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We investigate various properties of extremal dyonic static black holes in Einstein-Maxwell-dilaton
theory. Using the fact that the long-range force between two identical extremal black holes always
vanishes, we obtain a simple first-order ordinary differential equation for the black hole mass in terms of
its electric and magnetic charges. Although this equation appears not to be solvable explicitly for general
values of the strength a of the dilatonic coupling to the Maxwell field, it nevertheless provides a powerful
way of characterizing the black hole mass and the scalar charge. We make use of these expressions to
derive general results about the long-range force between two nonidentical extremal black holes. In
particular, we argue that the force is repulsive whenever a > 1 and attractive whenever a < 1 (it vanishes
in the intermediate BPS case @ = 1). The sign of the force is also correlated with the sign of the binding
energy between extremal black holes, as well as with the convexity or concavity of the surface
characterizing the extremal mass as a function of the charges. Our work is motivated in part by the
repulsive force conjecture and the question of whether long range forces between nonidentical states can

shed new light on the swampland.
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I. INTRODUCTION

Recent years have seen growing efforts to sharpen the
constraints that theories of quantum gravity place on low
energy effective field theories (EFTs). Within these efforts,
one of the challenges has been to quantify the notion that
gravity is the weakest force and to understand what it tells
us about the structure of long range interactions, in theories
with a quantum gravity UV completion. In particular, the
attempts to understand this question have led to various
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generalizations of the weak gravity conjecture (WGC) [1]
and extensive studies of its phenomenological conse-
quences (see e.g. [2] for a comprehensive review). In its
simplest form, the WGC requires the existence of super-
extremal charged particles, states whose mass is smaller
than or equal to their charge (in Planck units). In flat space,
a closely related—but not equivalentl—way to quantify the
weakness of gravity has led to the repulsive force con-
jecture (RFC) [1,5,6], which roughly states that theories
compatible with quantum gravity should contain self-
repulsive states, i.e. states which would feel either a
repulsive or vanishing force when placed asymptotically
far from an identical copy of themselves. Both the WGC
and the RFC place restrictions on low energy EFTs and
have implications for the spectrum of states in the theory.

'In theories of quantum gravity with massless scalars, the
WGC and the RFC are distinct. The differences become even
more apparent when one takes into account the effects of higher
derivative corrections [3,4].
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Moreover, the RFC constrains all the interactions that lead
to long range self-forces, including those coming from
massless scalar fields. A question that arises naturally, then,
is what these conjectures teach us about binding energies
and the existence of bound states.

Thus far most of the discussions of the RFC have
centered around studies of long range interactions between
two copies of the same state, i.e. self-forces. However, it
may be useful to explore what happens to the force and
binding energy when the states in consideration are not the
same, using black holes as probes. Indeed, while asymp-
totically the force between two identical extremal black
holes is known [7] to be zero,2 even in the presence of
scalar matter, very little is known about its structure when
the black holes carry different charges and represent
distinct states. Using nonidentical states as probes of long
range interactions may uncover novel features and poten-
tially new insights on the string theory landscape. As a
concrete example, in [8] we saw that the long-range force
between distinct, extremal KK dyonic black holes is always
repulsive. While this is naively surprising, it might have a
natural explanation, at the microscopic level, in terms of the
interactions between the constituent D-branes (in this case
DO0-D6 branes) and properties of bound states in the theory.
If this is indeed the case, long range forces might provide an
easier way to access some of the information encoded in the
microscopic description of the theory.

Motivated by the questions above and by our previous
work [8], in this paper our goal is to understand whether
long range forces between different extremal black holes
display any generic features, and, if so, how the latter are
correlated with specific properties of the theory they arise
in. As we will see, the scalar couplings in the theory we
examine will leave clear imprints on certain characteristics
of the black hole solutions (such as their extremality
relations and propensity to bind), which will then be
imprinted on the behavior of the long range interactions
between them.

We are going to work with extremal static black holes
solutions to four-dimensional Einstein-Maxwell-dilaton
theory, described by the Lagrangian

L= \/—_g(R —%(045)2 - }tewwwﬂy), (1.1)

where the constant a characterises the strength of the
exponential coupling of the dilaton to the Maxwell field.
For certain values of @, namely a =0,a =1 and a = \/§
the solutions for dyonic black holes, carrying both electric

’In this context, “identical” can mean that the set of electric
and magnetic charges carried by the two extremal black holes are
either exactly the same, or, more generally, that the set of charges
carried by one of the black holes is an overall positive constant
multiple of the set of charges carried by the other.

and magnetic charge, are known explicitly. Our focus will
be on the properties of the extremal static dyonic black hole
solutions for arbitrary values of a.’ The mass M of such an
extremal black hole will be a function of the electric and
magnetic charges Q and P, with M = F(Q, P), but except
for the exactly-solvable cases when a =0, 1 or /3, the
explicit form of the function F(Q, P) is unknown. One of
the main results in our work is a simple nonlinear first-order
ordinary differential equation for (a rescaled version of)
F(Q, P). Although this equation is, as far as we know,

exactly solvable only at the special values ¢ = 1 and /3,
the fact that we can express the mass in this relatively
simple way allows us to probe a number of properties of the
extremal black holes.

The long-range force F'|, between two black holes takes
the form

1 1
Flzzp Q1Q2+P1P2—1M1M2—2122 . (1.2)

where Q, P, M, and X denote, respectively, the electric and
magnetic charges,® the mass and the scalar charge, while
the subscripts 1, 2 are used to distinguish the first from the
second black hole. In our earlier work [8] we initiated a
study of (1.2), focusing on a specific class of Toda theories
which support extremal black holes that are not BPS. Here
we extend our analysis to a much broader class of dyonic
solutions, and identify a number of new features. Most
notably, the range of the parameter a controlling the gauge
kinetic coupling dictates certain geometric properties of
the energy surface M = F(Q, P) of each extremal solution,
as well as the sign of the long range interactions between
distinct ones.

In particular, using a combination of approximations,
and also numerical analysis, we conclude that the force
between nonidentical extremal dyonic black holes is
always repulsive if the dilaton coupling a appearing in (1.1)
satisfies a > 1, and it is always attractive if a < 1. In the
intermediate case a = 1, for which the extremal dyonic
black holes are BPS, the force between them is always zero.
Moreover, using geometrical arguments we show that when

’Some properties of these extremal black holes were inves-
tigated numerically in [9] and analytically in [10]. The solutions
exist for all values of a, but there is some degree of nonanalyticity
on the horizon unless a is such that a* = %k(k+ 1) where k
is an integer. Scalar curvature invariants, such as RF/°R
VARHP°N )R
values of a.

“For all the nonidentical extremal black holes that we shall
consider, we shall always take the signs of the charges of the first
and the second black hole to be the same. The case corresponding
to opposite signs for the charges would be of little interest, since
the electrostatic forces would just reinforce the gravitational
attraction. Thus, without loss of generality, we assume that all the
electric and magnetic charges are positive.

HUpo s

uupo» €tC., are finite on the horizon, however, for all
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a > 1 the energy surface M = F(Q,P) describing the
mass of each solution is convex, while for a < 1 it is
concave.

We also investigate the related question of what is the
sign of the binding energy between extremal black holes.
Thus, if the mass of an extremal black hole with charges Q
and P is M = F(Q,P), we define the binding energy
between two such black holes to be

AM = F(Q) + Oy, Py + Py) = F(Qy, Py) — F(Q2, Py).
(1.3)

Intuitively, one may expect that if AM is positive then the
two constituent black holes with charges (Q;,P;) and
(Q,, P,) should tend to repel one another, while if AM is
negative they should attract. Indeed, we find that the sign of
AM does correlate with the sign of the long-range force, for
all the EMD extremal black holes. Perhaps not surprisingly,
the sign of AM is also governed by the convexity or
concavity of the surface M = F(Q, P).

The paper is organized as follows. In Sec. Il we describe
properties of the extremal EMD black hole solutions
we will be working with. In Sec. III we derive a simple
differential equation that controls the mass of the extremal
black hole in terms of its electric and magnetic charges,
and in Sec. IV we present some solutions valid in specific
perturbative regimes. Section V is devoted to the compu-
tation of the long distance force between nonidentical
black holes, while Sec. VI discusses the binding energies.
Geometrical properties of the energy surface describing
how the mass is related to the charges are discussed
in Sec. VII. Finally, in Appendix A we include some
examples of the numerical computations that support our
results, while in Appendix B we prove certain properties
of the binding energy near the special value of the
coupling a = 1.

II. STATIC EXTREMAL BLACK HOLES IN
EINSTEIN-MAXWELL-DILATON THEORY

Purely electric or magnetic static black holes in the
EMD theory (1.1) for arbitrary values of the dilaton
coupling were constructed in [11]. The system of equa-
tions for the most general dyonic static solutions was
obtained in [12], where it was shown that they could be
reduced to a Toda-like system. It was noted there that the
equations became exactly those of the SU(3) Toda system
when a =+/3, and of the SU(2)x SU(2) Toda (or
(Liouville)?) system when a = 1, but that no explicit
dyonic solutions could be obtained for generic values of

the dilaton coupling. The dyonic solution for @ = v/3 had
been obtained by [13,14].

A formulation of the Toda-like equations for general
values of a appeared also in a recent paper [15]. With some
adaption of their notation to suit our conventions, the static

black hole solutions to the equation of motion following
from the Lagrangian (1.1) are given by

dr?
ds?> = —f(r)dt* + — + r*(H,H,,)"dQ3,
(a4 P,

) = ) (1),

b H,\ 2"
H,, '

= %H;zH%{%dt A dr + Psin0do A de,
;

F (2.1)

where O and P denote the electric and magnetic charges,
the parameter y is positive for nonextremal black holes and
equal to zero for extremal black holes, and

2

=—7. 2.2
1 + a2 (22)
Defining the inverse radial coordinate
1
=, 2.3
p=- (2.3)

the EMD equations of motion imply that the functions H,
and H,, obey the equations

1= H' \' 8 2H2—2h

(L-pp)He\'  8Q°H.™ _
H, hH?

(1-up)H,,\'  8P?H>?

where a prime denotes a derivative with respect to p. Since
our focus in this paper is on extremal black holes we shall
set 4 = 0 from now on. The EMD equations of motion also
imply a constraint, which for y = 0 reads

H? H} 2(h-1)H,H, 8Q*Hy* 8pPHI?

+ —0.
H;  Hj H,H,, hH? hH;,

(2.5)

As already mentioned, except for the cases a = 1 and
a=+73 (and, more trivially, a = 0), for which the equa-
tions are exactly solvable, no explicit solutions for dyonic
black holes are known. One approach to studying the
solutions in general is to look first for solutions as series
expansions in the asymptotic region where r goes to
infinity, which corresponds to p — 0. Thus one may seek
solutions of the form

H(p)=1+ep+ep” +ep’ +---,

Hy(p) = 1+ mp +myp® +map> + - -, (2.6)

where the e; and m; are constants. Substituting these
expansions into (2.4) with =0 (i.e., working at
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extremality), one finds that all the e; and m; for i > 3 can be
solved for in terms of (ey, e,, m;, m,), with the electric and
magnetic charges Q and P being given by
0% =2h(e7 —2e,), P2 =2h(m3 =2m,). (2.7)
The constraint equation (2.5) implies one condition on the
four free parameters (e, 5, m;, m,), namely
ey +my+ (h—1)eym; = 0. (2.8)
We shall view the constraint as determining 7, in terms of
the three remaining parameters (e, e,, m;).

We know that the extremal dyonic black hole solutions
should be characterized by just two parameters and not
three. The three-parameter solutions will in fact generically
describe singular spacetimes. This can be seen by perform-
ing a numerical integration of the equations, using the small-
p (i.e. large-r) expansions characterized by (e, e,, m;) to set
initial data for an integration to large p (i.e. approaching the
horizon at r = 0, which is p = o0). For generic choices of
(ey, €5, my) the solution develops singularities at some finite
value of p. By choosing values for two of the parameters (say
e, and m,), and then fine-tuning e,, one can home in on a
single specific value for e, that gives a solution that behaves
properly for a black hole spacetime. In fact, the proper
behavior is such that H,(p) and H,,(p) go like

He(p) ~ Cepl/h’ H, ~ cmpl/h (29)
at large p, so that the horizon has a finite and nonzero area
(see the expression for the metric in Egs. (2.1)]. By means of
a “shooting method” approach, one can find the value of e,,
for given choices of e; and m; (and of course, also of the
dilaton coupling a) that gives the well-behaved black
hole solution. Since the mass of the extremal black hole
is given by

M :2h(€1 —|—m1), (210)
this means that one can, very laboriously, collect numerical
data that would allow one to plot the mass as a function of
the electric and magnetic charges. (Recall that Q and P are
specified in Egs. (2.7) in terms of the e; and m; parameters).

In order to take into account the contribution of the
massless scalar in (1.1) to the long range force, we need to
extract the scalar charge X, which can be defined as the
coefficient of 7~! in the large-r expansion of the dilaton ¢,’

>The constant ¢, the asymptotic value of ¢ at infinity, is zero
in the present discussion. However, it is sometimes useful to
allow ¢, to be nonzero, which can be accomplished using a
global scaling symmetry of the EMD theory; see Sec. III where
we discuss this and employ it in order to rewrite X in terms of
derivatives of the mass with respect to the charges.

¢=¢m+§+(’)(r‘2). (2.11)
Thus one has
X =\h(2—-h)(m —e). (2.12)

In principle, therefore, having accumulated sufficient
numerical data from computations that give the charges
Q and P, the mass M and the scalar charge X for pairs of
extremal black holes for a given choice of the dilaton
coupling a, one could then calculate the force between
the distantly-separated black holes using Eq. (1.2). It is
evident that this would be a very time-consuming way of
trying to learn about the nature of the force as a
function of the charges Q and P for different choices
of the dilaton coupling.

Note that by substituting the near-horizon behavior of
the functions H, and H,, as given in Eq. (2.9), into the
equations of motion (2.4), we find that the constants c, and
c,, are given by

3 o1 _hl
Cp = 35 P h(h=2) Qh(h—2).

¢, = 25 QT Pty (2.13)

From this, it follows that the area of the horizon is given by

Ay =32zQP, (2.14)
and so the entropy is S = 8zQP. From these expressions
it follows that purely electric or purely magnetic
black holes have vanishing horizon area, i.e. they are
“small black holes.”

One observation that is worth noting at this point is that
if one uses (1.2) to calculate the force between a pair of
identical objects characterized by the four parameters
(e, my, e5, m,), taking the charges, mass and scalar charge
to be given by (2.7), (2.10) and (2.12), then one finds
that the force vanishes purely as a consequence of the
constraint (2.8). In other words, regardless of whether one
imposes the much more stringent condition that the
solution should describe a genuine black hole, one already
finds just from the large-r behavior of the fields that the
force between two such identical objects will vanish. The
vanishing of the force between two identical extremal black
holes then follows as a consequence. This latter result is a
particular manifestation of a general argument given in [7].

We shall make use of the fact that the force between
identical extremal black holes vanishes in the next section,
when we derive a simple equation that governs the mass of
an extremal EMD black hole in terms of its electric and
magnetic charges.

II1. A DIFFERENTIAL EQUATION FOR THE MASS

In the EMD theory, for general values of a, we know that
the mass of an extremal black hole carrying electric charge

126023-4
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O and magnetic charge P must be given by a formula
of the form

M =F(Q.P). (3.1)

The function F(Q, P) will be different for different values
of the dilaton coupling a, and furthermore it is only known
explicitly for the three special cases a =0, a =1 and

a=+/3:

a=0: M=2\0*+ P,
a=1: M=V2(Q+P),

a=+3: M= (0 + Pi). (3.2)

We do know however, on dimensional grounds, that for any

value of a the mass function F(Q, P) must be a homo-
geneous function of degree 1. That is, we know that

F(AQ,AP) = AF(Q, P). (3.3)

By differentiating this equation with respect to 4, and then
setting A = 1, it follows that

OF(Q.P)  ,0F(Q.P) _ .

Q 00 oP

(Q.P). (34)

Moreover, the scalar charge X can be expressed in terms
of derivatives of the mass with respect to Q and P°:

1 oM oM
X== ——-P—. 3.5

2 (Q 90 6P> (3:5)
The long-range force F between two identical extremal
black holes is given by

rF = Q2+P2—%M2—22, (3.6)
and, as we discussed in the previous section, this must
vanish. Plugging the expression (3.5) for the scalar charge
into the equation F = (0 gives a differential equation for
F(Q,P). Using the homogeneity relation (3.4) we can
replace the POF /0P term in the differential equation by
F — Q0F /0Q, thus giving an ordinary differential equa-
tion in which Q is viewed as the independent variable and P

This was shown in [3], based on the result in [16] that the
scalar charge X, defined as in Eq. (2.11), can also be written as
(;)(/)—Ai, where generically the scalar ¢ is taken to be equal to ¢, at
infinity. As observed in [3] (and adapted to our notation here),
there is a global shift symmetry of the EMD theory under which
=P+ P, Ay — e—%“‘/’wA”, implying for the charges that 0 —
€= and P — ¢ 2= P. Calculating M (€29 Q, e P)
in the shifted system, and then restoring ¢, = 0, gives (3.5).

is just viewed as a fixed parameter. If we furthermore define

f(Q) by writing

F(Q.P) = /8POf(Q).

we see that the equation following from requiring the
vanishing of the force becomes

Q>+ P* = 2PQf(Q)* — 8a*PQ*(9of(Q))* = 0.

This equation can be simplified even more by defining a
new independent variable x in place of Q, where

(3.7)

(3.8)

Q =Pe*™, -0 <x< . (3.9)
Finally, introducing f(x), which is just f(Q) with Q
replaced using the definition (3.9), we obtain the simple

equation

|f? + f? = cosh2ax,

(3.10)

where f" means df(x)/dx. In view of the duality symmetry
under the exchange of electric and magnetic charges, it is
evident that the required solution for f(x) must obey

f(=x) = f(x).

When x = 0, meaning Q = P, the dilaton becomes con-
stant and the black hole will just be the extremal Reissner-
Nordstrom Q = P dyon for all values of a, with mass

M = /8Q. It follows therefore that

(3.11)

f(0)=0. (3.12)

As will be seen in Appendix A, our findings from
studying the solutions of Eq. (3.10) numerically are that,
for all values of @ > 0 the function f(x) increases mono-
tonically from f(0) = 1, as x increases from 0. The gradient
f'(x) also increases monotonically from f'(0) =0 as x
increases from 0. Of course because of Eq. (3.11), f(x) also
increases monotonically as x becomes increasingly negative,
and f’(x) becomes monotonically more negative as x
becomes increasingly negative.

If we could solve Eq. (3.10), it would give us F(Q, P),
and hence we would have an explicit mass formula for
extremal black holes for all values of a, namely

M = F(Q,P) = \/8QPf(x) = V8Pe™ f(x),
Q

1
h = —log=. 3.13
where x P ogP ( )

From Eq. (3.5), we can also express the scalar charge in
terms of f(x), finding

> :%\/SQP '(x) = V2Pe™ f'(x).  (3.14)

126023-5
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As a check, we can calculate what f(x) is explicitly
for the known special cases. Actually a=0 is a
degenerate case in this parametrization, because of the
redefinition (3.9). For the others, we see from Egs. (3.2)
that we have

a=1: f(x) = coshux,

a=V3: 1) = (cosn 25) "

Nei (3.15)

As can be verified, these expressions indeed satisfy
Eq. (3.10).

Although the ODE in Eq. (3.10) looks very simple, it is
not clear how to solve it explicitly. We can, however, use
the results obtained above in order to make some obser-
vations about the force between two nonidentical extremal
black holes. Suppose we have two such black holes, with
charges (Q;,P,) and (Q,,P,). The force F, between
them is given by Eq. (1.2), and so, using the definitions
given above,

r2F1y = 2P Pye™ %) [cosha(x; 4+ x5) = f1f> = f1f3);
(3.16)

where f; means f(x;), f; means f’(x;), and so on.
Thus once f(x) is known (for a given value of a),
we can calculate the force between any pair of extremal
black holes.

Note that Eq. (3.10) provides a major computational
simplification, compared to the methods previously avail-
able to us for determining M. Previously, we would have to
do a completely new numerical integration for each choice
of O and P. Each such calculation required the use of the
shooting method to find the right choice for the expansion
coefficient e, that gave a well-behaved solution with a
regular black hole horizon. Now, by contrast, we simply
have to carry out one numerical calculation to obtain the
result for f(x). With this result, we can then immediately
find the numerical result for 7(Q, P), and hence for the
mass, for any choice of Q and P that we like. (Of course in
both approaches, we first pick a value for the dilaton
coupling a.)

n [17] Rasheed conjectured the mass formula M = 2(1 +
a®)~12(Qb + PP)V/?, with the constant b given by b = (21log2)/
(log(2 + 2a?)), for arbitrary values of a. This would imply that
our function f(x) would become f(x) = (14 a?)~1/22(2=0)/(2b)
(coshabx)'/’. However, one can easily verify that except for
a=1 and a =+/3, for which the Rasheed conjecture does
indeed (by construction) yield the known solutions, for all other
generic values of a the f(x) that results from the Rasheed
conjecture fails to satisfy Eq. (3.10). This supports a result
in [18], which also found that Rasheed’s conjecture could not be
correct for general values of a.

IV. PERTURBATIVE SOLUTIONS OF f(x)

In the absence of an explicit closed-form solution for
f(x) for general values of the dilaton coupling a, we can
look at the solution in various regimes where perturba-
tive techniques can be applied. Before doing so, we
should point out that the special choice of coupling
a = 1 will play a crucial role in our discussion. Indeed,
when a = 1 the extremal solutions are BPS, and the long
distance force between any two of them is always zero.
As we will see further below, the long distance nature of
the force (i.e., whether it is repulsive or attractive) will
be correlated with whether a is above or below this
special value.

A. Perturbations around a=1

We know that when a = 1, the solution to the Eq. (3.10)
is f(x) = cosh x. We may now consider perturbing around
a = 1, by writing

a=1+e, f(x) = coshx + eu; (x) + €2uy(x) + - - -

(4.1)

At order €, we therefore find that u;(x) must satisfy

2sinh xu| + 2coshxu; —2xsinh2x =0.  (4.2)
The solution that is regular at x = 0 is given by
2x cosh2x — sinh 2x
= 4.3
o 4sinhx (43)
Thus for a = 1 + ¢ we have the solution
2 h2x — sinh 2
f(x) =coshx + ¢ Lo AY T S AY + O(e?). (4.4)

4 sinh x

One could also consider an expansion around the other
exactly-solvable case, a = /3, but this would be of less
interest than the expansion around a = 1. Indeed, as we
mentioned above, the case a = 1 has special significance
because it supports BPS extremal solutions, whose long
range interactions vanish independently of the values of the
charges of each black hole solution. Thus, by probing the
regime close to a = 1 we shall be able to see the transition
from having attractive forces when a < 1 and repulsive
forces when a > 1.

B. Perturbative expansion for small x (Q close to P)

First, we consider a perturbative expansion for f(x)
in the regime where x is small. In view of the relation
Q = Pe** in Eq. (3.9), this corresponds to the situation
where Q is close to P.
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We can look for the perturbative solution for f(x) in
Eq. (3.10), by expanding f(x) in the form

f(X) = Zaanzn'

n>0

(4.5)

(The required solutions should be symmetric under x — —x,
since the black hole metrics must be invariant under
exchanging the electric and magnetic charges.) Writing a
in terms of a parameter k, where

@ = %k(k 1) (4.6)

and expanding Eq. (3.10) in powers of x, one can solve for
the coefficients in Eq. (4.5), finding

k K*(2k* + 4k — 1)

20 M T T @k

I3 (24K + 64k* + 523 — 18k + 34k + 19)
720(4k + 1)2(6k + 1)

Cl():l, a, =

ag = (47)

and so on. In fact, this small-x expansion can be seen to be in
agreement with an expansion for the mass of extremal EMD
black holes that was obtained in Eq. (4.9) of [18] for the case
where Q and P are nearly equal (the ¢ parameter in [18] is
equivalent to 2x in our expansion here). We have verified the
agreement up to order x'° in the expansion (4.5).

For our purposes later in the paper, it will suffice to keep
the terms just up to order x* in the expansion, and so we
have the small-x expansion

Fx) =1+ % k? + O, (4.8)

C. Large-x expansion
(large hierarchy between charges)

When x is very large and positive, so that there is a
large hierarchy between Q and P, Eq. (3.10) becomes
approximately

1
fPrf?=ge (4.9)
Thus f(x) for large positive x takes the form
eax
fx) m ————. 4.10
) 2(1+ a?) (4.10)

Since we must have f(—x) = f(x), the solution when x is
large and negative takes the form

(4.11)

V. FORCE BETWEEN NONIDENTICAL
EXTREMAL BLACK HOLES

We are now ready to examine the main issue we want to
address in this paper, which is whether long range forces
between nonidentical black holes display any generic
features that are tied to the structure of the theory and of
the scalar couplings. As we are about to see, the behavior of
long range interactions in the EMD model is controlled in a
simple way by the dilatonic coupling a. In particular, the
sign of the force between distinct extremal black holes—
whether it is attractive or repulsive—is correlated with
whether a > 1 ora < 1.

In Eq. (3.16) we gave a general expression for the long-
range force between two nonidentical extremal static black
holes in the EMD theory, for an arbitrary value of the
dilaton coupling a, which we repeat here for convenience:

P2Fiy = 2P Pye®™ %) cosh a(x; + x,) — f1f> - 115
(5.1)

The expression is written in terms of the electric and
magnetic charges (Q;, P;) and (Q,, P,) for the two black
holes, with Q; and Q, written as

Q, = e*™ P, Q, = e**2p,. (5.2)

Note that the force F(Q,, P; O, P,) between extremal
black holes with charges (Q,, P,) and (Q,, P,) necessarily
has the homogeneity property that,
F(2101,4P132002,40P2) = F(Q1, P10, P2).  (5.3)
Thus when looking at the force as a function of the charges
(Q1, Py, 0y, P,), there is really only a two-dimensional
parameter space of nontrivially inequivalent configurations
to explore, rather than the three-dimensional parameter
space one might naively have expected. That is to say, there
is not only the obvious overall scaling, under which
F(Q,,P; 05, P,) would scale by k? if all four charges
were scaled by k, but there are the two separate, indepen-
dent scalings of the two sets of charges (Q;,P;) and
(Q,, P,), as seen in Eq. (5.3).

This double scaling homogeneity is seen in the expres-
sion (5.1) for the force between the two black holes, with
the product of the two magnetic charges appearing in the
prefactor. The nontrivial charge-dependence of the force
(i.e. dependence that is not merely taking the form of an
overall scaling of the force) is then encapsulated by the two
parameters x; and x,, which characterise the ratio of the

$This homogeneity accounts, in particular, for the fact,
mentioned in footnote 2, that the zero-force property for two
extremal black holes that have identical sets of charges also holds
if the set of charges of one of the black holes is an overall multiple
of the set of charges of the other black hole.
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electric to magnetic charge for each of the black holes
through the relations (5.2).

Since the function f(x) is not known explicitly for
general values of a, we would have to determine it
numerically, by solving Eq. (3.10), in order to explore
the full (x, x,) space of nontrivial parameter values. We
can however obtain some analytical results in certain
regimes, as we shall now discuss.

A. Force between extremal black holes with a near to 1

We saw in Sec. IV A that if we consider values of a close
to a = 1, by writing a = 1 + €, the solution to Eq. (3.10)
up to order e is given by Eq. (4.4). Substituting this
expression for f(x) into Eq. (5.1) gives the force

r2F i, = ePPye®*itx2) sinh(x; — x)[H(x;) — H(x5)]

+ O(e), (5.4)

where we have defined

sinh 2x — 2x

H =
) = = inns

(5.5)

The function H(x) is monotonically increasing from
H(-o00) =—1 to H(oo) =41, with H(—x) = —H(x).
Therefore we see that the coefficient of ¢ in Eq. (5.4) is
always non-negative, for all x; and x,. It follows that F';, is
positive (repulsive) when € is small and positive (i.e. a > 1)
and the force is negative (attractive) when e is small and
negative (i.e. a < 1).

This calculation for the case where a is close to 1 suggests
that it may more generally be true that the force between
nonidentical extremal static EMD black holes is always
positive (repulsive) when a > 1, and always negative
(attractive) when a < 1. We shall now establish further
evidence to support this proposition, by considering other
regimes where we can perform analytical calculations.

B. Force between extremal black holes with x small

Since Q = €?>**P, the black holes with Q close to P
correspond to the case where x is small. Using the small-x
expansion for f(x) that we obtained in Sec. IV B, we may
substitute f(x) given by Egs. (4.5) and (4.7) into the
expression (5.1) for the force between two such black
holes, finding

1
rFp = EPIPZ[k(k =D =x)*+--], (5.6)
where the ellipses denote terms of higher than
quadratic order in the small quantities x; and x,. Since
a*> =1k(k+ 1), we see that in this regime (where the x
parameters are small) the force between two extremal black

holes is again positive whenever a > 1 and negative
whenever a < 1.

C. Force between extremal black holes with x large

Recall that large x corresponds to a large hierarchy
between the associated charges. There are several cases of
interest that we may consider here:

(i) x; large and positive, x, = 0:

Using the expression (4.10) for f(x;), and
Egs. (3.12) for f(x,), we find that the force (5.1)
between the two black holes becomes

r2F12NP1P1€20X1 1- L
V14d?

as x; becomes large. As in the previous specializa-
tions we considered, here too the force will be
positive if @ > 1 and negative if a < 1.
(i1) x; large and positive, x, large and negative:
Let us take

(5.7)

X = k ‘I’A., Xy = —k, (58)
where k is large and positive, and A is held fixed.
Using Eq. (4.10) for f(x;) and Eq. (4.11) for f(x,),

we find that the force in Eq. (5.1) becomes

2
a—1
}"2F12 ~ P]PZeZa(k+/1)

: 5.9
e (5.9)

In this regime also, the force is positive when a > 1
and negative when a < 1.
(iii) x; and x, large and positive:

Taking x| = k + 4 and x, = k, and sending k to
infinity while holding A fixed, just gives the result
that F, goes to zero, if we work at the level of
approximation of the expression (4.10) for f(x) at
large x. This is not too surprising, since when x; and
X, are both becoming very large, it means that the
electric charges of the two black holes are com-
pletely overwhelming their magnetic charges. Thus
with their charges becoming effectively (after re-
scaling) of the form (Q,,0) and (Q,,0), it means
that the charges of one black hole are just a multiple
of the charges of the other, and so, just as for
identical black holes, the force will be zero.

D. Force between nearly identical extremal black holes

Next, we take two extremal black holes with charges
(Qy, Py) and (Q,, P,), for the case

0, = PleZax’ 0, = P2€20<x+6), (510)

with € a perturbatively small parameter. Substituting into

the expression (5.1) for the force between the black holes
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and expanding to order €> we find, after making use of
Eq. (3.10) and its first two derivatives, that

r’F, = €2e** P, P,(a* cosh 2ax — f(x)f"(x)

= f@)f"(x)) + O(). (5.11)

Thus, the sign of the force is governed by the factor

G = a*cosh2ax — f(x)f"(x) = f'(x)f"(x). (5.12)

By making use of the Eq. (3.10) for f(x), and its derivatives,
one can recast the expression for G into the form

G = —a*cosh2ax + f'(x)> + f"(x)>.  (5.13)

One can also rewrite the expression for G in such as way that
all derivatives of f are eliminated, by making use of (3.10)
and its derivatives. This gives

a*sinh>2ax
G=(1-a° h2 _
(1 = a%) cosh2ax + cosh2ax — f(x)?

2af sinh2ax

- V/cosh 2ax — f(x)?

(5.14)

If one solves Eq. (3.10) numerically for some specified
value of a, and then substitutes into (5.11) or one of the
expressions for G above, one finds that the force is positive
when a > 1 and negative when a < 1, in accordance with
previous expectations. From the standpoint of numerical
accuracy, it is advantageous to use the expression for G in
Eq. (5.14), where derivatives of the numerically determined
function f(x) are not needed.

E. Force inequalities

We conclude this section by mentioning that the force is
constrained to obey certain bounds. Consider the identities

(fr£f2) + (f1 £ 15)

=i+ T+ R+ 22+ 1)

= cosh2ax; + cosh2ax, £2(f1f, + f1f5), (5.15)
where we have used Eq. (3.10) in order to obtain the second
line. Thus we see that

—cosh2ax; —cosh2ax, <2(f1f2+ f1f5)

<cosh2ax; +cosh2ax,. (5.16)

In consequence, it follows from Eq. (3.16) that the force
F|, between two extremal black holes obeys the bounds

a(x; —x,)

—sinh2w < P Soosh T (5.17)

where we have defined £, to be the positive multiple of the
force F, given by

r2F12 = 4P1P2€a<x1+x2) COSha()Cl +XZ)F12. (518)
The inequalities are not powerful enough to provide useful
information about the sign of the force, but they do place

constraints on the magnitude of the force as a function of a
and the charges.

VI. BINDING ENERGY

Now that we have seen evidence of a direct connection
between the range of the coupling a and the long distance
nature of the force, we want to examine what happens to the
binding energies in the theory. The naive expectation is that
they should exhibit the same kind of behavior, and indeed
they do. As we will show below, depending on whether
a>1 or a <1 the binding energies will be positive or
negative. Moreover, their sign will be correlated with the
convexity or concavity of the surface M = F(Q, P) which
describes the dependence of the mass on the charges.

Consider two extremal EMD black holes, with charges
(04, Py) and (Q,, P,). We may also consider a “composite”
extremal black hole, with charges (Q, + 05, P; + P,), and
then define a notion of binding energy AM as the difference
between the mass M of the composite black hole and the
sum of the masses M| and M, of the two constituents:

AM = M — M, — M,. (6.1)
Since we have introduced the function F(Q, P) as giving
the mass of an extremal black hole with charges (Q, P)
[see Eq. (3.1)], we therefore have

AM = F(Q) + O3, Py + Py) = F(Qy, Py) — F(Q2, Py).
(6.2)

It would seem intuitively reasonable to expect that if the
binding energy AM is positive, then it would be energeti-
cally favorable for the composite extremal black hole to
separate into its two component black holes. In other
words, we might expect that if AM is positive, then there
should be a repulsive force between the two constituent
black holes with charges (Q;,P;) and (Q,, P,). On the
other hand, if AM is negative, we might expect that there
would be an attractive force between the two constituent
black holes.

To examine the structure of AM it turns out to be
convenient to define the two-dimensional energy surface in
R3 with (x,y, z) coordinates (Q, P, F(Q, P)). The sign of
AM defined in Eq. (6.2) is then related to the convexity or

*We are assuming for simplicity that the composite state is
extremal. However, it does not have to be.

126023-9



CREMONINI, CVETIC, POPE, and SAHA

PHYS. REV. D 107, 126023 (2023)

concavity of the surface. First, note that the homogeneity
property F(1Q,AP) = AF(Q,P) means that we can
rewrite Eq. (6.2) as

O1+0Qr Pi+P,
2 2

AM:2}"< >—f(Q1,P1)—f(Q2,Pz)-

(6.3)

The two extremal black holes with charges (Q,, P;) and
(Q,, P,) define two points on the energy surface, namely

(Q.P,F7(Q.P)) and (Q.P,F(Q.P)). (64)
If we draw a straight line in R? joining these two points, its
midpoint will lie at

0+0Q P+P F(Q.P)+F(Q.P)
< 2 72 7 2 ) (65)

in R?, and in general it will not lie on the energy surface.
Now consider the point in R3, which does lie on the two-
dimensional surface, whose coordinates are

<Q+Q’ P+P”j__(Q+Q’ P+P’>>. (6.6)

2 72 2 72

Since the x and y coordinates of the two points (6.5)
and (6.6) are the same, the two points sit vertically one
above the other.

We can now see that if the energy surface defined by the
equation M = F(Q, P) is convex, then the point (6.6) will
lie above the point (6.5). On the other hand, if the energy
surface is concave, then the point (6.6) will lie below the
point (6.5). In other words, we have

/ / ’
Convex: F (212 ,P—H) >F(Q’P)+5E(Q,P,)’
2 2 2
/ / ,
Concave: .7-"<Q+Q ,P+P> <-7:(Q,P)+.7:(Q,P,)'
2 2 2
(6.7)
Thus, from Eq. (6.3), it follows that we have:
Convex: AM > 0,
Concave: AM < 0, (6.8)

tying the sign of the binding energy to the shape of the
energy surface.

A. Binding energy for nearly identical
extremal black holes

One can also look at the relation between the sign of the
binding energy and the concavity or convexity of the energy

surface at the infinitesimal level. Consider two extremal
black holes with charges (Q, P) and ((1 + a)Q, (1 + p)P),
where a and f are infinitesimal. Calculating the binding
energy AM given in Eq. (6.3), we find, up to quadratic order
in a and f,

AM = _%((;QWQ +f*P> +20pQP)F(Q.P).  (6.9)

Thus again we see that if the energy surface is locally convex
then AM is positive, while if the energy surface is locally
concave then AM is negative.

If we use Eq. (3.13) to write 7 (Q, P) in terms of f(x), as
F(Q,P) = /8Pe®f(x) (recalling that Q = €?**P), then
the expression (6.9) for the binding energy becomes

Pe™ "
w7 (a=B)*[a*f(x) = f"(x)].

Thus, the sign of the binding energy is governed by the sign
of a®f(x) = f"(x).

Using our expansion in Eq. (4.4) for the case when
a =1+ ¢, we see that up to linear order in €

AM = (6.10)

€
a’f(x)—f"(x) = m(sinhbc—bc). (6.11)
Since (sinh2x —2x) is positive (negative) when x is
positive (negative), it follows that a*f(x) — f”(x) is pos-
itive when a = 1 + ¢ with € positive, and negative when €
is negative. In other words, at least in the regime where a
is close to 1, the sign of the binding energy is indeed
correlated with the sign of the force between extremal black
holes that we saw previously.

As another check, we can look at the leading-order term
in a’f(x) — f”(x) when x is small, using the expansion for
f(x) in Egs. (4.6) and (4.7). We find

()~ () = gk(k = 1) +O(2).  (6.12)

which, since a* =1k(k+ 1), shows that in this small-x
regime AM is again positive when a > 1 and negative
when a < 1.

To probe the entire parameter space we have to resort to
numerical methods in order to solve for f(x) for some
chosen value of a. Our numerical results indicate that
our observations above are robust, i.e. they show that
a’*f(x) — f"(x), and hence the binding energy, is always
positive when a > 1 and negative when a < 1.

B. Binding energy between extremal black holes
with a near to 1

The general expression in Eq. (6.2) for the binding
energy between extremal black holes with charges (Q;, P;)
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and (Q,, P,) becomes, upon using the expression (3.13)
for F(Q, P) in terms of f(x),

AM .
NG = (P + Py)e™ f(&) — Pie® f(x)) — Pre®™ f(x,),
(6.13)
where
Q) = &> Py, 0, = 2Py,
(01 + @5) = (P, + P,). (6.14)

The parameter % for the composite extremal black holes is
thus determined in terms of P, P,, x; and x, by the
equation
(e20% — 2P|+ (e24% — e20%2) P, = (). (6.15)
We may assume without loss of generality that x, < x;.
It then follows from Eq. (6.15) that X must satisfy
Xy <X <X (6.16)
Rather than viewing % as a derived quantity after Py, P,, x;
and x, are specified, we may instead view Py, x;, X and x,,
subject to Eq. (6.16), as the four parameters characterizing
the parameter space of the two extremal black holes. Since
P, will then be merely an overall multiplicative factor in
the expression for the binding energy, we have just three
nontrivial parameters to consider, namely x;, X and x,,
subject again to (6.16).

Now, let us consider the situation where a is close to 1,
so as before we write a = 1 + €. To linear order in ¢, the
function f(x) is given by Eq. (4.4). We then find that to
linear order in e, the binding energy given in Eq. (6.13)
becomes

ePe™W

AM = ——— : ; ;
/8 sinh x; sinh x, sinh & sinh(% — x,)

. (6.17)

where

W(x(,X,x,) = (X — xp) sinh 2x; + (x; — %) sinh 2x,
+ x,sinh2(x; — &) + x; sinh 2(% — x,)
— X sinh 2()(1 — X2) - (x1 - Xz) sinh 2.

(6.18)

It can easily be verified numerically, by testing numerous
random choices for triples (x|, &, x,) obeying the inequality
(6.16), that the coefficient of ¢ in Eq. (6.17) is indeed
always positive. This indicates that the binding energy is
positive when € > 0 and negative when € < 0.

We have also constructed an analytical proof of the
positivity of the coefficient of ¢ in Eq. (6.17). Since
the proof is a little intricate, we have relegated it to
Appendix B.

VII. A TWO-DIMENSIONAL PICTURE

Next, we would like to examine in some more detail the
connection between the shape of the energy surface and the
sign of the binding energy, which we mentioned in (6.8).
Owing to the homogeneity F (10, AP) = AF(Q, P) of the
mass function, another way to picture the properties of
the energy surface is divide out the equation M = F(Q, P)
by M and hence obtain

P
F(u,v) =1, where u= —. (7.0

9 U ==

SIS

The shape of the curve F(u,v) =1 in the (u,v) plane
captures the characteristics of the energy surface. From
the expressions M = \/8QPf(x) and Q = Pe** in Sec. Il
we see that the curve F(u,v) =1 can be written para-
metrically as

eax e —ax

u(x) = m, v(x) = W(X) (7.2)

In the positive quadrant that we are considering, the
F(u,v) =1 curves run from a point on the positive »
axis (corresponding to x = —oo0) to a point on the u axis
(corresponding to x = +o0).

As can be seen in the examples plotted in Appendix A,
the F(u,v) = 1 curves are concave if @ > 1 and convex if
a < 1. Note that when the curve F(u, v) = 1 is concave,
the energy surface M = F(Q,P) is convex, and vice
versa. This is just an inherent feature of the two different
but equivalent ways of characterizing the same informa-
tion contained in the mass function F(Q, P). This may be
seen explicitly as follows:

Consider first the case where the energy surface is
convex, which means that AM > 0 [see Eq. (6.8)]. By
Eq. (6.2), this means that

AM =F(Q1+Q5,P\+P,y)—=F(Q1.P) = F(Qs,P,) >0.
(7.3)

Since F(Q,P;) =M, and F(Q,,P,) = M,, it follows
that

AM = (M, +M2)[.7-“<Q' 0 P +P2> —1} > 0,

M, +M,"M, +M,
(7.4)
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where we have used the homogeneity property F (1Q, AP) =
AF(Q, P).Thepoints (u;, v,) and (u,, v,) inthe (u, v) plane
lie on the curve F(u, v) = 1, where

Y Py O P
Uy=—, vV=—-, Uy=—n, Up=—"-. (7.5)
M, M, M, M,
Now define the point (i, ), where
P +P
i :M’ 7 :L_ (7.6)
M, + M, M, + M,

This point lies on the straight line joining (u;, v;) to (u,, v,),
since it is of the form

(it,9) = (uy,v1) + Auy —u,vo—vy)  (7.7)
with
M
A=—"2 . (7.8)
M, + M,

Since Eq. (7.8) implies that A lies somewhere between 0
and 1, it follows that the point (&, 7) mustlie berween (uy, v,)
and (u,, v,). It follows from Eq. (7.4) and the definitions
(7.6) that when AM > 0 we must have F(it, ) > 1.In other
words, the point (&, 7) in the (u, v) plane lies outside the
curve F(u, v) = 1.'” That is to say, the curve F(u,v) = 1
must be concave.

In summary, we have shown that if the energy surface is
convex then the curve F(u,v) = 1 is concave. Of course
the converse is true also.

Finally, using the standard formula for the radius of
curvature of a parametric curve (u(x), v(x)), namely

W — v

we see from (7.2) that here

2a
F(x)

The radius of curvature K is therefore a positive quantity
multiplied by Eq. (7.10). Thus the sign of a’f — f”
provides the criterion for determining the convexity or
concavity at each point along the curve. As is to be
expected from our previous discussions of convexity and
the sign of the binding energy, the quantity a’f — f” is the
same one that governed the sign of the binding energy in
Eq. (6.10). Thus, we see a direct correlation between the
range of the coupling a (larger or smaller than one) and the
curvature of the energy surface.

(@®f(x) = f"(x)).

(7.10)

""Note that because of the homogeneity of the function
F(u,v), the curve F(u, v) = k is a scaled version of the curve
F(u,v) =1, with the points (u,v) on the curve scaled to
(ku, kv).

VIII. CONCLUSIONS

One way in which gravity being weak affects low energy
EFTs is through the behavior of long range interactions in the
theory. The latter can also be mediated by moduli—massless
scalars fields with vanishing potentials—which are ubiquitous
in string theories. Thus, despite their simplicity, long range
forces can potentially carry useful information about quantum
gravity signatures on low energy physics. This observation
was one of the motivations behind the RFC. However, thus far
essentially all of the work on probing long range interactions in
the context of the Swampland program has been restricted to
self-forces. It is natural to wonder if interactions between
nonidentical states can teach us new lessons, beyond what can
be accessed by inspecting self-forces.

In this paper, motivated by the results of [8], we have
examined long range forces and binding energies between
nonidentical static extremal dyonic black hole solutions to
the simple EMD model (1.1). These solutions are known
explicitly only for three special values of the dilaton
coupling constant, namely a =0, a=1 and a = V3.
For generic values of a the black hole solutions can only
be obtained numerically. Although in principle the extremal
black hole mass and the scalar charge must be determined
purely in terms of the electric and magnetic charges, it
would be very laborious to explore the parameter space of
the solutions, in order then to calculate the force between
two black holes, by such numerical methods.

A key result in this paper is that we were able to find the
simple first-order ordinary differential equation (3.10) for a
function f(x), from which the mass and scalar charge can
then be calculated. Although we have not been able to find
the explicit solution to this equation (except at a = 1 and
a = +/3), it is very easy to solve it numerically, performing
just one numerical integration for any chosen value of a.
Having obtained the numerical solution for the chosen
value of a, all information about the mass and the scalar
charge is then accessible. In various special cases, such as
when the ratio of Q to P is very large or very small, or when
Q is very close to P, or when the dilaton coupling a is very
near to 1, one can solve for f(x) by perturbation methods.

We were then able to identify a number of novel features
in the behavior of the mass function, and the force between
nonidentical extremal black holes. First of all, the range of
a determines the shape of the surface relating the extremal
mass of each black hole solution to its electric and magnetic
charges, M = F(Q, P). In particular,

a > 1= M is convex (8.1)

a <1 = M is concave. (8.2)
Moreover, the sign of the long range force between distinct
extremal black holes is also correlated with the range of the
coupling, meaning that
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(8.3)

a > 1 = repulsive force

a < 1 = attractive force, (8.4)
with the borderline case a = 1, for which the correspond-
ing dyonic black holes are BPS, always giving a vanishing
force. Finally, as naively expected, the sign of the binding
energy AM is correlated with the behavior of the long-
range force.

A caveat of our discussion about the binding energy is
that our analysis assumes—for simplicity—that both the
initial and final states are extremal black holes. This, of
course, does not have to be the case. Indeed, the naive
correlation between the long distance force and the ability
to form bound states might cease to exist if the final states
are nonextremal. It would be interesting to better under-
stand this case, and what the implications of an attractive or
repulsive force would be in that case.

A natural question is whether our results can be con-
nected with the RFC—especially its strongest formulation,
in terms of strongly self-repulsive states. It is interesting
that our results indicate that in the EMD theory with a < 1,
all extremal dyonic black holes attract all other such
solutions (assuming they carry different charges). This
statement in itself is compatible with the RFC which, after
all, does not require strongly self-repulsive multiparticle
states to be black holes. However, it does raise the question
of whether there is a more fundamental distinction between
theories with @ > 1 or a < 1, and if so, what is its origin.
Independently of the RFC, it would be valuable to identify
sharp criteria for the existence or absence of bound states.
A more detailed understanding of binding energies and
bound states is not only relevant to flat space but also
to anti—de Sitter space, where the concept of repulsive
forces needs to be expressed in an entirely different way
(see e.g. [19-21]). We wonder if some of the features we
have identified have an analog description in anti—de Sitter,
and how they may be encoded in the dual CFT. We would
like to return to these questions in the future.
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APPENDIX A: NUMERICAL RESULTS

In this appendix, we collect a few representative plots
constructed by first obtaining numerically-integrated

f(x)
8 —
6 |-
4 =
2 =
Il Il Il Il X
-4 -2 0 2 4
FIG. 1. The function f(x), calculated numerically for a = 1.
v(X)
15f

L Il L L T L T L L U(X)
0.5 1.0 1.5

FIG. 2. Plots of F(u,v) =1 for a =1 (convex); a = 1 (flat);
a=+3 (concave); and a = 3 (concave, outside the a = V3
curve). Note that the endpoints of the curves occur at

u:%\/l—l—az, v =0 when x = c0 and u = 0, v:%\/l—i—az
when x = —oo. All the curves pass through the point u = v = \/%

when x = 0, which corresponds to the Q = P dyonic Reissner-
Nordstrom solution for all values of a.
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a2 f(x)-f"(x)
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FIG.3. The function a®f(x) — f”(x) plotted for a = § (left-hand figure) and a = 2 (right-hand figure). These illustrate the fact that this

function is negative for a value of a < 1, and positive for a value of a > 1. From Eq. (7.10) this shows that the curve is convex for a = 5

and concave for a = 2.

solutions of Eq. (3.10) for the function f(x), for some
representative values of the dilaton coupling a.

First, in Fig. 1, we give a plot of f(x) for an example
value of a. Since the function f(x) looks broadly similar for
all values of « it is not particularly instructive to display it
for different values. We have chosen to plot it for a = %

Figure 2 is a plot of the curves F(u,v)=1 for
representative choices of the dilaton coupling a, where
u=Q/M and v = P/M. The curves were obtained by
solving Eq. (3.10) numerically for the various choices of a
and then plotting the parametric curve (u(x), v(x)) as given
by Eq. (7.2).

In Fig. 3, we plot the function a*f(x) — f"(x) for a
couple of values of a. The sign of this governs the sign of
the radius of curvature of the curve F(u, v) = 1.

APPENDIX B: POSITIVITY PROOFS FOR
BINDING ENERGY NEAR a=1

Here we establish some results for the positivity of the
coefficient of € in Eq. (6.17). Recall that, as discussed in
Sec. VI B, the parameter space of the charges (Q,, P,) and
(Q,, P,) of the two extremal black holes in this discussion
can, without loss of generality, be fully characterized by
the three nontrivial parameters x;, X and x, subject to the
condition (6.16), i.e. x, < X < x, together with the charge
P, which just enters the expression for the binding energy
as an overall scaling factor. (See Egs. (6.14) for the
definitions of x;, ¥ and x, in terms of the charges.)

Taking into account the signs of the sinh denominators in
Eq. (6.17), it can be seen that the propositions that we wish
to establish are as follows:

(1) If0 < X2 < X1 then W(xl,fc, XQ) > 0.

(2) If X2 < O < X1 then W(xl,fc,xz) Z O if X < X < 0

and W(.Xl,j\C,Xz) < 0if O < X < X1.

(3) If Xy < X1 < 0 then W(xl,fc, XQ) < 0.

The strategy that we shall follow in order to establish
these properties of the function W(x,%,x,) is to think
first of fixed endpoints x; and x,, with x, < x;, and then
allow X to range in the interval between the endpoints. An
important feature of the function W(x,, %, x,), defined in

1
2

Eq. (6.18), is that although it depends on x;, X and x, both
as arguments of hyperbolic functions and with linear
dependence as prefactors, it has the property that after
differentiating with respect to any of x;, X or x,, the
resulting function has dependence on that coordinate only
as an argument in hyperbolic functions. This will mean that
we can easily and explicitly solve for the locations of
stationary points of W(x, %, x,).

To establish proposition 1, we first note that W(x,, &, x, ),
defined in Eq. (6.18), vanishes when X = x, or X = x;.
Next, viewing W(x;, &, x,) as a function of %, we look for
the values of X for which d—‘i W(xy,%,x,) = 0. This gives a
quadratic equation for d = ¢*:

A

d*(x) = Xy + xpe720 — x e722)

— 4d sinh x, sinh x, sinh(x; — x5)

—l—xl —XZ+X262x' —X1€2x2 =0. (Bl)
It can easily be verified that only one for the two roots for d
corresponds to a value of X that lies inside the interval
Xy < X < x;. Thus we know that W(xy, %, x,), viewed as a
function of %, vanishes at ¥ = x, and X = x, and it has just
one stationary point in the interval x, < X < x;. It remains
only to establish whether W(x, &, x,) increases from O to a
positive maximum and then decreases to 0 again as X ranges
from x, to x;, or whether instead it decreases from O to a
negative minimum and then increases to O again. This
question can be settled by looking at the sign of
Hy(x),x,) = W (X1, 8.20) |5,

Viewing H,(x1, x,) as a function of x; > x, with x, held
fixed, its can be seen that H,(x;,x,) vanishes when
X| = x,, and that d—‘;le(xl,xz) has two zeros, when
2(Sinh 2x1 — 2.X'1> ezxz_

eQx] — 62x27 erl = 1= 5
e —1-2x,

and

(B2)

The first root lies at x; = x,, while the second occurs for
X; < x,, which lies outside the range x, < x; that we are
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considering. With H,(x;,x,) and dilez(xl, X,) both van-
ishing at x; = x, we turn to the second derivative, finding

d?

EHz(xl,.Xé) = 4(Sinh2X2 — 2XQ).
1

X=X

(B3)

Since x, is assumed to be non-negative this implies that
the second derivative is non-negative, and therefore since
H,(xy, x,) has no turning points for x; > x,, it follows that
we must have
HQ(X],Xz) > 0 for X1 > X3. (B4)

Consequently, we have shown that when 0 < x, < xi,
the function W(x,, %, x,) obeys

W(Xl,)%, Xz) > (0 for Xy < X< X1, (BS)
with W(x;,%, x,) being equal to zero for ¥ = x, and
X = x;. This completes the proof of proposition 1.

To establish proposition 2, which is for the case
where x, <0 < x,, we note that W(x,,*,x,) vanishes
when X = x,, when X = x;, and when X = 0. Since, as
we showed previously, % W (xy, X, x,) vanishes at just two

values of fz, it must therefore be that one of these roots
lies in the range x, < X < 0 and the other in the range
0 <X < x;. This means that one possibility is that
W(x;,%,x,) increases from 0 at % = x,, then falls to 0
again at X = 0, and then decreases as X becomes positive,
before rising to zero again as X reaches x;. The other
possibility is that W(x,, %, x,) decreases from 0 at ¥ = x,,
then rises to O again at X = 0, and then increases as X
becomes positive, before falling to zero again as X reaches
x;. To settle which of these occurs, we can examine the sign
of LW(x;,%,x,) at & = 0.

Defining Ho(x;,x,) = % W(x;, &, x,)
that d%lHo (x1,x,) = 0 at two values of x|, namely where

+—0» 1t can be seen

2% _ 1 _
o2 e 1—2x,

ele :1, and =e A
e 2 —1] +2.X'2

(B6)

Writing x,, which by assumption is negative here, as
Xy = —% p where p > 0, we see that the second root is at

_ 1.2 1.3 1 .4
g _ €= 14p 3PP 4P gt

e =
e’ —1—p p*+gp’+5ptt

<1, (B7)

and therefore this root occurs for x; < 0, which is outside
the assume range x; > 0. Thus the function Hy(x;,x,),
viewed as a function of x;, has no turning points in the
range x; > 0.

With H(x),x,) and ;& Ho(x;,x) both vanishing at
x; = 0, we calculate the second derivative, finding

&

WHQ(Xl, XZ) 0 = 4(S1nh 2)62 - 2)62), (BS)
1

X1=

which is negative since x, is assumed to be negative
here. Therefore since H(x;,x,) has no turning points
when x; is positive, it follows that Hy(x, x,) is negative
for all x; > 0. Thus we have shown that the sign of
4 W(x;,% x,) is negative when & = 0. By the earlier
argument, we therefore have that in this x, < 0 < x; case
under discussion,

W(x;,%,x,) >0 when x, <X <0,

W(x;,%,x,) <0 when0 <32 < x,. (B9)
This completes the proof of proposition 2.

Finally, to establish proposition 3 we note that the
function W(x;,%,x,) has the symmetry W(—x,, —%, —x;) =
—W(x,,%,x,). Therefore having already established in
proposition 1 that when 0 < x, < X < x; it must be that
W(x,%,x,) >0, it immediately follows that when
X, <X <x; £0 it must be that W(x,,%,x;) <0. This
proves proposition 3.

In summary, the results above provide a general proof
that the binding energy AM defined by Eq. (6.1) is positive
when the dilaton coupling is of the forma = 1 + e and e is
small and positive, and AM is negative when € is small and
negative.
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