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ABSTRACT

lllicit Wildlife Trade (IWT) is a serious global crime that negatively impacts biodiversity, human health,
national security, and economic development. Many flora and fauna are trafficked in different prod-
uct forms. We investigate a network interdiction problem for wildlife trafficking and introduce a new
model to tackle key challenges associated with IWT. Our model captures the interdiction problem
faced by law enforcement impeding IWT on flight networks, though it can be extended to other
types of transportation networks. We incorporate vital issues unique to IWT, including the need for
training and difficulty recognizing illicit wildlife products, the impact of charismatic species and geo-
political differences, and the varying amounts of information and objectives traffickers may use
when choosing transit routes. Additionally, we incorporate different detection probabilities at nodes
and along arcs depending on law enforcement’s interdiction and training actions. We present solu-
tions for several key IWT supply chains using realistic data from conservation research, seizure data-
bases, and international reports. We compare our model to two benchmark models and highlight
key features of the interdiction strategy. We discuss the implications of our models for combating
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IWT in practice and highlight critical areas of concern for stakeholders.

1. Introduction

Ilicit Wildlife Trade (IWT) is a form of transnational
organized crime that creates a wide array of issues for soci-
ety and the environment (Gore et al., 2019). Although the
actual number is contested, one estimate places the eco-
nomic value of IWT between US$5 billion and $23 billion
annually (UNODC, 2017). IWT causes harm in various
ways, including introducing zoonotic diseases to human
populations, biodiversity loss, the proliferation of invasive
species, land degradation, and threats to national security
and legitimate economic enterprises (Avis, 2017; UNODC,
2020; Hubschle and Shearing, 2021). The COVID-19 pan-
demic and the vast subsequent harms to human and finan-
cial well-being have starkly illustrated the potential global
impact of zoonotic diseases, for which wildlife trade - both
legal and illegal - is a potential vector (UNODC, 2020).
Despite its prevalence and social and economic impact, IWT
has received relatively less attention and enforcement effort
from authorities. This makes it both less risky and more
profitable for traffickers than many other illicit trades
(Nuwer, 2018; Utermohlen and Baine, 2018). Similar to
other illicit trades, IWT activities are managed through com-
plex supply chains with extensive geographical reach from
harvest to end-users, a wide variety of species, various

product types (perishable, live, processed, packaged, etc.),
and elusive, opportunistic, agile criminals. Some of the
impacted industries are furniture (e.g., rosewood), decor/je-
welry (e.g., ivory), fashion (e.g., reptile skins, big cat skins),
cosmetics (e.g., agarwood, wild orchids), food and medicine
(e.g., pangolin, rhino horn, bear bile), pets and breeding
(e.g., parrots, freshwater turtles, and great apes), and seafood
(e.g., caviar, marine turtles) (UNODC, 2020).

Although the majority of poached wildlife comes from
developing countries, both developed and developing coun-
tries are responsible for the demand (UNODC, 2017).
Hence, nearly every country in the world plays a role in
wildlife crime as a source, transit hub, or destination for
illegal wildlife products. International trafficking being a
broad issue (many species and countries) and traffickers
being adaptable (species and country displacement) makes
network interdiction a powerful approach for combating
IWT. The international transit stage, be it by air, sea, or
land, is one of the most vulnerable points of the illicit sup-
ply chain (UNODC, 2020). For high-value products such as
ivory and rhino horn, the main international transportation
mode is air transit. Between 2014 and 2019, 62% of all rhino
horn was seized in air transit (UNODC, 2020). Seizures
occurred at either transit nodes (e.g., Turkey (Awel, 2019))
or at destinations (e.g., Vietnam, Hong Kong, etc. (Leung,
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2019; Linh and Thuy, 2019)). Hence, in this work, we utilize
data from air transit networks to test our models.

Customs agents play an important role in enforcing inter-
national wildlife trade statutes; hence, they need to be
enabled and motivated to detect and prevent wildlife traf-
ficking. One difficulty for law enforcement is the identifica-
tion of species. Most controls are specific to certain species,
and it may be possible to evade controls by claiming a pro-
tected species is a non-protected look-alike or has a different
country of origin. Although species that are commonly the
focus for conservation groups, such as elephants and rhinos,
also referred to as charismatic species, dominate headlines
with demand for their ivory and keratin horns, IWT
involves a much larger group of species. In February 2022, a
European eel trafficker was given a 15-month prison sen-
tence and a fine of 7,200,000 GBP. Media reports noted that
the eel trade was as lucrative as the cocaine trade, but it
received less media attention (Sharrock, 2022). The sophisti-
cation of concealment methods used is increasingly on par
with those normally associated with drug smuggling. For
example, in June 2018, Sri Lankan customs officials in
Colombo Airport discovered 32 likely endangered geckos
and lizards in a DHL shipment of computer towers.
Furthermore, officials may be unfamiliar with the appear-
ance and protected status of non-native species. These diffi-
culties are further compounded by the variety of potential
product forms (live, processed meat, fur, bones, jewelry,
fashion items, powders, etc.). Further training for customs
officials to profile suspect shipments and identify the species
within can enhance the likelihood of successful interdiction.
Investments in training can take the form of educational
seminars on species identification, relevant laws, common
methods of concealment, and proper procedures for success-
ful interdiction. Training can also include investment in
technology to improve communication on shipments or
detection and sniffer dogs to quickly screen a large number
of passengers (Utermohlen and Baine, 2018). Unfortunately,
training investments are dampened by the typically smaller
amount of resources allocated to the detection and investiga-
tion of wildlife trafficking in comparison with other illicit
trades (UNODC, 2020). In this study, we directly incorpor-
ate the decision to train at a specific interdiction location
into the optimization model to capture this issue while con-
sidering limited resources.

Another key issue that differentiates IWT from other
forms of illicit trade is the lack of enforcement resources
and inconsistent enforcement efforts between countries and
across species. The Convention on International Trade in
Endangered Species of Wild Fauna and Flora (CITES) has
184 member parties and affords some form of protection to
over 37,000 species of wild fauna and flora ((cites.org).
CITES is not intended to replace national laws, and they
state that the convention “provides a framework to be
respected by each Party, which has to adopt its own domes-
tic legislation to ensure that CITES is implemented at the
national level.” National laws and penalties for wildlife traf-
ficking vary greatly and can strongly impact the success of
interdiction efforts. Providing a global assessment of wildlife

crime is challenging, because every country protects and
acknowledges its animals, fish, timber, and other plant life
in different ways (UNODC, 2020). Many countries focus on
laws relating to domestic species, and monetary fines can be
extremely inconsistent, with maximum punishments being
as low as 50 USD in some countries but reaching 800,000
USD in others (Broussard, 2017). In addition, even if a
country has laws in place, a case will still need to success-
fully move through the judicial system before penalties can
be levied. There are substantial differences between countries
in regard to their judicial system and law enforcement capa-
bilities (The Global Organized Crime Index, 2021).

These differences and difficulties highlight a distinctive
feature of IWT; specifically, for some non-charismatic spe-
cies, the risk of getting caught or the associated penalties for
traffickers may be so low that they have no impact on traf-
ficking routes or only impact certain countries. Many papers
in the network interdiction literature study traffickers that
seek only to minimize their probability of detection. Other
works look at models where interdiction efforts lengthen
individual arcs to increase the total cost of a path. Both of
these approaches are insufficient to capture the spectrum of
utility functions that wildlife traffickers may have because
they fail to capture the interplay between increased detection
risk and variation in penalties due to the country of detec-
tion. To close this gap, we model three different types of
utility functions for the trafficker and discuss their impact
on the optimal interdiction actions.

We introduce a novel model and two benchmark models.
The first benchmark we introduce is the naive traffickers
model. It represents the current state for many products in
IWT that are not charismatic and do not attract substantial
enforcement attention. In this model, traffickers only seek to
minimize their flight/transit costs across the network with-
out regard for interdiction efforts. This is a realistic model
when traffickers have no information about enforcement
efforts, the probabilities of detection are low, or penalties for
IWT are small. This model provides a good benchmark for
the many species that are not the focus of international
enforcement attention. The second benchmark model
focuses on minimizing the probability of detection and rep-
resents the heavily protected and publicized products such
as trafficking rhino horns, ivory, or cheetah cubs. This
model is appropriate for products where getting caught is
“game over” for the involved traffickers, and those risks out-
weigh any costs for transit or variations in penalties between
countries. The issue with these benchmarks is that they rep-
resent two extremes that are only valid for limited cases,
and they fail to capture the variation in penalties for traf-
fickers across countries. The third model, our novel model,
focuses on traffickers who minimize their total penalty when
traveling across the network. The objective considers (i) the
cost of traveling a specified route, (ii) the likelihood of get-
ting caught at various locations along the route, and (iii) the
penalties associated with being caught in various countries.
This new objective allows us to investigate a much broader
set of scenarios, and the model captures both of the previous



models’ insights at the extreme ends of the parameter
values.

Our work makes several contributions to the literature.
First, we introduce a new model that captures IWT charac-
teristics, specifically the need for training customs agents in
various locations. Second, we utilize a combination of real
seizure data and scientific reports on IWT to form a com-
prehensive set of origin and destination countries for traf-
ficking. Third, we use real data on flight routes, flight prices,
and countries’ resilience with respect to organized crime to
create realistic instances for testing our models. Lastly, we
compare the results with two other benchmark models and
derive practical insights into strategies for combating IWT
through customs inspection. The combination of these con-
tributions makes a strong first step into determining an
effective systematic approach for combating IWT.

The remainder of this article is organized as follows. In
Section 2, we discuss the existing literature on network
interdiction and wildlife trafficking and highlight the contri-
butions of this study. Section 3 introduces the models and
their assumptions. In Section 4, we discuss solution
approaches for the models. In Section 5, we discuss the data
sources and experimental design. In Section 6, we analyze
the results of the models and derive key insights for combat-
ing IWT. Finally, Section 7 summarizes our contributions
and insights.

2. Literature review

Our work focuses on applying and adapting techniques
from the network interdiction literature to IWT Networks.
Existing models have several deficiencies that limit their
ability to handle the unique challenges of disrupting IWT.
However, when properly adapted, these methods have the
potential to drastically improve efforts to curb IWT activity.
Our literature review considers relevant works in the net-
work interdiction literature and wildlife crime literature to
highlight opportunities for further study and new applica-
tions of existing methods.

2.1. Interdiction of illicit networks

Network interdiction is an important class of problems in
the family of bi-level optimization, where the leader takes
interdiction actions that block or inhibit the follower’s oper-
ations by impacting the follower’s objective, feasible region,
or both. There is a large body of literature on network inter-
diction and most interdiction models fall into one of two
classes: maximum flow or minimum cost formulations.
Wood (1993) and Cormican et al. (1998) both present early
models where the focus of interdiction actions is to minim-
ize the maximum flow of goods through a network. Golden
(1978) and Israeli and Wood (2002) provide examples of
shortest-path network interdiction formulations where the
goal is to maximize the length of the shortest path through
the network using the available interdiction actions. We
focus on shortest-path network interdiction in this work but
the literature review by Smith and Song (2020) provides a
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comprehensive survey on network interdiction and the solu-
tion approaches. The vast literature on network interdiction
has yielded many effective techniques for quickly solving
these problems, including the dualize-and-combine tech-
nique utilized by Golden (1978) and Israeli and Wood
(2002). This technique, which we employ in our models,
enables the conversion of the bi-level optimization problems
into an equivalent single-level optimization under certain
conditions.

Network interdiction can be effectively used to model
and solve problems related to disrupting illicit networks by
respective law enforcement or other defense actors, such as
supply chain or transportation networks supporting guns,
drugs (Malaviya et al, 2012; Baycik et al., 2020; Jabarzare
et al., 2020), nuclear weapons (Morton et al, 2007) or
human trafficking (Keskin et al, 2021), among others. The
recent study of Anzoom et al. (2022) provides a comprehen-
sive overview of the literature on illicit networks and how to
disrupt them. Their review indicates the gap for more prob-
lem domains and related solutions for illicit networks, espe-
cially for human trafficking and IWT. Law enforcement
interdiction in wildlife trafficking and seizures of illicit
goods are important tools in the fight against illegal wildlife
trafficking. Currently, it is believed that seizures only cap-
ture a small portion of IWT, and increased interdiction
efforts are needed to curb IWT activity (UNODC, 2020).
However, IWT brings several new challenges to network
interdiction, such as the need for training and high variation
in penalties between countries, which is not included in pre-
vious research (Smith and Song, 2020).

2.2, lllicit wildlife poaching and trafficking

There are currently two major streams of research at the
intersection of operations research and IWT: illicit network
identification and patrol routing. Although drug network
interdiction has been studied widely, South and Wyatt
(2011) and Magliocca et al. (2021) demonstrate the differen-
ces between illicit network structure and modus operandi.
Noting the differences, both studies recommend alternative
approaches to interdict these networks. Siriwat and Nijman
(2023) study the illegal rosewood trade in Thailand and gen-
erate regional maps of trafficking networks throughout the
country using seizure data.

Although the application of network interdiction
approaches to large-scale wildlife trafficking networks has
been limited, game-theoretic and bi-level optimization
approaches have been used more widely in the context of
interdiction at the source of the illicit wildlife supply chain.
These works focus on the illegal poaching (trapping and/or
killing) of animals in the areas where they naturally occur,
particularly in protected wildlife conservation areas. Poaching
is one of the primary sources of illicit wildlife products and is
a major challenge for the protection of wildlife species glo-
bally (Nijman et al, 2019). Increased poaching rates are
unsustainable for wildlife populations and threaten conserva-
tion efforts. Due to these reasons, there have been several
studies on optimizing patrol planning for conservation area
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protection, preventing poaching at the source. In many pro-
tected areas, there are limited rangers and other resources
(e.g., budget) to patrol a vast area. The main goal of these
studies is to recommend patrol routes to protect endangered
animals against poachers (Haas and Ferreira, 2018; Xu et al.,
2020; Moore et al., 2021). In most studies, the optimal inter-
diction strategies are planned in a Stackelberg security game
(e.g., green security games) framework (Nguyen ef al., 2013;
Nguyen et al., 2016). Haas and Ferreira (2018) present two
data-based, analytical software tools to plan more effective
interdiction patrols for rhino poaching in wildlife reserves.
Xu et al. (2020) presents a general patrol routing framework
against a black-box poaching prediction model. More specif-
ically, their framework optimizes directly over the space of
feasible patrol routes and guarantees the implementability of
any generated patrol strategy. Moore et al. (2021) utilize spa-
tial optimization algorithms to allocate efforts of ranger
patrols throughout Nyungwe National Park, Rwanda, and
construct a Pareto efficiency frontier.

Patrol routing and illicit network identification are both
important steps in reducing the prevalence of IWT.
However, the majority of this work is regional in focus, and
the existing sources of international seizure data are limited
and biased in terms of the geographies and species repre-
sented (UNODC, 2020). Given the prevalence of species and
geographic displacement in IWT supply chains (UNODC,
2020), it is critical that interdiction and detection efforts are
expanded to an international scale. Our work offers an
important step in this direction. Specifically, we contribute
to the literature with domain-specific modifications of exist-
ing interdiction models, including the need for training. In
addition, we incorporate the trade-off between node inter-
diction, which can be used to target multiple wildlife traf-
ficking networks simultaneously at central transit hubs, and
arc interdiction, which can be used to target specific routes
with greater precision and reduced cost. We also introduce
a new objective that captures the uneven enforcement land-
scape that is characteristic of wildlife trafficking. These
adaptations are key to leveraging the powerful tools available
in the network interdiction literature to tackle IWT on an
international scale without omitting the key characteristics
that make the trade difficult to disrupt. In the next section,
we present our interdiction models and their formulations.

3. Mathematical model

We study three network interdiction games, two of them
modifications of existing models in the literature and a third
that introduces a new objective that captures unique charac-
teristics of the wildlife trafficking domain. The new model
introduces a multi-objective approach that is far more realis-
tic for wildlife trafficking than other models available in the
literature. It also presents several new challenges with solu-
tion speed, which we discuss and resolve in subsequent sec-
tions. In these models, the interdictor represents law
enforcement authorities, which can invest limited resources
to increase the probability that the evader is detected. The
evader represents a wildlife trafficker, who attempts to

smuggle wildlife illegally from an origin s to a destination
node t in the directed network G = (V,E). We assume that
the transportation network structure is known, which is rea-
sonable for international trafficking as points of entry into
countries are limited and often heavily patrolled by law
enforcement. We also assume a full information game,
where the interdictor (leader) fully understands the response
dynamics of the evader, and the evader (follower) has full
knowledge of the interdictor’s actions. Note that in future
works, both of these assumptions may be relaxed. Both the
interdictor and evader act rationally (optimize their utility)
and use a pure strategy. Detection is probabilistic, as author-
ities can not screen everyone and, even if they do screen a
trafficker, they may fail to identify illicit products (UNODC,
2020). Specifically, we incorporate a set of probabilities of
detection at nodes and along arcs depending on the interdic-
tion actions taken. We model the interdiction problem as a
shortest-path interdiction problem because, in a wildlife traf-
ficking context, it is the most intuitive formulation based on
the available data for estimating parameters, the likely
impact of interdiction actions, and the observed shipment
sizes. With a maximum flow formulation, there is no clear
path to estimate arc capacities from available data, in con-
trast with estimating increased costs along arcs. It is not
realistic to assume that authorities can limit the total flow of
illicit wildlife products through a network with existing
interdiction resources. In addition, shipment volumes are
often relatively consistent within a particular transit mode
(i.e., passenger air, ocean freight, mail), as is common in
licit supply chains. High-value products, such as rhino horn
and pangolin scales, are often transported in smaller quanti-
ties by air and in larger mixed shipments via ocean freight.
Perishable items such as live birds and reptiles are often
transported in relatively small quantities by passenger air.
Given that these shipments are similar in size for a specific
transit mode, the shortest-path formulation is the most
appropriate in these models.

We first introduce the two benchmark models as modifi-
cations (via the inclusion of training decisions and interdic-
tion on both arcs and nodes) of classic models in the
literature. These models are relevant to wildlife trafficking,
but they lack the flexibility to capture the decisions that traf-
fickers and law enforcement face when enforcement is
uneven across countries or limited in effectiveness, due to
the lesser importance often placed on IWT by authorities
(Keskin et al, 2022). The first model, called the Naive
Traffickers Model (NTM), represents the case where the
interdictor minimizes the probability of escape and the traf-
ficker, naively, minimizes their travel cost. This is a simple
model, but is a useful benchmark that provides insight into
scenarios where chances of detection are low, and penalties
for trafficking are small. Many non-charismatic species are
not easily recognized and receive less attention from law
enforcement. In these cases, the interdictor can still benefit
from the increased information that comes from successful
detection and preventing the goods from reaching markets
via seizures. The second benchmark model, the Detection
Maximization Model (DMM), captures scenarios where the



interdictor seeks to maximize the probability of detecting
the trafficker and the trafficker seeks to minimize the prob-
ability of detection. This combination is appropriate when
the threat of capture is strong, and penalties, when caught,
are high. This case is representative of charismatic species
that are heavily threatened by poaching, such as rhinos, ele-
phants, and tigers (UNODC, 2020).

Our new model, the Penalty Maximization Model
(PMM), generalizes these benchmark models and captures
scenarios that fall outside the scope of the previous study. It
captures a more complex variant of the trafficker’s utility
function that considers (i) their transportation cost, (ii) their
likelihood of getting caught, and (iii) the severity of conse-
quences they will endure if caught. The objective of this for-
mulation for the interdictor is to maximize the total
expected reward (trafficker penalty), where the reward is the
sum of travel cost and expected interdiction penalty (i.e.,
seizures, fines, imprisonment, etc.). This objective is espe-
cially relevant for wildlife trafficking where detection ability,
corruption level, and legal penalties vary substantially
between countries (Broussard, 2017). In some countries,
there may be no legal action taken against traffickers aside
from the seizure of illicit goods. In others, depending on the
product seized, traffickers could face steep fines or even jail
time. Existing models do not adequately capture this inter-
play and its potential impact on traffickers’ decisions. This
change allows authorities to concentrate interdiction efforts
in countries where legal systems are best equipped to penal-
ize traffickers. It also incorporates the trade-off between
travel costs and legal repercussions and allows interdictors
to target the most economically advantageous routes first. In
this way, it acts as a bridge between the two benchmark
models. The model presented below is a general representa-
tion of the traffickers’ decision problem that encompasses
the objectives of the previous two models, as well as differ-
ences between countries not captured previously in the
literature.

We focus our study on trafficking across flight networks,
although it can easily be extended/modified to other transit
networks with fixed inspection points, where actions
improve the detection probability for IWT screening efforts
at nodes and on arcs. For flight networks, we assume that
interdiction takes place at customs in the destination coun-
try of a flight. There are two types of interdiction with the
corresponding purposes: (i) flight (arc) interdiction: detain a
higher percentage of people from that flight for inspection,
and (ii) airport (node) interdiction: increase the frequency of
random detailed inspections of all arriving passengers for
wildlife products.

When no actions are taken to prevent wildlife trafficking,
there is a small chance that traffickers will still be detected
through inspection for other purposes. We denote this prob-
ability with pg. Our model incorporates a fixed cost, b!, for
interdiction on node j that represents the money needed for
initial training and equipment. Training at a specific node j
is a binary decision represented by the decision variable ij.
Once the training is complete at a given node, there is a
probability that law enforcement will detect traffickers
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without further interdiction effort, p;. For interdiction on a
node (airport), the interdiction decision is captured by the
binary decision variable xJN . If law enforcement chooses to
interdict a given airport, then they will increase the fre-
quency of inspections for all travelers through that airport.
This will result in an increased probability of detection for
all flights arriving at that airport, denoted q]N . For example,
the probability of detection at node j with node interdiction
and node training is qJN , because q}‘] already includes the
probability p; and the additional benefit from interdiction.
We assume that detection occurs upon arrival at a node, so
any trafficker that travels along an edge, e;, will be detected
at node j with the appropriate probability. The second inter-
diction decision is interdiction on the edges (flights), where
the decision is represented by the binary variable x;;. If law
enforcement chooses to interdict a flight, then inspections of
passengers arriving from that flight to node j will increase,
resulting in an increased detection probability g;;. To achieve
their objective, the interdictor may train on nodes, interdict
on nodes, and/or interdict on arcs subject to their budget
constraint. The interdictor selects a set of nodes to train
(ij), and interdict (x]N ), as well as edges to interdict (x;)
subject to a total budget constraint . Additional constraints
encode the setting where both interdiction types occur. A
complete summary of the notation is in Table 3, available in
the Appendix.

Let p; represent the overall probability of detection on
edge e;. We demonstrate how to compute the value of p;
for different interdiction decisions using Equation (1) and
Table 1. To simplify the notation for the various probabil-
ities of detection used in the formulations, we introduce the
auxiliary variables zj;. Where zj; is a binary variable that rep-
resents the scenario where action combination a € A = {0 -
do nothing, T - train only, N - node interdiction and train-
ing, E - edge interdiction and training, B - node and edge
interdiction and training } is taken on edge e;. The corres-
pondence between the interdiction decisions, the zf varia-
bles, and the values of p;; are shown in Table 1. We use the
relationship P(AUB) = P(A) + P(B) — P(ANB) to define
the probability for zg, assuming that the probabilities of
detection on the node and on arc are independent given the
action choice. Using this table and that, for each edge, only
one z{ variable can be non-zero, we can write a simplified

ij
equation to compute the value of p;;.

pi =Y Pz (1)
acA

The general constraint set faced by the interdictor is
denoted as IC, where,

Table 1. Detection probability on arc.

Variable x Xj X P
2 0 0 0 P
2z 1 0 0 p;
25 1 1 0 qij
7 1 0 1 a
z 1 1 1 9 +q' —d'q
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Diev bl a3y b 4+ 3 er bixi < B,
xijngT, (i,j) EEj€V, °<1—x ,(i,j) € EjEV,
°>1—xJT—x]1.\’—xij, (i,j) EEj€EV, ;ij (IJ)GE]EV
zh <1-4f, () €EjEV, 2l <l1-xp(hj)EEJEV,

IC = sz — X —x), (i,j) EEj€V, zg’gx (i,j) EEj€V,
z{jgl Xij» (i,j) €Eje€V, zi >« —x;, (i,j) EEJEV,
zf < xy (i,j) € E, zf <x\,(i,j) EEJEV,
x,»j+xjN<zB+1 (i,j) € Ej€V, Zitzptz tzi 2l =1(j) €EEJEV,
xJT,x}\’,x,],z,] zl] zf]\’ Zt,z E {0,1}, jeV,(ij) €E xJN < ij,j ev.

The first equation represents the budget constraint, where
the first sum captures the training cost, the second sum cap-
tures the node interdiction cost, and the last sum captures the
arc interdiction cost. The second and third equations enforce
the constraint that we must train at the location where the
flight arrives before the airport or flight interdiction can occur.
The remaining constraints enforce the relationships between
the x and the auxiliary z variables and ensure that the z varia-
bles are mutually exclusive. In the following sections, we pro-
vide the complete formulation for the interdictor’s decision
problem, subject to the trafficker’s optimal actions y*.

In DMM and PMM, the interdiction and the trafficker’s
decisions are binary variables, denoted by x,z,y. Hence, as
shortest-path network interdiction problems, they are NP-
hard (Ball et al., 1989; Smith and Song, 2020). In NTM and
DMM benchmarks, the binary variables are y;;, which denote
whether the trafficker chooses to travel along edge e;; or not.
In PMM, the binary variables are y;, which denote whether
the trafficker chooses to travel along path k € x or not. For
all formulations, y denotes the vector of y variables.
Following Smith and Song (2020), let T be the node-arc
incidence matrix, where each row corresponds to a node in
N and each column to an arc in E. For each arc ¢; € E, the
corresponding column in T will have a one in row i, a -1 in
row j, and zeros everywhere else. Let 1€ ZI'! be a vector,
where [; = 0 forall j€ V\ {s,t}, [ =1,and [, = —

3.1. Benchmark models

3.1.1. NTM

The first benchmark model minimizes the probability of the
trafficker escaping, subject to the traffickers’ optimal deci-
sions y;, to the lower-level problem, and a budget con-
straint. We study the bi-level optimization problem where
the trafficker naively minimizes travel costs, with no consid-
eration for detection. Note that naive cost minimization is
equivalent to the case where the trafficker has no informa-
tion about the interdiction actions. This is a reasonable
approach when enforcement is infrequent or ineffective.
Unfortunately, this is often the case for wildlife trafficking,
which makes this a useful benchmark model. To model the
interdictor’s objective, we define the probability of escape
using the log transformation (Taha, 2019). Using our

notation, the described objective is > .o log (1 — py)y;.
Using the definition of p; from Equation (1), we can rewrite
this objective in terms of the interdictor’s decisions as
shown below. This approach 1is successful because
Zue 4 Zg =1, ie, the z variables are mutually exclusive. The
constraint set for the interdictor is captured in IC, described

above.
min Z [Z log (1 —p;)zfj}y;},s.t. IC.

(hJ)<E | agh

The traffickers’ problem is a classic shortest-path prob-
lem. It is well documented in the literature that a shortest-
path problem formulated with a node-arc incidence matrix
and the assumption of no negative cost cycles has an integer
solution when formulated with the constraints shown below
(Smith and Song, 2020):

min Z ciyipst.Ty =1, and y > 0.
(i>j)€E

3.1.2. DMM

The second benchmark model studies the bi-level optimization
problem where the interdictor (trafficker) maximizes (mini-
mizes) the probability of detection, subject to the traffickers’
optimal decisions y}, to the lower-level problem, and a budget
constraint. The probability of detection on each edge is
dependent on the interdiction actions. This approach captures
cases where interdiction efforts strongly impact traffickers’
decisions and is more appropriate for heavily protected species
such as rhinos and elephants. The formulation below shows
the interdictors’ problem, which is the same as for NTM:

mmz [Zlog l—pl] U}y,], s.t. IC.

(i,j)€E | a€A

The traffickers’ problem changes from NTM now to consid-
ering interdiction actions when selecting routes. This changes
the objective to maximize their probability of escape instead of
minimizing the transportation cost, as shown below.

x Y [Z log (1

Pz] U} i s.t. Ty=1 and y > 0.
(ij)EE | acA



3.2. PMM

Our new model maximizes the total expected reward (pen-
alty) for the interdictor (trafficker). The expected penalty
function captures the monetary penalty (cost) of traveling
along a path, ¢, and the expected interdiction penalty the
trafficker will incur on the path, P;. For example, if a traf-
ficker is traveling along the path (1,5),(5,7),(7,9), then
their expected interdiction penalty would be P =
Rsp15 + R7ps7(1 — pis) + Ropro(1 — ps7)(1 — p1s), where the
R; values are the node-specific penalties (rewards) that traf-
fickers (interdictors) will incur if detection is successful. Py
is a function of the interdiction variables, zj, since p; =
Y aca pjzi;- This objective is nonlinear in the interdiction
decision variables z; since we need to account for the prob-
ability of escape at previous airports along the route to avoid
a “double jeopardy” situation. It is unlikely that a trafficker
would continue along their route after being detected at an
earlier node since seizures are the most common interdic-
tion action. We cannot utilize the log transformation in this
formulation, due to the structure of P;. This requires switch-
ing to a path-based formulation where the decision variables
¥k represent the trafficker’s decision to travel on path k € k!
and «" is the set of all paths that contain L or fewer edges.
For our experimentation, we utilize a three-edge limit that is
not restrictive given our context with flight paths and allows
for substantial deviations from the shortest/quickest route,
but various limits can be used depending on the context.
The formulation requires the use of additional auxiliary vari-
ables, Z;, to remove the non-linearity. The variables com-
posing Z; have multiple indexes, the first is the path index
k, the second is the action along the first edge a; € A;, the
third is the action along the second edge a, € A,, and so on
until the final edge L. Note that the action sets (Aj,...,Ar)
are changing for each edge, this is because not all paths k €
kL contain exactly L edges. If a path has less than L edges,
then the action set for the missing edges will be limited to
zero, do nothing. For convenience, we define E; as the
ordered set of edges belonging to path k, where e; = (i,j) is
the first edge in path k. The individual variables in Z; take
the form zj,,, ., and are tied to the z; variables through
an additional set of constraints that ensure that
Zhoar,ay, oy = Zol " Zgleet Zoke This approach is known as the
McCormick linearization in the literature (McCormick,
1976). The constraint set for the path-based formulation is
denoted by ICp and is shown below:

IC,
ZaleAl ZaZEAz ZuLEAL 2k, a1, a2, ..., a;

ay
Zk, a1, az, ..., ar < Ze, >

az
ICp = Zk, a1, az, ..., ar < Zey>

Zﬂ L

Zk, a1, a2, ...aL e’

{0,1},

Zk,lll,llz; ~e AL

<
Zk,ﬂl,ﬂz;u-,“L Z Zsll +Z?22 + . +ZZLL -L + 1’
S
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We define Ok(Zy) = cx + Px as the expected penalty
function for path k. Then, using the McCormick lineariza-
tion (McCormick, 1976), we can compute the expected pen-
alty function as follows:

@k(Zk) = Ck
+ D (R pf + Reyp® (1= &) + ..

a €A, ar€AL
+ Re, por (1= poio1) (1 = pg)) 2k aryan, .y -

We can then model the interdictor’s problem using the
constraint set ICp and the expected penalty function ®(Z;)
described above.

max ) _ Ok(Zy)y;, s.t. ICp.

kext

The traffickers’ problem is again a shortest-path problem,
but it is reformulated to incorporate the path-based decision
variable y;. The constraint that the trafficker selects exactly
one path through the network results in a totally unimodu-
lar matrix with an integer right-hand side which, along with
the constraint y > 0, guarantees an integer optimal solution.

minz @k(Zk)yk s.t. Zyk =1, and y > 0.

ket kext

4, Solution procedures

In this section, we highlight the different approaches we
utilize to solve the three interdiction model types. We
incorporate a combination of approaches prior to using
commercial solvers, including dualize-and-combine, warm
start, and bounds to reduce the network size. The combin-
ation of these procedures led to more efficient computa-
tional performance for the models discussed. We also
introduce an approximation to the objective of PMM that
allows us to reformulate the problem and substantially
decrease solution times across all instances. We provide data
on the solution times in Section 6.

4.1. Benchmark models

NTM is easy to solve sequentially using commercially avail-
able solvers. Since the traffickers do not respond to interdic-
tion actions and simply minimize their travel cost, we can
first solve their shortest-path problem without any

1, kext
e1 €ELkexl,a €Ay, ...,a; € AL
e, €E, k€ xba €A, ...,a1 € AL

e, € En,kexla € Ay, ..,a, € Ap,
e1,€...eL € Bk exba € Ay, ...,a; € Ap,
kel a €Ay, ....a, € AL
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interdiction decisions and then use the optimal yj; values in
the formulation of the interdictor’s problem. The interdic-
tor’s problem can then be solved quickly using commercial
solvers.

To solve DMM, we utilize the dualize-and-combine
approach that is popular in the literature (Israeli and Wood,
2002; Smith and Song, 2020). This approach converts the bi-
level optimization problem into a single-level optimization
problem that can be solved with commercial solvers. This
approach works for our model because the follower’s prob-
lem is a shortest-path problem, i.e., a convex optimization
problem (Smith and Song, 2020). When combined with the
strategic use of auxiliary variables and the log transform-
ation to remove any non-linearity, this approach is capable
of solving realistic instances in reasonable time frames.
Following the convention in the literature, we use 7 € RV
to represent the dual variables associated with the shortest-
path constraints.

The single-level formulation of the detection maximiza-
tion model with intelligent trafficker response is shown
below. Recall that [ is the vector that forms the right-hand
side of the shortest-path constraints and T is the node-arc
incidence matrix. Define u as the vector of length |E|, where
for edge e € E, we have u, =), log(1 —p&)z:. Then we
can rewrite the bi-level formulation as follows.

maxl'n,s.t T'n < u, and IC.

4.2. Solution approaches for PMM

PMM can also be solved using a dualize-and-combine
approach. However, the computation times are much longer
for this model, due to the large number of variables intro-
duced by the path-based formulation. The dual of the path-
based shortest-path problem has a single dual variable 7 to
match the single constraint, that only one path can be
selected. The dual constraints require that the value of n be
less than the value of the primal objective, ®@x(Z), for all
paths k € kf. As in DMM, we also include the interdiction
constraints ICp. The combined single-level formulation is:

max 7, s.t. © < O(Z), Vk € k!, and ICp.

This formulation can be solved using a commercial
solver, but it is time-consuming for realistic network sizes.
To improve the solution time for this model, we use two
different approaches: warm starting the optimization process
and removing certain unused paths from k" prior to the
optimization process.

There are many potential approaches for deciding on the
initial solution used in the warm start. The nature of the
interdiction model makes it easy to generate many feasible
interdiction solutions and then solve the shortest-path prob-
lem that arises. Our approach was to first solve the model
with a small budget and then use that solution to warm start
instances with larger budgets. In addition to the warm start,
we used a bound to remove unused paths from the network
to reduce its size. The bound is determined by calculating
the largest possible penalty ©(Zf) for all paths k € «%,

where Z} indicates that both arcs and nodes are interdicted
on all legs of path k. Then, the bound can be represented by
7, where y = ming,.®x(ZF). This bound represents the
worst possible case for the trafficker, they will always be
able to travel on a path with a penalty at least this low, even
if the interdiction budget is unlimited. We can then use 7y to
remove any path k € k" such that y < @(Z}), which is the
base penalty from traveling the path when no interdiction
actions are taken.

4.2.1. Double jeopardy objective approximation

Solving the PMM, even after removing unnecessary paths
with the bound, is very time-consuming. Results presented in
Section 6 show that the average solution time is extremely
high for certain origin-destination pairs and that some instan-
ces could not be solved using commercial software within our
time frame of 86,400 seconds. To improve the solution speed
for PMM, we introduce an approximation to the objective
function that allows us to take advantage of the structure of
DMM and its much faster solve time. Specifically, we relax
the assumption that traffickers can only be caught once along
their route and calculate the objective as though they can be
caught in each country and face the respective penalties
according to the probability of detection along the specific
node and arc. We «call this the “Double Jeopardy”
Approximation (DJA) after the procedural defense that pre-
vents a person from being prosecuted twice for the same
offense. This approximation always returns a feasible solution,
because it uses the constraint set from DMM, but the solution
it returns often has an optimality gap. Since it always returns
a feasible solution, we evaluate the performance of the DJA
solution as a warm start for PMM. The DJA can be solved
using an arc-based formulation instead of a path-based for-
mulation, which yields substantial improvements in solution
speed. The revised expected penalty function for the DJA is
shown below.

G)k(Zk) = Ck
F DY (Replizl 4 Reypz + .
a €A ay€A, ar€AL
+ ReLpiZZL)'

We can convert the expected penalty function to an arc-
based formulation now that we no longer account for the
probability of escape on previous arcs along the path. The
single-level formulation of the DJA is shown below using a
similar notation to DMM. We define u as the vector of
length |E|, where for edge e€ E we have u,=c, +
Y aca Repizé. Then, we can rewrite the bi-level formulation
as follows using IC as the constraint set because it is an arc-
based formulation.

max I'n, s.t T'n < u, and IC.

5. Data sources and experiments

In this section, we discuss the data used in our models and
any data pre-processing that we performed. To capture a



varied and realistic set of instances, we sourced data from
several conservation groups and other entities and combined
seizure records with flight infrastructure and pricing data.

5.1. External data sources

Seizure data is an important source of information about
IWT networks and provides a limited understanding of traf-
ficking routes and the species involved. It is important to
recognize that seizure data is incomplete and often not rep-
resentative of the true state of IWT because it is heavily
biased by variations in enforcement. In this study, we use
seizure data from the Wildlife Trade Portal (WTP: wildlife-
tradeportal.org). The WTP states that

while wildlife incident data is a vital source of information, it
should not be inferred that there is a direct correlation between
incidents and the overall IWT or that information across
locations, species or time is consistent.

The data we accessed includes records of global seizures
for all wildlife species that occurred on air transit networks
between October 1, 2017, and January 1, 2021. With 1067
records for a variety of species and trafficking routes, we
identify candidate networks with the origin and destination
airports for each seizure record for model testing. The air-
port and flight network was created from data gathered
from the open-source database, OpenFlights.org. The files
contain information on 8267 airports located around the
world and the corresponding commercial flights. It must be
noted that the routes were last updated in June 2014. All
new airports and flights which were represented in the seiz-
ure data have been added to the data set. We used the com-
bination of both data sources to form a base global flight
network, then we narrowed the network to focus on poten-
tial paths between origin and destination airports. Flight pri-
ces were collected using the Skyscanner API (https://
skyscanner.github.io/slate/). For each pair of airports, we
used the API to request flight quotes for November 2021
(all API requests were executed on October 14, 2021). In
total, we amassed a data set containing 44,462 price quotes.
We then used the lowest price in that time window as the
price between the source and destination airport. The API
did not return valid responses for several airport pairs with-
out existing flight plans. Additionally, we note that data was
collected during the coronavirus pandemic, as historical data
was not available, and some flight data was not present.

We used reports from UNODC to supplement the seizure
data (UNODC, 2020). The report draws from a variety of
sources and provides a more holistic view of wildlife traf-
ficking with relevant data for several product groups, not
just those most commonly represented in seizure data. To
fully capture the utility of PMM, we need information about
countries’ abilities to enforce legal penalties for wildlife traf-
ficking. Unfortunately, to the best of our knowledge, there is
no database or ranking of countries’ wildlife trafficking
enforcement efforts. However, The Global Organized Crime
Index (2021) contains information on the prevalence of dif-
ferent forms of organized crime in a country and the coun-
try’s resilience. Though this is not a perfect proxy for a
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country’s ability to penalize IWT activities, we use this data
to test the capabilities and responses of the penalty maxi-
mization model when faced with varying penalties.

5.2. Experimental design

When designing our experimentation, we first determined the
Origin-Destination (OD) pairs that should be used in the ana-
lysis. The choice of OD pairs is important because it deter-
mines the flight network structure and size. To properly
represent real-life trafficking and interdiction networks, we uti-
lized two approaches for selecting OD pairs: (i) analyzing the
most prevalent OD pairs from air trafficking seizure data, and
(ii) finding the key origin and destination countries for specific
product groups using data from the UNODC (2020) report.
Figure 6 (in the Appendix) shows the OD pairs that were
most prevalent in the seizure data, and Figure 7 (in the
Appendix) shows the pairs obtained by the product group ana-
lysis. These figures illustrate why using seizure data alone is
not sufficient. Current interdiction efforts are heavily focused
on certain species and regions. As a result, seizure data mostly
document trafficking between African countries and Southeast
Asian countries. By specifically seeking out countries of interest
for a wide variety of illicit wildlife products, we can diversify
the networks studied and take a more global approach to battle
wildlife crime. For each selected OD pair, we formed the flight
network for the interdiction model using the OpenFlights data
by identifying all airports and flights that were part of a path
of length three or less between the origin and destination. All
edge costs for the flight network were assigned using the flight
pricing results from the Skyscanner APL

In our experiments, the interdiction and training costs are
constant across all locations. The model and solution proce-
dures will work for varying costs, but identifying critical areas
of interest was more straightforward without the added
dimension of variability. We set the training cost at an airport
to $200 and the airport and flight interdiction costs to $100
and $40, respectively. These values represent the traditional
intuition that upfront training costs are more expensive to
start and that interdiction of a broader population, such as all
passengers traveling through an airport, is more costly than
interdicting a targeted group, such as all passengers on a spe-
cific flight. To complement these costs, we test our models
using a variety of budgets for each network. The budgets are
adjusted depending on the model and the specific flight net-
work. In particular, NTM requires a smaller budget because
traffickers never stray from the most cost-efficient path. To
generate the budgets for these networks, we identify a max-
imum budget value that corresponds to the cost of interdict-
ing the entire flight network, where the flight network is
problem-specific. We also identify a minimum budget, which
is the smallest amount needed to execute any interdiction
action. We then generate budget levels at even increments
between the identified minimum and maximum budgets. We
report most of the interdiction results as a proportion of the
maximum budget for ease of comparison.

When determining the detection probability values, we
employed a similar strategy to that used for specifying the
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Table 2. Summary of instances, including network size and interdiction model solution time averages over all budget values for an OD pair.

Average Solve Time by Model (seconds)

0-D pair |E] V| x| DJA Gap (%)
NTM DMM PMM DJA PMDJ
BCN-HKG 1877 201 1678 1.92 6098.43 38,379.95 4913.01 24,272.51 0.65
MEX-MIA 2059 164 1897 217 1121.47 35,325.86 241 35,633.43 25.22
BKK-LAX 1522 137 1387 1.62 5636.00 31,063.47 1911.75 13,432.00 0.75
LIM-ORD 1508 181 1329 1.03 3408.28 29,023.93 414.60 10,889.37 0.68
MNL-VIE 757 118 641 0.50 2257.38 15,645.49 559.94 4488.07 1.87
BKK-MAA 968 m 859 0.70 1.55 15,075.47 0.63 16,594.78 29.84
INB-HKG 926 108 820 0.76 420.52 13,706.69 33.75 3081.99 0.61
ADD-PVG 658 98 562 0.38 330.28 13,034.64 20.09 2839.48 1.47
JNB-KUL 740 95 647 0.47 115.78 12,425.53 2891 2794.82 0.65
MAA-SIN 862 100 764 0.72 18.77 12,310.18 0.48 9954.78 19.89
CDG-HND 1271 203 1070 1.05 8.04 11,379.10 0.84 22,243.19 20.37
ADD-HKG 690 88 604 0.39 83.68 11,029.41 0.28 10,131.47 19.74
ADD-CAN 552 88 466 0.39 357.71 9954.11 2593 1554.50 0.64
DXB-SGN 1028 140 890 0.69 3.20 9577.17 0.55 11,851.10 17.56
CGK-SIN 936 95 843 0.96 15.09 5066.70 0.40 5840.60 27.76
DPS-ICN 720 96 626 0.44 367.76 4727.92 0.31 3832.11 21.18
LOS-CAN 432 60 374 0.27 57.75 4188.91 5.26 1073.41 1.64
ADD-CTU 280 62 220 0.18 208.78 1454.67 11.89 416.06 1.40
DAR-HKG 304 73 233 0.21 118.36 887.65 0.79 307.34 218
RGN-CSX 225 45 182 0.17 241 706.30 0.79 292.49 334
TU-PVG 82 32 52 0.06 0.52 159.91 0.63 54.54 0.89
MXL-SEA 83 39 46 0.06 0.49 61.26 0.32 29.14 1.02
CNX-MFM 96 21 77 0.07 0.28 50.07 0.15 23.38 0.31
FIH-SGN 80 29 53 0.06 033 49.75 0.22 18.56 1.16
MPM-HAN 31 15 18 0.03 0.06 12.02 0.07 3.54 0.26

costs of interdiction. Specifically, we set the base probability
of detection with no interdiction as the smallest value and
incremented this base probability to arrive at the detection
probabilities associated with airport training, airport inter-
diction, and flight interdiction. This process led to the set of
detection probabilities p, p;, g, q; = {0.05,0.1,0.15,0.2},
which we feel is reasonable since authorities can inspect a
larger proportion of items on a single flight than they can in
an entire airport.

The final piece of the experimental design is the penalty
values for PMM. We investigated three different types of
penalties: low, high, and varied. The low and high penalty
cases are comparisons to NTM and DMM, respectively.
These low and high penalties were set at $1000 and $5000
for all countries in each experiment, respectively. For the
varied penalty case, we set the penalty for each country
based on its resilience scores (The Global Organized Crime
Index, 2021). The resilience scores for the countries are
shown in Figure 9, in the Appendix. We assigned the penal-
ties such that countries with a resilience score of 10 had the
maximum penalty of $2000 and countries with a score of
zero have a penalty of $0. Note, these settings are solely for
the purpose of testing the model and are not necessarily an
accurate representation of the countries’ abilities to combat
IWT. More research and cooperation are needed to truly
estimate the variations between countries’ ability to success-
fully indict and convict traffickers.

6. Computational results

In this section, we will discuss and interpret the perform-
ance of the proposed solution approaches and the results for
the three interdiction models. We provide insight into the
structure of the optimal interdiction decisions, how those

decisions change as the budget increases, and the differences
between the models and their specific uses. We use several
representative trafficking networks to give insight into what
these strategies look like in practice and highlight any imple-
mentation concerns for the various models. Our computa-
tional experiments are run with Gurobi (9.1) (Gurobi
Optimization, 2021) on five 32-core machines with Intel
2.1 GHz CPUs and 264 GB of memory.

6.1. Solution times and performance

Table 2 shows the solution times for all three models for
each OD pair and the key network characteristics of the
pair. Relative to the other models, solution times for the
NTM are fast and primarily determined by the number of
paths through the network, which is labeled with || in the
table. The instance with the longest solution time for this
model had an average duration of only 2.17 seconds with a
standard deviation of 1.51 seconds. This highlights the use-
fulness of this model as a first step for practitioners who are
unlikely to have extensive computational resources.

The solution times for DMM are larger than those of
NTM. However, the average solution time was 825 seconds
(0.23 hours) per instance, and the largest network took
1.7 hours to solve on average, which is reasonable for a stra-
tegic problem. In general, across all the models, the net-
works generated from the OD pairs from the UNODC data
(shown in Figure 7 in the Appendix) took longer to solve
than those generated from the WTP data (shown in
Figure 6 in the Appendix). This is likely due to the
increased distance between the OD pairs obtained from
UNODC. In total, 37 instances out of the 500 across the
OD pairs were not solved in the time limit for DMM, 31
UNODC (3 hour limit) and six WTP (1 hour limit). Table 4,
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Figure 1. Naive traffickers model interdiction decisions for trafficking between Johannesburg and Hong Kong with different budgets.

in the Appendix, shows that the change in the length of the
traffickers’ paths post-interdiction is a key factor that
impacts the solution time. In particular, instances, where the
budget increase from the previous instance leads to a change
in the trafficking path length, are difficult to solve because
the lack of strong bounds delays the convergence.

PMM is the slowest of the three models, with the largest
network taking an average of 10.66hours to solve when
using the path-based formulation with the path fathoming
and basic warm start approaches. The path-fathoming
approach was most successful in instances with lower penal-
ties because a larger number of paths can be pruned. The
warm start improved solution times for a larger set of
instances but the largest instances were still time-consuming
to solve. In addition, 74 instances in the high penalty group,
out of a total of 1500 instances across all penalty groups, hit
the 24-hour time limit. DJA has a similar formulation to
DMM and was much faster to solve than the path-based for-
mulation for PMM, with an average solve time of
317.36 seconds, compared with 11,011.85seconds for the
path-based formulation. Due to the similarity to DMM and
reduced solution times, we used a 6-hour time limit for DJA
and only 17 instances out of 1500 hit the time limit. DJA
always returns a feasible solution, but the optimality gap
varied between 0.27 and 29.85% with an average gap of
8.05% across all OD pairs, for instances that did not hit the
time limit. The best results were achieved by using the DJA
as a warm start for PMM, which we refer to using the acro-
nym PMD)]. This approach provided PMM with a good, at
times extremely good, initial feasible solution, which reduced
the solution times by an average of 31.13%, including the
time to solve DJA and PMD]J, and solved the model to opti-
mality. The number of instances hitting the 24-hour time
limit was also reduced to 32 for PMD] in comparison with
74 instances for PMM. The time to solve both the DJA and

the PMDJ was 7583.47 seconds, on average, compared with
11,011.85 seconds for the initial solution approach. The com-
plete set of solution times for all models is shown in
Table 2. The solution times for the DJA mirror the solution
time for DMM, which is intuitive given the structure of the
formulation. The largest optimality gaps for the DJA were
correlated with the slowest solving instances of PMDJ, which
demonstrates the value of higher quality starting solutions.

6.2. NTM insights

For NTM, Figure 1 shows the interdiction strategy for two dif-
ferent budget levels on trafficking between Johannesburg and
Hong Kong. This figure is an example of how the solution
changes as the budget increases. The solutions require relatively
few interdiction actions and are easy to describe in a simple
policy. Interdiction only takes place along the lowest-cost flight
path, because traffickers do not adapt in this model. A simple
strategy that can be used by practitioners is to start at the des-
tination and work back through the network. First, training
the node, then interdicting the preceding arc, then interdicting
nodes in a greedy fashion. The model is capable of handling
varied probabilities and interdiction costs at different airports,
but this was not part of our experimentation. The probabilities
of detection after interdiction in NTM are high, and the rela-
tive budgets required to achieve high probabilities of detection
are much less than other models. Although NTM is simple, it
represents a reasonable first step for interdiction of less
“charismatic” species where political will and funds for
enforcement are scarce as mentioned earlier.

6.3. DMM insights

DMM yields more complex solutions than NTM. Figure 2
shows how the probability of detection and optimal path
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Figure 2. Detection probability and optimal path length by budget (Johannesburg to Hong Kong and Chiang Mai to Macau).

length change as the interdiction budget changes for two
networks, Johannesburg to Hong Kong and Chiang Mai to
Macau. The figure shows several plateaus in the probability
of detection and cycles in the optimal path length. One key
aspect of this model is the inclusion of traffickers’ risk of
detection on every flight, so if all flights have an equal prob-
ability of detection, then they take as few flights as possible.
If the interdiction decisions make it impossible to travel a
path of the shortest length without using an interdicted arc
or node, then the trafficker will switch to a longer path that
avoids interdiction if it exists. As interdiction actions target
longer paths, traffickers will switch between those paths to
avoid interdicted flights and airports until there are no
remaining paths of the same length that have no interdic-
tion. At this point, if there is a longer path, traffickers may
switch to that one, or they may switch back to their original
path of shorter length and accept the penalty if traveling
through a single trained/interdicted flight. This cycle repeats
as the level of interdiction increases from just training, to
training and flight interdiction, and eventually to training,
flight interdiction, and airport interdiction. Figure 3 shows
how the interdiction decisions and trafficker response vary
at two different plateaus in detection probability for
Johannesburg to Hong Kong. In the first network, top left,
the budget is $1058, and the flight interdiction actions
ensure that there are no paths of length two that can avoid
traveling on an interdicted flight. In the bottom left of
Figure 3, with a budget of $3632, there are additional inter-
diction actions that ensure all paths of length two or three
are impacted by an interdiction action. The graphs on the
right show the impact of these interdictions on the optimal
path for the traffickers at the same budget levels. We can
see that the top right map shows that the traffickers had an
original path of length two and have shifted to a path of
length three to avoid interdiction. In the bottom right map,
all the paths of length three face at least one interdiction
effort, so the traffickers have returned to their original path
of length two. The difference is that in the bottom right
map, they now face a probability of detection of 35.4%, up
from 27.8% in the top right map.

This cyclic interdiction strategy is intuitive and also follows
the same idea of starting from the destination and working
back through the network toward the origin. The main issue
with this strategy is that it requires cooperation among all
countries that are part of the set of flights and airports inter-
dicted at that stage. This might be easy at lower budgets if the
focus is on flights that all land in the destination airport, so

only one country needs to enforce. However, in later stages, if
any one country fails to enforce, then it becomes much harder
to increase the detection probability. It may still be possible,
for some products, to garner this amount of political will to
prevent trafficking in a large number of countries. However,
this model also does not take flight cost or time into account,
which leads to interdiction in countries that are unlikely to
have ever experienced the trafficking of a certain product.
This highlights some of the issues with this model and its lim-
ited applicability to products that receive little international
attention or resources.

Another limitation of DMM is that it assumes traffickers
focus solely on avoiding interdiction and are willing to fly
wildly expensive or time-consuming routes in order to do so.
In Figure 3, the model interdicts flights between Los Angeles
and Hong Kong when the traffickers origin is in South Africa.
This is a highly convoluted route that is unlikely to be used in
practice, due to its cost and duration. This calls into question
this model’s ability to accurately predict the traffickers’ behav-
ior. For the interdiction model to yield practical insights, it
has to consider all factors traffickers weigh when making tran-
sit decisions. Traffickers may exhibit this behavior when
avoiding strong punishments for detection, but are unlikely to
do so to avoid smaller fines. It is possible to remove some very
expensive paths from the network before solving the interdic-
tion problem. However, it may not be clear where to stop.
PMM resolves all of these issues by directly comparing the
flight cost to the penalties faced by traffickers.

6.4. PMM insights

PMM combines the best aspects of the previous models to
represent the traffickers’ incentives more accurately. This
model is much more flexible, and the data requirements are
intuitive for practitioners and easy to estimate, though there
are still difficulties in gathering global data sets. By using
real penalties that traffickers incur when caught, authorities
can better understand the costs and risks that traffickers
face. The objective of this model is highly practical and rep-
resents the total expected cost to traffickers traveling on a
certain route from both penalties and flights. This informa-
tion can complement existing data about profit margins and
selling prices for wildlife products and, hopefully, lead to
increased costs pushing many traffickers out of business
entirely. With this information, authorities can understand
what levels of enforcement and penalties, and their
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Figure 3. DMM interdiction decisions and trafficker paths for routes between Johannesburg and Hong Kong with budgets of $1058 and $3632 on the top and bot-

tom line, respectively.

corresponding budgets, are needed to eradicate profits from
trafficking specific products.

Figure 4 shows the optimal path lengths and objective
values for PMM at various budget proportions. We further
break out the objective into the flight cost and detection
penalty components, and we show the impact of low, high,
and varied penalty values. When the penalty values are high,
the figure shows similar behavior to the DMM, where there
are cycles of longer and shorter trafficking paths. When
penalty values are low, the behavior is more reminiscent of
NTM, but the trafficker paths do still shift as they react.
With low penalty values, the shifts occur between a smaller
array of potential paths that have less deviation from the
cheapest path. In this example, the varied penalty behaves
like the low penalty. This is because the average penalty
among countries is the same in both cases. We purposefully

chose to use a lower penalty for the varied case to accurately
represent the situation faced with many wildlife products.
Variations in penalties between countries will have less
impact on the values shown in Figure 4 but a strong impact
on the geographies of the airports and flights chosen for
interdiction at each budget level.

Figure 5 shows the interdiction decisions for the varied
and high penalty models. This figure captures the shift from
eliminating any potential path without interdiction (high
penalty) to interdicting more heavily along key paths that
are likely to have a high volume of trafficking (varied pen-
alty). With the varied penalty, we see more interdiction at
earlier stages in the transit route and heavy interdiction at
the airports that are most central to the route. This central-
ization of interdiction efforts highlights the key role that
hub airports play in successful interdiction strategies. The
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Figure 4. Detection probability and optimal path length by budget (Addis Ababa to Hong Kong).
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Figure 5. Interdiction networks for varied penalty (left side) and high penalty (right side) for budgets of $770 (top) and $3450 (bottom).

variations between the low and varied penalty cases are
more subtle and focus on switching out individual flights
that are interdicted for flights that arrive in countries with
higher penalties. PMM is flexible enough to be applied in a
variety of different enforcement landscapes, containing the
best features of NTM and DMM, and it yields realistic solu-
tions that have appealing characteristics for practitioners.

Figure 8 in the Appendix shows how the average flight
cost, across all OD pairs, from the traffickers’ optimal
response varies with different interdiction budgets for both
models. The size of the bubbles indicates the probability of
detection. The graph shows that, for DMM, the flight cost
varies wildly as the budget changes. When the budget and
detection probability are both very small the traffickers shift



to taking a very expensive route. The variation in flight costs
is much lower in PMM. Although this is not necessarily a
“good” thing, since it represents lower travel costs for traf-
fickers, it does indicate that the model is potentially a more
realistic representation of trafficker behavior. Also, if legal
penalties are high enough that traffickers take extremely
expensive flight routes to avoid detection, PMM will capture
this and the solution will approach the solution of DMM. In
fact, we see evidence of this behavior in Figure 4.

7. Conclusions

In this article, we highlight several key challenges for authorities
working to interdict IWT activities and solve three variants of
an interdiction model to address those challenges. Wildlife
products are illegally traded in very complex supply chains with
many possible source and demand locations. Air transit is a
common trafficking mode for high value or perishable products
and there is ample opportunity to inspect for illicit products.
However, customs and security officials may be unfamiliar with
the wide array of trafficked wildlife and the numerous proc-
essed forms of illicit products. Training is key for proper identi-
fication and seizure of illicit products and our models
incorporate that requirement into the interdiction formulation.
Policies, capacities, and regulatory frameworks differ between
countries, prompting criminals to turn to places where they
can operate efficiently with a low risk of punishment.
Traditional models often assume that traffickers solely focus on
avoiding detection, without considering flight cost, duration, or
varying legal penalties between countries. We present a new
network interdiction model (PMM) that can handle varied pen-
alties across countries and capture the trade-off between flight
costs and detection risks that traffickers face. PMM is versatile
in its ability to capture a variety of cases with differing levels of
enforcement resources and attention. PMM necessitates the
switch to a path-based formulation which is time-consuming to
solve. To handle this, we introduce an objective approximation
that leverages the structure and faster solution times of DMM.
We utilize the solutions from this approximation to provide an
excellent starting solution for PMM which substantially reduces
the solution times for many of the networks we investigate. We
provide an in-depth discussion of the underlying structure of
the network interdiction strategies generated by the three mod-
els and their impact on traffickers and enforcement authorities
with varying interdiction budgets.

To ensure our analysis captures practical issues, we use
real flight networks and pricing data with origin and destin-
ation cities obtained from seizure data and technical reports.
The variety of OD pairs provides realistic test cases for a
variety of product types, including pangolin scales, rhino
horn, ivory, live reptiles, European glass eels, tigers, sea
cucumbers, and live birds. Using these test cases, we high-
light areas where solutions to traditional interdiction models
may result in unrealistic decisions, with enforcement occur-
ring on distant or expensive flight routes before the cheapest
route has been fully interdicted. These contributions high-
light how traditional models can be best adapted to solve
practical problems in IWT applications.
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Although this work is a strong first step in combating IWT
using operations research methods, there are still many oppor-
tunities for future research. Regarding methods, there are
opportunities to incorporate multi-period and multi-product
decisions. Regarding data, seizure data currently presents many
challenges because it is often biased towards countries with
stronger enforcement and products with strong law enforce-
ment attention. Future work can investigate innovative ways to
utilize available data and develop strategies for interdiction that
improve our understanding of IWT networks, which in turn
will help us combat them more effectively. Some previous
research considers the impact of imperfect information on net-
work interdiction models. Future work might also look to
expand to cases with incomplete or asymmetric information
about interdiction actions or trafficker preferences (Bayrak and
Bailey, 2008). A better understanding of how traffickers incorp-
orate learned or revealed information about interdiction activ-
ities would enable researchers to devise methods that generate
increasingly practical solutions. Finally, network interdiction is
an important step in reducing the exploitation of endangered
or threatened species, but it is unlikely to be sufficient by itself
(UNODC, 2020). Elimination of IWT requires a focus on both
demand and supply reduction. Regardless of efforts to reduce
supply, if high levels of demand exist, illicit markets will evolve
towards less-regulated locations or substitute species. Many
opportunities exist for research into demand reduction, poach-
ing protections, and generating alternative streams of income
to draw labor away from TWT.
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Appendix and Additional Resources

Figure 6. Most frequently occurring Origin-Destination Pairs from seizure data.

Figure 7. Origin-Destination Pairs for key product groups.
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Flight Cost vs Interdiction Budget
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Figure 8. Average trafficker flight cost by model and by budget proportion.

Figure 9. Resilience scores for penalty calculation.
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Table 3. Summary of notation.

Parameters
v the set of nodes in the flight network, |V| =n
E the set of edges in the flight network, |E| = m
K the set of all paths between the origin and destination, k = 1,2, ...
Ex the ordered set of edges in path k € k, ey, ;...
| a vector € Z" where =0foralljeV\{st} k=1, and [y = -1.
T a node-arc incidence matrix for the node set V and arc set E.
u a vector of length |E| with values u, = >, log(1 — pg)z for edge e € E.
A the set of combinations of actions a that can be taken on an edge,
{0 - do nothing, T- train only, N- node interdiction and training,
E- edge interdiction and training, B- node and edge interdiction and training}.
bjT the fixed cost of training for detection at node j, j =1, ...,n.
bj’-" the variable cost for general screening at node j, j =1,...,n.
by the variable cost for enhanced screening on edge e, e; € E.
Gj the cost for a trafficker to travel on edge ey, i,j = 1,...,n.
p,‘.} the base probability of detection before training on edge e, e; € E.
p; the base probability of detection after training, j =1, ..., n.
a the enhanced probability of detection on edge ey, e; € E.
q; the enhanced probability of detection at node j, j =1, ...,n.
the total interdiction budget.
R; the reward (penalty) for the interdictor (trafficker)

if the trafficker is detected at node j, j =1, ...,n.
Decision Variables - Interdictor
xI.T 1, if node j is given training, 0 otherwise.
Xii 1, if edge e; is interdicted, 0 otherwise.
/'KI 1, if node j is interdicted, 0 otherwise.
Decision Variables - Trafficker

Vi 1, if trafficker chooses to travel along edge e;, 0 otherwise.
T dual variable(s) associated with the shortest path constraint(s).
Auxiliary Variables
z 1, if action a € A is taken on edge e; , 0 otherwise.
Zy the set of path-based auxilliary variables associated with path k € «*.
Zk,ay, a5, .., a1 1, if action sequence ay, ay,...,a; € (A1, ...,Ar) is taken on path k, 0 otherwise.

Table 4. Variations in time to solve the interdiction model by interdiction model type and differences in the number of arcs contained in the shortest path
before and after interdiction.

Trafficker # of Flights Interdiction Average Solve Time (s)

Pre-Interdiction Post-Interdiction Naive Traffickers Max. Detection Max. Penalty
1 1 0.963 3.086

1 2 919.774 8940.133

1 3 1609.793 34,474.014
2 2 0.87 169.381 8177.588

2 3 1765.133 26,217.988
2 4 2583.924

3 2 196.313

3 3 0.348 0.359 163.08

4 4 1.615
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