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Abstract— The problem of quickest change detection (QCD)
in autoregressive (AR) models is investigated. A system is being
monitored with sequentially observed samples. At some unknown
time, a disturbance signal occurs and changes the distribution of
the observations. The disturbance signal follows an AR model,
which is dependent over time. Before the change, observations
only consist of measurement noise, and are independent and
identically distributed (i.i.d.). After the change, observations
consist of the disturbance signal and the measurement noise, are
dependent over time, which essentially follow a continuous-state
hidden Markov model (HMM). The goal is to design a stopping
time to detect the disturbance signal as quickly as possible subject
to false alarm constraints. Existing approaches for general non-
i.i.d. settings and discrete-state HMMSs cannot be applied due to
their high computational complexity and memory consumption,
and they usually assume some asymptotic stability condition.
In this paper, the asymptotic stability condition is firstly the-
oretically proved for the AR model by a novel design of forward
variable and auxiliary Markov chain. A computationally efficient
Ergodic CuSum algorithm that can be updated recursively is
then constructed and is further shown to be asymptotically
optimal. The data-driven setting where the disturbance signal
parameters are unknown is further investigated, and an online
and computationally efficient gradient ascent CuSum algorithm
is designed. The algorithm is constructed by iteratively updating
the estimate of the unknown parameters based on the maximum
likelihood principle and the gradient ascent approach. The
lower bound on its average running length to false alarm
is also derived for practical false alarm control. Simulation
results are provided to demonstrate the performance of the
proposed algorithms.

Index Terms— Hidden Markov model, forward variable,
sequential change detection, asymptotic optimality, non-i.i.d..

I. INTRODUCTION

HE problem of quickest change detection (QCD) has
been widely studied in the literature [1], [2], [3],
[4], where the goal is to detect an abrupt change in the
data-generating distribution as quickly as possible, subject to
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false alarm constraints. For the basic setting where the obser-
vations are independent over time, algorithms, e.g., cumulative
sum (CuSum) algorithm and Shiryaev-Roberts algorithm have
been proposed and have been shown to be optimal [5], [6], [7],
[8], [9]. However, for a wide range of practical applications,
observations may not be independent over time. For example,
in power systems, the faulty signal is dependent in time [10]
and such dependency is usually exploited by an autoregressive
(AR) model [11], [12], [13], [14], [15].

In this paper, we investigate the problem of QCD in AR
models. Specifically, before the change, the observed sig-
nal only consists of Gaussian measurement noise. After the
change, a non-i.i.d. disturbance signal occurs in the system,
and the observation consists of the disturbance signal and
the measurement noise. The disturbance signal follows an
AR model, and thus the observation equivalently follows a
hidden Markov model (HMM) [16]. The goal is to detect the
occurrence of the disturbance signal as quickly as possible
subject to false alarm constraints.

A. Related Works

The problem in this paper is closely related to QCD
in Markov chains [17], [18], [19], [20], [21], [22], [23],
[24], [25], where the pre- and/or post-change samples follow
the Markov model. In [17], optimal change detection algo-
rithms were proposed for finite-state Markov chains under
the Bayesian setting and the minimax setting. The continuous
state Markov chain was studied in [24], where the CuSum
algorithm was proved to be asymptotically optimal and its
performance was characterized. In [19], the change detection
in sensor networks under the Bayesian setting was studied
where the change propagates across sensors and its prop-
agation was modeled as a Markov process. It was shown
that an exactly optimal algorithm for QCD of Markov chains
under the Bayesian setting is a threshold test on the posterior
of no change has happened in [23]. In [21], two CuSum
type schemes were proposed for the QCD of finite-state
Markov chain with unknown post-change transition proba-
bilities, and bounds on the average detection delay (ADD)
and the average running length (ARL) were further given
for the proposed schemes. A maximum mean discrepancy
(MMD) based method for change detection of Markov kernels
with unknown post-change kernel was proposed in [22] and
[25] for general state Markov chain. However, the algorithms
and analyses for Markov chains cannot be applied to our
problem directly. This is because with measurement noise, the
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post-change samples in this paper essentially follow an HMM,
and the hidden state is not directly observable.

The problem of QCD in discrete-state HMMs has been
studied in [26], [27], [28], [29], [30], and [31]. In [26], Page’s
test was extended to the QCD of discrete-state HMMs and
the ARL under both hypotheses were approximated. In [28],
the detection of the change point at which the discrete-state
HMM enters the absorbing state and the identification of the
absorbing set was investigated and optimal decision rule was
provided. The QCD problem in two-state HMM was studied
in [29], where two computationally efficient schemes were
developed. In [30], the Shiryaev algorithm was proved to be
asymptotically optimal under some regularity conditions for
the QCD in discrete-state HMMs under the Bayesian setting.
The exact optimal algorithm for QCD in discrete-state HMM
under the Bayesian setting was established in [31]. These
works mainly focus on the discrete-state HMM. The AR
model in our paper is an HMM model with a continuous
state space. To the best of the author’s knowledge, research on
QCD in continuous HMMs is rather limited. The performance
characterization of Shiryaev algorithm for the discrete-state
HMM relies on the limiting theory for products of random
matrices [32] and the computational complexity scales with
the size of the state space. For the continuous-state Markov
chain, the theory of random matrices is not applicable anymore
since the number of state is uncountably infinite.

The AR models are commonly used in power system
to characterize the disturbance signal and inter-area oscilla-
tions [11], [12], [13], [14], [15]. In [12], [33], [34], [35],
[36], [37], and [38], the change detection in the AR model
was studied where the observation is an AR time series. Our
problem is fundamentally different from [12], [33], [34], [35],
[36], [37], and [38] since the disturbance signal which has AR
structure is unobservable in our problem. The observation is a
noised version of the AR time series which makes our problem
more challenging. The quickest detection of cyber-attacks in
discrete-time linear dynamic system, which is an AR model,
was studied in [14]. The Kalman filter [39] was first performed
to estimate the state and the generalized CuSum algorithm
was further designed using the state estimation. Though the
Kalman filter is effective in state estimation, the performance
of the detection algorithm is difficult to characterize due to
the estimation error. In [40], a robust algorithm was proposed
for distributed change detection in AR models with noised
observations. However, no theoretical guarantee was provided.
In our paper, we design an Ergodic CuSum algorithm directly
and show that it is asymptotically optimal under the Lorden’s
criterion [41].

In our paper, we consider both the model-based setting
where parameters of the disturbance signal are known and the
data-driven setting where parameters of the disturbance signal
are unknown. For the data-driven setting, our problem can be
viewed as a composite QCD problem [24], [42], [43], [44],
[45], [46], [47], [48]. Existing works mainly assume that the
samples are i.i.d., while in the AR models, the observations
are dependent in time. In [15], the QCD in AR model was
studied where the properties of the post-change signal are
unknown. Based on the assumption that the parameters of the
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post-change signal were small, the generalized likelihood ratio
test (GLRT) was proposed. Our work is different from the
works in [15] since we do not assume that the parameter of
the post-change signal is small. Moreover, simulation results
demonstrate that our proposed algorithm outperforms the
GLRT in [15].

B. Contributions and Major Challenges

For the model-based setting, we design an Ergodic CuSum
algorithm which can be updated recursively and thus is
computationally efficient, and we theoretically prove that it
is asymptotically optimal. While the general theory for non-
i.i.d. setting were developed in e.g., [24], [49], [50], and
[51], it relies on some asymptotic stability condition that
the normalized log likelihood ratio between the post- and
pre-change distributions converges to some finite and positive
number. However, there are very few studies that try to
verify this condition, e.g., discrete HMMs in [30] and Markov
model in [49]. For the AR model, whether such stability
condition holds remains unexplored. In this paper, we show
that the normalized log likelihood ratio converges to some
K > 0 almost surely under the post-change distribution, i.e.,
satisfies the stability condition.

The difficulty of analyzing the convergence of the log
likelihood ratio lies in that the log likelihood function for
the AR model has a non-additive form due to the non-
ii.d. nature of the observation. For the discrete-state HMM
in [30], the likelihood ratio function is represented by the
Li-norm of products of Markov random matrices and thus
the log likelihood ratio has an additive form. However, the
Markov random matrices techniques can not be applied to
our problem since our AR model has uncountably infinite
hidden states. To overcome this difficulty, we represent the
likelihood function as the integration of the product of a
sequence of functions based on the hidden Markov struc-
ture of the observation. We further show that the likelihood
function can be represented as the integration of a scaled
Gaussian density function. We define this scaled Gaussian
density function as the forward variable and show that it
can be updated recursively. Since the scaled Gaussian density
function has parameterized representation, we develop a novel
approach to write the conditional likelihood ratio using the
parameter of the forward variable and the observation. The
log likelihood ratio can then be written as the sum of the
conditional log likelihood ratio and thus has an additive form.
To characterize the convergence of the log likelihood ratio,
we design an auxiliary Markov chain using the parameter of
the forward variable and the observation and represent the
likelihood function as a function of the auxiliary Markov
chain. We further show that the stationary distribution of this
auxiliary Markov chain exists and then show that I exists
by applying the ergodic theorem [52], [53] to the auxiliary
Markov chain. With the convergence of the log likelihood
ratio, we derive the universal lower bound on the worst-case
average detection delay (WADD).

For the CuSum algorithm designed for the general non-
ii.d. setting, e.g., [24], it is computationally expensive for
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our AR model since the likelihood ratio for our AR model
depends on the change point and we need to compute the
likelihood ratio for every possible change point. Motivated by
the dependence of the WADD lower bound on X, we aim to
find a computationally efficient test statistic that has a positive
drift of /C under the post-change distribution and has a negative
drift under the pre-change distribution. We propose a novel
Ergodic CuSum algorithm by exploiting the ergodicity of the
underlying HMM and employing the likelihood ratio of the
observations with change point at time 1. Since the likelihood
function can be written as a function of the observation and
the forward variable, our Ergodic CuSum algorithm can then
be updated recursively, and thus is computationally efficient.
From the ergodic theorem [52], [53] of Markov chain, the long
term statistical performance of our test statistic is independent
of the state when the change occurs. Based on this fact, the test
statistic of our Ergodic CuSum algorithm converges to K in
the post-change regime despite of the fact that time 1 is not the
true change point. Under the pre-change distribution, we show
that our test statistic has a negative drift. Moreover, since
our test statistic is a likelihood ratio function of the current
observation, the ARL lower bound can be derived following
the proof of the ARL lower bound for general non-i.i.d. case.
Therefore, we show that when satisfying the constraint on
the average running length (ARL), the WADD upper bound
of our Ergodic CuSum algorithm matches with the universal
lower bound and thus the asymptotic optimality of our Ergodic
CuSum algorithm follows.

For the data-driven setting, the generalized likelihood ratio
test (GLRT) which replaces the unknown post-change param-
eter with its maximum likelihood estimate (MLE) [24] is
not computationally efficient. We propose an online gradient
ascent CuSum algorithm (OGA-CuSum) based on the online
convex optimization (OCO) algorithm [48], [54]. We itera-
tively update the estimate of the unknown parameters based
on the maximum likelihood principle using gradient ascent.
Specifically, at each time, we compute the gradient of the
log likelihood ratio function with respect to the unknown
parameters based on the current observation and update the
estimate in the direction of the gradient. We then replace the
unknown parameter in the Ergodic CuSum with its estimate to
construct the OGA-CuSum. The OGA-CuSum can be updated
recursively using only the most recent sample and thus is
memory and computationally efficient. We derive a lower
bound on its ARL so that a threshold can be chosen analyt-
ically to control the false alarm. We also provide simulation
results to demonstrate the performance of our algorithms.

C. Paper Organization

The remainder of this paper is organized as fol-
lows. In Section II, we present the problem formulation.
In Section III, we present the design of a forward vari-
able and establish the universal lower bound on WADD.
In Section IV, we develop a computationally efficient Ergodic
CuSum algorithm and show that it is asymptotically optimal
under Lorden’s criterion. In Section V, we design an online
gradient ascent CuSum algorithm for the case where the
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post-change parameters are unknown. Numerical results are
provided to demonstrate the performance of our algorithms
in VL. In Section VII, we present some concluding remarks.

II. PROBLEM FORMULATION

Consider a system being monitored by a sequentially
observed signal y; € R¥ ¢t = 1,2,---. At some unknown
time %, a disturbance signal occurs in the system and changes
the distribution of the observed signal. Specifically, before
the change point tp, the observed signal consists of the
measurement noise v; only, which is Gaussian distributed and
independent over time:

yt:VtNN(OaI)7 t<t07 (1)

where I is the K x K identity matrix. The post-change signal
consists of the disturbance signal x; and the measurement
noise:

Yt = + v, 2 o, ()

Note that the identity covariance matrix of v, can be satisfied
by applying a linear transformation to whiten the noise in
the observation y;. The disturbance signal follows an AR
model [11], [12], [13], [14], [15]:

q
Ty = Z Az + wy, 3
i=1

where A; € RE*K jg the matrix coefficient and is invertible,
w; € R is the innovation noise vector and w; ~ N (0,R,)
and ¢ denotes the order of the AR model. The disturbance
signal x; is not directly observable. The goal is to detect the
change at time t( as soon as possible subject to false alarm
constraints.

Denote by P., the probability measure when there is no
change, and denote by p., the corresponding probability
density. For any t; > 0, denote by P, the probability
measure when the change happens at ¢y, and denote by py,
the corresponding probability density. It is clear that

Poo (YY1, Yt—1) = Poo(Yt),

Pro(Yelyn, -+ Y1) = poo(ye), if t < to,

Pro (YelYy1s - Y1) = Dro (Yt |Ytos -+ 5 Ye—1), if £ > to.
“)

The AR model governs the evolution of x;. The

combination of the state evolution model (3) and the
observation model (2) is equivalent to an HMM. Let
fi(®ey, Teg41, -+, Tg+q—1) be the joint probability den-
sity of the initial state (x4, %41, ", LTeg+q—1)- Let
f(@¢|xi—g, -+ ,x+—1) denote the transitional probability den-
sity of the HMM and g(y;|x;) be the conditional probability
density of the observation y; given the hidden state ;. The
probability density p;, then satisfies that for t > to + ¢

ptg(yh e ayt)
:poo(yla"' ’ytg—l) : /f1(wtmwt(,+17"' 7wt(,+q—1)

“9(Yto|Tty) - 9(Ytorq—1|Tto4q-1)
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vmt(>+q—1) e g(ytlmt)dmtomto-Fl R R

&)

In this paper, we consider a deterministic but unknown
change point ¢y. The goal is to detect the change as quickly as
possible subject to false alarm constraints based on the sequen-
tially observed samples. Let F; be the o-algebra generated
by the first ¢t samples y1, Y2, - , Y. A stopping time 7 is a
random variable with the property that for each ¢, the event
{r =t} € F,. We define the worse-case average detection
delay (WADD) under Lorden’s criterion [41] and the average
running length (ARL) for any stopping time 7 as follows:

: f(mt[)+q|mtov e

WADD(7) £ sup esssuplEy, (T —to) Ty, Yto—1]
to>1

ARL(7) £ Eoo[7], (©6)

where E;, (E.) denotes the expectation under the probability
measure P, (P). The goal is to design a stopping time that
minimizes the WADD subject to the constraint on the ARL:

inf ~ WADD(7), @)

T:ARL(T) >~

where v > 0 is a pre-specified threshold.

III. UNIVERSAL LOWER BOUND ON WADD

For convenience, we first present results for the first-order
AR model to illustrate our approach. We will then show the
generalization to any ¢-th order AR model. We note that
any ¢-th order AR model can be equivalently converted to
a first-order AR model (see details in Appendix A).

Specifically, the first-order AR model is defined as:

Ty = Az + Wy, ®)

where A € RE*X ig the matrix coefficient and is invertible.
The initial disturbance signal x;, is assumed to be Gaussian
with probability density f;(x:,) and is independent of the pre-
change observations. We assume that the operator norm of A
is strictly less than 1. This assumption guarantees the stability
of this system [55].

In the following, we derive a universal lower bound on
the WADD for any 7 satisfying the false alarm constraint:
Ew[r] > 7. To derive the universal lower bound, we first
prove the following stability condition [24], [49], [50], [51]:
convergence of the log likelihood ratio

Pro(Yto> " s Yto+t—1) 9)
Poo(Ytos s Yto+t—1)

Note that for the AR model, the log likelihood ratio in (9)
does not admit an additive form, and thus its convergence
analysis is challenging. To overcome this difficulty, we first
introduce a forward variable «;, which is a scaled Gaussian
density function and can be updated recursively. We show that
the conditional density p:,(Yt|ys,,- - ,Yt—1) can be repre-
sented using y; and the parameters of the forward variable
ay. The log likelihood ratio in (9) can then be written in an
additive form. To further prove the convergence of the log
likelihood ratio, we construct an auxiliary Markov chain using
y; and the parameter of the forward variable o;. We show

1
lim — log

t—oo t
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that the stationary distribution of this auxiliary Markov chain
exists and then show the convergence of the log likelihood
ratio in (9) by applying the ergodic theorem [52], [53]. The
universal lower bound on the WADD can then be derived.

A. Forward Variable

We first introduce a forward variable, which plays an
important role in deriving the universal lower bound on the
WADD. Moreover, our proposed algorithm in Section IV can
be recursively updated using the forward variable.

Note that for the i.i.d. setting, the log likelihood ratio of
Yio, " - » Y can be written as the sum of the log likelihood
ratio of each individual sample. For the discrete state HMM
in [30], the likelihood ratio function is represented by the L-
norm of products of Markov random matrices and thus the
log likelihood ratio has an additive form. However, the Markov
random matrices techniques can not be applied to our problem
since our AR model has uncountably infinite hidden states.

Observe that Do Ytor "+ s Yt) =
I f1(®e0)g(Yto |T10) f (@t 1120,) - - - 9(Yel @t )dX e, T 41 - @t
is the integration of the products of a sequence of functions.
This motivates us to represent the likelihood ratio function by
replacing the Markov random matrices and the Lj-norm of
matrices in [30] with functions and integration of functions,
respectively. Moreover, we leverage the Gaussian property of
the innovation noise and the measurement noise in our AR
model to further show that these functions can be represented
using the parameters of the Gaussian density function.
Therefore, the likelihood ratio function admits an additive
form and can be updated efficiently.

We define the following forward variable to compute the
likelihood function after the change point (t > tg),

at(mt) :pto(ytoa"' 7yt737t)~ (10)

Note that i (@) also depends on y,, - - , y:. For notational
convenience, we treated yy,, - - - , Y as known parameters here
and write o, as only a function of x;. We then have that

pt()(ytm"' 7yt) = /Olt(wt)dwt.

It can be easily verified that the following recursion holds for
the forward variable:

an

app1(Tey1) = /Oét(wt)f(mtﬂ|$t)9(yt+1|ﬂ’1t+1)dwt-

We first provide a formal definition for the Gaussian
function.

Definition 1: A Gaussian function f'(-) : R — R is a
function of the form

f'(@) = aexp (- %(w —w)'S @), (12)

where a is a constant, u € RX is an arbitrary vector and
> € REXK jg a positive definite matrix.

In the following lemma, we show that o () is a Gaussian
function of x;.

Lemma 1: oy(x:) is a Gaussian function of ;.
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Proof: 'We prove this by induction. If the distribution of
x4, is Gaussian, aq(xe,) = f1(xe,)9(ys,|2t,) is a Gaussian
distribution times a coefficient, which is a Gaussian function.
This can be proved by computing the product of two Gaussian
density functions. Assume that for some ¢;—1, %;_1 and ps—1,

Ct—1
(2m) K det(X;_1)

Oét—1(wt—1) =

1 _
- €Xp ( - 5(%—1 - Ht—l)TEt_ll(mt—l - ,U't—l))a (13)

which is a Gaussian function of x;_;. We will show that
at(xy) is also a Gaussian function of @;. From the product
and the convolution of Gaussian density functions, we have
that

ap(xs) = /Oét(mt—l)f(wt|€Et—1)g(yt|wt)dmt—1

c 1 _
L “(xr— o) B (e

:m 9 _/j’t)):

(14)

exp (—

where
3 = (A%, 1A +R,)(AZ; AT + R, +I)7!
= (A, AT+ R, +T) P Apy
+ (A%, AT+ R,)(AZ, AT + R, + 1)y,

(15)
and
Ct _ 1
Ct—1 \/(271')K det(AX; AT + R,)
1

Jdet((AZ, AT T R,) '+ 1)

exp ( - %(MNH)T(AEHAT +Ry) " (Apea)
(AZ AT + R N(Apey) + 1)
e

((AZ AT+ Ry) T (Ape) + yt)))-

Moreover, from the update rule of 3, it can be seen that
3, is positive definite. Therefore, a:(x:) is a scaled Gaussian
distribution of x; with coefficient c;. ([

+y y—
((AZ1AT + R,)™

(16)

With the forward variable, the conditional density
Dto (Yt|Yto, -+, Yr—1) can be written as follows:
pto(ytm“‘ ,’yt)
Y4 (ytlyt yo 7yt—1) =
° ° pto (yt07 e 7'!/t71)
x;)dx >
fat( t)dx; G (17)

a1 (mi—1)dei—y -1’
where the last equality is due to the fact that oy (a¢) is a scaled
Gaussian density function of x; with coefficient c;. Note
that before the change, the observations are i.i.d.. Therefore,
it suffices to consider the additive form for the post-change
log likelihood function. We have the following additive form
for the log likelihood function log pi, (Y1, -+ , Yt):

Ingto(ytm L Yy)
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= log Pty (ytm to vyt) T log Pto (ytov C ’yt—l)
Dto (yt(,v e 7yt—1) Dto (yt()7 e ayt—2)
o plog Palo Vust) o, ()
Pty (yto)

(18)

t

Z -
Ci—

i=to 1—1

where

= log pt, (Y1, )- As shown in (16),
tion of yt, uf 1, X¢—1. Therefore, the log hkehhood function
can be written in an additive form using the parameters of the
forward variable.

It can be seen that at each time step, we only need to
compute ¢, pt, 3¢, and the forward variable oy can be fully
recovered. Moreover, ¢, py, 2; can be updated recursively,
and thus the likelihood function p;, (y1,--- ,¥y;) can be com-
puted efficiently using the forward variable ay.

B. Universal Lower Bound on WADD

The general theory for QCD with non-i.i.d. samples relies
on the assumption that the normalized log likelihood ratio
between the post- and pre-change distributions converges
to some finite and positive number [24], [49], [50], [51].
For the AR model, whether such assumption holds remains
unexplored. Here, we first show that as ¢ — oo, the limit of
1 log % exists and is positive, denoted by iC,
and fur?herobrow&e the universal lower bound on WADD in
the following theorem. The explicit expression of K will be
provided later after we introduce necessary notations.

Theorem 1: We have that

Pt (ytu’ U
Doo (ytg, e
almost surely under P, with X > 0. Moreover, as 7 — o0,

7yt(,+t—1) —K
7yt0+t—1)

.1
Jim 1o

19)

lo
inf g’y(

WADD(7) >
T:ARL(7) >~

1+0(1)). (20)
Since Yy, Yio+1, - Y are dependent, the Law of Large
Number used in the i.i.d. setting is not applicable, even if
the log likelihood function has an additive form in (18).
We develop a n(()vel approach) to show the convergence of
Pto Yty Ytg+t—1
limy o0 * i log p—oz (yt?)’ — 7yt2+t ") under Py, .

Observe that C°‘1 is a function of y, py—1,3; 1 and
Yi, Uy, 2 are dependent over time. This motivates us to
formulate a new Markov chain using y;, p¢, 3; and apply the

ergodic theorem [52] [53] to characterize the convergence of
Pto Yt Yto+t— 1)

lim L g Btot¥ter ' Ytott=1] \yhder P
t—=00 7 108 4 (yrg, Wi +i—1) to-

From the update rule of 3; in (15), it can be seen
that 3; does not depend on y; and thus is deterministic.
We then show that X, converges as ¢t — oo and let ¥* £
lim;_, o 3¢. Let pf be the parameter of the forward variable
when ¥, = X¥*. We formulate an auxiliary Markov chain
using ¥y, 0y as an intermediate step to prove the conver-
gence of the log likelihood ratio. Specifically, denote by
Py (Yo, ,Y:) the likelihood function when X = 3*.
With the auxiliary Markov chain {y;, pf }22, . we show that
limy o0 07, (Yt0> -+ » Yto4t—1) converges under Py . The
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Pro(Yrg, s Ytg+e—1)
Poo (Ytg* Ytg+t—1)

convergence of lim;_, ., %log

then proved by showing that

under P, is

1
tll;go ;(logpt() (ytoa e 7yt()+t—1)
—logpj, (Yo, Yto4t-1)) =0 @

under [P, almost surely.

We first show that 3; converges in the following Lemma.

Lemma 2: As t — oo, 3; converges to 3.

Proof: The proof can be found in Appendix B. g

We then construct the auxiliary Markov chain to facilitate
our proof. For the auxiliary Markov chain, we let 3; = 3*.
Then X, = 3*,Vt > ¢,. It follows that p; can be updated
recursively as follows:

ni = (AZ*AT + R, + 1) ' Api
+(AZ*AT + R,)(AZ*AT + R, + 1) 'y,

=(AX*AT + R, + ) 'Ap;_, + Sy, (22)

In the following, we denote the stationary distribution of a
Markov chain in the post-change phase by m. For examples,
m(x,) is the stationary distribution of {x;}¢2, , m(x:, y¢) is
the stationary distribution of {x,y;}¢2, . We first show that
{x¢, y:}22,, has a unique stationary distribution in the follow-
ing lemma, which will be used to formulate and characterize
the property of the auxiliary Markov chain.

Lemma 3: The HMM {x;,y,; };2,  is m-irreducible. More-
over, m(x;)g(y:|x:) is the unique stationary distribution of
{x¢, Y1 }24,, where 7(x;) is a Gaussian distribution with
mean 0 and covariance matrix X = > ;o (AT)'R,A".

Proof: The detailed proof can be found in Appendix C.
O

In the following lemma, we show that {y;, u;}2; is a
Markov chain and the stationary distribution of {y;, ; }72,,
exists and is unique.

Lemma 4: {y;, py }¢2,, is a Markov chain. Moreover,
J (i)t (ye, gy |71 )dp;_y is the unique stationary dis-
tribution of {y;, uy}72, , where m(py ;) is the stationary
distribution of p; ; and is guaranteed to exist.

Proof: The proof can be found in Appendix D. O

With the auxiliary Markov chain {y, p;}22, and its
stationary distribution in Lemma 4, we are ready to show

1 Pto(Yegr s Yro+t—1) and prove

lo
¢ 108 Poo (Yt yYtg+t—1)

the convergence of lim;_,
Theorem 1.
Proof Sketch of Theorem 1: We first consider the auxiliary

Markov chain {y;, p; }72, and show that

tliglo%logpiu (Ytor > Ytort—1) = Ex[h(p,y)]  (23)
almost surely under P,, by applying the ergodic theorem
[52, Theorem 4], [53, Theorem 17.0.1] to the Markov chain
{ye, uy }¢2,,, where h(p,y) is a quadratic function of p,y
and (y, p) follows the stationary distribution of the auxiliary
Markov chain {y;, pf }2, . The explicit expression of i(u, y)
is as follows

h(p,y) = log( !

V(2m)E det(AZ*AT + R,,)
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1
Jdet((AS"AT + R,) L+ 1))
(AT AT 4 Ry 4 D) - 5T
(AZ*AT + R,)Y(AZ*AT + R, + I)(n — =*y))
+y'y— (AZ"AT + R,) ' (AZ*AT + R, + 1)
A(n—-3y) +y) (A AT+ R D)
-(AZ*AT + R,) N ((AZ*AT + R, + I)(p — =*y))
+v)). 24

Moreover, if we let y = y, and p =

h(uf,ye) = P, (YelYtos - Ye—1)-
We then show that limy_,o 108 Pt (Yro, -+ » Yto4t—1) =
E,[h(p,y)] under P;, almost surely by showing that

py, we have that

1
Jim %(lo«gpto (Yto>** » Ytori—1)
—logpi, (Yto, > Yto4t-1)) =0 (25)

under P, almost surely.
Since the observations are independent under P, we have
that

to+t—1
.1 .
tligloglogpoo(ytoa  Yrore-1) = lim n Zt log poo (Yi)-
i=tq
We then have that under Py,
| o1
Jim = Zt 108 Poc (Y1) = Ex[log poc (y)]
i=to

almost surely from the ergodic theorem of Markov chain [52,
Theorem 4], [53, Theorem 17.0.1].
Let
K = Ex[h(p, y)] — Ex[log oo (y)]. (26)

It then follows that for any initial state y;,, f¢,,

lim 1log ptO(th’.” 7yto+t71) —K

t—oo t pOO(ytm'” 7yto+t71)

under [P, almost surely. Therefore, for any 1 > 0,

ayifl)

to+k—1 » (y|y
lim sup esssuplP;, ¢ max log HordiZto
t—00 4> to{ E<t Z poo(yi)

1=to

> K1 +n)tly, - 7yt0—1} =0. 27

Then (20) follows from [24, Theorem 1]. The full proof can

be found in Appendix E. ]
Remark 1: Results in [24] assumes
lim; o0 % log PrgWrgy Wrge=1)  oriore under P,, while

. poo(ytov"‘7yt0«f»t71) . . .
in our results, we prove its existence and characterize its

value.
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C. q-th Order AR Models

In this section, we show that our results for first-order AR
models can be generalized to any g-th order AR models.

In the following theorem, we show that for any ¢-th order
AR model, as in Section III-B, as ¢t — oo, the limit of

1] Peg (Yt »Ytg+t—1) . . .. ~
Z xists and i itiv n .
7108 4 S lueg o) © sts and is positive, denoted by K

The expression of K can be derived similarly as in (26).
The universal lower bound on WADD then follows from [24,
Theorem 1].

Theorem 2: For a g-th order AR model, we have that

Dty (ytm T

ayto+t—1) _ I%
Poo(Ytr "

(28)
) yto+t—1)

1
Jim - log

almost surely under P,, where K>o. Moreover, as v — o0,
lo gy
—(1+o0(1)).

The proof of Theorem 2 is similar to the proof of Theorem 1,
and the idea is to convert the g-th order AR model to a
first-order AR model, and then apply the proof of Theorem 1.
Below, we provide a proof sketch.

Proof Sketch: Note that for a ¢-th order AR model, it can
be converted to a first-order AR model (See Appendix A).
Let |z] denote the greatest integer less than or equal to z.
For notational convenience, let y;, ;, denote the sequence
ytl,ytlﬂ, -+, Y, We have that

Dty (yto, T ayto+t—1)
Poo(ytm T ayto+t—1)

— lim = ( log Pty (ytothJrqfl)
t=oo ¢ Poo (Yo, to+q—1)

Pto (Yto+a.to+2q—11Yto,to+q—1)

inf

WADD(r) >
7:ARL(T) >~

(29)

lim — 10
t—oo t

+ log
& Doc ot arto+20—1|Yto.tora—1)
4 log pto(yto+q([ L] —1),to+ql L] 1\%0 to+a(lt]-1)— 1)
Poo(yt0+q( £]-1),to+ql L]~ l‘yt07t0+q(\_ J-1)- 1)
+10gpt0<yt()+qL | tot+t— llyt()+q([ | —1),to+ql L |- 1))
Poo Wttt ) tot1-1 1Yt ta(L -1 toral 1) 1)
— lim <log Pro(Yto: " s Yto+a—1)
t—oo t pOO(ytm oy Ytodg— 1)
+ log Pro(Yto+a,to+2a—1|Yto,to+a—1)
Poo(Yto+a,to+2a—11Yto,to+q—1)
‘o pto(yto+q<L;J—1>,to+qL;J—1yto,to+q<L;J—1>—1)>
Poo(Ytgta(L £~ 1).to+al £ 1—-11Yto,to+a(1 £ ]-1)~1)
_ Ly P otoramt) s Wroradt gy avsal i)
t—oo t Poo ((yto,to+q—1)7 T (yt0+q(\_%jfl),thrql_éJfl))
_ log Di, ((ytO,tﬁqfl)v B (yto+q(t'—1),to+qt'—1))
T qt’ Doo ((yto,to+q—1)7 Ty (yt[]+q(t’—1),t0+qt’—1))
=K (30)

almost surely under P;,, where the second equality is due
to the fact that (Y, 44, »Yio+e—1) only contains finite
additional observations (less than ¢) and the last equality is

from (19) and the fact that {(Ys,4qi» " » Yeo-+q(i+1)—1) Fico
follows a first-order AR model. For the quickest change
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detection in ¢-th order AR models, we then have that as
vy — 00,

logy

inf

WADD(7) >
T:ARL(T) >~y

(14 o(1)). 3D

O

IV. ASYMPTOTICALLY OPTIMAL STOPPING TIME

In this section, we first present the algorithm and its
optimality results for the first-order AR model. We then show
the generalization to the g-th order AR model.

A. First-Order AR Model

The CuSum algorithm based on the generalized likelihood
ratio (GLR) approach has been widely used for QCD prob-

lems. For the AR model, the GLR statistic is defined as
follows:
yl|y17 e 7yi71)
W, = max . (32)
' 1§k<tzk gpoo(y1|y17 © L Yio1)
The CuSum algorithm [24] can then be designed:
7. = inf {t W, > c}. 33)

In [24], a special non-i.i.d. case was studied where the
post-change distribution does not depend on the change point
to, i.e., pr(Yily1, -+ ,yi—1) in (32) does not depend on k.
Under the assumption that 1 Zf“tfll g’ogllzl i)

oo (Yilyt, o yi-1)
converges in probability under P,, to some positive constant
IC, the asymptotic optimality of the CuSum algorithm was
proved. The non-i.i.d. case under the Bayesian setting was
studied in [56], where the post-change distribution does not
depend on the change point #y as in [24]. The asymptotic
optimality of Shiryaev procedure was established under the
same stability assumption.

If the post-change distribution does not depend on the
change-point, then the CuSum algorithm can be updated
recursively and is computationally efficient. However, for our
AR model, under Py, py, (Yt|Yt,, - - - > Yt—1) depends on ¢, for
t > to. At each time ¢, we need to update pr(yt|y1, -+, Yt—1)
for every 1 < k < ¢, the complexity of which scales with ¢,
which is not practically feasible.

In this section, we propose a computationally efficient
Ergodic CuSum algorithm and further show that it is asymp-
totically optimal.

Motivated by the fact that the WADD is lower bounded by
1"%(1 +0(1)), we aim to find a computationally efficient test
statistic that has a positive drift of K under the post-change
distribution and has a negative drift under the pre-change dis-
tribution. Define the likelihood ratio of the first ¢ observations
when the change point ty = 1 by

[, = Py (34)
poo(ylv"' ayt)
and let Ly = 1. For any tg > 1, we have that
tin L og P11 3)
t=o0 t 7 Poo(Y1, 0 Yt)
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1 _
— lim (log pl(ylv s Yto 1)
t—oo ¢ Poo(Y1: 7+, Yto—1)
+ log pl(ytm e 7yt‘y1a e 7yto—1) )
poo(ytm e ayt‘yla toe 7yto—1)
— lim - 10 pl(yt(ﬂ"' 7yt|y17"' 7yt()—1) ) (35)
t—oo pOO(yt(ﬂ"' 7yt|y1a"' 7yt()—1)

Note that different sample trajectories yi,--- , ¥y, —1 lead to

different values of p,,. However, the ergodic theorem of

Markov chain [52, Theorem 4], [53, Theorem 17.0.1] implies

that the convergence of log P1 (Ut _.yt‘yl"::_’y'“ 1) does
Poo (Ytgs Yt Y1, Yt

not depend on ¢, and thus does not depend on tlole sample

trajectory ¥yi,--- ,¥Yi,—1. Lherefore, we have that for any

Y1, , Yto—1, under P almost surely
1 N
lim 710g pl(ytm 7yt|y1a s Yto 1)
t—oo t pOC(ytoa"' 7yt‘y1a"' 7yto—1)
1
~ lim L log Do (Yo, - Yt)
t—oo poo(ytoa"' ﬁ!/t)
=K, (36)

where the first equality is due to the fact that the con-
vergence of the ergodic Markov chain doesn’t depend on
the initial state [52, Theorem 4], [53, Theorem 17.0.1].
Therefore, under the post-change distribution, L; has a
positive drift K on average. Let D(p|l¢) denote the
KL-Divergence between two distributions. Under the pre-
change distribution, we have that Eo [ log %W] =
=D (pos (Ye)llp1 (ely1, -+ yi—1)) < 0 where the equality
holds when pi(y¢|y1, -+ ,¥t—1) = Poo(y:) almost surely.
Therefore, under the pre-change distribution, L, has a negative
drift as long as p1(ye|y1, - s Yi—1) # Poo(Yt)-

Motivated by these facts, we define the Ergodic CuSum
statistic

S = Orrgl?%(t(log Ly —log L;)
=max (0, S;—1 + log Ly —log Ly_1). (37)
The Ergodic CuSum algorithm is then defined as
= inf{t: S; > c}. (38)

At each time ¢, we only need to compute L,. It can be
easily verified using (18) that L, admits an additive form.
Moreover, L; can be recursively updated using the forward
variable as shown in Lemma 1. Specifically, let po,3o be
the parameters of the initial distribution of xy. We have that
U, 3 can be updated recursively according to (15) for each
t. We then have that L, = i _, —
o can be computed using p;, X, as shown in (16)

We note that S; is not the actual generalized likelihood
ratio, and is different from W, in 7.. However, at each time ¢,
logw(”’ytl) can still be viewed as a log likelihood
ratio of the current sample y,. Therefore, the ARL lower
bound can be derived following the proof of the ARL lower
bound in [24] for general non-i.i.d. case. Since the convergence
%log PLtg, YeU1 Wig—1) ey P, does not
Poo (Ytgr Ye|Y1, Yrg—1) 0
depend on the initial state 14, ¥, it can be shown that 7 is
asymptotically optimal for (7).

of hmt%m
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In the following theorem, we show 1) the ARL lower bound
of 77 and 2) the WADD upper bound of 7.
Theorem 3: 1) Let ¢ = log~y in (38), then E[7}] > 7;
and 2) as y — 0o, WADD(7;") < £ (1 + o(1)).
Proof: The proof can be found in Appendix F. ]
Based on Theorem 1 and Theorem 3, we establish the
asymptotic optimality of 7 in the following theorem.
Theorem 4: T} is asymptotically optimal.
Proof: By Theorem 1 and Theorem 3, we establish the
asymptotic optimality of 7. O
The Ergodic CuSum algorithm in (38) is computationally
efficient and asymptotically optimal for detecting the change
in the AR model in Section II.

B. q-th Order AR Model

We first convert the post-change ¢-th order AR model
equivalently into a first-order AR model (see Appendix A).
We then partition the sequence of the observations into a
sequence of non-overlapping blocks with size q. Specially,
define 9 = (Y(t—1)q+1,---+Ytq)> for t = 1,2,.... We then
apply our Ergodic Cusum algorithm in (38) on the sequence
of {4:}72,. We show that our Ergodic Cusum algorithm is
asymptotically optimal for the problem of QCD in ¢-th order
AR models.

For the ARL lower bound and WADD upper bound of 7},
we have the following theorem.

Theorem 5: For the QCD problem in g-th order AR models,
consider 7" applied on {g;}72,. 1) Let ¢ = logy in (38), then
Eoo[7] > 7. 2) As v — oo, WADD(77) < lc’%(1 +o(1)).

The proof of Theorem 5 is similar to the proof of Theo-
rem 3. Here, we only provide a proof sketch.

Proof Sketch: When the post-change disturbance signal
follows a g-th order AR model, we have that for any

Y1, ,Y,—1, under P, almost surely
1
lim 2 log pi(y1, " Yr)
=00t 7 Poo(Yr, e Yt)
1 B
— lim <log p1(y1, ' Yto—1) T
t—oo ¢t poo(yla 7yt071)
+1 pl(ytov“’>yt|y17"' ayt01)>
poo(ytm e 7yt|y17 e 7yt071)
1 B
— lim 710g pl(yt07 7yt|y17 7yt0 1)
t—)oof poo(ytoa‘” 7yt|y17"' 7yt071)
— lim 710g Pro(Ytor "+ Y1)
t—oo poo(ytoa"' 7yt)
1 Dto ((yto,twqfl)v T (yt(1+q(Lij—l),to—o—qHJ—l))
= lim - log ! 4
t—oo t Do ((yt07t0+lI*1)7 T (yt0+q(|_§J71),t0+q\_§j71)>
=K. 39)
where the third e uality is due to the fact that the conver-
gence of 1log zf) 1 (yytt“ ?;;tlﬂjl" ~ 1;0 11)) does not depend on
oo (Ytgr s Yt

the sample trajectory y1,--- ,¥Y+,—1 and the last equality is
from (30) and the fact that {(yiy4qi, ** » Ytorali+1)—1) Fizo
follows a first-order AR model. Following the same steps as
in Theorem 3, we have that when ¢ = log~y, Eo[7] > v and
WADD(7;) < ©8%(1 + 0(1)) as 7 — oo 0
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It can be seen that the WADD upper bound of 7 matches
with the universal lower bound in Theorem 2 for the g-th order
AR models. We then have the following result of asymptotic
optimality.

Theorem 6: For the problem of QCD in g¢-th order AR mod-
els, 77 (applied on its first-order equivalence) is asymptotically
optimal.

Proof: By Theorem 2 and Theorem 5, we establish the
asymptotic optimality of 7. g

Remark 2: In practice, when the order ¢ of the AR model
is unknown, we can first estimate ¢ using the method in [57],
and then implement our Ergodic CuSum algorithm based on
the estimation.

V. DATA-DRIVEN SETTING: ONLINE GRADIENT
ASCENT CUSUM

In this section, we consider the practical data-driven setting
where the post-change parameters are unknown. This is moti-
vated by practical applications such as detecting cyber-attacks
in dynamic systems, where there is no prior knowledge about
the disturbance signal ;. As shown in Sections III and 1V,
the QCD problem in a ¢-th order AR model can be equiva-
lently solved using a first-order AR model. Therefore, in this
section, we focus on the first-order AR model. Specifically,
the post-change parameters A, R, are unknown.

The generalized likelihood ratio test (GLRT) which replaces
the unknown post-change parameter with its maximum likeli-
hood estimate (MLE) is widely used when there are unknown
parameters. Specifically, at each time ¢, hypothesizing on the
change point being &, we use samples y, - - -, y; to compute
the MLE of the unknown post-change parameters, i.e., 0, =
arg maxg pr.o (Y, -+ ,Yt), where pyo(yr,--- ,y:) denotes
the likelihood of yy,- - ,y: when the change point is k and
post-change parameter is . The MLE of the hypothesized
change point is then computed. Specifically, let Sém be the

test statistic with post-change parameters 0y +, and take the
maximum of S , over all k, ie, S; = maka . This
approach needs to store all the historical samples yl, LY
and recompute Okyt when there is a new sample, which is not
efficient for memory and computation. Though in practice,
a sliding-window approach can be used, but it is still hard
in the non-i.i.d. setting [24]. The Markov chain Monte Carlo
method [58] can also be used to estimate the unknown
parameters. However, the Monte Carlo method consists of
particle filtering and importance sampling, which requires to
sample multiple trajectories and is not efficient in the online
setting.

In this section, we apply an online gradient ascent
algorithm [48], [54] to estimate the unknown parameters
A, R, and plug them back to the Ergodic CuSum algorithm
to design our online gradient ascent CuSum algorithm (OGA-
CuSum). The OGA-CuSum can be updated using only the
most recent sample and in a recursive way, and thus is much
more memory and computationally efficient.

Recall the definition of h(u,y) in (24). Define h:(w,y)
by replacing X* with ¥; in h(w,y). From Appendix E,
letting y = y: and p = py, we have that h(pe, y:) =
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Dto (Yt|Yty, - -+ Yr—1). Given the initial g, X, it then follows
that
t
log Ly = > hi(ps, y;) — 108 poo (9s)- (40)
i=1
Since A, R,, are unknown, h;(p,y;) cannot be computed.

We then propose a one-step update rule to efficiently estimate
A, R, and further estimate ht(pe, ye) at each time t.

Denote by At, Rw,t the estimate of A, R, at time t.
Denote by i1, 2t+1 the parameters of the forward variable.
From (15), we have that i+1,X¢4+1 can be updated recur-
sively using A;, R, ¢, ie.,

§t+1 = (Afﬁtﬁz + ﬁw,t)(é\tit;{;r + ﬁw,t +1)7,

b = (A A + Ry + 1) Ay

+ (AtEtA;r =+ Rw’t)<At2tA;r —+ Rw,t + I)_lyt+1.
(41)

Define ht+1(ﬁt+1,yt+1)Aby replacing A, Ry, pht+1, X¢41 in
his1(pet1, Yey1) with Ay, Ryt fi1, 1. We iteratively
update the estimate of the parameters when there is a new
observation based on the maximum likelihood principle using
gradient ascent. We note that h:(per, yi) — 1og poo (yz) is the
log-likelihood ratio of the observation %It at time ¢, ie.,
he(pee, Yi) — 10g poo (Yt) = pl(y*‘yl’(y ¥t=1) Therefore, based
on the maximum likelihood prln(:lple the online gradient
ascent estimator is updated as follows

A\t = A\t—l + 5vAﬁt(ﬁ'ta Yt)s
R, ; = Proj (Rw,tfl + BV R, he(ft, yt))v

where 3 is a pre-specified step-size and Proj(X) is an operator
that projects a matrix X to the set of positive definite
matrices to guarantee that R, ; is positive deﬁnite Define
the eigenvalue decomposition X = Y7 | \iviv, , where \;
is the eigenvalue of X and v; is its corresponding eigenvector.
We define Proj(X) = Y1, max{\;,e}v;v;] [59], where
€ > 0 is chosen to guarantee that the elgenvalue of Proj(X) is
at least €. With At, w,t» We can update fi;1, EtJr]_ according
to (41). We further plug them back to (37) and (40) to compute
Si+1, which serves as the estimate of S;;;. When S;; <0,
we claim that the change hasn’t occurred. Therefore, we ignore
the previous samples and reset our parameters A; 1, Ry, ;1.
The OGA-CuSum algorithm is then defined as follows

(42)

Toga = inf{t : §t > c}. (43)

We summarize the algorithm in Algorithm 1.

In general, it is hard to obtain theoretical optimality per-
formance guarantees for data-driven approaches. Nevertheless,
we provide a lower bound on the ARL for our OGA-CuSum
algorithm, so that a threshold can be chosen analytically to
control the false alarm in practice. We also provide simulation
results to demonstrate the good performance of our algorithm.

In the following theorem, we present a lower bound on the
ARL for our OGA-CuSum algorithm.

Theorem 7: Let ¢ = log~ in Algorithm 1, then
Ew[r06A] > 7.
Proof: The proof can be found in Appendix G. (]
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Algorithm 1 Online gradient ascent CuSum algorithm

Require: Initial parameters c, 3, [ig, f)o, ﬁm ﬁw,o, t «+ O,
Eo — 1.\, §0 0
while S; < ¢ do
Take a new obgervation Yit1
Update Hit1, ¥4+1 according to (41)
log L1 = log Ly + hey1 (Bt 1, Yer1) — 108 Poo (Yrt1)
Sty1 < St +log Ly — log Lt
if Stj\-l <0 tllen
4t+1 — AQ\
-Bw,t—‘—l — Rw,O
St+1 40
Lt+1 +—1
else N N
A1 = Ay + BV a1 (Bg1, Y1)
R, 11 =Proj(Ry ¢ + BV R, M1 (Bes1, Yer1))
end if
t— t+1
end while

VI. SIMULATION RESULTS

In this section, we provide some numerical results to demon-
strate the performance of our Ergodic CuSum algorithm and
OGA-CuSum algorithm.

A. Model-Based Setting

In this section, we consider the setting where the parameters
of the disturbance signal are known. We compare the Ergodic
CuSum algorithm 7 with a stationary CuSum algorithm
designed using the stationary distribution of y. The stationary
CuSum algorithm uses the CuSum algorithm that detects a
change from p., to the stationary distribution 7:

. : m(y:)

7, = inf {t : 11;1]?%2 ; log poo (1) > c}. (44)

We consider four different cases. For the first case, we set
A = [[0.7,0.4],]0.2,0.6]] and R, = [[1,0.5],[0.5,1]]. For
the second case, we let A be a 10 x 10 matrix and R, = I.
For the third case, we consider a 2-th order AR model.
We set A; = [[0.4,0.3],]0.2,0.1]], A2 = [[0.3,0.2],[0.1,0.2]]
and R, = I. For the fourth case, we consider a 5-th order
AR model. We set A; = [[0.2,0.1],[0.1,0.2]], A2 =
[[0.2,0.1],]0.1,0.2]], A3 = [[0.1,0],]0,0.1]], A4 =
[[0.1,0],[0,0.1]], As = [[0.1,0],[0,0.1]] and R, = I.
Note that our Ergodic CuSum algorithm can be easily
generalized to the ¢-th order AR model by reformulating the
g-th order AR model to a first-order AR model. Since our
test statistic Sy has initial value 0 and remains non-negative,
the delay is the largest when the change happens at ¢y = 0.
To evaluate the WADD, we let the change point ¢, = O.
In Fig. 1, Fig. 2, Fig. 3 and Fig. 4, we plot the WADD as a
function of ARL. It can be seen from Fig. 1, Fig. 2, Fig. 3 and
Fig. 4 that with the same constraint on the ARL, our Ergodic
CuSum algorithm has a lower detection delay. Therefore,
our Ergodic CuSum algorithm outperforms the stationary
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Fig. 2. Comparison of the two algorithms: case 2.
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Fig. 3. Comparison of the two algorithms: case 3.

&~ Ergodic Cusum Algorithm
—— stationary Cusum Algorithm

Fig. 4. Comparison of the two algorithms: case 4.

CuSum algorithm under both the low-dimensional setting
and the high-dimensional setting. This further implies that
for detecting changes in the AR model, simply applying the
stationary distribution and ignoring the dependence among
samples may not perform well. Moreover, the relationship
between WADD and log of the WARL is linear, which
validates our theoretical analysis.

B. Data-Driven Setting

In this section, we focus onAthe Adata-driven setting. We first
plot the estimation errors of A;, R, ; as functions of number
of samples under the pre- and post-change distribution, where
the estimation errors are defined as the Frobenius norm of
ﬁt — A and Rwyt — R,,. Under the post-change distribution,
we set A = [[0.7,0.4],[0.2,0.6]] and R,, = [[1,0.5],[0.5, 1]].
We note that the pre-change distribution is equivalent to the
AR model with A = 0 and R, = 0. It can be seen
from Fig. 5, Fig. 6, Fig. 7 and Fig. 8 that the estimated
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Fig. 5. Convergence of A, under the pre-change distribution.
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Number of Samples

Fig. 6. Convergence of A, under the post-change distribution.
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Number of Samples

Fig. 7. Convergence of ﬁw,t under the pre-change distribution.

1000 2000 3000 4000 5000
Number of Samples

Fig. 8. Convergence of ﬁw,t under the post-change distribution.

parameters A, ﬁwyt converge to the true parameters under
the pre- and post-change distribution, which demonstrates that
our OGA-CuSum scheme provides reliable estimates for the
true parameters of the disturbance signal.

We then compare our OGA-CuSum algorithm with an
existing approach in [15]. In [15], a GLRT based data-driven
algorithm was proposed to detect disturbance signals in the
AR model. We also plot the curve of the Ergodic CuSum
algorithm under the model-based setting, which serves as a
lower bound for the data-driven setting. We use the same
parameters as in Section VI-A and plot the WADD as a
function of ARL. From Fig. 9, Fig. 10, Fig. 11 and Fig. 12,
it can be seen that our OGA-CuSum algorithm outperforms
the GLRT based algorithm in [15]. Moreover, the performance
of the OGA-CuSum algorithm is close to the performance of
the Ergodic CuSum algorithm. Therefore, our OGA-CuSum
algorithm has a small performance loss compared with
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Fig. 9. Comparison of the three algorithms: case 1.
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Fig. 12.  Comparison of the three algorithms: case 4.

the asymptotically optimal algorithm under the model-based
setting.

VII. CONCLUSION

In this paper, we studied the QCD problem in AR models
under the model-based setting and the data-driven setting.
For the model-based setting, we proposed a novel Ergodic
CuSum algorithm. By introducing the forward variable for
general state HMMs, our Ergodic CuSum algorithm can be
implemented efficiently. We further showed that our algorithm
is asymptotically optimal under the Lorden’s criterion [41]
based on the ergodic theorem [52], [53]. For the data-
driven setting, we proposed an OGA-CuSum algorithm, which
replaces the unknown parameters in the Ergodic CuSum
algorithm with their estimates based on the online convex
optimization. We provided simulation results to demonstrate
the performance of our algorithm. Our approaches provide
useful insights for general detection problems for AR models
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and general state HMMs. In the future, it is of great interest
to investigate the setting where the observation noise and the
innovation noise are beyond the Gaussian model, for which
the Monte Carlo method [58], [60] based CuSum algorithm
can be designed.

APPENDIX A
CONVERT ¢-TH ORDER AR MODEL TO FIRST-ORDER AR
MODEL
Consider the case with ¢ = 2. Let &% = [z], ;,23,]7
From (3), we have that
( ) _ Aw(2) + & ~(2) (45)
i — A Ay MO
where A = (A1A2 AA, +A2> and @, =

-1 is Gaussian distributed. Therefore, a:g)
Ajwy1 +way N
2

follows a first-order AR model. Let §,” = [Yg;_1, Yoy '

We have that y( ) = ~§2) + Dt(Q) where u(2) V?j*l
2t
Following the same steps, for a ¢-th order AR model,

let &7 = [@ (1)1 T g1y par s Tq) | and g9 =
[y;—(t71)+1qu(t71)+2a -+ ,y.) . We have that

iEQ) Am(q) )+ wt(‘I)’

9" = wiq’ v£ g (46)
where cbt(‘I) and Dt(q) are the innovative noise and measurement

noise respectively for the g-th order AR model. We denote the
covariance of d:t(q) by R,,. Here, we omit the expression of
A since it is cumbersome but it can be computed directly.
It can be easily verified that the covariance matrix of 1/15 ) s

I. Therefore, {&”,§\"}72, is a first-order AR model.

APPENDIX B
PROOF OF LEMMA 2

Proof: Let || -|| denote the operator norm of a matrix and
the Euclidean norm of a vector. To show that 3; converges,
it suffices to show that for any € > 0, there exists an integer
3 — 3| < e. Without loss
of generality, we assume that s > .

We first note that

3 = (AZ,1AT + R,,)
= ((AZ,_1AT + R,) ' +1)

1 +I)_17

—1

We then have that
DI I
=38 -2,
— (A%, AT+ R,) '+ 1) (A%, AT + R,)!
—(AZ,_1 AT + R,) N ((AZ, AT + R,) P +1T)
= (A%, AT+ R,) ' +1) (A%, AT + R,)!
(AZ,_1AT + R,) - (AZ,_1A" + R,)))
(A, AT+ R,) ' ((AZ,1 AT + R,)™

-1

1 +I)71
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=(I+A%; A" +R)TAZ, - )AT

(I+AX, AT +R,)". (48)

From the update rule of ¥, in (47), 3; is positive definite
for every t > to. Therefore, AX;_1AT + R, is positive
definite. It then allows the eigendecomposition and can be
factorized as AX; 1AT + R, = QAQ!, where Q is the
square K x K matrix whose ith column is the eigenvector ¢; of
A and A is the diagonal matrix whose ith diagonal elements
are the corresponding eigenvalues )\,. We then have that

(I+A% AT +R,) "= (QA+1)Q™Y)
=QA+D7'Q7.

Since AY;_1 AT + R,, is positive definite for any ¢ > 0,
we have that \; > 0 for i = 1 , K. Therefore, all the
diagonal elements of A+1 are strictly larger than 1. Therefore,
the diagonal elements of (A + I)~! are strictly less than 1.
From the definition of operator norm, we have that there exists
a0<d<1suchthat [|[(I+AZ, AT +R,)7Y < (1-9)
for any ¢ > 0.
It then follows that

-1

(49)

12 — 2|

=T+ A8 AT+ R,) TA(Z 1 — 5 1)AT
(I+AS,_ AT +R)7!

<T+AZ AT + RO) TN B — Sea|l|AT|
I(T+ A, AT + R,) |

<(1=0)Zs1 — B, (50)

where the first inequality is from the submultiplicative of
operator norm and the second inequality is due to the facts
that [|[(I+ A%, 1 AT+ R,) 7 < 1-6,|(I+AB 1 AT +
R,)7 ! < 1—6 and the assumption ||A| < 1. By apply-
ing (50) recursively, we have that

1B = Bl < (1= 0)> )|z

Dyl 6D

s—to+t —

Moreover, from the update rule of 3, it can be easily verified
that ||X,_¢,++ — 31| is bounded. Therefore, for any € > 0,

3|| < e. This completes the proof. O

APPENDIX C
PROOF OF LEMMA 3

Proof: Let w(x:) be a Gaussian distribution with mean

p and covariance matrix 3. We will show that 7(x;) is

a stationary distribution of {z;}2, if 4 = 0 and ¥ =

S o(AT) R, A" It can be easily proved that 3 exists since

||A|l <1, where | - || denotes the operator norm of a matrix.

From the definition of stationary distribution, 7 (x;) should
satisfy that

/W(mt_l)f(mt|wt_1)dmt_1 = W(mt).
We have that

/W(mt—l)f(mt|mt—1)dmt—1

(52)
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_ /w(xt,l) !
(2m)K det(R,,)
exp ( — l(mt — A:ct,l)TR;l(mt

1
:/ ) S T ) ex

1
— §(A_1213t — wtfl)TATR_lA(A_lilJt — :ct,l))d:ct,l
Vdet((ATRS'A)-1)

:/TF(CBt 1
VAR (2m)K det((ATR; A)) !

1
(— i(A_ Ly — th_l)TATR;lA(A_ Iy — wt_l))dwt_l

- Awtfl))dwtfl

NV}

exp

@ \/det(ATR;' 4)-1)
VARL)/(2m)K det((ATRS' A)~1 + )
AT e ) (ATRS A 4 3) T (A )

\/det((AT RS A)~1) det (A((ATRS'A)~1 + ) A7)

exp (

\/det )det (ATR5'A)-! + %)
1
K TR—14)-1 T eXp(_§
\/(2m)K det (A((A R;'A)"1 +3)AT)
(@1 — Ap) (A(ATR;'A) 1 +2)AT) (@, — Au)),
(53)

where (a) is from the convolution of two Gaussian functions.

Let ¥ = > 2 (AT)'R,A". We have that & = R, +
A AT If we choose p = 0 and & = Y ° (AT)'R, A",
it can then be easily verified that (52) holds. Therefore, 7(x;)
is a stationary distribution of {a;}22, . It then follows that
{xs, Y1 }22,, has a stationary distribution 7(x;)g(y:|:).

Let P'({xz,y}, E) denote the probability of reaching a
measurable set E from state {x, y} in one step. We have that
for any {x,y} and E € R*K such that 7(E) > 0,

P'({z,y},E) = /E f('|x)g(y'|x)dx'y’ >0, (54)

where the inequality is due to the fact that Gaussian density
functions are positive. From the definition of irreducible [53]
Markov chain, we have that {z;,y;}{2, is 7-irreducible. [J

APPENDIX D
PROOF OF LEMMA 4

Proof: To prove Lemma 4, we will first show that
{xe, Y, i 124, is a Markov chain. We will then show that
the stationary distribution for p; exists by finding the limiting
distribution of p;. We then construct a new Markov chain
using vy, ; and show that its stationary distribution exists
and is unique.

Step 1. We first show that {x,y:, p; }22,, is a Markov
chain. From the update rule of py, we have that for ¢ > ¢,

’ p’:fl)
(55)

* *
pto(/"’t|mt0:"’ s Lty Ytgy ' 7yt7p’t07"'

= Pto (I"’;‘k |.U:_17 yt)'
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We then have that

pto(mhyhuz‘mt(n 1Yty Yt—1, HZ)’ e 7“’:‘,‘(—1)
= Do (Tt |Tt—1)Pto (Ye|T)Pro (107|715 Y1)
= Do (Tt Yt Wi [Te—1, Y1, 1) (56)

Therefore, {x, Yz, pf 724, is a Markov chain.

Step 2. We then show that the stationary distribution for g}
exists by finding the limiting distribution of pf. Let the initial
state be {xy,, Y., 17, }- From (22), we have that

= (AZ*AT + R, + D)t A) up,
+ (AT AT + R, + D) PA) T T Sy, 4
+(AZ*AT + R, + 1) 'AZ y, 1 + 2y, (57)

Note that p; is the sum of Gaussian random variables.
If yi,, - ,y, are jointly Gaussian distributed, then py is a
Gaussian random variable. Since the Gaussian density function
is continuous in its mean and covariance, it then suffices to
show that the limiting mean and limiting covariance matrix of
p; exist and are independent of the initial state.

Given the initial state {@,,ys,, 17, }, we have that

Dto (yt0+1 |mt0 » Yto s I‘LZ))

= /pto(wt0+1|xtu)ptu(yt0+1|wto+1)dxto+1

1
- / J/@mE det(R,,)

1 _ 1
€xp ( - §(wtu+1 - Awt(})TRwl(wt(J+1 - Awto)) W
1
eXP(—§(yto+1 = @4y11) | (Yto1 — Tegt1)) AT 41
1 1
= ex - = — Az )"
JeOF del(l, 1 1) C (=3 — A=)
(L +R) ™ (g1 — Azyy) ). (58)

Therefore, conditioning on {x,, Ys,, 7, }» Yeo+1 is Gaussian
distributed with mean Az, and covariance matrix I + R,,.
Similarly, we can show that for any ¢ > ¢j, condition-
ing on {mt()vyt()’uro}’ Y ~ N(A(t_to)wtov-[ + R, +
ATR,A+-- -+ (AT)t-t=D R, At~t~1) Moreover, since
@; is Gaussian distributed and @y 1|z ~ N(Aze, R,),
we have that x;, ;41 are jointly Gaussian distributed. Simi-
larly, since @, ¢+41 are jointly Gaussian and y:|(@¢, ©iy1) ~
N(xy, I), we have that @;,y;,x;11 are jointly Gaussian
distributed. Following the same idea, we can show that
Tiy, Tig+1," " s Tt, Yoy Yo+1, - » Y are jointly Gaussian
distributed and thus yy,, Yt+1,- - ,yY: are jointly Gaussian
distributed. Therefore, p; follows a Gaussian distribution.

To find the limiting distribution of p;, we first consider the
limiting expectation of ;. We have that

Eio [0 |10, Yto» 117,]
= (AZ*AT + R, +1)7'A)" "u;,
+((AZ* AT + R, + ) 'A) T s Ay, +
+(AZ*AT+ R, +1) TAS Al o g, BF Al oy,
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Since there exists § > 0 such that ||(AX*A" + R, + where the last inequality is due to the fact that there exists

I)7'A||<1-6 and ||A]| < 1 — 6, we have that

||Eto [H': thm Yo .u':o] ||

(@) _

< [((ax" AT + R+ D71A) g |

+[[(AS* AT + R, + )71 A) T T S Ay || 4 -

+[|[(AZ*AT + R, + I) TAS A 0 gy ||

+[[Br AT @ |

(b) _

AR AT 1 Rt DAL |

+ (A AT+ RoAD) AT 2| A | + -

AR AT+ Bt DA A

* t—to

+{[=l Al |2

< (1= 0) 7" fla, || + (8 = o) (X = 8) T [l
where (a) is from the triangle inequality of norms and (b) is
due to the submultiplicative of the operator norm. We then
have that limy_,oo ||Ee, (1] [T, Y20, p7,]|| = 0. Therefore,
we have that lim; oo Eq, [t} |24, Ys,, 17, ] exists and is inde-
pendent of the initial state {@,, ys,, 17, }-

We then consider the covariance matrix of pj. Given the
initial state {x¢,, Yq,, 17, }» let

EHZ = Eto {(:u‘? - Eto [H’ﬂmtov Yios “Z)])
* * * T *
(“’t - Eto [H’t Imtm Yios “’to]) |wt0’ Ytos Ht():| ;

Y =Ey [(yz — By [yilTe,, yio- 111,])

('yj — Ky, [yj|33toa Yo Hfo])T |wt07 Yios N:O} . (59)
From (57) and (59), we have that
t—1 )
Su; =Y (ASAT + R, +1)71A) "
1=to
* * AT —1 . T
E E(t—i+to)(t—i+to) (((AE A + Rw + I) A) 2 )
t—1 i—1 )
+23 3 ((AS* AT + R, +1)7'A) "
1=to j=to
* *x AT —1 J—1t0 vk T
E 2(t7i+to)(t7j+t0) (((Az A + RW + I) A) 2 )
(60)

We first show that ||X;;|| is bounded for any 4, j > to. When
i = j, we have that
135l
_ ||I+Rw +ATRwA+ S (AT)(iftgfl)RwAift()fl”
S A+ (1Rl + -+ AT R [ A
=[]+ (1 + A+ + AP | R |

T
= I+ == g 1Rl
1
< ”I” + 1— ||A||2 ”Rw”v (61)

0 < 0 < 1 such that ||A]| < 1— 4. When ¢ # j, we have that
o HIEtO [(yi — B [yl a Yoo 15,])
(yj — Ky, [yj|wt0,yto,uzo])T|$to»yt(,, H;} ‘
< 5 (I1ll + 1251)

< [ +

A

| Roll, (62)

ol
1—[lA]]?
where the first inequality is due to the fact that for any two
vectors u, v € RX, (u—v)(u—v)T is positive semi-definite,
and thus uu ' +vv’ — 2uw’ > 0. Since the operator norm
equals to the largest eigenvalue for the positive semi-definite
matrix, we have that [[uv || < L{juu+vv || < ([lun’ |+
low ).

To show that 3,» converges, it suffices to show that for any
€ > 0, there exists an integer 1" > t such that for any s,¢ > T,

[ X — x| < e. Without loss of generality, we assume that
s > t. We then have that
1Zpz = Bz

s—1
[ A s s oy

i=t
* AT —1 =10 gk T
S(emittooiven (AT AT + Ru+ D71A) 75 ) |
s—1 i—1 _
2|33 (Az AT+ R ) A) T
i=t j=to

)

i T
E(S—i+t0)(s—j+to) (((AE*AT —+ Rw + I)—IA)J to 2*)

where the inequality is from the triangle inequality of operator
norm. To simplify the notation, let b = [[(AX*AT + R, +
DA <1-6,|Z| =1+ 1*H1AH2 | Rw|- It then follows
that

1Zp; = Bp;

s—1
<Y PSP S i) ot
i=T+1
s—1 1—1

+2 Z Z U200 5|12 1B (i) (s—jto) |

i=T+1 j=tg

s—1
< Y prEEe ||
i=T+1
s—1 i—1 o N
+2 ) Y s g
i=T+1j=to
pAT+1—to) (1 — p2(s=T=1)) R
= =122
e AT
b(ifto)(l _ b(i*to))
1-b

s—1
+2 )
1=T+1
b2(T+17to) » -
< WHE 1=
b(T+1—t())(1 o b(s—T—l))
(1-0)?

===

+2

=1
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b2 (T+1—to

let
<7
- 1-

=171 + 2 e 1211 I%)-

(1-0)

Since there exists 0 < § < 1 such that b < 1 — §, for any
€ > 0, there exists an integer 7" such that for any s,t > T,
2. — X, i converges as t — 00.

Therefore given the initial state {:cto,yto, 7, }, the limiting
covariance matrix of p; exists. Moreover, from the definition
of ¥,- in (60), X,- is independent of the initial state
{®ty, Yt,, i, }. Since the limiting distribution of pf exists
and is independent of the initial state, from the definition
of stationary distribution of Markov chain [53], p; has a
stationary distribution, which is a Gaussian distribution.

Step 3. We then show that {y;, u; }72, is a Markov chain
and its stationary distribution exists and is unique. We have
that

(63)

Pto(yt\ytm s 7yt717“:07 C i)
Pto (Yo 7ytvlit*0)
P Yo, 1)
) Po (Mg i1s s 1 [Ytos 5 Yt 17,
Po(Bys1s s i1 [Ytos  » Ye—1, H7,)
@ DPto(Ytor > Yt 1)
" pWes Y-, 11
= Dto (Yt|Ytor - > Yi—1, MZ))
®) 1
~ /(2n)EK det(AZ*AT + R,))
1
Jdet(AS AT + R, L+ 1)

1 * * — *
o (= g ((Amp )T (AR AT+ R (A )

+y Y —
-((AZ*AT + R,,)”

(A=*AT + R.) Y(Api_y) +v.)
1 +I)71

(A" AT + Ro) ™ (Api_y) +yt))>, (64)

which depends only on p; 4, and (a) is due to the fact

that conditioning on (Y.~ Yr—1)s (Hfyp1s - +Hi1) is
independent of y; and (b) is from the update rule of the
forward variable in Lemma 1. We then have that

Do (Yes 7 [Ytor Y1, iy 5 1)
= Deo (Yeltty_1)eo (107 |07 1, Yt)

= pio (Yt 17 [Ye—1, 147 _1)- (65)

Therefore, {y;, uy }§2,, is a Markov chain.
Since in Step 2, we show that the stationary distribution of
py exists, we have that

/ (W(#:fl)ptg (ym Ty |#:71)d#:71)
Do (Yer1| 17Dt (B4 1 [es Yer1)dpy Yt

- / (0P (U |13t (155 2| s 1) s

- / (] )Peg (Yo 1y 172 105 (66)
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Therefore, [ 7(p;_1)pe, (Y, il pi_1)dp;_; is a stationary
distribution of {y;, p; }2, . Following the same techniques
as in the proof of Lemma 3, we have that {y;, puj}i2;
is m-irreducible. Therefore, the stationary distribution of

{ye, i }52,, is unique. 0

APPENDIX E
PROOF OF THEOREM 1

Proof: Step 1. We first consider a special case where

3, = X*. We have that
logp:() (yt()v e 7yt)
_ pzo(ytth.” 7yt) p;kn(yt(n"' 7yt—1)
Pfo(ytm Y1) Pfg(ytow“ , Yt—2)
pi, (Yeo, Yto+1)
+ -+ log —————=— +logp;, (y (67)
pto(yto) to( io)
and
p%(i‘hg; e 7yt)
log —
pt[] (yt()7 e ayt—l)
_ log fat(mt)dwt
J a1 (zi—1)dai—1
1
= log (
V/(@2m)E det(AZ*AT + R,)
1 )
Vdet((AZ*AT + R,)-1 +1)

5 (AT (A AT+ R (Apy)
+y/ vy — (AZ"AT + R,)™
(AZ*AT + R 1)
((AZ*AT + R,)) " (Ap;_,) + yt))»

y T
"(Ap;_y) + Y1)

(68)

where the second equality is from the updated rule of o ()
in (12).

Since pj = (AX*AT + R, + I)7'Ap; | + Z*y,,
we replace Au; | by (AX AT + R, + I)(u} — Z*y,).

Pry (Ytg, Yt) . .
Therefore, log 29— can be equivalently written as
Pty (ytO»"' Yt—1)
Pro (e Yt)
Piy (Ytgs - Ye—1) "

We have the following explicit expression for h(u;, y:),

a function of only p;, y:. Let h(uf, y:) = log

h(pis ye)
— 105 ! (69)
V(@2m)E det(AZ*AT + R,)
1
' Vdet((AZ*AT + R,)~1 + I))
(A AT L R D~ 579)T
(AZ*AT + R,) N (AZ*AT + R, + I)(1; — Z*yy))

+y y—
* * T * —

(pp -2 yt))+yt) ((AE AT+ R, +I)

((AZ*AT+R,) " ((AZ*AT + Ry, +1) (1 — Z*yy))

+u1)) (70)

(AZ*AT + R,) M ((AZ*AT + R, + 1)
-1
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Since w(py), 7(y;) are Gaussian distributions and h(p,y) is
a quadratic function of p,vy, it can be easily verified that
E,[|h(p, y)|] < co. We further note that R?X is a state space
with countably generated c-algebra [52] and {y, sy }72,,
is m-irreducible and aperiodic. Therefore, from the ergodic
theorem of Markov chain [52], [53], we have that under P,

.1 N
Jim n log pf, (Ytes s Ytort—1) = Ex[h(p, )] (71)

almost surely. Moreover, the convergence result does not
depend on the initial state of {y;, p; }72,, .
Step 2. We then show that

hmt—)oo %Ingto(ytov e 7yto+t—1) = E‘ﬂ' [h([},, y)} almost
surely under IP,, by showing that

o1
tlglolo ;(logpto (Yto> "+ s Ytort—1)
- Ing:O(ytm s ;yt0+t—1)) =0 (72)
almost surely under Py, .
We have that
Ingtu(ytw ) yt)
= log Pto (ytov T :yt) 1 log Pty (yto’ T 7yt—1)
pt()(th Ty yt—l) pto (yt(,a e 7yt—2)
o log Palo Vor) L ) 73)
DPro (Yto)
and
log Pto(yto,“‘ 7yt)
Dtq (yt07 e 7yt71)

1
V(@2m)E det(AZ; AT + R,,)

:log(

1
Vdet((AZ;, AT+ R,)~1 + I))
- %((Aﬂtfl)T(AthAT + RN Ap1)

_ T
+y y— (AS AT + R (Aper) + ye)
(A% AT+ R D)

(AZ AT+ Ro) (A1) + i) ). (74)
To show that lim; e +(logpe, (Yro, ** » Ytogrt—1) —
10g P (Ytos > Yto+t—1)) = 0. It suffices to show the

limit sum of each term in (74) converges. Here we pro-
vide the proof of lim_, 1 Z:Sﬁfl ((A;L,»)T(AEi_lAT +
Rw)‘l(Am)—(Au;‘)T(AE*AT+Rw)‘1(Au;‘)) = 0. The
rest of the terms can be proved using the same techniques. Let
(A AT+ R, + 1) ' = (AX"AT + R, +I)"' + A},
(A, A" + R,)(AS, AT + R, + 1)}
= (A AT + R)(AZ*AT + R, + 1)1 + A2,
(A, AT + R,) ' = (AZ*AT + R,) "' + A
Since 3; converges to X* as t — oo and (AE)tA—r + R, +
I L (A AT + R)(AZAT + R, + )7L (AS, AT +
R,,)~! are continuous in X;, we have that lim; . |A}] =
0, limyyo0 ||AZ|| = 0 and lim;, ||[A3|| = 0. There-
fore, ||Af|l,|A2]],||A}| are uniformly upper bounded for
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any t. Denote by |All,||A2],||A®|| the upper bound
of ||A}ll,|IAZ]],||A}| respectively. Given the initial pu,,
from (15), we have the following representation for fi;:
Heo+1 = Mgy Aty + Af Yot 174
Biore = (AZAT + R, + 1)  + A}, ,)A

(Ady 1Ak + AL 1 Ytor1 + 1 1)+

(A AT + R)(AZ AT + Ry + 1) + A] 5)Yio 42
=(AZ*AT+ R, + 1)+ A} ,)A

(A%UHAMO + A?()+1yt0+1) + A?()+2yto+2 + Hig o

Hio+t—1 = A%(]+t—1yt()+t—1
+ (AT AT + R+ 1) + A 1) AAT L oYt rt2
+(AZ*AT + R, + 1) "+ A, 4)A
((AE*AT +R,+I)"+ Atlo+t—2)AAi)-s-t—syt()th—s

to+t—1
+ot+ [T ((A=*AT+ R+ D' + AL A)
i=to+2
(AL Ay + AL Y1) B (75)
Let Y; = (Yt Ytot1, " »Yto+t—1) and denote p; as

F(Y;) + ;. We then have that

1 to+t—1

>
1=to

— (Ap)T(AT" AT+ Ro) 7N (An)))

((Ap)T((AZ"AT + Ro) ™+ AY) (Ap:)

to+t—1

=%Z

i=to

((AFZ-(Yi) +Ap!) (A" AT+ R,) " 4+ AY)

(AF(Y)+Ap}) — (Auf)T(AS"AT + o)™ (Ap))

to+t—1

:%Z

+ (AF(Y,)) MY AR (YD) + (Apy) " A3 (Ap))
+2(AF(Y)) (AS* AT + R,) " (Ap))

(AR (¥)"(AS* AT + R.) " (AF(Y))

+2(AF(YD) AN Ap))). (76)
In the following, we will show that
to+t—1 .
. - : g * AT —1 3 -
Jim th (AF,(Y;)) (AZ*AT + R,) "' (AF,(Y)))
i=to
=0
and
to+t—1 .
. + ) - * AT —1 *)
Jlim. ztj (AF,(Y:)) (AZ*A" + R,)"(Ap;) = 0.
=10

The convergence of the rest of terms can be proved using the
same techniques. To simplify the notation, we set p;, = O.
The proof for any arbitrary g4, can also be derived similarly.
For (AF,(Y;)) (AX*AT+R,,)" (AF(Y;)),i = to,-- .1,
we have that

(AFyy1(Yipr1) (AZ*AT + R,) " (AF, 1 (Yign1))
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= (A?()+1yto+1)TAT (AE*AT + Rw)_lAA?()+1yt()+17
(AFi,12(Yip12)) (AT AT + R.) " (AF12(Yig42))
(((AE AT+ R, +1)” t0+2) to+1yto+1)

+ A%0+2yt0+2) AT(AZ*AT + R,)'A

(A" AT + Ru+ D71+ Al o)AMY 1ye04)

+ A?()—J—Qyto-‘r?)v
(AFto+3(Yto+3))T(A2*AT + R.) T (AF,13(Yig43))
~ (A= AT + Ry + )7+ A} ) A

((AE AT+ R, +1I)! to+2) (Ato+1yt0+1)
+ ((AZ* AT+R,+I)7' + Ato+3)A(At¢)+2yto+2)

+A%o+3yt0+3> AT(AE A" +R,)'A
(A" AT+ Ro+ 1)

(AZ AT + R, + 1)+ A} ) A(A] 1Yt0+1)
+ (A" AT + R, + D7 + A ) A

t0+3)

) (At0+2yt0+2) + At0+3yt0+3)

77

We note that there exists a 0 < 0 < 1 such that for any

i > to, ((AE*AT—FR +I)7'+A})A “_H(AE AT+
R,+I) Al < ||(AZAT + R, + 1) |4l < (1-9).
Let B=1-6and C = ||[AT(AX*AT +R,) 1AH We then
have that
to+t—1 T
lmg > (AR (YD) (AX" AT + R.) 7 (AR(Y))
1t00+t—1
< lim Zt |F(Y3)|°|AT(AZ*AT + R,) A
tg+t01
}ggo* Zt ezt allh
t0+t01
<Jim ¢ ) C(Z B J||A2|||yj|)
i=to J= to
t0+t 1 3
= lim LYY ST B Ay A3

i=tg j=to k= to
| o= 1 4

Z > ZCBm TRIAZ N 5112

1=ty jJ=to k=to

+ AR P e 7)), (78)

where the first inequality is due to the submultiplicative of
operator norm, and the third inequality is from the explicit
expression of F;(Y;) and the triangle inequality and the
submultiplicative of operator norm. We then consider the
coefficient of the sum of all terms containing || AZ, [|?]/yy,?

l

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 7, JULY 2024

denoted by Co(||AZ [?|lys[|?). We have that

tott—1 i
Co(| A% P llye, I?) = Jim D~ >~ 20B%
i=tg j=to
to+t—1 i—t
2C0B* "t
< I
P D D
1=to
2C
<. 79
<GT-Bp (79)
Similarly, we can show that the coefficient of
AT, 1 [P llyeo4a ]I, 1A are  not
larger than (12(’];,)2 Since hrnt_>OO |AZ)% = 0 for any € > 0,
2|2 < e
We then have that
to+t—1 .
Jim th (AF,(Y;)) (AZ*A' + R,)"'(AF(Y)))
i=to
< 1im Loc 1A%yl + - + 1AG 411 P l1Yeo+e-a
~ t5oo (1—B)2
A2 24 A2
< jim oo VARPIl £+ 1A3 Plyrl?)
t—oo t (1 — B)
n e(lyrsall® + -+ lyo+e—1l?)
(1-B)?
2¢CEx||ly[*]
< — 7 80
<=y (80)

where the last inequality is from the ergodic theorem of
Markov chain [52], [53].
Since E,[||y||?] is bounded, by letting ¢ — 0, we have that

to+t—1
i 3 (AR (44T R (ARX)]
=0. ) (81)
Therefore, we have that
lim — tofl (AF(Y) (AS*AT + R,) " (AF,(Y;))
t—oo t =
—0. (82)

We then consider limy o 1 S toti=t (AFi(Yi))T(AE*AT

i=to

+ R,,) ' (Ap}). We have that

to+t—1
32&% Z |(AF:(Y:) (AS*AT + R.) "L (Ap))||
1t0+t—1
< Jlim - Y7 [RM)[|AT(AS AT + Ry Al
tol—o—ttol
,lgr;; Z || F(xa) ]|
1 ot .
=lim Y7 > OB ATyl |
et 1
< lim = 3 S OB A (lys 17 + e lP). - 83)
i=tog j=to
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It suffices to show that

tU+t 1
2 2
fll{lolog Y > CBTA IR = (84)
i=to j=to
and
1 tofts 1 4
17— 2 2
Jm o ST S CBIA P =0 @)
i=to j=to
We have that
| todto1 i
- i—j 2 2
}H&t > > BT Ayl
i=to j=to
to+t—1to+t—1
L i— 31 A2 12
=l 30> OB A
J=to 1=
to+t—1
o1 c 2 2
< = A2y |12
< Jlim - Zt 17 lllly; | (86)
J=to

For any € > 0, there exists an integer 7' such that for any
t > T, ||A?]| < e. It then follows that

: c 2 2

fligloE Z ﬁHAjH”yj”
J=to
A2 2 A 2

< s Lo(INLllyul” ¢+ bl

t—oo t 1-B

+ ellyryll® + "+€||ytu+t—1“2)

1-B

€CE.||y|?]
< —Z - 87
< (87)

Since E, [Hy|| | is bounded, by letting ¢ — 0, we have that
limy o0 53000 75 11A2] [ly; ]2 = 0.

Consider  limy o0 2 3,207 300, OB A2|l]| 2.
We have that lim; .o, Bt = 0 and lim;_, ||[AZ]| = 0.
Therefore, for any € > 0, there exists S such that for s > 5,
|[A2_,|| < eand B! < e Let T =2S. For any t > to + T,
we have that

t
> CBTI|AZ
Jj=to
= C(|AZl + BlIA7_ 1| +---+ B [|AZ )
<Cle+Be+--- “le+ Bl OHIHAt Ll

+--+ BTAZ )

€ BI. ztOJ 9

<
_C(I—BjL 1-B HA H)

C(1+|A%])
< = = W
< i—p © (33)

where for the second inequality, we compute the sum of the
first half and the second half respectively and use the fact
that ||A2|| < ||A?|| for any t. Since w is bounded,
the coefficient of ||| will converge to Zero as t — oo.
Therefore, following the same steps as in (80), we have that

5265

to+t—1 i i
limy oo § 30,07 2y OB uf |l =
fore, we have that

0. There-

to+t—1
Jim Z ((Ap) T (A" AT + Ro) ™+ A7) (Apy)
1=to
—(Ap)TATAT + R ApD)) =0, (89)
and thus
. 1
tlgTolo n ( log py, (ytm ce 7yto+t71)
—10g pf, (Ytos > Yto+t—1)) = 0. (90)

Step 3. Since the observations are independent under
P., we have that lim; ., & 1108 oo (Yo, s Ytort—-1) =

limy oo 30501 log po(yi).  Since  logpo(y) s a
quadratic function of y, we have that E.[| log po (y)|] < 0.

From the ergodic theorem of Markov chain [52], [53],
we have that under Py,
| toFt=1
tlggc - zt: 10g poo(¥i) = Exflogpeo(y)]  (O1)
=10
almost surely.
It then follows that under P,
lim = 10 Pto(Ytos " s Yto+t—1)
t—oo t Poo (ytoa e 7yto+t71)
1 to+t—1
= tgﬁolo %(logpto (Ytor " s Yto+t—1) — Zt logpoo(yi))
i=to
= Er[h(p, y)] — Ex[log poc (y)] (92)
almost surely.
Let
K = Ex[h(pt, y)] — Ex[log poo(y)]- (93)
We then have that for any initial state 1y, fte,,
lim oo % log 5'05310510:‘3 = K under P, almost
oo (Ytgs  Ytgtt—
surely.

From (68), we have that given uj, the distribution of y;
under P, can be fully specified, denoted by pf (y:|uf).
Therefore, we have that m(u,y) = 7(p)p;, (y|p). Note that
h(p,y) = logp;, (y|p). We then have that

i, (ylu)}
P (y)

m(p)p;, (y\u)}
T(1)Poo(Y)

= D(m(p)pj, (ylp) |7 (1) poc (y))

>0,

IC:IEW[IO

= Ew[log

(94)

where D(:||-) denotes the KL-Divergence between two distri-
butions and the equality holds if and only if 7(u)p;, (y|p) #
T(1)Poo(y). From (68), we have that 7(u)p; (y|lp) #
T(1)Poo (y). Therefore, we have that K > 0.

Therefore, for any n > 0,

to+k—1
lim sup esssup]P’tO{max Z log

t—o00 to>1

Peo (YilYtor - Yi-1)

Poo (yz)

i=tg
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> K(1+n)t|yr, - 7yto—1} = 0. 95)
Then (20) follows from [24, Theorem 1]. (|
APPENDIX F
PROOF OF THEOREM 3
Proof: Let o9 = 0 and define the stopping times
f (Yilys. . yim)
Oms1 = inf {t >0, Z log P1(¥YilY1, yYi—1
i=om 1 poo(y7|y17 7yi—1)
< 0},for m > 0. (96)
We have that
t+1 (Wilyr, - yi_1)
Eoo { PLRYiYL " Yinl) g come ¢ > om‘ft}
i—orq Poo(ilyr, - Yi1)
_ H D1 yz Y1, 7yi71)
i—ooy Poo(Yilyr - Y1)
y EOO[P1(yt+1|y17"' ,Yt) ‘]_—t}
poo(yt-ﬁ-l‘yla e 7yt)
_ H p1(Yilyr, -, Yio1)
=g +1 P Wilyr, -+ yi-1)
X /pl(yt+1|yl7"' s Yt)dyYi 1
p1(Yilyr, -+ Y1) . o7
iony Poo(ilyns - yia)
P1(Yilys,

Yi—1)
Therefore, {]]'_ o+l Pyl Tt > om} is a
martingale under the pre- change dlstrlbutlon with mean 1.
Therefore, from Doob’s submartingale inequality [61] and the

optional sampling theorem [61], we have that

t (yilyr. - yi-1)
Z lOg P1\Yi|Ya, y Yi—1 > e

X

= Peo(Wilyn, Y1)
for some t > (fm|]-'gm} <e ‘. (98)
Let M = inf{m > 0 : Om <
oo and YI_ S g;);(&‘fgl“_':_’%fl)) > ¢ for some t >

om - We have that

Poo(M >m+ 1|F,,)

t
:]Poo Z IOg pl(yl|y17"' 7y7,71) <ec
i=om 1 pOO(y’L|yl7 e :yifl)
for all t > Um‘]-'gm}
>1—e ¢ 99)

We then have that

Poo(M > m) = Eog [Poo (M > m + 1|F5, ) Liarsmy ]
>(1—-e )P (M >m—1)
> (1—e ) Po(M >m —2)
> (1—e ) "Ps(M > 0)
>(1—e )" (100)
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It then follows that

Brf] 2 Bao[M] 2 3 Pa(M > m)

m=0
o0
>y (1—e )" =c
m=0

Let ¢ = log~y, we have that E.[7] > ~.

Define h;(p,y) by replacing X* with 3, in h(u,y).
We then have that log L; = Z:Zl hi(pei, Yi) — log poo (Yi)-
From (92), we have that for 0 < § < 1 and any initial g, y;,

(101)

t+n—1

> hiyi, i)
i=t

7yt71} =0.

lim sup esssupIP’tO{ — log poo (¥:)

N—=00 ¢>¢,>1

<K =6y, (102)

This implies that

t+ne.—1

Z hi(Yi, i) — 10g poo (i)

i=t

sup esssupP;,
t>to>1

<clyi g p <6 (103)

for all large ¢, where n,. is the largest integer < (1—30) 1K Lec.
We then have that for any tp > 1 and [ > 1,

esssuplPy {7} — to > In.| Fio—1}
to+ine—1

>

i=to+(—1)nc

forall 1< j < l|ft0,1}

< esssup]P’to{ hi(yi, i) —log poo (yi) < ¢

<ot (104)
Therefore,
sup esssupEy, [n. ' (77 — to) 7| Fiy—1] < Z&l =(1-6""t

to>1

N
Il
o

Let ¢ = logy and v — oo. Since n, ~ (1 — §) 1K 1¢,
we have that

. ()

sup esssupEq, [(75 — to) T |y, -, Yo 1) < gfy(l +0o(1)).

to>1

This completes the proof. ]
APPENDIX G

PROOF OF THEOREM 7

Proof: Define pg (Yilyr, - yi- 1) by replacmg
A7 Rwa i, 2 in pl(yt|y17 L Yi— 1) with An Rw Wi “/7,7 27,
Note that the OGA-CuSum can be equivalently written as

TOGA:inf{t: max Zl og yzwl,.u?yiil) zc}.

1§k<t —k poo y7‘yla 7yi—1)

(105)
Let 0¢p = 0 and define the stopping times
t
. pg. (Yilyr, -, yi-1)
Om+1 = inf {t > O log —
i 2 Poo(Yily1, -+ 1 Yi-1)

i=om+1
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< o}, for m > 0. (106)

We have that

t+1
Pg \YilY1, - s Yi-1
Eoo|: H 01( : ) for somet>om‘]~}}
i=om 1 poo(yz|y17 T ayi—l)
o i pé\l(yllylv 7yi71)
iman 1 Poo(YilY1, -+ Yi-1)

[P@H(ytﬂyh“' s Yt) }
o0 t
Poo (Yet1|Y1, -+ Yt)

L pg (Wilyn, - yi)
- izgﬂ Poo(Yilyn, -+ yi-1)
X /p§t+1(yt+1|y1,"' s Yt)dYii1
_ 13[ Pg,Wilys, - yin1) o)
Poo(Yily1, -+, Yi-1)

1=0m+1

Therefore, {Hfzam +1%7}—“t > o,) is a
martingale under the pre-change distribution with mean 1.
Therefore, from Doob’s submartingale inequality [61] and the

optional sampling theorem [61], we have that

t
Z log

1=0m+1

p@(yi|y17 T

,yi—1) S ¢
Poo (Yilyr, - -

:yifl) B

X

for some ¢ > am|}'{,m} <ee. (108)

Theorem 7 can then be proved following the same techniques
as in the proof of Theorem 3. (]
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