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ABSTRACT 
Illicit Wildlife Trade (IWT) is a serious global crime that negatively impacts biodiversity, human health, 
national security, and economic development. Many flora and fauna are trafficked in different prod
uct forms. We investigate a network interdiction problem for wildlife trafficking and introduce a new 
model to tackle key challenges associated with IWT. Our model captures the interdiction problem 
faced by law enforcement impeding IWT on flight networks, though it can be extended to other 
types of transportation networks. We incorporate vital issues unique to IWT, including the need for 
training and difficulty recognizing illicit wildlife products, the impact of charismatic species and geo
political differences, and the varying amounts of information and objectives traffickers may use 
when choosing transit routes. Additionally, we incorporate different detection probabilities at nodes 
and along arcs depending on law enforcement’s interdiction and training actions. We present solu
tions for several key IWT supply chains using realistic data from conservation research, seizure data
bases, and international reports. We compare our model to two benchmark models and highlight 
key features of the interdiction strategy. We discuss the implications of our models for combating 
IWT in practice and highlight critical areas of concern for stakeholders.
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1. Introduction

Illicit Wildlife Trade (IWT) is a form of transnational 
organized crime that creates a wide array of issues for soci
ety and the environment (Gore et al., 2019). Although the 
actual number is contested, one estimate places the eco
nomic value of IWT between US$5 billion and $23 billion 
annually (UNODC, 2017). IWT causes harm in various 
ways, including introducing zoonotic diseases to human 
populations, biodiversity loss, the proliferation of invasive 
species, land degradation, and threats to national security 
and legitimate economic enterprises (Avis, 2017; UNODC, 
2020; Hubschle and Shearing, 2021). The COVID-19 pan
demic and the vast subsequent harms to human and finan
cial well-being have starkly illustrated the potential global 
impact of zoonotic diseases, for which wildlife trade – both 
legal and illegal – is a potential vector (UNODC, 2020). 
Despite its prevalence and social and economic impact, IWT 
has received relatively less attention and enforcement effort 
from authorities. This makes it both less risky and more 
profitable for traffickers than many other illicit trades 
(Nuwer, 2018; Utermohlen and Baine, 2018). Similar to 
other illicit trades, IWT activities are managed through com
plex supply chains with extensive geographical reach from 
harvest to end-users, a wide variety of species, various 

product types (perishable, live, processed, packaged, etc.), 
and elusive, opportunistic, agile criminals. Some of the 
impacted industries are furniture (e.g., rosewood), decor/je
welry (e.g., ivory), fashion (e.g., reptile skins, big cat skins), 
cosmetics (e.g., agarwood, wild orchids), food and medicine 
(e.g., pangolin, rhino horn, bear bile), pets and breeding 
(e.g., parrots, freshwater turtles, and great apes), and seafood 
(e.g., caviar, marine turtles) (UNODC, 2020).

Although the majority of poached wildlife comes from 
developing countries, both developed and developing coun
tries are responsible for the demand (UNODC, 2017). 
Hence, nearly every country in the world plays a role in 
wildlife crime as a source, transit hub, or destination for 
illegal wildlife products. International trafficking being a 
broad issue (many species and countries) and traffickers 
being adaptable (species and country displacement) makes 
network interdiction a powerful approach for combating 
IWT. The international transit stage, be it by air, sea, or 
land, is one of the most vulnerable points of the illicit sup
ply chain (UNODC, 2020). For high-value products such as 
ivory and rhino horn, the main international transportation 
mode is air transit. Between 2014 and 2019, 62% of all rhino 
horn was seized in air transit (UNODC, 2020). Seizures 
occurred at either transit nodes (e.g., Turkey (Awel, 2019)) 
or at destinations (e.g., Vietnam, Hong Kong, etc. (Leung, 

CONTACT Burcu B. Keskin bkeskin@ua.edu. 
Supplemental data for this article is available online at https://doi.org/10.1080/24725854.2023.2255643 

Copyright � 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), 
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. 
The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

IISE TRANSACTIONS 
2024, VOL. 56, NO. 3, 355–373 
https://doi.org/10.1080/24725854.2023.2255643

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2255643&domain=pdf&date_stamp=2023-12-13
http://orcid.org/0000-0002-2273-1002


2019; Linh and Thuy, 2019)). Hence, in this work, we utilize 
data from air transit networks to test our models.

Customs agents play an important role in enforcing inter
national wildlife trade statutes; hence, they need to be 
enabled and motivated to detect and prevent wildlife traf
ficking. One difficulty for law enforcement is the identifica
tion of species. Most controls are specific to certain species, 
and it may be possible to evade controls by claiming a pro
tected species is a non-protected look-alike or has a different 
country of origin. Although species that are commonly the 
focus for conservation groups, such as elephants and rhinos, 
also referred to as charismatic species, dominate headlines 
with demand for their ivory and keratin horns, IWT 
involves a much larger group of species. In February 2022, a 
European eel trafficker was given a 15-month prison sen
tence and a fine of 7,200,000 GBP. Media reports noted that 
the eel trade was as lucrative as the cocaine trade, but it 
received less media attention (Sharrock, 2022). The sophisti
cation of concealment methods used is increasingly on par 
with those normally associated with drug smuggling. For 
example, in June 2018, Sri Lankan customs officials in 
Colombo Airport discovered 32 likely endangered geckos 
and lizards in a DHL shipment of computer towers. 
Furthermore, officials may be unfamiliar with the appear
ance and protected status of non-native species. These diffi
culties are further compounded by the variety of potential 
product forms (live, processed meat, fur, bones, jewelry, 
fashion items, powders, etc.). Further training for customs 
officials to profile suspect shipments and identify the species 
within can enhance the likelihood of successful interdiction. 
Investments in training can take the form of educational 
seminars on species identification, relevant laws, common 
methods of concealment, and proper procedures for success
ful interdiction. Training can also include investment in 
technology to improve communication on shipments or 
detection and sniffer dogs to quickly screen a large number 
of passengers (Utermohlen and Baine, 2018). Unfortunately, 
training investments are dampened by the typically smaller 
amount of resources allocated to the detection and investiga
tion of wildlife trafficking in comparison with other illicit 
trades (UNODC, 2020). In this study, we directly incorpor
ate the decision to train at a specific interdiction location 
into the optimization model to capture this issue while con
sidering limited resources.

Another key issue that differentiates IWT from other 
forms of illicit trade is the lack of enforcement resources 
and inconsistent enforcement efforts between countries and 
across species. The Convention on International Trade in 
Endangered Species of Wild Fauna and Flora (CITES) has 
184 member parties and affords some form of protection to 
over 37,000 species of wild fauna and flora ((cites.org). 
CITES is not intended to replace national laws, and they 
state that the convention “provides a framework to be 
respected by each Party, which has to adopt its own domes
tic legislation to ensure that CITES is implemented at the 
national level.” National laws and penalties for wildlife traf
ficking vary greatly and can strongly impact the success of 
interdiction efforts. Providing a global assessment of wildlife 

crime is challenging, because every country protects and 
acknowledges its animals, fish, timber, and other plant life 
in different ways (UNODC, 2020). Many countries focus on 
laws relating to domestic species, and monetary fines can be 
extremely inconsistent, with maximum punishments being 
as low as 50 USD in some countries but reaching 800,000 
USD in others (Broussard, 2017). In addition, even if a 
country has laws in place, a case will still need to success
fully move through the judicial system before penalties can 
be levied. There are substantial differences between countries 
in regard to their judicial system and law enforcement capa
bilities (The Global Organized Crime Index, 2021).

These differences and difficulties highlight a distinctive 
feature of IWT; specifically, for some non-charismatic spe
cies, the risk of getting caught or the associated penalties for 
traffickers may be so low that they have no impact on traf
ficking routes or only impact certain countries. Many papers 
in the network interdiction literature study traffickers that 
seek only to minimize their probability of detection. Other 
works look at models where interdiction efforts lengthen 
individual arcs to increase the total cost of a path. Both of 
these approaches are insufficient to capture the spectrum of 
utility functions that wildlife traffickers may have because 
they fail to capture the interplay between increased detection 
risk and variation in penalties due to the country of detec
tion. To close this gap, we model three different types of 
utility functions for the trafficker and discuss their impact 
on the optimal interdiction actions.

We introduce a novel model and two benchmark models. 
The first benchmark we introduce is the naive traffickers 
model. It represents the current state for many products in 
IWT that are not charismatic and do not attract substantial 
enforcement attention. In this model, traffickers only seek to 
minimize their flight/transit costs across the network with
out regard for interdiction efforts. This is a realistic model 
when traffickers have no information about enforcement 
efforts, the probabilities of detection are low, or penalties for 
IWT are small. This model provides a good benchmark for 
the many species that are not the focus of international 
enforcement attention. The second benchmark model 
focuses on minimizing the probability of detection and rep
resents the heavily protected and publicized products such 
as trafficking rhino horns, ivory, or cheetah cubs. This 
model is appropriate for products where getting caught is 
“game over” for the involved traffickers, and those risks out
weigh any costs for transit or variations in penalties between 
countries. The issue with these benchmarks is that they rep
resent two extremes that are only valid for limited cases, 
and they fail to capture the variation in penalties for traf
fickers across countries. The third model, our novel model, 
focuses on traffickers who minimize their total penalty when 
traveling across the network. The objective considers (i) the 
cost of traveling a specified route, (ii) the likelihood of get
ting caught at various locations along the route, and (iii) the 
penalties associated with being caught in various countries. 
This new objective allows us to investigate a much broader 
set of scenarios, and the model captures both of the previous 
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models’ insights at the extreme ends of the parameter 
values.

Our work makes several contributions to the literature. 
First, we introduce a new model that captures IWT charac
teristics, specifically the need for training customs agents in 
various locations. Second, we utilize a combination of real 
seizure data and scientific reports on IWT to form a com
prehensive set of origin and destination countries for traf
ficking. Third, we use real data on flight routes, flight prices, 
and countries’ resilience with respect to organized crime to 
create realistic instances for testing our models. Lastly, we 
compare the results with two other benchmark models and 
derive practical insights into strategies for combating IWT 
through customs inspection. The combination of these con
tributions makes a strong first step into determining an 
effective systematic approach for combating IWT.

The remainder of this article is organized as follows. In 
Section 2, we discuss the existing literature on network 
interdiction and wildlife trafficking and highlight the contri
butions of this study. Section 3 introduces the models and 
their assumptions. In Section 4, we discuss solution 
approaches for the models. In Section 5, we discuss the data 
sources and experimental design. In Section 6, we analyze 
the results of the models and derive key insights for combat
ing IWT. Finally, Section 7 summarizes our contributions 
and insights.

2. Literature review

Our work focuses on applying and adapting techniques 
from the network interdiction literature to IWT Networks. 
Existing models have several deficiencies that limit their 
ability to handle the unique challenges of disrupting IWT. 
However, when properly adapted, these methods have the 
potential to drastically improve efforts to curb IWT activity. 
Our literature review considers relevant works in the net
work interdiction literature and wildlife crime literature to 
highlight opportunities for further study and new applica
tions of existing methods.

2.1. Interdiction of illicit networks

Network interdiction is an important class of problems in 
the family of bi-level optimization, where the leader takes 
interdiction actions that block or inhibit the follower’s oper
ations by impacting the follower’s objective, feasible region, 
or both. There is a large body of literature on network inter
diction and most interdiction models fall into one of two 
classes: maximum flow or minimum cost formulations. 
Wood (1993) and Cormican et al. (1998) both present early 
models where the focus of interdiction actions is to minim
ize the maximum flow of goods through a network. Golden 
(1978) and Israeli and Wood (2002) provide examples of 
shortest-path network interdiction formulations where the 
goal is to maximize the length of the shortest path through 
the network using the available interdiction actions. We 
focus on shortest-path network interdiction in this work but 
the literature review by Smith and Song (2020) provides a 

comprehensive survey on network interdiction and the solu
tion approaches. The vast literature on network interdiction 
has yielded many effective techniques for quickly solving 
these problems, including the dualize-and-combine tech
nique utilized by Golden (1978) and Israeli and Wood 
(2002). This technique, which we employ in our models, 
enables the conversion of the bi-level optimization problems 
into an equivalent single-level optimization under certain 
conditions.

Network interdiction can be effectively used to model 
and solve problems related to disrupting illicit networks by 
respective law enforcement or other defense actors, such as 
supply chain or transportation networks supporting guns, 
drugs (Malaviya et al., 2012; Baycik et al., 2020; Jabarzare 
et al., 2020), nuclear weapons (Morton et al., 2007) or 
human trafficking (Keskin et al., 2021), among others. The 
recent study of Anzoom et al. (2022) provides a comprehen
sive overview of the literature on illicit networks and how to 
disrupt them. Their review indicates the gap for more prob
lem domains and related solutions for illicit networks, espe
cially for human trafficking and IWT. Law enforcement 
interdiction in wildlife trafficking and seizures of illicit 
goods are important tools in the fight against illegal wildlife 
trafficking. Currently, it is believed that seizures only cap
ture a small portion of IWT, and increased interdiction 
efforts are needed to curb IWT activity (UNODC, 2020). 
However, IWT brings several new challenges to network 
interdiction, such as the need for training and high variation 
in penalties between countries, which is not included in pre
vious research (Smith and Song, 2020).

2.2. Illicit wildlife poaching and trafficking

There are currently two major streams of research at the 
intersection of operations research and IWT: illicit network 
identification and patrol routing. Although drug network 
interdiction has been studied widely, South and Wyatt 
(2011) and Magliocca et al. (2021) demonstrate the differen
ces between illicit network structure and modus operandi. 
Noting the differences, both studies recommend alternative 
approaches to interdict these networks. Siriwat and Nijman 
(2023) study the illegal rosewood trade in Thailand and gen
erate regional maps of trafficking networks throughout the 
country using seizure data.

Although the application of network interdiction 
approaches to large-scale wildlife trafficking networks has 
been limited, game-theoretic and bi-level optimization 
approaches have been used more widely in the context of 
interdiction at the source of the illicit wildlife supply chain. 
These works focus on the illegal poaching (trapping and/or 
killing) of animals in the areas where they naturally occur, 
particularly in protected wildlife conservation areas. Poaching 
is one of the primary sources of illicit wildlife products and is 
a major challenge for the protection of wildlife species glo
bally (Nijman et al., 2019). Increased poaching rates are 
unsustainable for wildlife populations and threaten conserva
tion efforts. Due to these reasons, there have been several 
studies on optimizing patrol planning for conservation area 
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protection, preventing poaching at the source. In many pro
tected areas, there are limited rangers and other resources 
(e.g., budget) to patrol a vast area. The main goal of these 
studies is to recommend patrol routes to protect endangered 
animals against poachers (Haas and Ferreira, 2018; Xu et al., 
2020; Moore et al., 2021). In most studies, the optimal inter
diction strategies are planned in a Stackelberg security game 
(e.g., green security games) framework (Nguyen et al., 2013; 
Nguyen et al., 2016). Haas and Ferreira (2018) present two 
data-based, analytical software tools to plan more effective 
interdiction patrols for rhino poaching in wildlife reserves. 
Xu et al. (2020) presents a general patrol routing framework 
against a black-box poaching prediction model. More specif
ically, their framework optimizes directly over the space of 
feasible patrol routes and guarantees the implementability of 
any generated patrol strategy. Moore et al. (2021) utilize spa
tial optimization algorithms to allocate efforts of ranger 
patrols throughout Nyungwe National Park, Rwanda, and 
construct a Pareto efficiency frontier.

Patrol routing and illicit network identification are both 
important steps in reducing the prevalence of IWT. 
However, the majority of this work is regional in focus, and 
the existing sources of international seizure data are limited 
and biased in terms of the geographies and species repre
sented (UNODC, 2020). Given the prevalence of species and 
geographic displacement in IWT supply chains (UNODC, 
2020), it is critical that interdiction and detection efforts are 
expanded to an international scale. Our work offers an 
important step in this direction. Specifically, we contribute 
to the literature with domain-specific modifications of exist
ing interdiction models, including the need for training. In 
addition, we incorporate the trade-off between node inter
diction, which can be used to target multiple wildlife traf
ficking networks simultaneously at central transit hubs, and 
arc interdiction, which can be used to target specific routes 
with greater precision and reduced cost. We also introduce 
a new objective that captures the uneven enforcement land
scape that is characteristic of wildlife trafficking. These 
adaptations are key to leveraging the powerful tools available 
in the network interdiction literature to tackle IWT on an 
international scale without omitting the key characteristics 
that make the trade difficult to disrupt. In the next section, 
we present our interdiction models and their formulations.

3. Mathematical model

We study three network interdiction games, two of them 
modifications of existing models in the literature and a third 
that introduces a new objective that captures unique charac
teristics of the wildlife trafficking domain. The new model 
introduces a multi-objective approach that is far more realis
tic for wildlife trafficking than other models available in the 
literature. It also presents several new challenges with solu
tion speed, which we discuss and resolve in subsequent sec
tions. In these models, the interdictor represents law 
enforcement authorities, which can invest limited resources 
to increase the probability that the evader is detected. The 
evader represents a wildlife trafficker, who attempts to 

smuggle wildlife illegally from an origin s to a destination 
node t in the directed network G ¼ ðV, EÞ: We assume that 
the transportation network structure is known, which is rea
sonable for international trafficking as points of entry into 
countries are limited and often heavily patrolled by law 
enforcement. We also assume a full information game, 
where the interdictor (leader) fully understands the response 
dynamics of the evader, and the evader (follower) has full 
knowledge of the interdictor’s actions. Note that in future 
works, both of these assumptions may be relaxed. Both the 
interdictor and evader act rationally (optimize their utility) 
and use a pure strategy. Detection is probabilistic, as author
ities can not screen everyone and, even if they do screen a 
trafficker, they may fail to identify illicit products (UNODC, 
2020). Specifically, we incorporate a set of probabilities of 
detection at nodes and along arcs depending on the interdic
tion actions taken. We model the interdiction problem as a 
shortest-path interdiction problem because, in a wildlife traf
ficking context, it is the most intuitive formulation based on 
the available data for estimating parameters, the likely 
impact of interdiction actions, and the observed shipment 
sizes. With a maximum flow formulation, there is no clear 
path to estimate arc capacities from available data, in con
trast with estimating increased costs along arcs. It is not 
realistic to assume that authorities can limit the total flow of 
illicit wildlife products through a network with existing 
interdiction resources. In addition, shipment volumes are 
often relatively consistent within a particular transit mode 
(i.e., passenger air, ocean freight, mail), as is common in 
licit supply chains. High-value products, such as rhino horn 
and pangolin scales, are often transported in smaller quanti
ties by air and in larger mixed shipments via ocean freight. 
Perishable items such as live birds and reptiles are often 
transported in relatively small quantities by passenger air. 
Given that these shipments are similar in size for a specific 
transit mode, the shortest-path formulation is the most 
appropriate in these models.

We first introduce the two benchmark models as modifi
cations (via the inclusion of training decisions and interdic
tion on both arcs and nodes) of classic models in the 
literature. These models are relevant to wildlife trafficking, 
but they lack the flexibility to capture the decisions that traf
fickers and law enforcement face when enforcement is 
uneven across countries or limited in effectiveness, due to 
the lesser importance often placed on IWT by authorities 
(Keskin et al., 2022). The first model, called the Naive 
Traffickers Model (NTM), represents the case where the 
interdictor minimizes the probability of escape and the traf
ficker, naively, minimizes their travel cost. This is a simple 
model, but is a useful benchmark that provides insight into 
scenarios where chances of detection are low, and penalties 
for trafficking are small. Many non-charismatic species are 
not easily recognized and receive less attention from law 
enforcement. In these cases, the interdictor can still benefit 
from the increased information that comes from successful 
detection and preventing the goods from reaching markets 
via seizures. The second benchmark model, the Detection 
Maximization Model (DMM), captures scenarios where the 
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interdictor seeks to maximize the probability of detecting 
the trafficker and the trafficker seeks to minimize the prob
ability of detection. This combination is appropriate when 
the threat of capture is strong, and penalties, when caught, 
are high. This case is representative of charismatic species 
that are heavily threatened by poaching, such as rhinos, ele
phants, and tigers (UNODC, 2020).

Our new model, the Penalty Maximization Model 
(PMM), generalizes these benchmark models and captures 
scenarios that fall outside the scope of the previous study. It 
captures a more complex variant of the trafficker’s utility 
function that considers (i) their transportation cost, (ii) their 
likelihood of getting caught, and (iii) the severity of conse
quences they will endure if caught. The objective of this for
mulation for the interdictor is to maximize the total 
expected reward (trafficker penalty), where the reward is the 
sum of travel cost and expected interdiction penalty (i.e., 
seizures, fines, imprisonment, etc.). This objective is espe
cially relevant for wildlife trafficking where detection ability, 
corruption level, and legal penalties vary substantially 
between countries (Broussard, 2017). In some countries, 
there may be no legal action taken against traffickers aside 
from the seizure of illicit goods. In others, depending on the 
product seized, traffickers could face steep fines or even jail 
time. Existing models do not adequately capture this inter
play and its potential impact on traffickers’ decisions. This 
change allows authorities to concentrate interdiction efforts 
in countries where legal systems are best equipped to penal
ize traffickers. It also incorporates the trade-off between 
travel costs and legal repercussions and allows interdictors 
to target the most economically advantageous routes first. In 
this way, it acts as a bridge between the two benchmark 
models. The model presented below is a general representa
tion of the traffickers’ decision problem that encompasses 
the objectives of the previous two models, as well as differ
ences between countries not captured previously in the 
literature.

We focus our study on trafficking across flight networks, 
although it can easily be extended/modified to other transit 
networks with fixed inspection points, where actions 
improve the detection probability for IWT screening efforts 
at nodes and on arcs. For flight networks, we assume that 
interdiction takes place at customs in the destination coun
try of a flight. There are two types of interdiction with the 
corresponding purposes: (i) flight (arc) interdiction: detain a 
higher percentage of people from that flight for inspection, 
and (ii) airport (node) interdiction: increase the frequency of 
random detailed inspections of all arriving passengers for 
wildlife products.

When no actions are taken to prevent wildlife trafficking, 
there is a small chance that traffickers will still be detected 
through inspection for other purposes. We denote this prob
ability with p0

ij: Our model incorporates a fixed cost, bT
j , for 

interdiction on node j that represents the money needed for 
initial training and equipment. Training at a specific node j 
is a binary decision represented by the decision variable xT

j :

Once the training is complete at a given node, there is a 
probability that law enforcement will detect traffickers 

without further interdiction effort, pj. For interdiction on a 
node (airport), the interdiction decision is captured by the 
binary decision variable xN

j : If law enforcement chooses to 
interdict a given airport, then they will increase the fre
quency of inspections for all travelers through that airport. 
This will result in an increased probability of detection for 
all flights arriving at that airport, denoted qN

j : For example, 
the probability of detection at node j with node interdiction 
and node training is qN

j , because qN
j already includes the 

probability pj and the additional benefit from interdiction. 
We assume that detection occurs upon arrival at a node, so 
any trafficker that travels along an edge, eij, will be detected 
at node j with the appropriate probability. The second inter
diction decision is interdiction on the edges (flights), where 
the decision is represented by the binary variable xij. If law 
enforcement chooses to interdict a flight, then inspections of 
passengers arriving from that flight to node j will increase, 
resulting in an increased detection probability qij. To achieve 
their objective, the interdictor may train on nodes, interdict 
on nodes, and/or interdict on arcs subject to their budget 
constraint. The interdictor selects a set of nodes to train 
(xT

j ), and interdict (xN
j ), as well as edges to interdict (xij) 

subject to a total budget constraint b. Additional constraints 
encode the setting where both interdiction types occur. A 
complete summary of the notation is in Table 3, available in 
the Appendix.

Let pij represent the overall probability of detection on 
edge eij. We demonstrate how to compute the value of pij 
for different interdiction decisions using Equation (1) and 
Table 1. To simplify the notation for the various probabil
ities of detection used in the formulations, we introduce the 
auxiliary variables za

ij: Where za
ij is a binary variable that rep

resents the scenario where action combination a 2 A ¼ f0 - 
do nothing, T - train only, N - node interdiction and train
ing, E - edge interdiction and training, B - node and edge 
interdiction and training g is taken on edge eij. The corres
pondence between the interdiction decisions, the za

ij varia
bles, and the values of pij are shown in Table 1. We use the 
relationship PðA [ BÞ ¼ PðAÞ þ PðBÞ − PðA \ BÞ to define 
the probability for zB

ij , assuming that the probabilities of 
detection on the node and on arc are independent given the 
action choice. Using this table and that, for each edge, only 
one za

ij variable can be non-zero, we can write a simplified 
equation to compute the value of pij.

pij ¼
X

a2A
pa

ijz
a
ij: (1) 

The general constraint set faced by the interdictor is 
denoted as IC, where,

Table 1. Detection probability on arc.

Variable xT
j xij xN

j pa
ij

z0
ij 0 0 0 p0

ij

zT
ij 1 0 0 pj

zE
ij 1 1 0 qij

zN
ij 1 0 1 qN

j

zB
ij 1 1 1 qij þ qN

j − qN
j qij
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The first equation represents the budget constraint, where 
the first sum captures the training cost, the second sum cap
tures the node interdiction cost, and the last sum captures the 
arc interdiction cost. The second and third equations enforce 
the constraint that we must train at the location where the 
flight arrives before the airport or flight interdiction can occur. 
The remaining constraints enforce the relationships between 
the x and the auxiliary z variables and ensure that the z varia
bles are mutually exclusive. In the following sections, we pro
vide the complete formulation for the interdictor’s decision 
problem, subject to the trafficker’s optimal actions y�:

In DMM and PMM, the interdiction and the trafficker’s 
decisions are binary variables, denoted by x, z, y: Hence, as 
shortest-path network interdiction problems, they are NP- 
hard (Ball et al., 1989; Smith and Song, 2020). In NTM and 
DMM benchmarks, the binary variables are yij, which denote 
whether the trafficker chooses to travel along edge eij or not. 
In PMM, the binary variables are yk, which denote whether 
the trafficker chooses to travel along path k 2 j or not. For 
all formulations, y denotes the vector of y variables. 
Following Smith and Song (2020), let T be the node-arc 
incidence matrix, where each row corresponds to a node in 
N and each column to an arc in E. For each arc eij 2 E, the 
corresponding column in T will have a one in row i, a –1 in 
row j, and zeros everywhere else. Let l 2 ZjVj be a vector, 
where lj ¼ 0 for all j 2 V n fs, tg, ls ¼ 1, and lt ¼ −1:

3.1. Benchmark models

3.1.1. NTM
The first benchmark model minimizes the probability of the 
trafficker escaping, subject to the traffickers’ optimal deci
sions y�

ij, to the lower-level problem, and a budget con
straint. We study the bi-level optimization problem where 
the trafficker naively minimizes travel costs, with no consid
eration for detection. Note that naive cost minimization is 
equivalent to the case where the trafficker has no informa
tion about the interdiction actions. This is a reasonable 
approach when enforcement is infrequent or ineffective. 
Unfortunately, this is often the case for wildlife trafficking, 
which makes this a useful benchmark model. To model the 
interdictor’s objective, we define the probability of escape 
using the log transformation (Taha, 2019). Using our 

notation, the described objective is 
P

ði, jÞ2E log ð1 − pijÞyij:

Using the definition of pij from Equation (1), we can rewrite 
this objective in terms of the interdictor’s decisions as 
shown below. This approach is successful because P

a2A za
ij ¼ 1, i.e., the z variables are mutually exclusive. The 

constraint set for the interdictor is captured in IC, described 
above.

min
X

ði, jÞ2E

X

a2A
log ð1 − pa

ijÞza
ij

� �
y�

ij, s:t: IC:

The traffickers’ problem is a classic shortest-path prob
lem. It is well documented in the literature that a shortest- 
path problem formulated with a node-arc incidence matrix 
and the assumption of no negative cost cycles has an integer 
solution when formulated with the constraints shown below 
(Smith and Song, 2020):

min
X

ði, jÞ2E
cijyij, st:Ty ¼ l, and y � 0:

3.1.2. DMM
The second benchmark model studies the bi-level optimization 
problem where the interdictor (trafficker) maximizes (mini
mizes) the probability of detection, subject to the traffickers’ 
optimal decisions y�

ij, to the lower-level problem, and a budget 
constraint. The probability of detection on each edge is 
dependent on the interdiction actions. This approach captures 
cases where interdiction efforts strongly impact traffickers’ 
decisions and is more appropriate for heavily protected species 
such as rhinos and elephants. The formulation below shows 
the interdictors’ problem, which is the same as for NTM:

min
X

ði, jÞ2E

X

a2A
log ð1 − pa

ijÞza
ij

� �
y�

ij, s:t: IC:

The traffickers’ problem changes from NTM now to consid
ering interdiction actions when selecting routes. This changes 
the objective to maximize their probability of escape instead of 
minimizing the transportation cost, as shown below.

max
X

ði, jÞ2E

X

a2A
log ð1 − pa

ijÞza
ij

� �
yij s:t: Ty ¼ l, and y � 0:

IC ¼

P
j2V bT

j xT
j þ

P
j2V bN

j xN
j þ

P
ði, jÞ2E bijxij � b,

xij � xT
j , ði, jÞ 2 E, j 2 V, z0

ij � 1 − xT
j , ði, jÞ 2 E, j 2 V,

z0
ij � 1 − xT

j − xN
j − xij, ði, jÞ 2 E, j 2 V, zT

ij � xT
j , ði, jÞ 2 E, j 2 V,

zT
ij � 1 − xN

j , ði, jÞ 2 E, j 2 V, zT
ij � 1 − xij, ði, jÞ 2 E, j 2 V,

zT
ij � xT

j − xij − xN
j , ði, jÞ 2 E, j 2 V, zN

ij � xN
j , ði, jÞ 2 E, j 2 V,

zN
ij � 1 − xij, ði, jÞ 2 E, j 2 V, zN

ij � xN
j − xij, ði, jÞ 2 E, j 2 V,

zB
ij � xij, ði, jÞ 2 E, zB

ij � xN
j , ði, jÞ 2 E, j 2 V,

xij þ xN
j � zB

ij þ 1, ði, jÞ 2 E, j 2 V, z0
ij þ zT

ij þ zN
ij þ zE

ij þ zB
ij ¼ 1, ði, jÞ 2 E, j 2 V ,

xT
j , xN

j , xij, z0
ij, zT

ij , zN
ij , zE

ij , zB
ij 2 f0, 1g, j 2 V , ði, jÞ 2 E xN

j � xT
j , j 2 V:

8
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3.2. PMM

Our new model maximizes the total expected reward (pen
alty) for the interdictor (trafficker). The expected penalty 
function captures the monetary penalty (cost) of traveling 
along a path, ck, and the expected interdiction penalty the 
trafficker will incur on the path, Pk. For example, if a traf
ficker is traveling along the path ð1, 5Þ, ð5, 7Þ, ð7, 9Þ, then 
their expected interdiction penalty would be Pk ¼

R5p15 þ R7p57ð1 − p15Þ þ R9p79ð1 − p57Þð1 − p15Þ, where the 
Rj values are the node-specific penalties (rewards) that traf
fickers (interdictors) will incur if detection is successful. Pk 
is a function of the interdiction variables, za

ij, since pij ¼
P

a2A pa
ijza

ij: This objective is nonlinear in the interdiction 
decision variables za

ij since we need to account for the prob
ability of escape at previous airports along the route to avoid 
a “double jeopardy” situation. It is unlikely that a trafficker 
would continue along their route after being detected at an 
earlier node since seizures are the most common interdic
tion action. We cannot utilize the log transformation in this 
formulation, due to the structure of Pk. This requires switch
ing to a path-based formulation where the decision variables 
yk represent the trafficker’s decision to travel on path k 2 jL 

and jL is the set of all paths that contain L or fewer edges. 
For our experimentation, we utilize a three-edge limit that is 
not restrictive given our context with flight paths and allows 
for substantial deviations from the shortest/quickest route, 
but various limits can be used depending on the context. 
The formulation requires the use of additional auxiliary vari
ables, Zk, to remove the non-linearity. The variables com
posing Zk have multiple indexes, the first is the path index 
k, the second is the action along the first edge a1 2 A1, the 
third is the action along the second edge a2 2 A2, and so on 
until the final edge L. Note that the action sets (A1, :::, AL) 
are changing for each edge, this is because not all paths k 2

jL contain exactly L edges. If a path has less than L edges, 
then the action set for the missing edges will be limited to 
zero, do nothing. For convenience, we define Ek as the 
ordered set of edges belonging to path k, where e1 ¼ ði, jÞ is 
the first edge in path k. The individual variables in Zk take 
the form zk, a1, :::, aL and are tied to the za

ij variables through 
an additional set of constraints that ensure that 
zk, a1, a2, :::, aL ¼ za1

e1
� za2

e2
::: � zaL

eL
: This approach is known as the 

McCormick linearization in the literature (McCormick, 
1976). The constraint set for the path-based formulation is 
denoted by ICP and is shown below:

We define HkðZkÞ ¼ ck þ Pk as the expected penalty 
function for path k. Then, using the McCormick lineariza
tion (McCormick, 1976), we can compute the expected pen
alty function as follows:

HkðZkÞ ¼ ck

þ
X

a12A1

:::
X

aL2AL

ðRe1 pa1
e1

þ Re2 pa2
e2

ð1 − pa1
e1

Þ þ :::

þ ReL paL
eL

ð1 − paL−1
eL−1

Þ:::ð1 − pa1
e1

ÞÞzk, a1, a2, :::, aL :

We can then model the interdictor’s problem using the 
constraint set ICP and the expected penalty function HkðZkÞ

described above.

max
X

k2jL

HkðZkÞy�
k , s:t: ICP:

The traffickers’ problem is again a shortest-path problem, 
but it is reformulated to incorporate the path-based decision 
variable yk. The constraint that the trafficker selects exactly 
one path through the network results in a totally unimodu
lar matrix with an integer right-hand side which, along with 
the constraint y � 0, guarantees an integer optimal solution.

min
X

k2jL

HkðZkÞyk s:t:
X

k2jL

yk ¼ 1, and y � 0:

4. Solution procedures

In this section, we highlight the different approaches we 
utilize to solve the three interdiction model types. We 
incorporate a combination of approaches prior to using 
commercial solvers, including dualize-and-combine, warm 
start, and bounds to reduce the network size. The combin
ation of these procedures led to more efficient computa
tional performance for the models discussed. We also 
introduce an approximation to the objective of PMM that 
allows us to reformulate the problem and substantially 
decrease solution times across all instances. We provide data 
on the solution times in Section 6.

4.1. Benchmark models

NTM is easy to solve sequentially using commercially avail
able solvers. Since the traffickers do not respond to interdic
tion actions and simply minimize their travel cost, we can 
first solve their shortest-path problem without any 

ICP ¼

IC,
P

a12A1

P
a22A2

:::
P

aL2AL
zk, a1, a2, :::, aL ¼ 1, k 2 jL,

zk, a1, a2, :::, aL � za1
e1

, e1 2 Ek, k 2 jL, a1 2 A1, :::, aL 2 AL,
zk, a1, a2, :::, aL � za2

e2
, e2 2 Ek, k 2 jL, a1 2 A1, :::, aL 2 AL,

:::

zk, a1, a2, :::, aL � zaL
eL

, eL 2 Ek, k 2 jL, a1 2 A1, :::, aL 2 AL,
zk, a1, a2, :::, aL � za1

e1
þ za2

e2
þ ::: þ zaL

eL
− L þ 1, e1, e2, :::, eL 2 Ek, k 2 jL, a1 2 A1, :::, aL 2 AL,

zk, a1, a2, :::, aL 2 f0, 1g, k 2 jL, a1 2 A1, :::, aL 2 AL:

8
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interdiction decisions and then use the optimal y�
ij values in 

the formulation of the interdictor’s problem. The interdic
tor’s problem can then be solved quickly using commercial 
solvers.

To solve DMM, we utilize the dualize-and-combine 
approach that is popular in the literature (Israeli and Wood, 
2002; Smith and Song, 2020). This approach converts the bi- 
level optimization problem into a single-level optimization 
problem that can be solved with commercial solvers. This 
approach works for our model because the follower’s prob
lem is a shortest-path problem, i.e., a convex optimization 
problem (Smith and Song, 2020). When combined with the 
strategic use of auxiliary variables and the log transform
ation to remove any non-linearity, this approach is capable 
of solving realistic instances in reasonable time frames. 
Following the convention in the literature, we use p 2 RjVj

to represent the dual variables associated with the shortest- 
path constraints.

The single-level formulation of the detection maximiza
tion model with intelligent trafficker response is shown 
below. Recall that l is the vector that forms the right-hand 
side of the shortest-path constraints and T is the node-arc 
incidence matrix. Define u as the vector of length jEj, where 
for edge e 2 E, we have ue ¼

P
a2A log ð1 − pa

e Þza
e : Then we 

can rewrite the bi-level formulation as follows.

maxl0p, s:t T0p � u, and IC:

4.2. Solution approaches for PMM

PMM can also be solved using a dualize-and-combine 
approach. However, the computation times are much longer 
for this model, due to the large number of variables intro
duced by the path-based formulation. The dual of the path- 
based shortest-path problem has a single dual variable p to 
match the single constraint, that only one path can be 
selected. The dual constraints require that the value of p be 
less than the value of the primal objective, HkðZkÞ, for all 
paths k 2 jL: As in DMM, we also include the interdiction 
constraints ICP. The combined single-level formulation is:

max p, s:t: p � HkðZkÞ, 8k 2 jL, and ICP:

This formulation can be solved using a commercial 
solver, but it is time-consuming for realistic network sizes. 
To improve the solution time for this model, we use two 
different approaches: warm starting the optimization process 
and removing certain unused paths from jL prior to the 
optimization process.

There are many potential approaches for deciding on the 
initial solution used in the warm start. The nature of the 
interdiction model makes it easy to generate many feasible 
interdiction solutions and then solve the shortest-path prob
lem that arises. Our approach was to first solve the model 
with a small budget and then use that solution to warm start 
instances with larger budgets. In addition to the warm start, 
we used a bound to remove unused paths from the network 
to reduce its size. The bound is determined by calculating 
the largest possible penalty HkðZB

k Þ for all paths k 2 jL, 

where ZB
k indicates that both arcs and nodes are interdicted 

on all legs of path k. Then, the bound can be represented by 
c, where c ¼ mink2jL HkðZB

k Þ: This bound represents the 
worst possible case for the trafficker, they will always be 
able to travel on a path with a penalty at least this low, even 
if the interdiction budget is unlimited. We can then use c to 
remove any path k 2 jL such that c < HkðZ0

kÞ, which is the 
base penalty from traveling the path when no interdiction 
actions are taken.

4.2.1. Double jeopardy objective approximation
Solving the PMM, even after removing unnecessary paths 
with the bound, is very time-consuming. Results presented in 
Section 6 show that the average solution time is extremely 
high for certain origin–destination pairs and that some instan
ces could not be solved using commercial software within our 
time frame of 86,400 seconds. To improve the solution speed 
for PMM, we introduce an approximation to the objective 
function that allows us to take advantage of the structure of 
DMM and its much faster solve time. Specifically, we relax 
the assumption that traffickers can only be caught once along 
their route and calculate the objective as though they can be 
caught in each country and face the respective penalties 
according to the probability of detection along the specific 
node and arc. We call this the “Double Jeopardy” 
Approximation (DJA) after the procedural defense that pre
vents a person from being prosecuted twice for the same 
offense. This approximation always returns a feasible solution, 
because it uses the constraint set from DMM, but the solution 
it returns often has an optimality gap. Since it always returns 
a feasible solution, we evaluate the performance of the DJA 
solution as a warm start for PMM. The DJA can be solved 
using an arc-based formulation instead of a path-based for
mulation, which yields substantial improvements in solution 
speed. The revised expected penalty function for the DJA is 
shown below.

HkðZkÞ ¼ ck

þ
X

a12A1

X

a22A2

:::
X

aL2AL

ðRe1 pa1
e1

za1
e1

þ Re2 pa2
e2

za2
e2

þ :::

þ ReL paL
eL

zaL
eL

Þ:

We can convert the expected penalty function to an arc- 
based formulation now that we no longer account for the 
probability of escape on previous arcs along the path. The 
single-level formulation of the DJA is shown below using a 
similar notation to DMM. We define u as the vector of 
length jEj, where for edge e 2 E we have ue ¼ ce þ
P

a2A Repa
e za

e : Then, we can rewrite the bi-level formulation 
as follows using IC as the constraint set because it is an arc- 
based formulation.

max l0p, s:t T0p � u, and IC:

5. Data sources and experiments

In this section, we discuss the data used in our models and 
any data pre-processing that we performed. To capture a 
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varied and realistic set of instances, we sourced data from 
several conservation groups and other entities and combined 
seizure records with flight infrastructure and pricing data.

5.1. External data sources

Seizure data is an important source of information about 
IWT networks and provides a limited understanding of traf
ficking routes and the species involved. It is important to 
recognize that seizure data is incomplete and often not rep
resentative of the true state of IWT because it is heavily 
biased by variations in enforcement. In this study, we use 
seizure data from the Wildlife Trade Portal (WTP: wildlife
tradeportal.org). The WTP states that

while wildlife incident data is a vital source of information, it 
should not be inferred that there is a direct correlation between 
incidents and the overall IWT or that information across 
locations, species or time is consistent.

The data we accessed includes records of global seizures 
for all wildlife species that occurred on air transit networks 
between October 1, 2017, and January 1, 2021. With 1067 
records for a variety of species and trafficking routes, we 
identify candidate networks with the origin and destination 
airports for each seizure record for model testing. The air
port and flight network was created from data gathered 
from the open-source database, OpenFlights.org. The files 
contain information on 8267 airports located around the 
world and the corresponding commercial flights. It must be 
noted that the routes were last updated in June 2014. All 
new airports and flights which were represented in the seiz
ure data have been added to the data set. We used the com
bination of both data sources to form a base global flight 
network, then we narrowed the network to focus on poten
tial paths between origin and destination airports. Flight pri
ces were collected using the Skyscanner API (https:// 
skyscanner.github.io/slate/). For each pair of airports, we 
used the API to request flight quotes for November 2021 
(all API requests were executed on October 14, 2021). In 
total, we amassed a data set containing 44,462 price quotes. 
We then used the lowest price in that time window as the 
price between the source and destination airport. The API 
did not return valid responses for several airport pairs with
out existing flight plans. Additionally, we note that data was 
collected during the coronavirus pandemic, as historical data 
was not available, and some flight data was not present.

We used reports from UNODC to supplement the seizure 
data (UNODC, 2020). The report draws from a variety of 
sources and provides a more holistic view of wildlife traf
ficking with relevant data for several product groups, not 
just those most commonly represented in seizure data. To 
fully capture the utility of PMM, we need information about 
countries’ abilities to enforce legal penalties for wildlife traf
ficking. Unfortunately, to the best of our knowledge, there is 
no database or ranking of countries’ wildlife trafficking 
enforcement efforts. However, The Global Organized Crime 
Index (2021) contains information on the prevalence of dif
ferent forms of organized crime in a country and the coun
try’s resilience. Though this is not a perfect proxy for a 

country’s ability to penalize IWT activities, we use this data 
to test the capabilities and responses of the penalty maxi
mization model when faced with varying penalties.

5.2. Experimental design

When designing our experimentation, we first determined the 
Origin–Destination (OD) pairs that should be used in the ana
lysis. The choice of OD pairs is important because it deter
mines the flight network structure and size. To properly 
represent real-life trafficking and interdiction networks, we uti
lized two approaches for selecting OD pairs: (i) analyzing the 
most prevalent OD pairs from air trafficking seizure data, and 
(ii) finding the key origin and destination countries for specific 
product groups using data from the UNODC (2020) report. 
Figure 6 (in the Appendix) shows the OD pairs that were 
most prevalent in the seizure data, and Figure 7 (in the 
Appendix) shows the pairs obtained by the product group ana
lysis. These figures illustrate why using seizure data alone is 
not sufficient. Current interdiction efforts are heavily focused 
on certain species and regions. As a result, seizure data mostly 
document trafficking between African countries and Southeast 
Asian countries. By specifically seeking out countries of interest 
for a wide variety of illicit wildlife products, we can diversify 
the networks studied and take a more global approach to battle 
wildlife crime. For each selected OD pair, we formed the flight 
network for the interdiction model using the OpenFlights data 
by identifying all airports and flights that were part of a path 
of length three or less between the origin and destination. All 
edge costs for the flight network were assigned using the flight 
pricing results from the Skyscanner API.

In our experiments, the interdiction and training costs are 
constant across all locations. The model and solution proce
dures will work for varying costs, but identifying critical areas 
of interest was more straightforward without the added 
dimension of variability. We set the training cost at an airport 
to $200 and the airport and flight interdiction costs to $100 
and $40, respectively. These values represent the traditional 
intuition that upfront training costs are more expensive to 
start and that interdiction of a broader population, such as all 
passengers traveling through an airport, is more costly than 
interdicting a targeted group, such as all passengers on a spe
cific flight. To complement these costs, we test our models 
using a variety of budgets for each network. The budgets are 
adjusted depending on the model and the specific flight net
work. In particular, NTM requires a smaller budget because 
traffickers never stray from the most cost-efficient path. To 
generate the budgets for these networks, we identify a max
imum budget value that corresponds to the cost of interdict
ing the entire flight network, where the flight network is 
problem-specific. We also identify a minimum budget, which 
is the smallest amount needed to execute any interdiction 
action. We then generate budget levels at even increments 
between the identified minimum and maximum budgets. We 
report most of the interdiction results as a proportion of the 
maximum budget for ease of comparison.

When determining the detection probability values, we 
employed a similar strategy to that used for specifying the 
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costs of interdiction. Specifically, we set the base probability 
of detection with no interdiction as the smallest value and 
incremented this base probability to arrive at the detection 
probabilities associated with airport training, airport inter
diction, and flight interdiction. This process led to the set of 
detection probabilities p0

ij, pj, qN
j , qij ¼ f0:05, 0:1, 0:15, 0:2g, 

which we feel is reasonable since authorities can inspect a 
larger proportion of items on a single flight than they can in 
an entire airport.

The final piece of the experimental design is the penalty 
values for PMM. We investigated three different types of 
penalties: low, high, and varied. The low and high penalty 
cases are comparisons to NTM and DMM, respectively. 
These low and high penalties were set at $1000 and $5000 
for all countries in each experiment, respectively. For the 
varied penalty case, we set the penalty for each country 
based on its resilience scores (The Global Organized Crime 
Index, 2021). The resilience scores for the countries are 
shown in Figure 9, in the Appendix. We assigned the penal
ties such that countries with a resilience score of 10 had the 
maximum penalty of $2000 and countries with a score of 
zero have a penalty of $0. Note, these settings are solely for 
the purpose of testing the model and are not necessarily an 
accurate representation of the countries’ abilities to combat 
IWT. More research and cooperation are needed to truly 
estimate the variations between countries’ ability to success
fully indict and convict traffickers.

6. Computational results

In this section, we will discuss and interpret the perform
ance of the proposed solution approaches and the results for 
the three interdiction models. We provide insight into the 
structure of the optimal interdiction decisions, how those 

decisions change as the budget increases, and the differences 
between the models and their specific uses. We use several 
representative trafficking networks to give insight into what 
these strategies look like in practice and highlight any imple
mentation concerns for the various models. Our computa
tional experiments are run with Gurobi (9.1) (Gurobi 
Optimization, 2021) on five 32-core machines with Intel 
2.1 GHz CPUs and 264 GB of memory.

6.1. Solution times and performance

Table 2 shows the solution times for all three models for 
each OD pair and the key network characteristics of the 
pair. Relative to the other models, solution times for the 
NTM are fast and primarily determined by the number of 
paths through the network, which is labeled with jjj in the 
table. The instance with the longest solution time for this 
model had an average duration of only 2.17 seconds with a 
standard deviation of 1.51 seconds. This highlights the use
fulness of this model as a first step for practitioners who are 
unlikely to have extensive computational resources.

The solution times for DMM are larger than those of 
NTM. However, the average solution time was 825 seconds 
(0.23 hours) per instance, and the largest network took 
1.7 hours to solve on average, which is reasonable for a stra
tegic problem. In general, across all the models, the net
works generated from the OD pairs from the UNODC data 
(shown in Figure 7 in the Appendix) took longer to solve 
than those generated from the WTP data (shown in 
Figure 6 in the Appendix). This is likely due to the 
increased distance between the OD pairs obtained from 
UNODC. In total, 37 instances out of the 500 across the 
OD pairs were not solved in the time limit for DMM, 31 
UNODC (3 hour limit) and six WTP (1 hour limit). Table 4, 

Table 2. Summary of instances, including network size and interdiction model solution time averages over all budget values for an OD pair.

O-D pair jEj jVj jjj
Average Solve Time by Model (seconds)

DJA Gap (%)
NTM DMM PMM DJA PMDJ

BCN-HKG 1877 201 1678 1.92 6098.43 38,379.95 4913.01 24,272.51 0.65
MEX-MIA 2059 164 1897 2.17 1121.47 35,325.86 2.41 35,633.43 25.22
BKK-LAX 1522 137 1387 1.62 5636.00 31,063.47 1911.75 13,432.00 0.75
LIM-ORD 1508 181 1329 1.03 3408.28 29,023.93 414.60 10,889.37 0.68
MNL-VIE 757 118 641 0.50 2257.38 15,645.49 559.94 4488.07 1.87
BKK-MAA 968 111 859 0.70 1.55 15,075.47 0.63 16,594.78 29.84
JNB-HKG 926 108 820 0.76 420.52 13,706.69 33.75 3081.99 0.61
ADD-PVG 658 98 562 0.38 330.28 13,034.64 20.09 2839.48 1.47
JNB-KUL 740 95 647 0.47 115.78 12,425.53 28.91 2794.82 0.65
MAA-SIN 862 100 764 0.72 18.77 12,310.18 0.48 9954.78 19.89
CDG-HND 1271 203 1070 1.05 8.04 11,379.10 0.84 22,243.19 20.37
ADD-HKG 690 88 604 0.39 83.68 11,029.41 0.28 10,131.47 19.74
ADD-CAN 552 88 466 0.39 357.71 9954.11 25.93 1554.50 0.64
DXB-SGN 1028 140 890 0.69 3.20 9577.17 0.55 11,851.10 17.56
CGK-SIN 936 95 843 0.96 15.09 5066.70 0.40 5840.60 27.76
DPS-ICN 720 96 626 0.44 367.76 4727.92 0.31 3832.11 21.18
LOS-CAN 432 60 374 0.27 57.75 4188.91 5.26 1073.41 1.64
ADD-CTU 280 62 220 0.18 208.78 1454.67 11.89 416.06 1.40
DAR-HKG 304 73 233 0.21 118.36 887.65 0.79 307.34 2.18
RGN-CSX 225 45 182 0.17 2.41 706.30 0.79 292.49 3.34
TIJ-PVG 82 32 52 0.06 0.52 159.91 0.63 54.54 0.89
MXL-SEA 83 39 46 0.06 0.49 61.26 0.32 29.14 1.02
CNX-MFM 96 21 77 0.07 0.28 50.07 0.15 23.38 0.31
FIH-SGN 80 29 53 0.06 0.33 49.75 0.22 18.56 1.16
MPM-HAN 31 15 18 0.03 0.06 12.02 0.07 3.54 0.26
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in the Appendix, shows that the change in the length of the 
traffickers’ paths post-interdiction is a key factor that 
impacts the solution time. In particular, instances, where the 
budget increase from the previous instance leads to a change 
in the trafficking path length, are difficult to solve because 
the lack of strong bounds delays the convergence.

PMM is the slowest of the three models, with the largest 
network taking an average of 10.66 hours to solve when 
using the path-based formulation with the path fathoming 
and basic warm start approaches. The path-fathoming 
approach was most successful in instances with lower penal
ties because a larger number of paths can be pruned. The 
warm start improved solution times for a larger set of 
instances but the largest instances were still time-consuming 
to solve. In addition, 74 instances in the high penalty group, 
out of a total of 1500 instances across all penalty groups, hit 
the 24-hour time limit. DJA has a similar formulation to 
DMM and was much faster to solve than the path-based for
mulation for PMM, with an average solve time of 
317.36 seconds, compared with 11,011.85 seconds for the 
path-based formulation. Due to the similarity to DMM and 
reduced solution times, we used a 6-hour time limit for DJA 
and only 17 instances out of 1500 hit the time limit. DJA 
always returns a feasible solution, but the optimality gap 
varied between 0.27 and 29.85% with an average gap of 
8.05% across all OD pairs, for instances that did not hit the 
time limit. The best results were achieved by using the DJA 
as a warm start for PMM, which we refer to using the acro
nym PMDJ. This approach provided PMM with a good, at 
times extremely good, initial feasible solution, which reduced 
the solution times by an average of 31.13%, including the 
time to solve DJA and PMDJ, and solved the model to opti
mality. The number of instances hitting the 24-hour time 
limit was also reduced to 32 for PMDJ in comparison with 
74 instances for PMM. The time to solve both the DJA and 

the PMDJ was 7583.47 seconds, on average, compared with 
11,011.85 seconds for the initial solution approach. The com
plete set of solution times for all models is shown in 
Table 2. The solution times for the DJA mirror the solution 
time for DMM, which is intuitive given the structure of the 
formulation. The largest optimality gaps for the DJA were 
correlated with the slowest solving instances of PMDJ, which 
demonstrates the value of higher quality starting solutions.

6.2. NTM insights

For NTM, Figure 1 shows the interdiction strategy for two dif
ferent budget levels on trafficking between Johannesburg and 
Hong Kong. This figure is an example of how the solution 
changes as the budget increases. The solutions require relatively 
few interdiction actions and are easy to describe in a simple 
policy. Interdiction only takes place along the lowest-cost flight 
path, because traffickers do not adapt in this model. A simple 
strategy that can be used by practitioners is to start at the des
tination and work back through the network. First, training 
the node, then interdicting the preceding arc, then interdicting 
nodes in a greedy fashion. The model is capable of handling 
varied probabilities and interdiction costs at different airports, 
but this was not part of our experimentation. The probabilities 
of detection after interdiction in NTM are high, and the rela
tive budgets required to achieve high probabilities of detection 
are much less than other models. Although NTM is simple, it 
represents a reasonable first step for interdiction of less 
“charismatic” species where political will and funds for 
enforcement are scarce as mentioned earlier.

6.3. DMM insights

DMM yields more complex solutions than NTM. Figure 2
shows how the probability of detection and optimal path 

Figure 1. Naive traffickers model interdiction decisions for trafficking between Johannesburg and Hong Kong with different budgets.
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length change as the interdiction budget changes for two 
networks, Johannesburg to Hong Kong and Chiang Mai to 
Macau. The figure shows several plateaus in the probability 
of detection and cycles in the optimal path length. One key 
aspect of this model is the inclusion of traffickers’ risk of 
detection on every flight, so if all flights have an equal prob
ability of detection, then they take as few flights as possible. 
If the interdiction decisions make it impossible to travel a 
path of the shortest length without using an interdicted arc 
or node, then the trafficker will switch to a longer path that 
avoids interdiction if it exists. As interdiction actions target 
longer paths, traffickers will switch between those paths to 
avoid interdicted flights and airports until there are no 
remaining paths of the same length that have no interdic
tion. At this point, if there is a longer path, traffickers may 
switch to that one, or they may switch back to their original 
path of shorter length and accept the penalty if traveling 
through a single trained/interdicted flight. This cycle repeats 
as the level of interdiction increases from just training, to 
training and flight interdiction, and eventually to training, 
flight interdiction, and airport interdiction. Figure 3 shows 
how the interdiction decisions and trafficker response vary 
at two different plateaus in detection probability for 
Johannesburg to Hong Kong. In the first network, top left, 
the budget is $1058, and the flight interdiction actions 
ensure that there are no paths of length two that can avoid 
traveling on an interdicted flight. In the bottom left of 
Figure 3, with a budget of $3632, there are additional inter
diction actions that ensure all paths of length two or three 
are impacted by an interdiction action. The graphs on the 
right show the impact of these interdictions on the optimal 
path for the traffickers at the same budget levels. We can 
see that the top right map shows that the traffickers had an 
original path of length two and have shifted to a path of 
length three to avoid interdiction. In the bottom right map, 
all the paths of length three face at least one interdiction 
effort, so the traffickers have returned to their original path 
of length two. The difference is that in the bottom right 
map, they now face a probability of detection of 35.4%, up 
from 27.8% in the top right map.

This cyclic interdiction strategy is intuitive and also follows 
the same idea of starting from the destination and working 
back through the network toward the origin. The main issue 
with this strategy is that it requires cooperation among all 
countries that are part of the set of flights and airports inter
dicted at that stage. This might be easy at lower budgets if the 
focus is on flights that all land in the destination airport, so 

only one country needs to enforce. However, in later stages, if 
any one country fails to enforce, then it becomes much harder 
to increase the detection probability. It may still be possible, 
for some products, to garner this amount of political will to 
prevent trafficking in a large number of countries. However, 
this model also does not take flight cost or time into account, 
which leads to interdiction in countries that are unlikely to 
have ever experienced the trafficking of a certain product. 
This highlights some of the issues with this model and its lim
ited applicability to products that receive little international 
attention or resources.

Another limitation of DMM is that it assumes traffickers 
focus solely on avoiding interdiction and are willing to fly 
wildly expensive or time-consuming routes in order to do so. 
In Figure 3, the model interdicts flights between Los Angeles 
and Hong Kong when the traffickers origin is in South Africa. 
This is a highly convoluted route that is unlikely to be used in 
practice, due to its cost and duration. This calls into question 
this model’s ability to accurately predict the traffickers’ behav
ior. For the interdiction model to yield practical insights, it 
has to consider all factors traffickers weigh when making tran
sit decisions. Traffickers may exhibit this behavior when 
avoiding strong punishments for detection, but are unlikely to 
do so to avoid smaller fines. It is possible to remove some very 
expensive paths from the network before solving the interdic
tion problem. However, it may not be clear where to stop. 
PMM resolves all of these issues by directly comparing the 
flight cost to the penalties faced by traffickers.

6.4. PMM insights

PMM combines the best aspects of the previous models to 
represent the traffickers’ incentives more accurately. This 
model is much more flexible, and the data requirements are 
intuitive for practitioners and easy to estimate, though there 
are still difficulties in gathering global data sets. By using 
real penalties that traffickers incur when caught, authorities 
can better understand the costs and risks that traffickers 
face. The objective of this model is highly practical and rep
resents the total expected cost to traffickers traveling on a 
certain route from both penalties and flights. This informa
tion can complement existing data about profit margins and 
selling prices for wildlife products and, hopefully, lead to 
increased costs pushing many traffickers out of business 
entirely. With this information, authorities can understand 
what levels of enforcement and penalties, and their 

Figure 2. Detection probability and optimal path length by budget (Johannesburg to Hong Kong and Chiang Mai to Macau).
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corresponding budgets, are needed to eradicate profits from 
trafficking specific products.

Figure 4 shows the optimal path lengths and objective 
values for PMM at various budget proportions. We further 
break out the objective into the flight cost and detection 
penalty components, and we show the impact of low, high, 
and varied penalty values. When the penalty values are high, 
the figure shows similar behavior to the DMM, where there 
are cycles of longer and shorter trafficking paths. When 
penalty values are low, the behavior is more reminiscent of 
NTM, but the trafficker paths do still shift as they react. 
With low penalty values, the shifts occur between a smaller 
array of potential paths that have less deviation from the 
cheapest path. In this example, the varied penalty behaves 
like the low penalty. This is because the average penalty 
among countries is the same in both cases. We purposefully 

chose to use a lower penalty for the varied case to accurately 
represent the situation faced with many wildlife products. 
Variations in penalties between countries will have less 
impact on the values shown in Figure 4 but a strong impact 
on the geographies of the airports and flights chosen for 
interdiction at each budget level.

Figure 5 shows the interdiction decisions for the varied 
and high penalty models. This figure captures the shift from 
eliminating any potential path without interdiction (high 
penalty) to interdicting more heavily along key paths that 
are likely to have a high volume of trafficking (varied pen
alty). With the varied penalty, we see more interdiction at 
earlier stages in the transit route and heavy interdiction at 
the airports that are most central to the route. This central
ization of interdiction efforts highlights the key role that 
hub airports play in successful interdiction strategies. The 

Figure 3. DMM interdiction decisions and trafficker paths for routes between Johannesburg and Hong Kong with budgets of $1058 and $3632 on the top and bot
tom line, respectively.
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variations between the low and varied penalty cases are 
more subtle and focus on switching out individual flights 
that are interdicted for flights that arrive in countries with 
higher penalties. PMM is flexible enough to be applied in a 
variety of different enforcement landscapes, containing the 
best features of NTM and DMM, and it yields realistic solu
tions that have appealing characteristics for practitioners.

Figure 8 in the Appendix shows how the average flight 
cost, across all OD pairs, from the traffickers’ optimal 
response varies with different interdiction budgets for both 
models. The size of the bubbles indicates the probability of 
detection. The graph shows that, for DMM, the flight cost 
varies wildly as the budget changes. When the budget and 
detection probability are both very small the traffickers shift 

Figure 4. Detection probability and optimal path length by budget (Addis Ababa to Hong Kong).

Figure 5. Interdiction networks for varied penalty (left side) and high penalty (right side) for budgets of $770 (top) and $3450 (bottom).
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to taking a very expensive route. The variation in flight costs 
is much lower in PMM. Although this is not necessarily a 
“good” thing, since it represents lower travel costs for traf
fickers, it does indicate that the model is potentially a more 
realistic representation of trafficker behavior. Also, if legal 
penalties are high enough that traffickers take extremely 
expensive flight routes to avoid detection, PMM will capture 
this and the solution will approach the solution of DMM. In 
fact, we see evidence of this behavior in Figure 4.

7. Conclusions

In this article, we highlight several key challenges for authorities 
working to interdict IWT activities and solve three variants of 
an interdiction model to address those challenges. Wildlife 
products are illegally traded in very complex supply chains with 
many possible source and demand locations. Air transit is a 
common trafficking mode for high value or perishable products 
and there is ample opportunity to inspect for illicit products. 
However, customs and security officials may be unfamiliar with 
the wide array of trafficked wildlife and the numerous proc
essed forms of illicit products. Training is key for proper identi
fication and seizure of illicit products and our models 
incorporate that requirement into the interdiction formulation. 
Policies, capacities, and regulatory frameworks differ between 
countries, prompting criminals to turn to places where they 
can operate efficiently with a low risk of punishment. 
Traditional models often assume that traffickers solely focus on 
avoiding detection, without considering flight cost, duration, or 
varying legal penalties between countries. We present a new 
network interdiction model (PMM) that can handle varied pen
alties across countries and capture the trade-off between flight 
costs and detection risks that traffickers face. PMM is versatile 
in its ability to capture a variety of cases with differing levels of 
enforcement resources and attention. PMM necessitates the 
switch to a path-based formulation which is time-consuming to 
solve. To handle this, we introduce an objective approximation 
that leverages the structure and faster solution times of DMM. 
We utilize the solutions from this approximation to provide an 
excellent starting solution for PMM which substantially reduces 
the solution times for many of the networks we investigate. We 
provide an in-depth discussion of the underlying structure of 
the network interdiction strategies generated by the three mod
els and their impact on traffickers and enforcement authorities 
with varying interdiction budgets.

To ensure our analysis captures practical issues, we use 
real flight networks and pricing data with origin and destin
ation cities obtained from seizure data and technical reports. 
The variety of OD pairs provides realistic test cases for a 
variety of product types, including pangolin scales, rhino 
horn, ivory, live reptiles, European glass eels, tigers, sea 
cucumbers, and live birds. Using these test cases, we high
light areas where solutions to traditional interdiction models 
may result in unrealistic decisions, with enforcement occur
ring on distant or expensive flight routes before the cheapest 
route has been fully interdicted. These contributions high
light how traditional models can be best adapted to solve 
practical problems in IWT applications.

Although this work is a strong first step in combating IWT 
using operations research methods, there are still many oppor
tunities for future research. Regarding methods, there are 
opportunities to incorporate multi-period and multi-product 
decisions. Regarding data, seizure data currently presents many 
challenges because it is often biased towards countries with 
stronger enforcement and products with strong law enforce
ment attention. Future work can investigate innovative ways to 
utilize available data and develop strategies for interdiction that 
improve our understanding of IWT networks, which in turn 
will help us combat them more effectively. Some previous 
research considers the impact of imperfect information on net
work interdiction models. Future work might also look to 
expand to cases with incomplete or asymmetric information 
about interdiction actions or trafficker preferences (Bayrak and 
Bailey, 2008). A better understanding of how traffickers incorp
orate learned or revealed information about interdiction activ
ities would enable researchers to devise methods that generate 
increasingly practical solutions. Finally, network interdiction is 
an important step in reducing the exploitation of endangered 
or threatened species, but it is unlikely to be sufficient by itself 
(UNODC, 2020). Elimination of IWT requires a focus on both 
demand and supply reduction. Regardless of efforts to reduce 
supply, if high levels of demand exist, illicit markets will evolve 
towards less-regulated locations or substitute species. Many 
opportunities exist for research into demand reduction, poach
ing protections, and generating alternative streams of income 
to draw labor away from IWT.
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Appendix and Additional Resources

Figure 6. Most frequently occurring Origin-Destination Pairs from seizure data.

Figure 7. Origin-Destination Pairs for key product groups.
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Figure 8. Average trafficker flight cost by model and by budget proportion.

Figure 9. Resilience scores for penalty calculation.
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Table 3. Summary of notation.

Parameters
V the set of nodes in the flight network, jVj ¼ n
E the set of edges in the flight network, jEj ¼ m
j the set of all paths between the origin and destination, k ¼ 1, 2, :::

Ek the ordered set of edges in path k 2 j, e1, e2:::
l a vector 2 ZjVj where lj ¼ 0 for all j 2 V n fs, tg, ls ¼ 1, and lt ¼ −1:

T a node-arc incidence matrix for the node set V and arc set E.
u a vector of length jEj with values ue ¼

P
a2A logð1 − pa

e Þza
e for edge e 2 E:

A the set of combinations of actions a that can be taken on an edge,
{0 - do nothing, T- train only, N- node interdiction and training,
E- edge interdiction and training, B- node and edge interdiction and training}.

bT
j the fixed cost of training for detection at node j, j ¼ 1, :::, n:

bN
j the variable cost for general screening at node j, j ¼ 1, :::, n:

bij the variable cost for enhanced screening on edge eij, eij 2 E:

cij the cost for a trafficker to travel on edge eij, i, j ¼ 1, :::, n:

p0
ij the base probability of detection before training on edge eij, eij 2 E:

pj the base probability of detection after training, j ¼ 1, :::, n:
qij the enhanced probability of detection on edge eij, eij 2 E:

qN
j the enhanced probability of detection at node j, j ¼ 1, :::, n:

b the total interdiction budget.
Rj the reward (penalty) for the interdictor (trafficker)

if the trafficker is detected at node j, j ¼ 1, :::, n:

Decision Variables - Interdictor
xT

j 1, if node j is given training, 0 otherwise.
xij 1, if edge eij is interdicted, 0 otherwise.
xN

j 1, if node j is interdicted, 0 otherwise.
Decision Variables - Trafficker

yij 1, if trafficker chooses to travel along edge eij, 0 otherwise.
p dual variable(s) associated with the shortest path constraint(s).

Auxiliary Variables
za

ij 1, if action a 2 A is taken on edge eij , 0 otherwise.
Zk the set of path-based auxilliary variables associated with path k 2 jL:

zk, a1 , a2 , :::, aL 1, if action sequence a1, a2, :::, aL 2 ðA1, :::, ALÞ is taken on path k, 0 otherwise.

Table 4. Variations in time to solve the interdiction model by interdiction model type and differences in the number of arcs contained in the shortest path 
before and after interdiction.

Trafficker # of Flights Interdiction Average Solve Time (s)

Pre-Interdiction Post-Interdiction Naive Traffickers Max. Detection Max. Penalty

1 1 0.963 3.086
1 2 919.774 8940.133
1 3 1609.793 34,474.014
2 2 0.87 169.381 8177.588
2 3 1765.133 26,217.988
2 4 2583.924
3 2 196.313
3 3 0.348 0.359 163.08
4 4 1.615
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