0 for ξ is close to 0, |ξ|−2ρ(|ξ|) is nonincreasing in |ξ|, (1.6)

and

lim
δ→0
δ2

(∫

Bδ

ρ(ξ)dξ

)−1

= 0. (1.7)

and consider a sequence of nonnegative, radial kernels {ρn}n∈N each satisfying (1.6) and that

ρn ≤ ρ a.e. and ρn → ρ a.e. in Rd. (1.8)

It then follows that ρn → ρ strongly in L1
loc

(Rd) as n → ∞. We will establish a clear connection

between the sequence of energies {Eρn
} and Eρ. Most importantly, we will show that minimizers of the

energies Eρn
over an admissible class will converge to a minimizer of Eρ over the same admissible class.

The notion of variational convergence we use is Γ-convergence (see [21]) which we define below. The

advantage of Γ-convergence is that under the additional assumption of equicoercivity of the functionals

it implies the convergence of minimizers as well [21, Theorem 7.8 and Corollary 7.202].

Definition 1.1. Suppose that En : L2(Ω;Rd)→ R ∪ {∞}, ∀1 ≤ n ≤ ∞. We say that the sequence En Γ-

converges to E∞ in the L2-topology if and only if

a) for every sequence {un} ∈ L2(Ω;Rd) with un → u in L2(Ω;Rd), as n → ∞, we have E∞(u) ≤
lim infn→∞ En(un),

b) and for every u ∈ L2(Ω;Rd) there exists a recovery sequence un → u in L2(Ω;Rd), such that

E∞(u) = limn→∞ En(un).

The following is one of the main results of the paper on the variational limit of the nonlocal

functionals {En}.

Mathematics in Engineering Volume 5, Issue 6, 1–31.
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Theorem 1.2. Suppose ρ and {ρn} satisfies (1.6)–(1.8). The sequence of functionals En Γ−converges

in the strong L2(Ω;Rd) topology to the functional Eρ, where the extended functionals {En(u)}n≤∞ are

defined as

En(u) =

{

Eρn
(u), if u ∈ Sρn,2(Ω),

∞, if u ∈ L2(Ω;Rd) \ Sρn,2(Ω),
(1.9)

where Sρn,2(Ω) and {Eρn
}n<∞ are defined as before in (1.4) and (1.5), respectively, where ρ is replaced

by ρn. The extended functional Eρ is similarly defined. Moreover, if V is a weakly closed subset of

L2(Ω;Rd) such that V ∩R = {0}, and for each n, un minimizes Eρn
over V ∩Sρn,2(Ω), then the sequence

{un} is precompact in L2(Ω;Rd) with any limit point belonging to Sρ,2(Ω) and minimizing Eρ over

V ∩ Sρ,2(Ω).

Although the discussion above is focused on the case of quadratic peridynamic energies for ease

of explaining the main ideas, the result can naturally be extended to small strain nonlocal nonlinear

peridynamic models with p-growth, for p ≥ 2, that have been introduced in [33] and whose variational

analysis investigated in [25].

We will prove Theorem 1.2 in the sections that follow. But we would like to highlight that this result

has an important implication in the numerical approximation of minimizers of Eρ over an admissible

class. Indeed, compactness results have been quite useful for analyzing numerical approximations of

nonlocal problems in various contexts such as [8, 34, 35]. In the context discussed in this work, let us

take for an example that ρ(ξ) = 1
|ξ|d+2(s−1) for s ∈ (0, 1). This kernel satisfies (1.6) and (1.7). It is also

clear that ρ(ξ)|ξ|−2 is not integrable on any bounded domain containing 0. In the event Ω has a smooth

boundary, the energy space Sρ,2(Ω) coincides with the fractional Sobolev space H s(Ω;Rd) see [27,30].

In particular, if 1/2 < s < 1, then all functions in Sρ,2(Ω) have continuous representative. Now, if

V ⊂ Sρ,2(Ω) is a weakly closed subset of L2(Ω;Rd) such that V ∩ R = {0}, a minimizer of Eρ over

V exists (and will be in H s(Ω;R)). The analysis of the existence and uniqueness of the minimizer u

of this quadratic energy can also, equivalently, be found by solving the corresponding Euler-Lagrange

equation. The latter gives us a way of numerically solving the solution by writing it first in the weak

form and then applying the Galerkin approach of choosing a finite-dimensional subspaceM ⊂ V to

solve for a projected solution of u onM. Notice that for s ∈ (0, 1/2) the finite-dimensional subspaceM
can contain discontinuous functions, while for s ∈ (1/2, 1), all the elements ofM must be continuous

in order forM to be conforming, that is, forM ⊂ Sρ,2(Ω). In the latter case, if one wants to employ

the advantageous discontinuous Galerkin approximation, which is now nonconforming, one needs to

find an effective way to implement it to the model problem. The result in Theorem 1.2 will allow

us to develop approximation schemes by solving a sequence of Euler-Lagrange equations of modified

energies. To demonstrate this, define the sequence of kernels

ρn(ξ) =















ρ(ξ) if ρ(ξ) ≤ n |ξ|2

n |ξ|2 if ρ(ξ) ≥ n |ξ|2
.

It is not difficult to check that, for each n, ρn satisfies (1.6), (1.8), and that the functions ρn(ξ)|ξ|−2 ∈
L1

loc
(Rn) are just truncations of the fractional kernel |ξ|−d−2s (at level n). As discussed before, the energy

space associated with Eρn
will coincide with L2(Ω;Rd) and a unique minimizer un ∈ V ∩ Sn of Eρn

exists. Since the admissible space is a subspace of L2(Ω;Rd) that avoids nontrivial infinitesimal rigid

displacements, we may use discontinuous finite element spaces, denoted by Mn,h, for the standard
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conforming Galerkin approximation to the solution of the Euler-Lagrange equation associated with

the energy Eρn
. This, in turn, can be viewed as a nonconforming discontinuous Galerkin scheme to

numerically solve the original Euler-Lagrange equations when the discretization parameter h goes to

zero and at the same time the truncation level n goes to infinity. Intuitively, for large n, by Theorem 1.2,

u is approximated by un (in the L2 norm), and then un will be numerically approximated by un,h ∈
Mn,h. The proper convergence analysis of this nonconforming numerical scheme as h → 0 and n →
∞ simultaneously has been carried out in [34] in the special case of scalar nonlocal problems when

the subspace V is the set of scalar-valued functions u ∈ L2(Ω;Rd) such that u vanishes outside of a

fixed set Ω′ which is compactly contained in Ω. The analysis in [34] makes use of the framework of

asymptotically compatible schemes for parameter-dependent problems first developed in [35] and the

vanishing of the functions in the admissible class around the volumetric-boundary Ω \Ω′ is crucial for

employing certain compactness arguments. To extend the convergence analysis in [34] to the case of

a system of strongly coupled nonlocal equations, the variations problems associated with (1.5), solved

over any admissible set that does not include infinitesimal rigid vector fields, Theorem 1.2 as well as

some of the compactness results we prove in this paper will be crucial. Such analysis on nonconforming

discontinuous Galerkin numerical schemes to systems of nonlocal equations under discussion will be

carried out in a future work.

Although it is beyond the scope of this work, in passing, we would like to note that this way of

developing a nonconforming numerical scheme is also applicable to fractional PDEs where singular

kernels are more common [5, 36]. The idea is the same where we use less singular kernels with

truncation both at origin and at infinity to do approximation of fractional PDEs. In this case, sequential

compactness of nonlocal spaces associated with the truncated fractional kernel together with the

compact embedding of fractional Sobolev spaces in Lp can be used to carry out the analysis of the

resulting asymptotically compatible schemes [35, 36].

1.2. Other main results

1.2.1. Lp Compactness

The proof of Theorem 1.2 fundamentally depends on some structural properties of the nonlocal

spaceSρ,2(Ω), chief among them are compact embedding into L2(Ω;Rd) and a Poincaré-type inequality,

which we will establish in this paper. In fact, these properties remain true even for the spaces Sρ,p(Ω),

where for 1 ≤ p < ∞,

Sρ,2(Ω) = {u ∈ Lp(Ω;Rd) : |u|Sρ,p < ∞},
and

|u|pSρ,p =
∫

Ω

∫

Ω

ρ(y − x)

∣

∣

∣

∣

∣

(u(y) − u(x))

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

dydx

gives a semi norm. It is shown in [20,25] that, for any 1 ≤ p < ∞, Sρ,p(Ω) is a separable Banach space

with the norm

‖u‖Sρ,p =
(

‖u‖p
Lp + |u|pSρ,p

)1/p
,

and is reflexive if 1 < p < ∞ and a Hilbert space for p = 2. If |ξ|−pρ(ξ) ∈ L1
loc

(Rd), then a simple

calculation shows that Sρ,p(Ω) = Lp(Ω;Rd). On the other hand, in the case where |ξ|−pρ(ξ) < L1
loc

(Rd),

Sρ,p(Ω) is a proper subset of Lp(Ω;Rd). Under some extra assumptions on the kernel ρ, the space

is known to support a Poincaré-Korn type inequality over subsets that have trivial intersections with
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R. These functional analytic properties of the nonlocal space can be used to demonstrate the well-

posedness of some nonlocal variational problems using the direct method of calculus of variations,

see [25] for more discussions.

As in the case of p = 2, we assume that for a given 1 ≤ p < ∞,

ρ is radial, ρ(r) > 0 for r is close to 0, and r−pρ(r) is nonincreasing in r, (1.10)

and

lim
δ→0
δp

(∫

Bδ(0)

ρ(ξ)dξ

)−1

= 0. (1.11)

We now state the compactness result whose proof is one of the main objectives of the present work.

Theorem 1.3 (Lp compactness). Let 1 ≤ p < ∞ and let ρ ∈ L1
loc

(Rd) be nonnegative and

satisfying (1.10) and (1.11). Suppose also that Ω ⊂ Rd is a domain with Lipschitz boundary. Then

Sρ,p(Ω) is compactly embedded in Lp(Ω;Rd). That is, any bounded sequence {un} in Sρ,p(Ω) is

precompact in Lp(Ω;Rd). Moreover, any limit point is in Sρ,p(Ω).

The condition given by (1.11) requires ρ to have an adequate singularity near 0. A straightforward

calculation shows that the kernels satisfying (1.11) include ρ(ξ) = |ξ|−(d+p(s−1)), for any p ∈ [1,∞), and

any s ∈ (0, 1), and ρ(ξ) = −|ξ|p−d ln(|ξ|). It is no surprise that (1.11) is violated if |ξ|−pρ(ξ) is a locally

integrable function (and therefore, Sρ,p(Ω) = Lp(Ω;Rd)), and in fact, in this case

lim inf
δ→0

δp

(∫

Bδ(0)

ρ(ξ)dξ

)−1

= ∞,

see [25]. It is not clear whether condition (1.11) is necessary for compact embedding even for the class

of kernels that are radial and nonincreasing. There are radial kernels with the property that |ξ|−pρ(ξ) is

(locally) nonintegrable, and

lim
δ→0
δp

(∫

Bδ(0)

ρ(ξ)dξ

)−1

= c0 > 0

for which we do not know whether there is a compact embedding Sρ,p(Ω) into Lp(Ω;Rd). One such

kernel is ρ(ξ) = |ξ|p−d. Nevertheless, we can prove that the associated space Sρ,p(Ω) is compact in the

L
p

loc
topology, a result which we will state and prove in the appendix.

1.2.2. Compactness criteria that involve a sequence of kernels

For scalar fields, compactness results like those stated above are commonplace for spaces

corresponding to special kernels such as the standard fractional Sobolev spaces. In [22, Lemma 2.2],

for more general radial and monotone decreasing kernels ρ, condition (1.11) is shown to be sufficient

for the compact embedding of the space

{

f ∈ L2(Ω) :

∫

Ω

∫

Ω

ρ(y − x)
| f (y) − f (x)|2
|y − x|2 < ∞

}

in L2(Ω). The statement is certainly true for any 1 ≤ p < ∞. The proof of [22, Lemma 2.2] actually

relies on and modifies the argument used to prove another type of compactness result by Bourgain,

Mathematics in Engineering Volume 5, Issue 6, 1–31.
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Brezis and Mironescu in [6, Theorem 4] that applies criteria involving a sequence of kernels. The

argument of [6] uses extensions of functions to Rd where the monotonicity of ρ is used in an essential

way to control the semi-norm of the extended functions by the original semi-norm. That is, let us

introduce a sequence of radial functions ρn satisfying

∀n ≥ 1, ρn ≥ 0,

∫

Rd

ρn(ξ)dξ = 1, and lim
n→∞

∫

|ξ|>r

ρn(ξ)dξ = 0, ∀r > 0. (1.12)

Assuming that for each n, ρn is nonincreasing, and if

sup
n≥1

∫

Ω

∫

Ω

ρn(y − x)
| fn(y) − fn(x)|p
|y − x|p < ∞, (1.13)

then { fn} is precompact in Lp(Ω), which is the result of [6, Theorem 4] obtained by showing

that (1.13) makes it possible to apply a variant of the Riesz-Fréchet-Kolomogorov theorem [7]. In [22,

Lemma 2.2], for a fixed ρ, the condition (1.11) is used to replace the role played by the condition (1.12).

In [28, Theorem 1.2], the same result as in [6, Theorem 4] was proved by dropping the monotonicity

assumption on ρn for d ≥ 2. In addition, the proof in [28] avoids the extension of functions to Rd but

rather shows that the bulk of the mass of each fn, that is
∫

Ω
| fn|p, comes from the interior and quantifies

the contribution near the boundary. As a consequence, if (1.13) holds, then as n→ ∞ there is no mass

concentration or leak at the boundary, two main causes of failure of compactness. The compactness

results were applied to establish some variational convergence results in [29]. Clearly if one merely

replaces scalar functions in (1.13) by vector fields, both compactness results [6, Theorem 4] and [28,

Theorem 1.2] will remain true. It turns out the results will remain valid for vector fields even under

a weaker assumption. Indeed, following the argument [6, Theorem 4] and under the monotonicity

assumption that for n, ρn is nonincreasing, it was proved in [20, Theorem 5.1] that if un is a bounded

sequence of vector fields satisfying

sup
n≥1

∫

Ω

∫

Ω

ρn(y − x) |D(un)(x, y)|p dydx < ∞ (1.14)

then {un} precompact in the L
p

loc
(Ω;Rd) topology with any limit point being in W1,p(Ω;Rd) when 1 <

p < ∞, and in BD(Ω) when p = 1. Here, BD(Ω) is the space of functions with bounded deformation.

Later, again under the monotonicity assumption on ρn, but using the argument of [28, Theorem 1.2]

instead, it was proved in [25, Proposition 4.2] that in fact, (1.14) implies that {un} is precompact in the

Lp(Ω;Rd) topology. In this paper, we will prove a similar result relaxing the requirement that ρn is a

Dirac-Delta sequence.

Theorem 1.4. Let ρ ∈ L1
loc

satisfy (1.10) and (1.11). For each n, ρn is radial and ρn satisfies (1.10) and

that

ρn ≥ 0, ρn ⇀ ρ, weakly in L1
loc(R

d), and ρn ≤ cρ

for some c > 0. Then, if {un} is a bounded sequence in Lp(Ω;Rd) such that (1.14) holds, then {un} is

precompact in Lp(Ω;Rd). Moreover, any limit point is in Sρ,p(Ω).

A natural by-product of Theorem 1.4 is the Poincaré-Korn type inequality stated below.

Mathematics in Engineering Volume 5, Issue 6, 1–31.
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Corollary 1.5 (Poincaré-Korn type inequality). Suppose that 1 ≤ p < ∞ and V is a weakly closed

subset of Lp(Ω;Rd) such that V ∩R = {0}. Let ρ ∈ L1
loc

satisfies (1.10) and (1.11). Let ρn be a sequence

of radial functions, and for each n, ρn satisfies (1.10) and that

ρn ≥ 0, ρn ⇀ ρ, weakly in L1
loc(R

d), and ρn ≤ cρ

for some c > 0. Then there exist constants C > 0 and N ≥ 1 such that

∫

Ω

|u|pdx ≤ C

∫

Ω

∫

Ω

ρn(y − x)

∣

∣

∣

∣

∣

(u(y) − u(x))

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

dydx (1.15)

for all u ∈ V ∩ Lp(Ω;Rd) and n ≥ N. The constant C depends only on V, d, p, ρ, and the Lipschitz

character of Ω.

We note that the Poincaré-Korn-type inequality has been proved for Dirac-Delta sequence of kernels

ρn [23, 25]. The corollary extends the result to sequence of kernels that weakly converge to a given

function ρ satisfying (1.10) and (1.11).

The rest of the paper is devoted to prove the main results and it is organized as follows. We prove

Theorem 1.2 in Section 2. Theorem A.1 and Proposition 3.5 are proved in Section 3. The proof of

Theorems 1.3 and 1.4 and Corollary 1.5 are presented in Section 4. Further discussions are given at

the end of the paper.

2. Proof of the variational convergence

In this section we will prove the Γ-convergence of the sequence of energies Eρn
defined in (1.5).

The proof relies on a sequence of results on the limiting behavior of functions as well as the action of

operators. To that end, we assume that ρ and {ρn} satisfy (1.6)–(1.8) throughout this section. We begin

with the convergence properties of the nonlocal divergence operator.

Lemma 2.1. Suppose that un → u strongly in L2(Ω;Rd), u ∈ Sρ,2(Ω), and that {Dρn
(un)} is uniformly

bounded in L2(Ω). Then Dρn
(un)⇀ Dρ(u) weakly in L2(Ω).

Proof. We recall the nonlocal integration by parts formula ( [25, 26]) that for any v ∈ W
1,2

0
(Ω)

∫

Ω

Dρn
(un)v(x)dx = −

∫

Ω

Gn(v)(x) · un(x)dx

where Gn(v)(x) is the nonlocal gradient operator

Gρn
(v)(x) = p.v.

∫

Ω

ρn(y − x)
v(y) + v(x)

|y − x|
y − x

|y − x|dy.

Now for v ∈ C1
c (Ω), we may rewrite the nonlocal gradient as

Gρn
(v)(x) =

∫

Ω

ρn(y − x)
v(y) − v(x)

|y − x|
y − x

|y − x|dy + 2

∫

Ω

ρn(y − x)
v(x)

|y − x|
y − x

|y − x|dy.

and estimate as [26, Corollary 2.4],

‖Gρn
(v)‖L∞ ≤ 3‖ρn‖L1‖∇v‖L∞ ≤ C‖ρ‖L1‖∇v‖L∞ .
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Also, it is not difficult to show that for all x ∈ Ω, Gρn
(v)(x) → Gρ(v)(x). This follows from the

convergence of ρn to ρ in L1
loc

(Rd). We thus conclude that for v ∈ C1
c (Ω),

Gρn
(v)→ Gρ(v) strongly in L2.

Thus from the above integration by parts formula we have that for any v ∈ C1
c (Ω)

lim
n→∞

∫

Ω

Dρn
(un)v(x)dx = − lim

n→∞

∫

Ω

Gρn
(v)(x) · un(x)dx

= −
∫

Ω

Gρ(v)(x) · u(x)dx

=

∫

Ω

Dρ(u)v(x)dx.

The last inequality is possible because u ∈ Sρ,2(Ω). Now for any v ∈ L2(Ω), let us choose vm ∈ C1
c (Ω)

such that vm → v strongly in L2(Ω). Then we have for each n,m that

∫

Ω

Dρn
(un)v(x)dx =

∫

Ω

Dρn
(un)vm(x)dx + Rn,m

where

|Rn,m| =
∣

∣

∣

∣

∣

∫

Ω

Dρn
(un)(v(x) − vm(x))dx

∣

∣

∣

∣

∣

≤ ‖Dρn
(un)‖L2(Ω)‖vm − v‖L2(Ω).

Therefore using the fact that ‖Dρn
(un)‖L2(Ω) is uniformly bounded in n, we have that

limm→∞ supn∈N |Rn,m| = 0 and so we have

lim inf
n→∞

∫

Ω

Dρn
(un)v(x)dx = lim

n→∞

∫

Ω

Dρn
(un)vm(x)dx + lim inf

n→∞
Rn,m

=

∫

Ω

Dρ(u)vm(x)dx + lim inf
n→∞

Rn,m.

We now take m→ ∞ and use the fact that Dρ(u) ∈ L2(Ω) to complete the proof the lemma. �

Lemma 2.2. Suppose that un → u strongly in L2(Ω;Rd), u ∈ Sρ,2(Ω), and that supn∈NWρn
(un) ≤ C <

∞. Then it holds that

∫

Ω

∫

Ω

ρ(x′ − x)

(

D(u)(x, x′) − 1

d
Dρ(u)(x)

)2

dx′ dx

≤ lim inf
n→∞

∫

Ω

∫

Ω

ρn(x′ − x)

(

D(un)(x, x′) − 1

d
Dρn

(un)(x)

)2

dx′ dx.

(2.1)

Proof. Let A ⊂⊂ Ω and ϕ ∈ C∞c (B1(0)). For ε < dist(A, ∂Ω), consider the sequence of functions ϕε ∗ un

and ϕε ∗Dρn
(un) defined for x ∈ A, where ϕε(z) = ε−dϕ(z/ε) is standard mollifiers. Then since un → u

strongly in L2, for a fixed ε > 0, we have as n→ ∞,

ϕε ∗ un → ϕε ∗ u in C2(A;Rd) and

ϕε ∗Dρn
(un)→ ϕε ∗Dρ(u) strongly in L2(A).

(2.2)
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The latter follows from Lemma 2.1 and the fact that the convolution is a compact operator. Using

Jensen’s inequality, we have that for each ε > 0 small and n large

∫

A

∫

A

ρn(x′ − x)

(

D(ϕε ∗ un)(x, x′) − 1

d
ϕε ∗Dρn

(un)(x)

)2

dx′ dx

≤
∫

A

∫

A

ρn(x′ − x)

(

D(un)(x, x′) − 1

d
Dρn

(un)(x)

)2

dx′ dx.

(2.3)

The left hand side of (2.3) can be rewritten after change of variables as

∫

A

∫

A

ρn(x′ − x)

(

D(ϕε ∗ un)(x, x′) − 1

d
ϕε ∗Dρn

(un)(x)

)2

dx′ dx

=

∫

Rd

ρn(z)

∫

A

χA(x + z)

(

D(ϕε ∗ un)(x, x + z) − 1

d
ϕε ∗Dρn

(un)(x)

)2

dxdz.

Using (2.2), the sequence of functions

z 7→
∫

A

χA(x + z)

(

D(ϕε ∗ un)(x, x + z) − 1

d
ϕε ∗Dρn

(un)(x)

)2

dx

converges in L∞(Ω) as n→ ∞ to

z 7→
∫

A

χA(x + z)

(

D(ϕε ∗ u)(x, x + z) − 1

d
ϕε ∗Dρ(u)(x)

)2

dx

where we use the simple inequality |a2 − b2| ≤ ||a| + |b|||a − b| and the assumption that u ∈ Sρ,2(Ω).

Using the convergence of ρn to ρ in L1
loc

(Rd) and taking the limit in (2.3) we conclude that for each

ε > 0,
∫

A

∫

A

ρ(x′ − x)

(

D(ϕε ∗ u)(x, x′) − 1

d
ϕε ∗Dρ(u)(x)

)2

dx′ dx

≤ lim inf
n→∞

∫

A

∫

A

ρn(x′ − x)

(

D(un)(x, x′) − 1

d
Dρn

(un)(x)

)2

dx′ dx.

Now inequality (2.1) follows after applying first Fatou’s lemma in ε and noting that A ⊂⊂ Ω was

arbitrary. �

Let us state some elementary inequalities that relate the energy Wρ(u) and its integrand with that

of the seminorm |u|Sρ,2 . The proof follows from direct calculations and uses a simple application of

Hölder’s inequality.

Lemma 2.3. For a given ρ ∈ L1
loc

(Rd) and Ω bounded such that for u ∈ Sρ,2(Ω) and x ∈ Ω we have

Dρ(u)2(x) ≤ ‖ρ‖L1(BR(0))

∫

Ω

ρ(x − y)|D(u)(x, y)|2dy,

∫

Ω

ρ(y − x)

(

D(u)(x, y) − 1

d
Dρ(u)(x)

)2

dy ≤ C(d, ‖ρ‖L1(BR(0)))

∫

Ω

ρ(x − y)|D(u)(x, y)|2dy.

Moreover, we have positive constants C1 and C2, depending on ρ,Ω, and d, such that for all u ∈ Sρ,2(Ω)

C1|u|2Sρ,2(Ω) ≤ Wρ(u) ≤ C2|u|2Sρ,2(Ω).
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Proof of Theorem 1.2. The proof has two parts: the demonstration of the Γ-convergence of the energy

functionals and the proof of the convergence of minimizers. For the first part, following the definition

of Γ-convergence, we prove the two items in Definition 1.1.

Item a) Suppose that un → u strongly in L2. We will show that

Eρ(u) ≤ lim inf
n→∞

En(un).

Since
∫

Ω
f · undx→

∫

Ω
f · udx as n→ ∞, we only need to show that

Wρ(u) ≤ lim inf
n→∞

Wρn
(un).

To that end, we will assume without loss of generality that lim infn→∞Wρn
(un) < ∞, and so (up to a

subsequence) supn∈NWρn
(un) ≤ C < ∞. Then we have that {Dρn

(un)} is uniformly bounded in L2(Ω)

and {|un|Sρn ,2} is uniformly bounded as well, by Lemma 2.3. To prove the desired inequality it suffices

to show that
∫

Ω

(Dρ(u))2dx ≤ lim inf
n→∞

∫

Ω

(Dρn
(un))2dx (2.4)

and
∫

Ω

∫

Ω

ρ(x′ − x)

(

D(u)(x, x′) − 1

d
Dρ(u)(x)

)2

dx′ dx

≤ lim inf
n→∞

∫

Ω

∫

Ω

ρn(x′ − x)

(

D(un)(x, x′) − 1

d
Dρn

(un)(x)

)2

dx′ dx.

(2.5)

To show (2.4), using the weak lower semicontinuity of norm, it suffices to show that Dρn
(un)⇀ Dρ(u)

weakly in L2(Ω). But this is proved in Lemma 2.1 after noting the above assumption.

Inequality (2.5) will follow from Lemma 2.2 if we show u ∈ Sρ,2(Ω). But under the assumptions

on the sequence un, the conclusion u ∈ Sρ,2(Ω) follows from Theorem 1.4 that will be proved in the

coming sections.

Item b) For a given u ∈ L2(Ω), we take the recovery sequence to be un = u. Now if u ∈ L2(Ω) \
Sρ,2(Ω), then by definition Ē∞(u) = ∞ and necessarily lim infn→∞ Eρn

(u) = ∞. Otherwise, up to a

subsequence (nor renamed) supn Eρn
(u) < ∞ and

[u]2
Sρn ,2 ≤ C(Eρn

(u) + ‖u‖L2) ≤ C + ‖u‖L2 ,

where we used Lemma 2.3. Then by passing to the limit and using Fatou’s lemma, we have [u]2
Sρ,2 < ∞,

that is, u ∈ Sρ,2(Ω), which is a contradiction. In the event that u ∈ Sρ,2(Ω), we may use (1.8) to get the

pointwise convergence and Lemma 2.3 to get appropriate bounds of the integrand of Wρn
(u) to apply the

Dominated Convergence Theorem and conclude that lim infn→∞Wρn
(u) = Wρ(u), from which Item b)

follows.

We next prove the second part of the theorem, the convergence of minimizers. To apply [21,

Theorem 7.8 and Corollary 7.202], we need to prove the equicoercvity of the functionals restricted

to V∩Sρn,2. That is, for un ∈ V∩Sρn,2 such that supn≥1 Eρn
(un) < ∞, we need to show that the sequence

{un} is precompact in L2(Ω;Rd). To that end, first a positive constant C > 0 and for all n ≥ 1

[un]2
Sρn ,2 ≤ C(Eρn

(un) + ‖un‖L2) ≤ C + ‖un‖L2 .
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Using the uniform Poincaré-Korn inequality, Theorem 1.5, for all large n we have that ‖un‖L2 ≤
C[un]Sρn ,2 and as a consequence

[un]2
Sρn ,2 ≤ C(1 + [un]Sρn ,2) for all n large.

It then follows that [un]Sρn ,2 is uniformly bounded and therefore, by the uniform Poincaré-Korn

inequality, ‖un‖L2(Ω) is bounded as well. We now use the compactness result, Theorem 1.4, to conclude

that {un} is precompact in L2(Ω;R2) with limit point u in Sρ,2(Ω) ∩ V. We may now apply [21,

Theorem 7.8 and Corollary 7.202] to state that u is a minimizer of Eρ over Sρ,2(Ω) ∩ V. �

3. Compactness in L
p

loc
(Rd)

The proof of the Lp compactness result, Theorem 1.3, will be carried out in two steps. We establish

first compactness in L
p

loc
topology followed by proving a boundary estimate that controls growth near

the boundary of the domain. The L
p

loc
compactness will be proved in this section under a weaker

assumption on the kernel. In fact L
p

loc
compactness will be stated and proved for a broader class of

kernels that include kernels of the type ρ̃(ξ)χBΛ
1
(ξ) where ρ̃ satisfies (1.10) and (1.11), where BΛ

1
= {x ∈

B1 : x/|x| ∈ Λ} is a conic region spanned by a given a nontrivial spherical cap Λ ⊂ Sd−1. To make this

and the condition of the theorem precise, we begin identifying the kernel ρ by the representative

ρ(x) =























lim
h→0

?
Bh(x)

ρ(ξ)dξ, if x is a Lebesgue point,

∞, otherwise.

For θ0 ∈ (0, 1) and v ∈ Sd−1, let us define

ρθ0(rv) = inf
θ∈[θ0,1]

ρ(θrv)θ−p.

It is clear that for a given v ∈ Sd−1, ρθ0(rv) ≤ ρ(θrv)θ−p for any θ ∈ [θ0, 1] and r ∈ (0,∞). In particular,

this implies ρθ0(ξ) ≤ ρ(ξ) for any ξ, with the equality holds if ρ is radial and |ξ|−pρ(ξ) is nonincreasing

in |ξ|.
We now make a main assumption on ρ that

∃ θ0 ∈ (0, 1), Λ ⊂ Sd−1 and v0 ∈ Λ such thatHd−1(Λ) > 0,

ρθ0(rv) = ρθ0(rv0), ∀ (r, v) ∈ (0,∞) × Λ, and lim
δ→0

δp

∫ δ

0

ρθ0(rv0)rd−1dr

= 0. (3.1)

Assumption (3.1) says that, on a conic region with apex at the origin, the kernel ρ is above a

nonnegative function with appropriate singular growth near the origin. Note that on one hand, it is

not difficult to see if ρ ∈ L1
loc

(Rd) is a nonnegative function that satisfies (1.10) and (1.11), then it also

satisfies (3.1). On the other hand, if ρ̃ satisfies (1.10) and (1.11), then given a nontrivial spherical cap

Λ and conic region BΛ
1
= {x ∈ B1 : x/|x| ∈ Λ}, the kernel ρ(ξ) = ρ̃(ξ)χBΛ

1
(ξ) satisfies (3.1) (with θ0

being any number in (0, 1) and v0 representing any vector in Λ) but not necessarily (1.10) and (1.11).

For kernels of this form, we need the formulation in (3.1) to carry out the proof of L
p

loc
compactness.

We should also note that one can construct other ρ that are not of the above form that satisfy (3.1),

see [6, Eq (17)].
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Theorem 3.1 (L
p

loc
compactness). Suppose that 1 ≤ p < ∞. Let ρ ∈ L1(Rd) be a nonnegative function

satisfying (3.1). Suppose also that {un} is a sequence of vector fields that is bounded in Sρ,p(Rd). Then

for any D ⊂ Rd open and bounded, the sequence {un|D} is precompact in Lp(D;Rd).

We should mention that although the focus is different, operators that use non-symmetric kernels

like those satisfying the condition (3.1) have been studied in connection with semi-Dirichlet forms and

the processes they generate, see [2, 16] for more discussions. In particular, most of the examples of

kernels listed in [16, Section 6] satisfy condition (3.1).

3.1. A few technical lemmas

We begin with the following lemma whose proof can be carried out following the argument used

in [28]. Let u ∈ Lp(Rd;Rd) be given, we introduce the function Fp[u] : Rd → [0,∞) defined by

Fp[u](h) =

∫

Rd

∣

∣

∣

∣

∣

(u(x + h) − u(x)) · h

|h|

∣

∣

∣

∣

∣

p

dx, for h ∈ Rd.

Lemma 3.2. Suppose that θ0 is given as in (3.1). There exists a constant C = C(θ0, p) > 0 such that

for any δ > 0, and v ∈ Sd−1

Fp[u](tv) ≤ C
δp

∫ δ

0

ρθ0(sv)sd−1ds

∫ ∞

0

ρ(hv)hd−1
Fp[u](hv)

hp
dh,

for any 0 < t < δ and any u ∈ Lp(Rd,Rd).

Proof. For any v ∈ Sd−1 and t ∈ R, we may rewrite the function Fp as

Fp[u](tv) =

∫

Rd

|(u(x + tv) − u(x)) · v|pdx.

It follows from [28, Lemma 3.1] that given 0 < s < t, there exist Cp and θ = t
s
−k ∈ (0, 1) (k an integer)

such that
Fp[u](tv)

tp
≤ Cp

{

Fp[u](sv)

sp
+

Fp[u](θsv)

tp

}

.

We also have that for a given l0 ∈ N,

Fp[u](θsv) ≤ l
p

0
Fp[u]

(

θs

l0

v

)

≤ 2(p−1)l
p

0

{

Fp[u](sv) + Fp[u]

(

s − sθ

l0

v

)}

.

Combining the above we have that for any l0, there exists a constant C = C(p, l0) such that

Fp[u](tv)

tp
≤ C(p, l0)

{

Fp[u](sv)

sp
+

Fp[u](θ̃sv)

tp

}

, where θ̃ = 1 − θ
l0

. (3.2)

Now let us take θ0 as given in (3.1) and choose l0 large that 1
l0
< 1 − θ0. It follows that θ0 < θ̃ ≤ 1.

Then for any δ > 0, and any 0 < s < δ ≤ τ, by multiplying both sides of inequality (3.2) by ρθ0(vs) and

integrating from 0 to δ, we obtain

∫ δ

0

ρθ0(sv)sd−1ds
Fp[u](τv)

τp
≤ C(p, l0)

{∫ δ

0

ρθ0(sv)sd−1
Fp[u](sv)

sp
ds +

∫ δ

0

ρθ0(sv)sd−1
Fp[u](θ̃sv)

τp
ds

}

.
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Let us estimate the second integral in the above:

I =
1

τp

∫ δ

0

ρθ0(sv)sd−1Fp[u](θ̃sv)ds.

We first note that using the definition of ρθ0 and since δ ≤ τ, we have

I ≤ 1

θd−1
0

∫ τ

0

ρ(θ̃sv)(θ̃s)d−1
Fp[u](θ̃sv)

(θ̃s)p
ds.

The intention is to change variables h = θ̃s. However, note that θ̃ is a function of s, and by definition

θ̃s =

(

k

l0

+ 1

)

s − τ
l0

for k ≤ τ
s
< k + 1.

It then follows by a change of variables that

I ≤ 1

θd−1
0

∞
∑

k=1

∫ τ
k

τ
(k+1)

ρ(θ̃sv)(θ̃s)d−1
Fp[u](θ̃sv)

(θ̃s)p
ds

=
1

θd−1
0

∞
∑

k=1

∫ τ
k

τ(1− 1
l0

)

(k+1)

ρ(hv)hd−1
Fp[u](hv)

hp

dh
k
l0
+ 1

≤ C

∫ ∞

0

ρ(hv)hd−1
Fp[u](hv)

hp
dh,

where in the last estimate integrals over overlapping domains were counted at most a finite number of

times. Combining the above estimates we have shown that there exists a constant C such that for any

v ∈ Sd−1, δ > 0 and τ ≥ δ
(∫ δ

0

ρθ0(sv)sd−1ds

)

Fp[u](τv)

τp
≤ C

∫ ∞

0

ρ(hv)hd−1
Fp[u](hv)

hp
dh.

Rewriting the above and restricting v ∈ Λ we have that

Fp[u](τv) ≤ C
τp

∫ δ

0

ρθ0(sv)sd−1ds

∫ ∞

0

ρ(hv)hd−1
Fp[u](hv)

hp
dh.

Now let 0 < t < δ and applying the above inequality for τ = δ and τ = t + δ, we obtain

Fp[u](tv) = Fp[u]((t + δ)v − δv)

≤ 2p−1
{

Fp[u]((t + δ)v) + Fp[u](δv)
}

≤ C
δp

∫ δ

0

ρθ0(sv)sd−1ds

∫ ∞

0

ρ(hv)hd−1
Fp[u](hv)

hp
dh.

This completes the proof. �
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Lemma 3.3. Suppose that ρ ∈ L1
loc

(Rd) and there exists a spherical cap Λ ⊂ Sd−1 and a vector v0 ∈ Λ
such that the function ρ(rv) = ρ(rv0) = ρ̃(r), for all v ∈ Λ and r 7→ r−pρ̃(r) is nonincreasing. Then

there exists a constant C = C(d, p,Λ) such that for any δ > 0, and v ∈ Λ,

Fp[u](tv) ≤ C
δp

∫ δ

0

ρ̃(s)sd−1ds

∫ ∞

0

ρ(hv)hd−1
Fp[u](hv)

hp
dh,

for any 0 < t < δ and any u ∈ Lp(Rd,Rd).

Proof. It suffices to note that for ρ ∈ L1
loc

(Rd) that satisfies the conditions in the statement of the

proposition, we have that for any θ0 ∈ (0, 1), and any v ∈ Λ,

ρθ0(rv) = rp inf
θ∈[θ0,1]

ρ(θrv)(θr)−p = ρ(rv) = ρ(rv0) = ρ̃(r).

We may then repeat the argument in the proof of Lemma 3.2. �

Before proving one of the main results, we make an elementary observation.

Lemma 3.4. Let 1 ≤ p < ∞. Given a spherical cap Λ with aperture θ, there exists a positive constant

c0, depending only on d, θ and p, such that

inf
w∈Sd−1

∫

Λ∩Sd−1

|w · s|pdσ(s) ≥ c0 > 0.

The above lemma follows from the fact that the map

w 7→
∫

Λ∩Sd−1

|w · s|pdσ(s)

is continuous on the compact set Sd−1, and is positive, for otherwise the portion of the unit sphere Λ

will be orthogonal to a fixed vector which is not possible sinceHd−1(Λ) > 0.

3.2. Proof of Theorem 3.1

From the assumption we have

sup
n≥1

‖un‖pLp + sup
n≥1

∫

Rd

∫

Rd

ρ(x′ − x) |D(un)(x, x′)|p dx′dx < ∞. (3.3)

We will use the compactness criterion in [20, Lemma 5.4], which is a variant of the well-known Riesz-

Fréchet-Kolmogorov compactness criterion [7, Chapter IV.27]. Let Λ be as given in (3.1). For δ > 0,

let us introduce the matrix Q = (qi j), where

qi j =

∫

Λ

sis jdHd−1(s).

The symmetric matrix Q is invertible. Indeed, the smallest eigenvalue is given by

λmin = min
|x|=1
〈Qx, x〉 = min

|x|=1

∫

Λ

|x · s|2dHd−1(s)

Mathematics in Engineering Volume 5, Issue 6, 1–31.



16

which we know is positive by Lemma 3.4. We define the following matrix functions

P(z) = dQ−1 z ⊗ z

|z|2 χBΛ
1
(z), Pδ(z) = δ−dP

(

z

δ

)

where BΛ
1
= {x ∈ B1 : x/|x| ∈ Λ}, as defined before. Then for any δ > 0,

∫

Rd

Pδ(z)dz = I.

To prove the theorem, using [20, Lemma 5.4], it suffices to prove that

lim
δ→0

lim sup
n→∞

‖un − Pδ ∗ un‖Lp(Rd) = 0. (3.4)

We show next that the inequality (3.3) and condition (3.1) imply (3.4). To see this, we begin by

introducing the notation BΛδ = {x ∈ Bδ(0) : x/|x| ∈ Λ} and applying Jensen’s inequality to get

∫

Rd

|un(x) − Pδ ∗ un(x)|pdx ≤
∫

Rd

∣

∣

∣

∣

∣

∫

Rd

Pδ(y − x)(un(y) − un(x))dy

∣

∣

∣

∣

∣

p

dx

≤
∫

Rd

∣

∣

∣

∣

∣

∣

|Λ|Q−1

?
BΛ
δ

(x)

(y − x)

|y − x| · (un(y) − un(x))
(y − x)

|y − x| dy

∣

∣

∣

∣

∣

∣

p

dx

≤ |Λ|p‖Q−1‖p
∫

Rd

∣

∣

∣

∣

∣

∣

?
BΛ
δ

(x)

(y − x)

|y − x| · (un(y) − un(x))
(y − x)

|y − x| dy

∣

∣

∣

∣

∣

∣

p

dx

≤ |Λ|
p‖Q−1‖p
|BΛ
δ
|

∫ δ

0

∫

Λ

τd−1Fp[un](τv)dHd−1(v)dτ

≤ C(d, p)

|BΛ
δ
|

∫ δ

0

∫

Λ

τd−1Fp[un](τv)dHd−1(v)dτ

(3.5)

where as defined previously

Fp[un](τv) =

∫

Rd

|v · (un(x + τv) − un(x))|p dx.

Moreover, the fact that |Λ|p‖Q−1‖p ≤ C(d, p,Λ) for any δ > 0 is also used. We can now apply

Lemma 3.2 and use the condition (3.1) to obtain that

C(d, p, λ)

|BΛ
δ
|

∫ δ

0

∫

Λ

τd−1Fp[un](τv)dHd−1(v)dτ

≤ C(d, p,Λ)

|BΛ
δ
|

∫ δ

0

τd−1dτ

∫

Λ



































δp

∫ δ

0

ρθ0(sv0)sd−1ds

∫ ∞

0

ρ(hv)hd−1
Fp[un](hv)

hp
dh



































dHd−1(v)

≤ C(d, p,Λ)
δp

∫ δ

0

ρθ0(sv0)sd−1ds

|un|Sρ,p(Rd).
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Therefore from the boundedness assumption (3.3) we have,

∫

Rd

|un(x) − Pδ ∗ un(x)|pdx ≤ C(p, d,Λ)
δp

∫ δ

0

ρθ0(sv0)sd−1ds

.

Equation (3.4) now follows from condition (3.1) after letting δ→ 0. That completes the proof.

3.3. A variant of compactness in L
p

loc
(Rd;Rd)

A corollary of the compactness result, Theorem 3.1, is the following result that uses a criterion

involving a sequence of kernels. The effort made in the proof above was to show the theorem for

kernel ρ satisfying (3.1), but the proposition below limits to those satisfying (1.10) and (1.11).

Proposition 3.5. Let ρ ∈ L1
loc

satisfy (1.10) and (1.11). Let ρn be a sequence of radial functions

satisfying (1.10) and that ρn ⇀ ρ weakly in L1 as n→ ∞. If

sup
n≥1

{‖un‖Lp(Rd) + |un|Sρn ,p} < ∞

then {un} is precompact in L
p

loc
(Rd;Rd). Moreover, if A ⊂ Rd is a compact subset, the limit point of the

sequence restricting to A is in Sρ,p(A).

Proof. Using Lemma 3.3 applied to each ρn, we can repeat the argument in the proof of Theorem 3.1

to obtain

∫

Rd

|un(x) − Pδ ∗ un(x)|pdx ≤ C(p, d)
δp

∫ δ

0

ρn(r)rd−1dr

≤ C(p, d)
δp

∫

Bδ

ρn(ξ)dξ

.

Now since ρn ⇀ ρ, weakly in L1 as n→ ∞, for a fixed δ > 0, it follows that

lim sup
n→∞

∫

Rd

|un(x) − Pδ ∗ un(x)|pdx ≤ C(p, d)
δp

∫

Bδ

ρ(ξ)dξ

.

We now let δ→ 0, and use the assumption (1.11) to obtain

lim
δ→0

lim sup
n→∞

∫

Rd

|un(x) − Pδ ∗ un(x)|pdx = 0,

from which the compactness in the L
p

loc
topology follows.

We next prove the final conclusion of the proposition. To that end, let A ⊂ Rd be a compact subset.

For φ ∈ C∞c (B1), we consider the convoluted sequence of function φε ∗ un, where φε(z) = ε−dφ(z/ε) is

the standard mollifier. Since un → u strongly in Lp(A;Rd) for a fixed ε > 0, we have as n→ ∞,

φε ∗ un → φε ∗ u in C2(A;Rd). (3.6)
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Using Jensen’s inequality, we obtain that for any ε > 0, and n large,

∫

A

∫

A

ρn(y − x)

∣

∣

∣

∣

∣

(φε ∗ un(y) − φε ∗ un(x)) · (y − x)

|y − x|2
∣

∣

∣

∣

∣

p

dydx

≤
∫

Rd

∫

Rd

ρn(y − x)

∣

∣

∣

∣

∣

(un(y) − un(x)) · (y − x)

|y − x|2
∣

∣

∣

∣

∣

p

dydx.

Taking the limit in n for fixed ε, we obtain for any A compact that

∫

A

∫

A

ρ(y − x)

∣

∣

∣

∣

∣

(φε ∗ u(y) − φε ∗ u(x)) · (y − x)

|y − x|2
∣

∣

∣

∣

∣

p

dydx ≤ sup
n≥1

|un|pSρn ,p < ∞

where we have used (3.6) and the fact that ρn converges weakly to ρ in L1. Finally, let ε → 0 and use

Fatou’s lemma (since φε ∗ u→ u almost everywhere) to obtain that for any compact set A,

∫

A

∫

A

ρ(y − x)

∣

∣

∣

∣

∣

(u(y) − u(x)) · (y − x)

|y − x|2
∣

∣

∣

∣

∣

p

dydx ≤ sup
n≥1

|un|pSρn ,p < ∞,

hence completing the proof. �

4. Global compactness

In this section we prove Theorem 1.3. We follow the approach presented in [28]. The argument

relies on controlling the Lp mass of each un,
∫

Ω
|un|pdx, near the boundary by using the bound on the

seminorm to demonstrate that in the limit when n→ ∞ there is no mass concentration or loss of mass

at the boundary. This type of control has been done for the sequence of kernels that converge to the

Dirac Delta measure in the sense of measures. We will do the same for a fixed locally integrable kernel

ρ satisfying the condition (1.11).

4.1. Some technical estimates

In order to control the behavior of functions near the boundary by the semi-norm | · |Sp,ρ
, we first

present a few technical lemmas.

Lemma 4.1. [28] Suppose that 1 ≤ p < ∞ and that g ∈ Lp(0,∞). Then there exists a constant

C = C(p) such that for any δ > 0 and t ∈ (0, δ)

∫ δ

0

|g(x)|pdx ≤ Cδp

∫ 2δ

0

|g(x + t) − g(x)|p
tp

dx + 2p−1

∫ 3δ

δ

|g(x)|pdx.

Proof. For a given t ∈ (0, δ), choose k to be the first positive integer such that kt > δ. Observe that

(k − 1)t ≤ δ, and so kt ≤ 2δ. Now let us write

|g(x)|p ≤ 2p−1(|g(x + kt) − g(x)|p + |g(x + kt)|p)

≤ 2p−1kp−1

k−1
∑

j=0

|g(x + jt + t) − g(x+ jt)|p + 2p−1|g(x + kt)|p.
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We now integrate in x on both side over (0, δ) to obtain that

∫ δ

0

|g(x)|pdx ≤ 2p−1kp−1

k−1
∑

j=0

∫ δ

0

|g(x + jt + t) − g(x + jt)|pdx + 2p−1

∫ δ

0

|g(x + kt)|pdx

≤ 2p−1kp−1

k−1
∑

j=0

∫ δ+ jt

jt

|g(x + t) − g(x)|pdx + 2p−1

∫ 3δ

δ

|g(x)|pdx

≤ 2p−1kp

∫ 2δ

0

|g(x + t) − g(x)|pdx + 2p−1

∫ 3δ

δ

|g(x)|pdx .

Recalling that kt ≤ 2δ, we have that kp ≤ 2pδp/tp and we finally obtain the conclusion of the lemma

with C = 22p−1. �

The above lemma will be used on functions of type t 7→ u(x + tv) · v, for v ∈ Sd−1. Before doing so,

we need to make some preparation first. Observe that since Ω is a bounded open subset of Rd with a

Lipschitz boundary, there exist positive constants r0 and κ with the property that for each point ξ ∈ ∂Ω
there corresponds a coordinate system (x′, xd) with x′ ∈ Rd−1 and xd ∈ R and a Lipschitz continuous

function ζ : Rd−1 → R such that |ζ(x′) − ζ(y′)| ≤ κ|x′ − y′|,

Ω ∩ B(ξ, 4r0) = {(x′, xd) : xd > ζ(x
′)} ∩ B(ξ, 4r0),

and ∂Ω ∩ B(ξ, 4r0) = {(x′, xd) : xd = ζ(x
′)} ∩ B(ξ, 4r0). It is well known that a Lipschitz domain has a

uniform interior cone Σ(ξ, θ) at every boundary point ξ such that B(ξ, 4 r0) ∩ Σ(ξ, θ) ⊂ Ω. The uniform

aperture θ ∈ (0, π) of such cones depends on the Lipschitz constant κ of the local defining function ζ,

and does not depend on ξ. It is not difficult either to see that for any r ∈ (0, 4r0), if y ∈ Br(ξ), then

dist(y, ∂Ω) = inf{|y − (x′, xd)| : (x′, xd) ∈ B3r(ξ), xd = ζ(x
′)}.

We now begin to work on local boundary estimates. To do that without loss of generality, see

Figure 1 below, after translation and rotation (if necessary) we may assume that ξ = 0 and

Ω ∩ B(0, 4r0) = {(x′, xd) : xd > ζ(x
′)} ∩ B(0, 4r0),

where ζ(0′) = 0, and |ζ(x′) − ζ(y′)| ≤ κ|x′ − y′|. We also assume that the Lipschitz constant κ = 1/2

and the uniform aperture θ = π/4. As a consequence, ζ(x′) ≤ |x′|/2 for all x′ ∈ B4r0
(0′). Given any

0 < r < r0, we consider the graph of ζ:

Γr := {x = (x′, ζ(x′)) ∈ Rd : x′ ∈ Br(0
′)}.

We denote the upper cone with aperture π/4 by Σ and is given by

Σ = {x = (x′, xd) ∈ Rd : |x′| ≤ xd}.

Finally we define Ωτ = {x ∈ Ω : dist(x, ∂Ω) > τ} to be the set of points in Ω at least r units away from

the boundary. Based on the above discussion we have that for any r ∈ (0, r0],

Ω ∩ Br/2 ⊂ Γr + (Σ ∩ Br) ⊂ Ω ∩ B3r. (4.1)
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Indeed, let us pick x = (x′, xd) ∈ Ω ∩ Br/2. The point ξ = x − (x′, ζ(x′)) = (0′, xd − ζ(x′)) ∈ Σ, since

0 <xd − ζ(x′).Moreover, by the bound on the Lipschitz constant |ξ| = |xd − ζ(x′)| < r/2 + r/4 < r. On

the other hand, for any

x = (x′1, ζ(x
′
1)) + (x′2, (x2)d) ∈ Γr + (Σ ∩ Br),

we have

ζ(x′1 + x′2) − ζ(x′1) ≤ |x′2|/2 ≤ (x2)d/2,

showing that ζ(x′
1
+ x′

2
) < ζ(x′

1
) + (x2)d and therefore x ∈ Ω. It easily follows that x ∈ B3r, as well.

x′

xd

ζ(x′) ∂Ω

r

Σ

slope = 1/2

slope = −1/2

Figure 1. Σ is the cone with aperture π/4 (depicted by the blue lines). The Lipschitz graph ζ

remains outside the double cone with aperture π/2 − arctan(1/2) (depicted by the red lines).

The red dashed line has length r.

For any r ∈ (0, r0), and x′ ∈ Br(0
′), and v ∈ Σ ∩ Sd−1, dist((x′, ζ(x′)) + rv, ∂Ω) ≥ r/

√
10. Indeed,

dist((x′, ζ(x′)) + rv, ∂Ω) is larger than or equal to the length of the black dashed line, which is larger

than or equal to r sin(π/4 − arctan(1/2)) = r/
√

10.

4.2. Near boundary estimate

In this subsection we establish the near boundary estimate in the following lemma.

Lemma 4.2. Suppose that Ω ⊂ Rd is a domain with Lipschitz boundary. Let 1 ≤ p < ∞. Then there

exist positive constants C1,C2, r0 and ε0 ∈ (0, 1) with the property that for any r ∈ (0, r0), u ∈ Lp(Ω;Rd),

and any nonnegative and nonzero ρ ∈ L1
loc

(Rd) that is radial, we have

∫

Ω

|u|pdx ≤ C1(r)

∫

Ωε0r

|u|pdx +C2

rp

∫

Br(0)

ρ(h)dh

∫

Ω

∫

Ω

ρ(x − y) |D(u)(x, y)|p dx dy.

The constant C1 may depend on r but the other constants C2 and r0 depend only on d, p and the

Lipschitz constant of Ω. Here for any τ > 0, we define Ωτ = {x ∈ Ω : dist(x, ∂Ω) > τ}.

Proof. Following the above discussion, let us pick η ∈ ∂Ω and assume without loss of generality that

η = 0, the function ζ that defines the boundary ∂Ω has a Lipschitz constant not bigger than 1/2 and the

aperture is π/4.
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Assume first that u ∈ Lp(Ω;Rd), and vanishes onΩr/
√

10. Let us pick ξ = (x′, ζ(x′)) such that |x′| < r

and v ∈ Σ ∩ Sd−1. Let us introduce the function

g
ξ
v(t) = u(ξ + tv) · v, t ∈ (0, 3r0).

Then for all ξ ∈ Γr and v ∈ Σ ∩ Sd−1, ξ + rv ∈ Ωr/
√

10. It follows that, by assumption on the vector

field u, the function g
ξ
v(t) ∈ Lp(0, 2r) and g

ξ
v(t) = 0 for t ∈ (r, 2r). We then apply Lemma 4.1 to get a

constant Cp > 0 such that for any t ∈ (0, r),

∫ r

0

|u(ξ + sv) · v|p ds ≤ C rp

∫ r

0

|(u(ξ + sv + tv) − u(ξ + sv)) · v|p
tp

ds,

where we used the fact that u vanishes on Ωr/
√

10. Noting that ξ = (x′, ζ(x′)) for some x′ ∈ B′r ⊂ Rd−1,

we integrate first in the above estimate with respect to x′ ∈ B′r to obtain that

∫

B′r

∫ r

0

|u(ξ + sv) · v|p ds dx′

≤ C rp

∫

B′r

∫ r

0

|(u(ξ + sv + tv) − u(ξ + sv)) · v|p
tp

ds dx′.

The next step involves a change of variable y = (x′, ζ(x′)) + sv. Define a mapping G : (x′, s) 7→
(x′, ζ(x′)) + sv. Then the Jacobian of the mapping is defined almost everywhere and is given by

JG = v · (−∇ζT (x′), 1).

Notice that |JG| is bounded from above and below by two constants since v ∈ Σ∩Sd−1 and the Lipschitz

constant of ζ is not bigger than 1/2. Also notice that G(B′r × (0, 1)) ⊂ Γr + Σ ∩ Br. Therefore,

∫

B′r

∫ r

0

|(u(ξ + sv + tv) − u(ξ + sv)) · v|p
tp

ds dx′

≤ C

∫

Γr+Σ∩Br

|(u(y + tv) − u(y)) · v|p
tp

dy

≤ C

∫

Ω∩B3r

|(u(y + tv) − u(y)) · v|p
tp

dy,

where we have used (4.1) in the last step. By some straightforward calculations, one can also find that

Ω ∩ Br/4 ⊂ G(B′r × (0, 1)). Then

∫

Ω∩B r
4

|u(y) · v|pdy ≤
∫

G(B′r×(0,1))

|u(y) · v|pdy ≤ C

∫

B′r

∫ r

0

|u(ξ + sv) · v|p ds dx′.

It then follows from the above calculations that that for all v ∈ Σ ∩ Sd−1 and all t ∈ (0, r),

∫

Ω∩B r
4

|u(y) · v|pdy ≤ C rp

∫

Ω∩B3r

|(u(y + tv) − u(y)) · v|p
tp

dy. (4.2)
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Multiplying the left hand side of (4.2) by ρ(tv)td−1 and integrating in t ∈ (0, r) and in v ∈ Σ ∩ Sd−1, we

get
∫ r

0

∫

Σ∩Sd−1

∫

Ω∩B r
4

|u(y) · v|pρ(tv)td−1dy dσ(v) dt =

∫

Ω∩B r
4

∫

Σ∩Br

|u(y) · z

|z| |
pρ(z)dz dy .

Using Lemma 3.4, we observe that

∫

Ω∩B r
4

∫

Σ∩Br

|u(y) · z

|z| |
pρ(z)dz dy

=

∫

Ω∩B r
4

|u(y)|p
∫

Σ∩Br

∣

∣

∣

∣

∣

u(y)

|u(y)| ·
z

|z|

∣

∣

∣

∣

∣

p

ρ(z)dz dy

≥
(∫ r

0

td−1ρ(t)dt

) ∫

Ω∩B r
4

|u(y)|p
∫

Σ∩Sd−1

∣

∣

∣

∣

∣

u(y)

|u(y)| · w
∣

∣

∣

∣

∣

p

dHd−1(w) dy

≥ c0

(∫

Br

ρ(ξ)dξ

) ∫

Ω∩B r
4

|u(y)|pdy.

(4.3)

Similarly, we have

∫ r

0

∫

Σ∩Sd−1

∫

Ω∩B3r

|(u(y + tv) − u(y)) · v|p
tp

ρ(tv)td−1dy dσ(v) dt

=

∫

Ω∩B3r

∫

Σ∩Br

|(u(y + z) − u(y)) · z
|z| |p

|z|p ρ(|z|)dzdy

≤
∫

Ω∩B4r

∫

Ω∩B4r

|D(u)(x, y)|pρ(x − y)dy dx.

(4.4)

Combining inequalities (4.2)–(4.4) we obtain that

c0

∫

Ω∩B r
4

|u(y)|pdy ≤ rp

∫

Br

ρ(ξ)dξ

∫

Ω∩B4r

∫

Ω∩B4r

|D(u)(x, y)|pρ(x − y)dy dx (4.5)

for some positive constant c0 which only depends on d, p and the Lipschitz constant of the domain. In

particular, the estimate (4.5) holds true at all boundary points η ∈ ∂Ω.

The next argument is used in the proof of [28, Lemma 5.1]. By applying standard covering

argument, it follows from the inequality (4.5) that there exist positive constants ε0 ∈ (0, 1/(2
√

10))

and C with the property that for all r ∈ (0, r0), such that for all u ∈ Lp(Ω;Rd) that vanishes in Ωr/
√

10

∫

Ω\Ω2ε0r

|u|pdx ≤ C
rp

∫

Br

ρ(ξ)dξ

∫

Ω

∫

Ω

|D(u)(x, y)|pρ(x − y)dy dx. (4.6)

The positive constants ε0 and C depend only on p and the Lipschitz character of the boundary of Ω.

For ease of calculation, set r̃ = 2r/
√

10. Then r̃/2 = r/
√

10.
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Now let u ∈ Lp(Ω;Rd), and let φ ∈ C∞(Ω) be such that: φ(x) = 0, if x ∈ Ωr̃/2; 0 ≤ φ(x) ≤ 1, if

x ∈ Ωr̃/4 \ Ωr̃/2; φ(x) = 1, if x ∈ Ω \ Ωr̃/4 and |∇φ| ≤ C/r on Ω. Applying (4.6) to the vector field

φ(x)u(x), we obtain that

∫

Ω\Ωε0 r

|u|pdx ≤ C
rp

∫

Br

ρ(ξ)dξ

∫

Ω

∫

Ω

|D(φu)(x, y)|pρ(x − y)dy dx.

We may rewrite D(φu) as follows

D(φu)(x, y) = (φ(x) + φ(y))D(u)(x, y) −
(

φ(x)u(y) − φ(y)u(x)

|y − x|

)

· (y − x)

|y − x| .

It then follows that
∫

Ω

∫

Ω

|D(φu)(x, y)|pρ(x − y)dy dx

≤ 2p−1

∫

Ω

∫

Ω

|[φ(x) + φ(y)]D(u)(x, y)|pρ(x − y)dy dx

+ 2p−1

∫

Ω

∫

Ω

∣

∣

∣

∣

∣

φ(x)u(y) − φ(y)u(x)

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

ρ(x − y)dy dx

= 2p−1 (I1 + I2) .

The first term I1 can be easily estimated as

I1 =

∫

Ω

∫

Ω

|[φ(x) + φ(y)]D(u)(x, y)|pρ(x − y)dy dx

≤ 2

∫

Ω

∫

Ω

|D(u)(x, y)|pρ(x − y)dy dx.

Let us estimate the second term, I2. We first break it into three integrals.

I2 =

∫

Ω

∫

Ω

∣

∣

∣

∣

∣

φ(x)u(y) − φ(y)u(x)

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

ρ(x − y)dy dx

=

"
A

+

"
B

+

"
C

where A = Ω \ Ωr̃/4 × Ω \ Ωr̃/4, B = (Ω \ Ωr̃/8) × Ωr̃/4 ∪
(

Ωr̃/4 × (Ω \Ωr̃/8)
)

and C = Ω × Ω \ (A ∪ B).

We estimate each of these integrals. Let us begin with the simple one:
!

A
. After observing that

φ(x) = φ(y) = 1 for all x, y ∈ Ω \Ωr̃/4, we have that

"
A

=

∫

Ω\Ωr̃/4

∫

Ω\Ωr̃/4

|D(u)(x, y)|pρ(x − y)dy dx,

and the latter is bounded by the semi norm. Next, we note that set B is symmetric with respect to the

diagonal, and as a result, "
B

= 2

∫

Ω\Ωr̃/8

∫

Ωr̃/4
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and when (x, y) ∈ (Ω \Ωr̃/8) ×Ωr̃/4, we have φ(x) = 1, and so we have

"
B

= 2

∫

Ω\Ωr̃/8

∫

Ωr̃/4

∣

∣

∣

∣

∣

u(y) − φ(y)u(x)

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

ρ(x − y)dy dx

≤ 2p

∫

Ω\Ωr̃/8

∫

Ωr̃/4

|φ(y)D(u)(x, y)|p ρ(x − y)dy dx

+ 2p

∫

Ω\Ωr̃/8

∫

Ωr̃/4

∣

∣

∣

∣

∣

u(y)

|y − x|

∣

∣

∣

∣

∣

p

ρ(x − y)dy dx

≤ 2p

∫

Ω\Ωr̃/8

∫

Ωr̃/4

|D(u)(x, y)|p ρ(x − y)dy dx

+
24p

rp

∫

Ω\Ωr̃/8

∫

Ωr̃/4

|u(y)|pρ(x − y)dy dx

where we have used the fact that dist(Ω \Ωr̃/8,Ωr̃/4) = r̃/8. As a consequence we have that

"
B

≤ 2p

∫

Ω

∫

Ω

|D(u)(x, y)|pρ(y − x)dy dx +
24p

rp

(∫

|h|>r̃/8

ρ(h)dh

) ∫

Ωr̃/4

|u(y)|pdy.

To estimate the integral on C, we first observe that for any (x, y) ∈ C, then dist(x, ∂Ω) ≥ r̃/8 and

dist(y, ∂Ω) ≥ r̃/8. Using this information, adding and subtracting φ(x)u(x) we can then estimate as

follows: "
C

≤ 2p−1

"
C

|D(u)(x, y)|pρ(y − x)dy dx

+ 2p−1

"
C

|u(x)|p |φ(x) − φ(y)|p
|x − y|p ρ(|x − y|)dy dx

≤ 2p−1

∫

Ω

∫

Ω

|D(u)(x, y)|pρ(y − x)dy dx

+
C

rp

∫

BR

ρ(h)dh

∫

Ω r
8

|u(x)|pdx

where we used the estimate |∇φ| ≤ C
r
, and denoted R = diam(Ω).

We then conclude that there exists a universal constant C > 0 such that for any r small

∫

Ω\Ωε0 r

|u|pdx ≤ C

































rp

∫

Br

ρ(|y|)dy

∫

Ω

∫

Ω

|D(u)(x, y)|pρ(y − x)dy dx

+
1

rp

∫

BR

ρ(h)dh

∫

Ωr̃/8

|u|pdx

)

.
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It then follows that
∫

Ω

|u|pdx =

∫

Ωε0r

|u|pdx +

∫

Ω\Ωε0r

|u|pdx

≤
∫

Ωε0r

|u|pdx +C
rp

∫

Br

ρ(|y|)dy

∫

Ω

∫

Ω

|D(u)(x, y)|pρ(y − x)dy dx

+C
‖ρ‖L1(BR)

rp

∫

Ωr̃/8

|u|pdx.

We hence complete the proof of Lemma 4.2 after choosing ε0 sufficiently small, say for example

ε0 < 1/4
√

10, that
∫

Ω

|u|pdx ≤ C(r)

∫

Ωε0r

|u|pdx +C
rp

∫

Br(0)

ρ(|y|)dy

∫

Ω

∫

Ω

|D(u)(x, y)|pρ(y − x)dy dx,

as desired.

4.3. Compactness in Lp(Ω): proof of Theorem 1.3

Let un be a bounded sequence in Sρ,p(Ω). Let φ j ∈ C∞
0

(Ω) such that φ j ≡ 1 in Ω1/ j. Then the

sequence {φ jun}n is bounded inSρ,p(Rd), and so by Theorem 3.1, φ jun is precompact inΩ. In particular,

{un} is relatively compact in Lp(Ω j). From this one can extract a subsequence un j
such that un j

→ u in

L
p

loc
(Ω). It is easy to see that u ∈ Lp(Ω). In fact, using the pointwise convergence and Fatou’s lemma,

we can see that u ∈ Sρ,p(Ω). What remains is to show that un j
→ u in Lp(Ω). To that end, we apply

Lemma 4.2 for the function un j
− u, to obtain that

∫

Ω

|un j
− u|pdx ≤ C1(r)

∫

Ωε0r

|un j
− u|dx +C2

rp

∫

Br

ρ(h)dh

|un j
− u|pSρ,p(Ω)

for all small r. We now fix r and let j→ ∞ to obtain that

lim sup
j→∞

∫

Ω

|un j
− u|pdx ≤ C

rp

∫

Br

ρ(h)dh

(1 + |u|pSρ,p).

We then let r → 0, to obtain that lim sup j→∞
∫

Ω
|un j
− u|pdx = 0. �

4.4. Compactness for a sequence of kernels: proof of Theorem 1.4

Arguing as above and by Proposition 3.5, we have that there is a subsequence un j
→ u in L

p

loc
(Ω),

and that u ∈ Sρ,p(Ω). To conclude, we apply Lemma 4.2 for the function un j
− u corresponding to ρn j

to obtain
∫

Ω

|un j
− u|pdx ≤ C1(r)

∫

Ωε0r

|un j
− u|dx +C2

rp

∫

Br

ρn j
(h)dh

|un j
− u|pSρn j

,p(Ω)
.
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By assumption ρn j
≤ Cρ and so |un j

− u|pSρn j
,p(Ω)
≤ C|un j

− u|pSρ,p(Ω)
. We then let j → ∞ and apply the

weak convergence of ρn to obtain that

lim sup
j→∞

∫

Ω

|un j
− u|pdx ≤ C

rp

∫

Br

ρ(h)dh

(1 + |u|pSρ,p).

Finally, we let r → 0 to conclude the proof.

4.5. Poincaré-Korn type inequality: proof of Corollary 1.5

We recall that given V ⊂ Lp(Ω;Rd) satisfying the hypothesis of the corollary, there exists a constant

P0 such that for any u ∈ V,

∫

Ω

|u|pdx ≤ P0

∫

Ω

∫

Ω

ρ(y − x)

∣

∣

∣

∣

∣

(u(y) − u(x))

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

dydx. (4.7)

This result is proved in [12] or [23]. We take P0 to be the best constant. We claim that given any

ε > 0, there exists N = N(ε) ∈ N such that for all n ≥ N, (1.15) holds for C = P0 + ε. We prove this

by contradiction. Assume otherwise and that there exists C > P0 such that for every n, there exists

un ∈ V ∩ Lp(Ω;Rd), ‖un‖Lp = 1, and

∫

Ω

∫

Ω

ρn(y − x)

∣

∣

∣

∣

∣

(un(y) − un(x))

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

dydx <
1

C
.

By Theorem 1.4, un is precompact in Lp(Ω;Rd) and therefore any limit point u will have ‖u‖Lp = 1, and

will be in V ∩ Lp(Ω;Rd). Moreover, following the same procedure as in the proof of Proposition 3.5,

we obtain that
∫

Ω

∫

Ω

ρ(y − x)

∣

∣

∣

∣

∣

(u(y) − u(x))

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

dydx

≤ lim inf
n→∞

∫

Ω

∫

Ω

ρn(y − x)

∣

∣

∣

∣

∣

(un(y) − un(x))

|y − x| · (y − x)

|y − x|

∣

∣

∣

∣

∣

p

dydx ≤ 1

C
<

1

P0

which gives the desired contradiction since P0 is the best constant in (4.7).

5. Discussion

In this work, we have presented a set of sufficient conditions that guarantee a compact inclusion of

a set of Lp-vector fields in the Banach space of Lp vector fields. The criteria are nonlocal and given

with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. We note

that, in addition to the mathematical generality, relaxing the radial symmetry assumption on nonlocal

interactions can be useful when modeling anisotropic behavior and directional transport. The Lp-

compactness is established for a sequence of vector fields where the nonlocal interactions involve only

part of their components, so that the results and discussions represent a significant departure from those

known for scalar fields. It is not clear yet to what extent the conditions assumed here can be weakened

to reach the same conclusions. In this regard, there are still some outstanding questions in relation to
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the set of minimal conditions on the interaction kernel as well as on the set of vector fields that imply

Lp-compactness. An application of the compactness result that will be explored elsewhere includes

designing approximation schemes for nonlocal system of equations of peridynamic-type similar to the

one done in [34] for nonlocal equations.
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Appendix

Compactness in L
p

loc
topology

The following theorem as well as the proof we present here is inspired by the compactness result

proved in [18] (see also [17]) for scalar functions which uses the more flexible nonintegrability

condition of the
ρ(z)

|z|p than the one stated in (1.11).
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Theorem A.1 (L
p

loc
compactness). Suppose that 1 ≤ p < ∞. Let ρ ∈ L1(Rd) be a nonnegative radial

function satisfying

lim
δ→0

∫

|z|>δ

ρ(z)

|z|p dz = ∞. (A.1)

Suppose also that {un} is a sequence of vector fields that is bounded in Sρ,p(Rd). Then for any D ⊂ Rd

open and bounded, the sequence {un|D} is precompact in Lp(D;Rd).

As stated earlier, for radial functions with compact support, condition (A.1) is weaker than (1.11).

Indeed, (1.11) implies that ρ(z)|z|−p is not integrable near 0 which implies (A.1). One the other hand,

the kernel ρ(z) = |z|−d−pχB1(0)(z) satisfies (A.1) but not (1.11).

Similar to the argument we gave in Section 2, the proof of the theorem will make use of the

following variant of the Riesz-Fréchet-Kolomogorov theorem [6, 20].

Lemma A.2. ( [20, Lemma 5.4]) Let the sequence {Gδ}δ>0 ⊂ L1(Rd;Rd×d) be an approximation to the

identity. That is

∀δ > 0,

∫

Rd

Gδ(x)dx = Id, for any r > 0, lim
δ→0

∫

|x|>r

Gδ(x)dx = 0.

If {fn}n is a bounded sequence in Lp(Rd;Rd) and

lim
δ→0

lim sup
n→∞

‖fn − Gδ ∗ fn‖Lp = 0,

then for any open and bounded subset D of Rd the sequence {fn} is relatively compact in Lp(D;Rd).

Proof of Theorem A.1. From the assumption we have

sup
n≥1

‖un‖pLp + sup
n≥1

∫

Rd

∫

Rd

ρ(x′ − x) |D(un)(x, x′)|p dx′dx < ∞. (A.2)

Let Γδ(z) =
ρ(z)

|z|p χ{Bδ
(z). Then for each δ, Γδ ∈ L1(Rd) and is radial, since ρ is radial. Moreover, by

assumption on ρ (A.1), ‖Γδ‖L1 → ∞ as δ→ 0.We next introduce the following sequence of integrable

matrix functions

Gδ(z) =
d Γδ(z)

‖Γδ‖L1

z ⊗ z

|z|2 .

Notice that since Γδ is radial, we have

∫

Rδ

Γδ(z)z2
i

|z|2 dz =
‖Γδ‖L1

d
, i = 1, · · · , d.
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As a consequence {Gδ} is an approximation to the identity. Now for each n we have

‖un − Gδ ∗ un‖pLp =

∫

Rd

∣

∣

∣

∣

∣

∫

Rd

Gd(y − x)(un(x) − un(y))dy

∣

∣

∣

∣

∣

p

dx

≤ dp

∫

Rd

∣

∣

∣

∣

∣

∣

∫

Rd

Γδ(z)

‖Γδ‖L1

∣

∣

∣

∣

∣

z

|z| · (un(x) − un(z + x))

∣

∣

∣

∣

∣

dy

∣

∣

∣

∣

∣

∣

p

dx

≤ dp

∫

Rd

∫

Rd

∣

∣

∣

∣

∣

z

|z| · (un(x) − un(z + x))

∣

∣

∣

∣

∣

p Γδ(z)

‖Γδ‖L1

dzdx

≤ dp

‖Γδ‖L1

∫

Rd

∫

Rd

∣

∣

∣

∣

∣

z

|z| · (un(x) − un(z + x))

∣

∣

∣

∣

∣

p ρ(z)

|z|p dzdx

=
dp

‖Γδ‖L1

|un|pSρ,p(Rd)
.

By assumption on the sequence {un} (A.2), we have that for all n,

‖un − Gδ ∗ un‖pLp ≤ C
dp

‖Γδ‖L1

.

We take the limit as δ → 0 (uniformly in n) and use Lemma A.2 to conclude that un is compact in

Lp(Ω;Rd). �
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