SYSTEMS ATTACKS AND DEFENSES

Editors: D. Balzarotti, davide.balzarotti@eurecom.fr | W. Enck, whenk@ncsu.edu | T. Holz, thorsten.holz@rub.de | A. Stavrou, astaviou@gmu.edu .

Software Bills of Materials Are Required.
Are We There Yet?

Nusrat Zahan

State University

, Elizabeth Lin

, Mahzabin Tamanna, William Enck

, and Laurie Williams

| North Carolina

Executive order 14028 on improving the nation’s cybersecurity highlights the software bill of materials
(SBOM) as an essential security practice for software security. This article outlines the top five benefits
and challenges of adopting SBOM:s, identified by reviewing 200 Internet articles.

I n December 2021, a zero-day
remote code execution vulnerability
(code-named Log4Shell) was identi-
fied in Apache Log4j, a popular log-
ging library used by more than 35,000
Java packages.! Nearly every software
organization immediately needed to
discover which of its applications con-
tained the affected version of the Log4j
library so that it could mitigate its risk.
Organizations with software bills of
materials (SBOMs) identified the vul-
nerable component in a few hours,
contrary to taking weeks to determine
their risk.> 3 The Log4Shell vulnera-
bility showed that SBOMs can be use-
ful for keeping track of and mapping
applications that depend on vulner-
able dependencies and for shortening
the time it takes to respond to the dis-
covery of critical vulnerabilities.
SBOMs provide transparency
and visibility to software compo-
nents and dependencies. Executive
order (EO) 14028 on improving
the nation’s cybersecurity states
that “SBOM:s are a formal record
containing the details and supply
chain relationships of various com-
ponents used in building software.”
At the bare minimum, an SBOM
includes the component name, pub-
lisher name, component version,
other unique identifiers, dependency

Digital Object Identifier 10.1109/MSEC.2023.3237100
Date of current version: 15 March 2023

relationship, author of SBOM data,
file name, license information, and
time stamp. Open Web Applica-
tion Security Project CycloneDX,
Software Product Data Exchange
(SPDX), and Software Identification
Tagging (SWID) are three widely
known SBOM standards. An SBOM
standard is a schema designed to pro-
vide a common format for describ-
ing the composition of software in
a way that is machine readable and
consumable by other tools. SPDX
was initiated in 2010, SWID in 2012,
and CycloneDX in 2017.

Executive Order 14028 and
SBOMs

In May 2021, the software industry
witnessed a surge of practitioner inter-
est in SBOMs, as EO 14028 identi-
fied SBOMs as one of the practices
that enhance software supply chain
security. The EO directed the Depart-
ment of Commerce, in coordination
with the National Telecommunica-
tions and Information Administration
(NTIA), to publish the minimum
elements for SBOMs. In July 2021,
the NTIA released a report outlin-
ing the minimum elements, how an
SBOM might assist in reducing risks,
and options for future evolution.
Subsequently, the National Insti-
tute for Standards and Technology
(NIST) published the first version of
the Secure Software Development

Framework (SSDF), in February
2022, which lists the security prac-
tices a software organization can
adopt, including the use of SBOMs.

On 14 September 2022, the
Office of Management and Budget
released a memo that required fed-
eral agencies to self-attest that soft-
ware was built according to NIST
SSDF guidance. Therefore, SBOMs
are now required for software pro-
viders who conduct direct business
with the U.S. federal government.
However, SBOMs are likely equally
important for those who do not sell
directly to the U.S. government, as
one of a company’s clients might do
business with a federal agency and
use the product as a solution. There-
fore, the ripple effect of the federal
government’s SBOMs requirements
is likely to be significant.

Industry Consensus

While SBOMs have received notable
policy attention from the U.S. gov-
ernment, software producers have yet
to implement them fully. The Linux
Foundation’s SBOM readiness sur-
vey*in 2022 on 412 worldwide orga-
nizations showed gaps in familiarity
with, production planning for, and
consumption of SBOMs. For exam-
ple, only 18% of organizations use
SBOMs across nearly all their busi-
ness segments and have standard
practices that include using SBOMs.

d lcensed ugs imited to: N.C. Statg, nivarsiy | araries - Acquisitions & Disceyery, &, Downlodgiad,on Jun 28,2034, 93 38:QRUTC from IEEE Xplore, Resticlions agple

https://orcid.org/0000-0002-2738-4118
https://orcid.org/0000-0001-8856-5062
https://orcid.org/0000-0002-3043-8092
https://orcid.org/0000-0003-3300-6540
mailto:davide.balzarotti@eurecom.fr
mailto:thorsten.holz@rub.de
mailto:astavrou@gmu.edu

B 5YSTEMS ATTACKS AND DEFENSES

Other organizations use SBOMs to
some extent, plan to adopt SBOMs,
or have no plans to adopt SBOMs at
all. Disconcertingly, 40% of the sam-
ple was unclear about whether the
industry is committed to mandat-
ing SBOMs, raising concerns about
whether practitioners are abiding by
the EO governing SBOMs. There-
fore, widespread SBOM adoption
requires 1) identifying challenges
associated with SBOM generation,
2) developing clear use cases, and
3) crafting guidelines and tooling to
accommodate SBOMs use cases.

two query strings: 1) “challenges
to adopt SBOM” and 2) “benefits
to adopt SBOM.” We selected the
top 100 results determined by the
Google search engine’s page rank
algorithm as a search stopping crite-
rion. To avoid bias from an author’s
browsing history, we browsed in
Google Chrome’s incognito mode.
In total, we collected 200 Internet
articles, 100 for each query string,
on 25 November 2022. We used
the following inclusion criteria to
collect relevant Internet artifacts
for this study:

While SBOMs have received notable policy
attention from the U.S. government,
software producers have yet to implement
them fully.

We conducted a gray literature
(GL) review to investigate the chal-
lenges and benefits of the current
SBOM adoption. The goal was to
understand the benefits of SBOMs
and why practitioners have not
jumped into action to adopt them. We
share the top five benefits and chal-
lenges extracted from the literature to
aid federal and industry leaders in for-
mulating action plans to address these
issues and guide an SBOM transition
for agencies and vendors.

GL is defined as “literature that is
not formally published in sources,
such as books or journal articles.”
We observe that practitioners often
share their experience with SBOMs
in blogs, videos, white papers, and
webpages as GL, but no system-
atic peer-reviewed SBOM research
studies have been published.

We conducted a GL review
in which two authors indepen-
dently reviewed Internet articles,
blogs, and interviews to extract the
challenges and benefits of SBOM
adoption. Our search technique had

curl rivacy

The article is written in English.
The article content is relevant to
SBOM adoption.

The article discusses at least

one benefit or one challenge of
SBOM adoption.
The article is not a duplicate of

another artifact.

The article is not a product of a
vendor advertisement.

Using our inclusion criteria, we
identified 62 articles® and applied
open coding techniques. Two authors
individually reviewed 62 articles and
recorded the challenges and benefits
of SBOM adoption independently.
Then, two reviewers cross-checked
the identified challenges and benefits
from each article and resolved any dis-
agreements. Finally, the first author
grouped the identified challenges and
benefits into five categories.

SBOMs provide transparency and
visibility and help practitioners
understand what pieces of software
are being used, the relationship
among them, and the software’s

exposure to security risks. We now
provide information about the top
five benefits of SBOMs, as high-
lighted in SO of the 62 Internet arti-
cles. We provide in parentheses the
number of articles that mention each
benefit.

Benefit 1: Dependency
Management (39)

SBOMs provide explicit identifica-
tion of external dependencies, which
is useful for tracking open source,
commercial, and custom-built soft-
ware dependencies across applica-
tions. Transparency in a dependency
tracking system helps practitioners
manage products more efficiently,
identify security risks for quick
remediation of direct and transitive
dependencies, and ensure that devel-
opers use approved code and sources.
Using SBOMs to share infrastructure
and data may also save time by mak-
ing it easier for departments to work
together and facilitate code reuse.

Benefit 2: Vulnerability
Management (29)
With SBOMs, teams can identify
and prioritize specific vulnerabili-
ties in potentially risky dependen-
cies. Security experts can use SBOM
artifacts to determine the impact
on code when a critical vulnerabil-
ity is disclosed. Therefore, incident
response personnel can identify
vulnerabilities and prioritize mitiga-
tion, e.g.,, as with the Log4j vulner-
ability.! SBOMs also allow leaders
to respond quickly and confidently
when dealing with board members,
customers, investors, and regulators.
The Vulnerability Exploitabil-
ity Exchange (VEX)” isamachine-
readable companion artifact to
SBOMs. VEX was developed by the
NTIA and the Cybersecurity and
Infrastructure Security Agency to help
suppliers determine whether a spe-
cific product is impacted by a spe-
cific vulnerability, with an emphasis
on the vulnerability’s exploit-
ability. With VEX and SBOMs,

d licensed Ysg limited to: N.C. StathlgE%ersi% I&il?,raries - Acquisitions & Discovery S. Downloaded on June 26,2024 at 09:38:03 UTC from IEEE Xplore. R%ﬁ%ﬂ%ﬂ%ﬂﬁﬂﬁ'&’-

organizations can identify vulnera-
bilities that pose an immediate risk,
enabling a deprioritization of vul-
nerabilities that are not exploitable.

Benefit 3: Risk
Management (21)
SBOMs can be used as a risk man-
agement tool to help detect, recog-
nize, identify, respond to, and remedy
threats in supply chains. The software
industry is increasingly promoting
adopting strategic and proactive risk
management rather than the tradi-
tional reactive approach. Because of
the expansion of the digital attack sur-
face, companies and agencies need to
rely more on informed risk manage-
ment. SBOMs help analyze, evaluate,
control, and find security risks in soft-
ware early on in the production cycle.
Practitioners can have a more
informed picture of the risk factors a
specific BOM brings to an environ-
ment. Moreover, the risk factor can vary
based on whether or not the SBOM
is modified, given that new vulnerabili-
ties are discovered regularly. By offer-
ing transparency, SBOMs can facilitate
the detection of these newly identified
threats and the evaluation of the mag-
nitude of the breach. For instance, if
a new vulnerability is entered into
the National Vulnerability Database,
SBOM:s provide a way for buyers, ven-
dors, and software users to track soft-
ware dependencies throughout supply
chains, identify the vulnerability loca-

tion, and anticipate emerging risks.

Benefit 4: License
Management (13)

Legal teams often need the security
team to have clear visibility to ensure
that no direct and transitive dependen-
cies are using licenses that break the
organization’s legal policies. SBOMs
aid compliance teams in responding
to license claims and audits.

Benefit 5: Competitive
Advantage (6)

SBOM transparency aids in making
informed purchasing decisions. Since

Ww.COmputer.org/security

SBOM:s are now required for organi-
zations doing business with federal
agencies, industry leaders will likely
request an SBOM from vendors. In
this case, software vendors could gain
a competitive advantage through the
production of an SBOM. Since a
comprehensive SBOM will make it
easier to identify risky dependencies
in the supply chain, companies that
produce more secure components
will be able to charge premium prices.
Software vendors may be compelled
to reengineer their products from a

high false positive rate. For example,
many tools” approaches to creating
an SBOM rely on guessing and using
heuristics and information from the
top-level component to generate an
“ingredient” list. The SBOM tools
often rely on discovering depen-
dencies from package managers
[e.g, Pip and Node Package Man-
ager (NPM)], which have different
standards. The package configura-
tion files may not document all the
dependencies used by the software,
let alone transitive dependencies.

Since SBOMs are now required for
organizations doing business with federal
agencies, industry leaders will likely request
an SBOM from vendors.

security perspective to maintain their
competitive edge.

All authors of the 62 articles men-
tioned that SBOMs are critical for
enhancing software security, particu-
larly in light of the EO’s call for soft-
ware producers to produce them. In
this section, we discuss the challenges
with SBOMs as conveyed by 41 Inter-
net articles. We provide in parentheses
the number of articles that mention
each challenge.

Challenge 1: SBOM
Tools (29)
Many practitioners commented
that the industry lacks the tools to
accurately and automatically gener-
ate SBOM data at scale for a prod-
uct’s supply chain. The SPDX and
CycloneDX standards have around
200 tools, most of which are effi-
cient in generating SBOMs for a
single component. Hence, the tool-
ing issue is largely associated with a
need for automation at scale, accu-
racy, and runtime BOMs.

SBOM article authors indicated
that most of these SBOM tools have a

Another example is software ven-
dors generating an SBOM by scan-
ning compiled artifacts: they may
miss statically linked binaries that do
not include dependency metadata.
An SBOM can provide a false sense
of “completeness.” Therefore, given
the poor state of the original meta-
data from ecosystems and compiled
artifacts, practitioners indicated that
SBOM tools often reflect a “garbage
in, garbage out” status.

The lack of automation to detect
modifications makes SBOM adop-
tion challenging. An SBOM needs
to be updated whenever a change
is made to a component, including
code updates, vulnerability patches,
new features, and other modifica-
tions. Unfortunately, such activities
are typically done manually, which
is a highly difficult task given that
changes can happen at any time.
Organizations can benefit from hav-
ing a “runtime BOM” containing a
list of outbound connections, a list
of files touched, the presence of
ports listening in, and so on. These
metrics are important for security
teams to know and track because
they increase the attack surface.

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 26,2024 at 09:38:03 UTC from IEEE Xplore. Restrictions apghr.

B 5YSTEMS ATTACKS AND DEFENSES

SBOM tooling does not sup-
port different data requirements
and account for flexibility among
different use cases. Scaling SBOM
generation is difficult for vendors
if different clients require differ-
ent information. For instance, for
an organization that cares deeply
about software licenses, vendors
need to deliver accurate licenses.
For an organization that cares about
vulnerabilities, vendors need a cost-
effective way to deliver less manual
VEX data. On top of that, vendors
lack tools for ingesting SBOM and
VEX data. Therefore, developers
are forced to spend more time on

the industry had three prominent
SBOM standards—SPDX, SWID,
and CycloneX—but these stan-
dards do not constitute any agree-
ment on how to generate unique
SBOM identifiers for packages and
versions. For example, a standard
might state that the SBOM for each
package should contain Common
Platform Enumeration or a package
uniform resource locator (URL)
or both. According to these stan-
dards, two SBOM formats can
use different unique identifiers for the
same component, and two SBOMs
using different components can
have the same identifier because

Practitioners want the industry to prioritize
the production of tools that generate
accurate SBOMs automatically for different
use cases.

manual tasks. Overall, our findings
indicate that practitioners want the
industry to prioritize the produc-
tion of tools that generate accurate
SBOMs automatically for different
use cases.

Challenge 2: Lack of SBOM
Interoperability (13)

According to practitioners, a major
impediment to adopting SBOM:s is
the need for standards in data quality,
data exchange formats, and tooling.
While SBOMs have garnered nota-
ble policy attention from the gov-
ernment, the attention is primarily
focused on what an SBOM should
contain; discussions around data
exchange standardization, workflow
automation, implementation, and
processes that are often left out.

The difficulties in mapping
software components for differ-
ent versions and ecosystems due
to a lack of standards in a package’s
unique identifier generation were
the second-most frequently stated
challenges in our study. As of 2022,

curl rivacy

the industry lacks standard nam-
ing conventions across ecosystems
and SBOM formats. For instance,
practitioners could publish a Rust
package to Cargo and a JavaScript
package to NPM usingthe same name:
“Package-AA & version X.Y.Z.” Then,
the question becomes how to dif-
ferentiate the SBOMs of these two
packages in terms of unique identi-
fiers across different standards.
Moreover, SBOM standards lack
uniformity in the display and map-
ping of identical data across tools.
Sometimes SBOM tools use the
package URL (e.g., Cargo and NPM
package URL) and repository URL
as an SBOM identifier for the pack-
age version, and others do not. Many
tools do not provide these URLs
because they are not required by the
minimum data elements published
by the NTIA. Another observation
is that data can be located in differ-
ent fields. For example, sometimes
the package URL can be used in a
tield defined for the package URL,
sometimes as the name, and even in

a totally different data field and loca-
tion. Without a standard mapping
between data fields and data, SBOMs
generated by different tools for the
same package may appear distinct
despite containing the same data.

The lack of a uniform and auto-
mated platform for SBOM sharing
that stores unique identifiers for dif-
ferent files and suppliers is another
challenge. If each tool and vendor
does not offer more than one SBOM
format, implementing SBOMs in
the software development lifecycle
can be challenging. For example, if
software producers obtain different
SBOM formats from upstream soft-
ware vendors, retrieving the differ-
ent SBOM formats and reconciling
the software components can be dif-
ficult. Practitioners need a standard
method so that vendors can follow
the same system and data format
and rely on its accuracy.

Therefore, data quality, global
mapping, and the lack of a shared
platform in the SBOM ecosystem
are crucial barriers preventing the
industry from adopting and con-
suming SBOMs. Going forward,
emphasis should be placed on
achieving the interoperability of
SBOMs across different formats,
vendors, and tools.

Challenge 3: Value of
SBOMs (14)
Practitioners expressed a lack of
data to back up the effectiveness and
value of SBOMs, preventing practi-
tioners from adopting SBOMs. At
the time of the study, SBOMs were
a requirement for software ven-
dors, but there were no regulatory
requirements for SBOMs purchas-
ers on what to do with the informa-
tion provided by an SBOM. Even
though this information is useful
if an organization does not have a
process to consume it, having an
SBOM provides minimal value.

A basic SBOM can be used as a
building block to determine whether
a software product is affected by

d licensed Ysg limited to: N.C. StathlgE%ersi% I&il?,raries - Acquisitions & Discovery S. Downloaded on June 26,2024 at 09:38:03 UTC from IEEE Xplore. R%ﬁ%ﬂ%ﬂ%ﬂﬁﬂﬁ'&’-

identified vulnerabilities. An SBOM
alone does not list vulnerabilities.
Instead, the information in the
SBOM must be cross-referenced
with information in vulnerability
databases. Existing software compo-
sition analysis tools have started to
perform these checks; however, they
tend to be noisy when a vulnerable
dependency is not used in a vulner-
able way. VEX information can help
bridge this gap, but existing VEX
generation and analysis are manual.
Furthermore, SBOMs can aid in
identifying legacy software and aban-
doned and unmaintained dependen-
cies, but the concern is what to do
with these dependencies. According
to multiple studies and reports,®
10 gver 70% of open source software
packages are unmaintained, aban-
doned, and never updated. Should
practitioners begin maintaining such
alarge number of unmaintained open
source software packages, which is
resource intensive, or begin develop-
ing new components, which is time
intensive, or take no action?

Challenge 4: Time
Consumption (7)
The difficulties in tracking com-
ponents and dependencies and the
lack of standard tools and auto-
mation make SBOM generation
time-consuming. SBOM standards
and tool implementations are based
on existing practices, and today, these
practices and the associated tooling
are inconsistent. As a result, software
development teams need to putinalot
of effort to generate accurate SBOMs.
For example, software producers often
have to manually generate an SBOM
by listing components in the product’s
supply chain because end products do
not contain an accurate mapping of
direct and transitive dependencies.
Furthermore, maintaining code
bases with dozens and even hundreds
of dependencies and third-party
components is a tiresome and
time-consuming task. Historically,
many developers often included third-

Ww.COmputer.org/security

party components in an application,
without documenting the change.
As a result, current developers may
not be familiar with the entire code
base. Managing and tracking this large
amount of SBOM information (scal-
ing) places a large burden on devel-
opers because the software industry
does not have any standard central-
ized repository to store SBOMs across
product teams and applications.
Another factor that prolongs the
SBOM generation process is a lack of
training and resources to generate and
maintain SBOMs. For example, small
software vendors selling to the fed-

outdated unpatched dependencies to
clients, practitioners mentioned the
following tradeoffs of sharing SBOMs:

= Since SBOMs effectively provide
aroad map to the architecture and
components of an application,
vendors may be forced to deal
with disputes over trade secrets
and reverse engineering involving
SBOM information.

There are concerns regarding how

software purchasers will protect
the information SBOMs provide
and preserve vendors’ intellectual
property rights.

Without a standard mapping between
data fields and data, SBOMs generated by
different tools for the same package may

appear distinct despite containing the

same data.

eral government and volunteer open
source software developers could
be affected differently by any forth-
coming SBOM requirements, due
to a lack of resources and incentives.
Practitioners mentioned that organi-
zations also struggle with determin-
ing who is ultimately responsible for
open source and third-party compo-
nent management.

Most tools produce an SBOM
as a static list of dependencies in an
application or container image. Since
SBOMsare notdirectlyreferenced by
vulnerability databases, making vul-
nerabilities transparent in an SBOM
is difficult and time-consuming.

Challenge 5: Risks of
Transparency (4)

Practitioners are concerned that
SBOMs may expose some organiza-
tions to new risks by revealing inter-
nal information to competitors and
bad actors. In addition to the general
hesitation of any developer or orga-
nization to expose vulnerabilities and

= Will the risk of distributing “incor-
rect” SBOMs, due either to negli-
gent practices or understandable
errors, result in penalties?

If the software industry wants ven-
dors to take on this cost, vendors
require assurance to protect their
intellectual property and help
reduce the generation and support
costs of SBOMs.

SBOMS are a step toward trans-
parency and vigilance for soft-
ware developers and users to identify
and address risks. SBOM services
are increasingly used in vulnerability
management and risk management
for third parties. The federal gov-
ernment is a large consumer of soft-
ware, and its expectation of SBOM
disclosure from suppliers will push
SBOM adoption among many ven-
dors and purchasers.

However, as of 2022, SBOM stan-
dards were inadequate for large-scale

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 26,2024 at 09:38:03 UTC from IEEE Xplore. Restrictions apgy.

B 5YSTEMS ATTACKS AND DEFENSES

adoption. The future of SBOM usage,
disclosure, sharing, and consumption
is largely dependent on industry
standards and practices. While the
problems SBOMs could solve are
compelling, without addressing the
challenges associated with each ben-
efit, industry-wide SBOM adoption
is difficult. Given the intertwined
challenges of accuracy, timeliness,
complexity, motivation, and values,
software producers need strong guide-
lines and standardization efforts to
ensure consistent data requirements
to meet the use cases SBOM:s intend
to serve. As an industry, practitioners
should partner with tooling providers
and policy makers to focus on solving
the top SBOM use cases and chal-
lenges. Practitioners can do this by
standardizing the requirements for
each use case and influencing guide-
lines and tooling to accommodate the
requirements. Interoperability, ven-
dor cross compatibility, and automa-
tion are key to success if the industry
wants SBOMs at scale.m

References

1. Apache Log4j Security Vulnerabilities.
(2021). Log4]. [Online]. Available:
https://logging.apache.org/log4j/
2.x/security.html

2. P.Roberts. “Log4j is why you need a
software bill of materials (SBOM).”
Reversing Labs. Accessed: Feb. 6,
2023. [Online]. Available: https://
www.reversinglabs.com/blog/
log4j-is-why-you-need-an-sbom

3. L.Vaas. OneYear After Log4shell, Firms
Still Struggle to Hunt Down Log4j.
(2022). Contrast Security. [Online].
Available: https://www.contrast
security.com/security-influencers/
one-year-after-log4shell-firms-still
-struggle-to-hunt-down-log4j

4. The State of Software Bill of Materials
(SBOM) and Cybersecurity Read-
iness. (2022). Linux Foundation.

curl rivacy

[Online]. Available: https://www.
linuxfoundation.org/research/
the-state-of-software-bill-of-materials
-sbom-and-cybersecurity-readiness

S. V. Garousi, M. Felderer, and M. V.
Mintyld, “Guidelines for including
grey literature and conducting mul-
tivocal literature reviews in software
engineering,” Inf Softw. Technol,
vol. 106, pp. 101-121, Feb. 2019,
doi: 10.1016/j.infsof.2018.09.006.

6. E.Lin, 2023, “List of SBOM articles
reviewed for grey literature, doi:
10.5281/zenodo.7513103.

7. “Vulnerability-exploitability exchange
(vex),” Nat. Telecommun. Inf.
Admin., Washington, DC, USA, 2021.
[Online]. Available: https://www.
ntia.gov/files/ntia/publications/vex
_onepage_summary.pdf

8. State of Software Security vII:
Open Source Edition. (2022). Vera-
code. [Online]. Available: https://
info.veracode.com/fy22-state
-of-software-security-vl1-open
-source-edition.html

9. N.Zahanetal.,, “Whatare weak links
in the NPM supply chain?” in Proc.
IEEE/ACM 44th Int. Conf. Softw.
Eng, Softw. Eng. Pract. (ICSE-SEIP),
2022, pp. 331-340, doi: 10.1109/
ICSE-SEIP55303.2022.9794068.

10. N.Zahanetal., “Preprint: OPENSSF
scorecard: On the path toward
ecosystem-wide automated security
metrics” 2022, arXiv:2208.03412.

Nusrat Zahan is a Ph.D. student in
the Department of Computer Sci-
ence at North Carolina State Uni-
versity, Raleigh, NC 27695 USA.
Her research interests include
software security. Zahan received
a B.Sc. in electronics and commu-
nication engineering from Khulna
University of Engineering & Tech-
nology (KUET), Bangladesh. She
is a member of ACM. Contact her
at nzahan@ncsu.edu.

Elizabeth Lin is a Ph.D. student in
the Department of Computer
Science at North Carolina State
University, Raleigh, NC 27695
USA. Her research interest is
software supply chain security.
Lin received a B.Sc. in computer
science from National Chengchi
University, Taiwan. Contact her at
etlin@ncsu.edu.

Mahzabin Tamanna is a Ph.D. student
inthe Department of Computer Sci-
ence at North Carolina State Uni-
versity, Raleigh, NC 27695 USA.
Her research focuses on investi-
gating security issues in software
supply chains. Tamanna received
an M.Sc. in computer science from
North Carolina Agricultural and
Technical State University. Contact
her at mtamann@ncsu.edu.

William Enck is a professor in the
Department of Computer Science
and codirector of the Secure Com-
puting Institute at North Caro-
lina State University, Raleigh, NC
27695 USA. His research inter-
ests include system security. Enck
received a Ph.D. in computer sci-
ence and engineering from Penn
State University. Enck is a mem-
ber of the USENIX Association
and ACM and a Senior Member
of IEEE and ACM. Contact him at
whenck@ncsu.edu.

Laurie Williams is a distinguished uni-
versity professor and codirector of
the Secure Computing Institute,
North Carolina State University,
Raleigh, NC 27695 USA. Her
research interests include software
security. Williams received a Ph.D.
in computer science from the Uni-
versity of Utah. She is a Fellow of
IEEE and ACM. Contact her at
lawilli3@ncsu.edu.

d licensed ysg limited to: N.C. StathlgE%ersi% I&il?,raries - Acquisitions & Discovery S. Downloaded on June 26,2024 at 09:38:03 UTC from IEEE Xplore. R%ﬁ%ﬂ%ﬂ%ﬂﬁﬂﬁ'&’-

https://logging.apache.org/log4j/​2.x/​security.html
https://logging.apache.org/log4j/​2.x/​security.html
https://www.reversinglabs.com/blog/log4j-is-why-you-need-an-sbom
https://www.reversinglabs.com/blog/log4j-is-why-you-need-an-sbom
https://www.reversinglabs.com/blog/log4j-is-why-you-need-an-sbom
https://www.contrast​security.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://www.contrast​security.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://www.contrast​security.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://www.contrast​security.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
http://dx.doi.org/10.1016/j.infsof.2018.09.006
https://www.ntia.gov/files/ntia/publications/vex_onepage_summary.pdf
https://www.ntia.gov/files/ntia/publications/vex_onepage_summary.pdf
https://www.ntia.gov/files/ntia/publications/vex_onepage_summary.pdf
https://info.veracode.com/fy22-state-of-software-security-v11-open-source-edition.html
https://info.veracode.com/fy22-state-of-software-security-v11-open-source-edition.html
https://info.veracode.com/fy22-state-of-software-security-v11-open-source-edition.html
https://info.veracode.com/fy22-state-of-software-security-v11-open-source-edition.html
http://dx.doi.org/10.1109/ICSE-SEIP55303.2022.9794068
http://dx.doi.org/10.1109/ICSE-SEIP55303.2022.9794068

	82_21msec02-systemattacksdefenses-3237100

