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Abstract—In this article, series arc fault detection and identifica-
tion is investigated for dc microgrids using a statistical model based
on nodal analysis. The consecutive sample difference of the injec-
tion currents are modeled as a random vector whose distribution
depends on the network conductance matrix. When a series fault
occurs, the conductance matrix changes, which leads to a change in
the data generating distribution. The goal is to quickly detect and
identify faults on different lines while maintaining low false alarm
rates. A quickest change detection (QCD) approach is proposed in
this article, utilizing a cumulative sum (CUSUM) algorithm. The
proposed method is robust to nominal network operations, such
as load and reference changes, and the CUSUM statistic is used
for detection increase during faults, ensuring faults are not missed.
In addition, a Kron reduction approach is developed to eliminate
the internal nodes, and an optimal sensor placement strategy is
proposed using vertex cover to ensure fault detection on any line
with reduced number of sensors. The proposed framework is tested
on dc microgrids typically found in the more electric aircraft,
composed of multiple generators, internal nodes, and various load
types. Lastly, experimental results are shown on a microgrid testbed
to validate the feasibility of the QCD approach for series arc fault
detection.

Index Terms—Constant current load (CCL), constant power
load (CPL), cumulative sum (CUSUM) algorithm, dc microgrids,
fault detection and identification, Kullback-Leibler (KL)
divergence, quickest change detection (QCD).

1. INTRODUCTION

C SERIES arc faults present a significant challenge for
D the reliable operation of dc microgrids. These faults occur
when a current is transmitted through a plasma channel in series
with the circuit, often as a result of a wire break or tear [1].
The resulting arc discharge creates a high-impedance plasma
that resembles a resistor in series with the circuit, leading to
low-fault current levels that can be difficult to detect using
traditional protection methods [2], [3], [4]. Furthermore, the
noise generated by the series arc fault can propagate through the
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network and potentially be misdetected by independent current
sensors [4], [5].

Detection strategies for series dc arc faults have primarily
focused on analyzing and extracting features of the line current
during a fault event. The noise generated by the plasma channel
serves as a key factor in detecting these faults. Time domain
strategies for identifying series arc faults involve examining
the statistical properties of the line current to determine the
presence of an arc fault. For instance, Abdullah et al. [6] an-
alyzed the line current to detect the presence of added noise
by calculating the Hurst exponent of the signal, a measure of
its randomness. Similarly, the authors in [7] and [8] proposed
methods for detecting the presence of (pink) noise generated by
the dc series arc fault [3], [9]. Other time domain-based methods
include the computation of the sample entropy [10], recurrence
methods for characterizing the determinism of the signal [11],
and autoregressive moving average estimation [12]. Frequency
and time—frequency domain methods have also gained traction
due to their ability to quickly detect higher frequency changes
in the line current caused by a series arc fault. These include
several approaches including wavelet transform [4], [13], [14]
and Fourier transform [15], [16].

The existing literature offers various examples of features that
can be used to detect series arc faults within a single line. This
allows for the natural development of machine learning methods
that combine multiple features to optimize detection strate-
gies [17]. For instance, the authors in [18] and [19] presented an
ensemble machine learning approach that combines several clas-
sification techniques, such as support vector machine, k-nearest
neighbor, and random forest, to create an optimal detection
strategy. Neural networks have also been employed for series
arc fault detection in studies, such as [20], [21], [22], and [23].
Deep learning methods, including long short-term memory and
gated recurrent learning, have been explored for dc series arc
fault detection in [24], [25], and [26]. Finally, random forest
strategies have gained popularity as machine learning methods
for series arc fault detection in research, such as [27] and [28].
However, these methods focus on the detection of series arc fault
in a single line.

Although numerous detection techniques for series arc faults
exist, several challenges and drawbacks remain. For instance,
detecting a series arc fault and pinpointing the faulted line is a
complex problem that requires a large number of sensors [29],
[307, [31], [32], [33]. Moreover, mistriggers can occur in adja-
centlines, as the noise from series arc faults can propagate within
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the network [5], [31]. Centralized techniques, such as time-based
parameter estimation algorithms, require nodal voltage and in-
jection current measurements [32] or their estimates [33] at all
nodes of a dc microgrid. Furthermore, machine learning tech-
niques demand a substantial amount of training data, which may
be challenging or cumbersome to obtain from existing systems.

This article presents a methodology for detecting and identi-
fying series arc faults in dc microgrids. A statistical model of
the network is developed to represent both normal and faulted
conditions. The problem of detecting changes in the distribution
of measurements from normal to faulted is formulated using the
quickest change detection (QCD) framework [34], [35], [36],
[37]. Specifically, QCD involves observing a stochastic system
sequentially and detecting changes in the data generating distri-
bution as quickly as possible (minimizing worst case detection
delay), subject to false alarm constraints. The QCD approach has
been applied for solving various problems in power systems,
e.g., anomaly and line outage detection and identification in
power networks [38], [39], [40], [41], [42], [43], fault detection
in photovoltaic systems [44], voltage quality monitoring [45],
cyber-attack detection in smart grid [46], [47], [48], and prelimi-
nary work in series arc fault detection [49]. See [37] for a review
of recent studies using the QCD method in power systems. The
main contributions of this article are as follows.

1) A statistical model for general dc microgrids is developed
using nodal analysis and the impact of series arc fault to
the current measurement vector distribution is derived.

2) The series arc fault detection and line identification prob-
lem is formulated as a QCD problem, where it is assumed
that at some unknown time a series arc fault occurs,
which changes the probability distribution of the measured
currents. The cumulative sum (CUSUM) algorithm is then
used to solve the QCD problem and detect/identify the
faulted line.

3) A Kron reduction technique is proposed for networks
with internal nodes, and a vertex cover technique is also
developed to reduce the number of sensors needed for
accurate series arc fault detection and identification.

Lastly, simulation and experimental results are shown to val-
idate the implementation feasibility of the proposed approach.

The rest of this article is organized as follows. In Section
II, a statistical model for the dc microgrid during normal and
faulted conditions is derived. In Section III, the QCD-based fault
detection method is presented. Simulation results are presented
in Section IV with different case studies, and experimental
results are provided in Section V. Finally, Section VI concludes
this article.

The following notation is used in this article. Given a set X,
its cardinality is denoted by | X’|. The symbols 1,,, and 0,, denote
column vectors of m ones and n zeros, respectively. An n X n
identity matrix is written as Z,,. The Kullback-Leibler (KL)
divergence measures the difference between two probability
distributions f(,, () and fo(x), where fo(z) is the reference
distribution. The KL divergence is defined as

D(fmmllfo) 2 / Fomm () log de 0
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Fig. 1.

Distribution system of a more electric aircraft [51], [52], [53], [54].

II. STATISTICAL MODEL FOR DC MICROGRID

A dc microgrid can be represented by a directed graph
G = (V,&) [50], where V is the set of nodes/buses and & is
the set of edges/lines (7, j) such that i, j € V. The number of
nodes in the microgrid is given by N = |V|. The neighborhood
set of a node 7 in G is denoted by D1g(4), which includes all the
adjacent nodes that are incident to node 7. The conductance of
the line (1, n) is defined by y(,,, ), While the line resistance is
denoted by 7 (. n) = Vo During steady state, a dc microgrid
is governed by the following nodal equations:

I[k] = Y VK] )

where I[k] € RY is a vector of injection currents, Y € RV*¥
is the conductance matrix, V[k] € RY is a vector of bus
voltages, and k represents the sampling instant. In Fig. 1,
a typical dc distribution system used in a more electric
aircraft is shown [51], [52], [53], [54]. In this case, the
microgrid is defined as G = (V, £), where the set of
nodes are V = {1, 2, ..., 8} and the set of edges/lines are
&= {(17 2)7 (27 4)’ (37 4)7 (27 5)7 (27 6)7 (47 7)7 (47 8)}
Therefore, there are N = 8 nodes and |€| = 7 edges.

A. DC Microgrid Probabilistic Model

We begin by defining the difference between consecutive
samples of the injection current vector I[k] € R and nodal
voltage vector V[k] € RY as

Allk] = Ik] — Ik —1] 3)
AVIk] =VIk] - V[E - 1]. @)
Equation (2) can then be written as

AI[k] = YAVIE]. (5)

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2024 at 13:56:32 UTC from IEEE Xplore. Restrictions apply.



GAJULA et al.: PROBABILISTIC APPROACH TO SERIES ARC FAULT DETECTION AND IDENTIFICATION IN DC MICROGRIDS 29

During normal operation, the voltage difference vector,
AVk] € RY is assumed to be an independent identically dis-
tributed (i.i.d.) multivariate Gaussian random variable described
as follows:

AV[k] ~ N (O, T) ©6)

where AV'[k] has a mean of Oy and the covariance as T =
E[AV[k]AV[K]T] € RV*N | This assumption stems from the
presence of power electronics at each node in the network
(source or load), which establish a well-defined voltage source.
The noise of these voltage sources can be modeled as Gaussian
random variables [55], [56], [57], [58]. In Section III-C, we
consider the case with internal nodes, i.e., no source or load
converters.

Using (5), the covariance of the measured current difference
vector, AI[k], can be obtained as follows:

E [ATHATKT] = B [Y AV (Y AVIE]) ]
=YE [AV[KAV[K]T] YT (7
= E[AIKAIK"] =S =YTYT. ®)
The mean of AI[k] can similarly be derived as
E[AIl = E[YAV]=YE[AV] =0. 9)
Therefore, the current difference satisfies
AIlk] ~ N(On, Xo)

where the covariance ¥y € RV*V s defined as 3o = YTY 7.

We denote the normal or prefault Gaussian probability distribu-

tion function (pdf) of AI[k] as [59]

exp (=3 (AI[k])TSg" (AI[K]))
(2m) NV det (X))

(10)

fo (AITK]) = (11)

B. Series Arc Fault-Based Model

A series arc fault can be modeled in a steady state as an
increase in line resistance, due to a break in the line, which
can be caused by wear and tear or loosely connected wires [4].
Fig. 2 shows a typical series arc fault model on a single line
(m,n) [60], [61]. This model is composed of two elements: the
additional arc faultresistance, 7'(,, ) f» and Ve, which is used to
model the noise caused by the plasma channel in [61] (Thevenin
equivalent), and voltage drop in [60]. In this article, we utilize
Vare primarily as a source of noise injection [3], [9], [61].

After a series arc fault occurs on line (m,n), the line con-
ductance decreases (line resistance increases) as shown below:

1

_— (12)
T(m,n) T T(mn)f

Ymn)yy =
where 7(,,, ) is the line resistance, 7(,,, 1) is the fault resistance,
and -y is the change point, i.e., the instant of time when the series
arc fault occurs. In addition to the change in line resistance, a
series arc fault is also characterized by the introduction of fault
noise V., which affects adjacent sensors in the network. This

Series Arc Fault

m n
o— -9 r— _—9
Ground
=
(a)

Series Arc Fault

m

T(m,n)

(W)

Fig. 2. Circuit view and model of a series arc fault. (a) Series arc fault in line
(m,n). The break in the line and arc fault occurs in series. (b) Electrical series
arc fault model on line (m, n).

voltage source can be assumed to be as follows:

Vare ~ N(NVMU w)

where V. € R is assumed to be independent of AV'[k]. The
mean and variance of V. are py;,, and ¢ > 0, respectively.
See [3], [9], and [61] for more details on the noise characteristics
of dc series arc faults. In particular, the mean value of the arc
voltage, py,., can be modeled by a nonlinear function of the
gap distance, which is generally slow varying compared with
the time steps of the algorithm. For this reason, its difference

between consecutive samples can be estimated as

AVare[k] ~ N(0, ¢).

13)

(14)

Considering Fig. 2(b), the voltage drop across line (m,n)
during a series arc fault satisfies

Vin = Ve = Voo = Iiin [r(m,n) =+ T(m,n)f:l (15)

where 1,,,, is the current flowing from node m to n. Using (12)
and (15), the line current is derived as

Imn = y(mm)'y [Vm - Vn] - y(m,n)v [V;irc] . (16)
The nodal equation at node m is then given by
Iy = =Yy Varel + D Yy Ve = Vil (A7)
1€Ng(m)
while at node n we have
I, = Yim,n)y [V:lrc] + Z Y(n,i) [V;L - z] . (18)

1€Ng (n)

By using the above equations we define the matrix Y, ,,) €
RNV*N associated with a series arc fault on line (m,n), where
the variable y(,, ) is replaced by y(,, ). The fault free model
in (5) for AT is then changed during a series arc fault in line
(m,n) to

Aj[k] = Y(m,n)AV[k] + B(m,n)AVarc (19)

where B, ) € RY is a column vector of zeros, except with
—Y(m,n)y a0d Y(m n) at mth and nth node’s indices, respec-
tively.
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The arc voltage, Vy., and the difference in nodal voltage, AV,
are assumed to be independent since the series arc fault’s dis-
charge along the line (m, n) is primarily dependent on the mean
of the line current [4]. Using this assumption, the covariance of
AT in a postfault scenario is then calculated as

E [ATHATK) = B [V AV ] (Yo AVIE]) |
+E [B(m,n)AVarc (B(m,n)AVarc)T:|
(20)
E [AIKIAIK]T] = Yonm E [AVIKIAV K] Y, )
+ B(m,n)E [A%rcAvT

arc

T
] Bl
2n
E [AIEAIET] = Y YY) + By Bl ) (22)
= Z(m,n)
= Yinm) YY) + Binny VBl (23)
m,n (m,n) (m,n) (m,n)
and the mean of AT is derived as
E[AIl = Y(m,n)E[AV] + B(m,n)E[AVm] =0 (24)

since E[AV] = 0 and E[AVy] = 0.
The difference in current during a fault on line (m, n) is then

modeled using a different distribution
AI[K] ~ NN, Egn,n)) (25)

where the covariance E(mm) € RV*N ig defined as E(mm) =
Y(,,W)TY(T n T ¢B(m7n)B(Tm - The postfault pdf of ATk

m
for a series arc fault in line (m, n) € £ is then denoted as

exp (—3(AIIR)TSC) ) (ALlK])
V@Y det(Sn )

fimm) (AIK]) = . (26)

C. Voltage Covariance Estimation

In this article, we assume the nodal voltage difference covari-
ance matrix, ¥ = E[AV[k]AV[k]T], to be unknown. There-
fore, it needs to be estimated using measurements from voltage
sensors at all nodes. This can be accomplished either from
historical data or be updated at a slower time rate. For example,
collecting a set of P samples of AV € RV, we can then compute
the following empirical covariance matrix I":

I = cov (AV/[1] AV(P)). @7
This process can be done in an iterative manner to keep track
of any variations/disturbances in AV. We further improve the
empirical estimate using the following:

T=qI'+R (28)

where R is a diagonal matrix and ¢ is a positive scalar. In this
case, the matrix R is used to increase the impact of the variance
of each local node voltage.

D. Time Step Selection

The statistical models used in this article for normal, (5),
and fault, (19), conditions assume a static representation of
the network behavior using nodal analysis. This is an accurate
description for small dc microgrids where the line inductance
is negligible (e.g., nano Henry range). However, for larger dc
microgrids, the line inductance can affect the behavior of the line
currents, which can more accurately be modeled by a dynamic
system of the form

dlij "(i.5) 1
=——=T + (Vi=V;) or (29)
dt Lugy 7 Liy) ’
—++—Tacp
Lijlk+1]=e "G5 I;;[k]

N (1 B eT(ij)TQCD) (Vl[k] o VJU’C]) (30)

T(i.5)

(.J) ig the time constant,

where (i,7) € € is a line, 7(; j) = %
Tocp is the algorithm time step, and (30) is derived using
the zero-order hold. Therefore, for larger line inductances, the
algorithm time step should be chosen to be approximately equal
to the largest line time constant, i.e., Tocp ~ max(; jyeg T(i,j)-
This recommendation is based on the convergence of (30) to the
static nodal analysis case as the time step increases (modeling
errors are decreased) and the inherent robustness to model errors
of the proposed QCD algorithm [62].

III. QUICKEST FAULT DETECTION AND IDENTIFICATION

In this section, we present the CUSUM algorithm for solving
the quickest fault detection and identification problem [34]. We
also analyze the series arc fault detection with full and partial
current sensors.

A. Full Information

Let 7 be a stopping time, i.e., the instant of time series arc
fault is detected/identified, and ~ be the change point or instant
the series arc fault occurs. The objective of QCD is to minimize
the average detection delay subject to false alarm constraints.
This problem can be formulated as

minsup E, [T — v |1 > 7]
T >0

subject to E. [7] > 8 (31)

where [ is a positive scalar constraint on the mean time to false
alarm [63], I, denotes the expectation when the fault happens
attime v, and E,, denotes the expectation when there is no fault.

The CUSUM algorithm [34] is then adopted to solve the above
QCD problem due to its recursive computation and optimality
properties [34]. For a fault at line (m, n), it utilizes the normal
and postfault pdfs, fo and f(,, ), shownin (11) and (26), respec-
tively. The CUSUM algorithm, then, computes the following
statistic for each line, (m,n) € &, in the network:

W(mm) [/{J + 1]
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Measure nodal voltages
and injection currents

v
Compute AV[k] and AI[k]

Use previous

Are P samples of - -
covariance matrix Y,
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i
I | Update covariance matrix | |
U Y=qr +R, Zo and T |1 ST P
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L,,,,,,V,,,,,,,,i
Calculate Wimn[k+1] for all
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Check if any
W(m,n)[k] > Awd

Series arc fault detected
on line (m,n)

Fig. 3. CUSUM algorithm for series arc fault detection on line (m,n).

+
Fommy (AI[E + 1})) )

= (W(m,n> [k] + log fo (AI[k+1])

where Wi, ,y[0] =0 and (-)" £ max{0, -}. Lastly, a
fault/change point can be detected whenever

Wi lk] > A 33
nax Win, y[k] > Aw (33)

where A is a threshold, which can be approximated by
A =log (|€]) (34)

to meet the false alarm constraint [38]. Therefore, if a large mean
time to false alarm value /3 is chosen (i.e., low probability of false
alarms) then the threshold should be set higher at the expense
of longer detection delay (7 — «) and vice-versa.

The line statistic W, ,)[k] that crosses the threshold is
declared to be the one at fault. A flowchart depicting the imple-
mentation of the CUSUM algorithm for series arc fault detection
is presented in Fig. 3, where W(,, ,,)[k 4 1] is calculated in an
iterative manner.

The calculation of each test statistic W, ,,) can be simplified
further by expanding (32), using the normal (11) and postfault
(26) density functions, as follows:

det(EO)

1] = det (S )
W(m,n)[k+ ] det(z(m,n))

W(m,n) []41] + log

slower rate

+

—%(AI[k+1])T Sor =St | (AITk +1])

(m;n)

slower rate

(35)

The computationally demanding terms in (35) can be pre-
computed offline or at a slower rate, separate from the main
algorithm loop, since multiple samples (P in Fig. 3) are re-
quired to estimate the covariance matrix of the node voltages,
T £ E[AV[k]AV [k]T], needed for Xg in (8) and £ ,,, ) in (23).
Therefore, the computation of each W, ,,) consists mainly of
multiplications and additions, which can be efficiently computed
even for larger networks.

The overall series arc fault detection, identification, and clear-
ing time is mainly decided by the threshold selection, where
a lower threshold implies faster detection at the expense of
possible false alarms and vice-versa. According to the UL1699B
standard on photovoltaic series arc fault detection [64], the fault
should be detected and cleared within 2.5 s or based on the
following equation for high power systems:

750 }
Iarc Varc
where 750 J is the highest energy level at which a single arc
fault exhibits low risk of fire [64], [65], I, 1s the arc current,
and V. is the voltage across the arc fault. Using this equation,
the detection/clearing time for high power systems (kW-MW) is
around 1 s. The proposed detection and identification of series

arc fault can be implemented much faster (< 100 ms) than the
required UL1699B detection time, as shown in Section V.

Thet < min {2.57 36)

B. Reduced Availability of Current Sensors

The algorithm in previous section requires the full set of nodal
current measurements. However, we provide an approach to
detect and identify a series arc fault at any line for the case
when the number of sensors in a network are reduced. We can
then relate the available measurements to the current vector by

i=cr (37)

where [ € RP. T € RY and p < N. Therefore, it can be seen
that

AIk] = CYAV[k] = YAV[K] (38)

whereY £ CY € RP*N_ The prefault random variable can then
be computed as

ATTK] ~ N (ON, 20) (39)

where the covariance 3 € RP*P is defined as Yo =YTYT.
The postfault random variable A7[k] € R? is given by

ALK ~ N (oN, i(m,n)) (40)

where z](m,n) - }/(’m,n) TYV(Z;L,”) + ll/)B(m,n)B,(I;n,n) S ]Rpxp’

Y/(m)n) = OY(m’n) S RPXN, and B(m’n) = CB(m,n) € RP.
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Fig. 4. Vertex cover example. Placing sensors at nodes {a, b, e} achieves observability of all of the lines. (a) Reference graph. (b) Edges incident to nodes

{a, b, e} (vertex cover). (c) Edges incident to nodes {a, b}. Edge (f,e) is not observable.

However, for any topology G, the sensor placement decided
by the matrix C' € RP*Y needs to be defined such that all

line conductances ¥, ) are present in matrix Y. If a line

conductance Y, is eliminated from Y, it would cause the pre
and postfault pdf for that particular edge/line to remain equal,
since Y = 17(,,1’,1). Therefore, for this case, it is not possible to
identify a series arc fault at line (m, n).

The problem of deciding whether a fixed number of sensors
can observe all of the lines in a network, i.e., all of the line
conductances will be included in }7, can be formulated as a
vertex cover problem. A set S C V is defined as a vertex cover
if all of the lines in £ are incident to at least one of the nodes in
S [66]. Moreover, every line/conductance value will be present
in Y when the sensors are placed in S.

Fig. 4 shows an example of vertex cover on the graph pre-
sented in Fig. 4(a). When the sensors are placed at nodes
{a, b, e}, all the lines in the network are observable, as shown in
Fig. 4(b). However, when the sensors are placed only at nodes
{a, b}, line (e, f) is not observable [see Fig. 4(c)]. We can now
state the following proposition.

Proposition 1: Let S C VD, AT [k] be the current injection
measurements at the nodes in S, and AI[k] = YAV. If S is
a vertex cover set, then Y = CY contains information on the
conductance of all of the lines.

Proof: From the nodal equation (2), the matrix Y is a
weighted Laplacian matrix, where the ith row contains the line
conductances of all edges incident to node ¢. Given Y =CY,
where the matrix C' selects only the rows of the nodes in S, we
can conclude that rows of Y also consists of line conductances
of all edges incident to each node in S. Lastly, since S is
assumed to be a vertex cover set, Y contains information on
the conductances of all the lines. |

Finding the minimum vertex cover set is useful for deciding
the minimum number and location of sensors required to detect
and identify a series arc fault at any line. For this purpose, a
greedy algorithm is presented to find the minimum set of sensors
required or minimum vertex cover for a given dc network. At
the first iteration, the set of nodes of the original graph/network,
Gl = (W1, &), is arranged in terms of decreasing degree, i.c.,
the number of edges incident to each node. For example, in the

Algorithm 1: Greedy Algorithm for Finding Minimum Ver-
tex Cover Set.
1: Define G; = {V!, &'}
2: Re-arrange the nodes in V! in terms of decreasing the
degree
Define vector S = {} to store optimal nodes
Setj=1
while §[V{] # 0 do
Store V] in S
Define gj+1 = Qj - V{ = {Vj+1, 5j+1}
Arrange the nodes in V71 in terms of decreasing
degree
9: Setj=j5+1
10:  end while
11: Sis a vertex cover set

A ol

first iteration V! = {V{, Vzl y Tt
each node satisfy

SVi] = 6[Va] = -+ = 6]V

-, V&1, where the degree of

(41)

where § [Vf | represents the degree of node vg' and j is the
iteration step. The node with highest degree, Vll, is then stored
in the optimal sensor placement set, S.

In the next iteration, define the graph G, £ (V2, £2)as Gy £
G1 — V1. This leads to a reduction of degree by one for the set
of nodes adjacent to V. The set of nodes V? is then rearranged
in terms of decreasing degree, similar to (41), and V? is stored
in S. We proceed in this manner until 5[Vf] = 0 for some step
k. The set of nodes stored in S forms a minimum vertex cover
set. This algorithm is summarized in Algorithm 1.

At certain iterations, it is possible to obtain multiple nodes
with maximum degree, i.e., the first inequalities are binding in
(41). In this case, multiple minimum vertex cover sets can be
obtained by choosing one node over the other. If several solutions
to the minimum vertex cover set are obtained using the greedy
algorithm multiple times, the KL divergence, i.e., the relative
entropy of two distributions, can be used to find an optimal set
of sensors. For the CUSUM algorithm, the worst-case average
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detection delay (WADD) for testing a change from f; (normal)
to f(m,n) [fault at line (m,n)] is given by [67]

log 8
D(f(m,n) ||f0)
Therefore, it can be seen that for a fixed 3, a larger KL divergence
D(f(m,n)l|.fo) implies a smaller detection delay. Consider the
prefault distribution, fo(x) ~ AN(0,%)), and the distribution
with a fault at line (m,7), f(m.n) (%) ~ N(0,E(,n)), the KL
divergence between these two distributions can be obtained as

D(f(m,n)HfO)

WADD ~ (42)

= % {tr (20" S(mm) —p+ log (det (202(731:”))>]
(43)

where p is the number of sensors being used. Therefore, as-
suming that there are X' minimum vertex cover sets, an optimal
sensor placement can be chosen by a solution to the following
problem:

min (-D(f(m.,n)|f0))k‘| 44

max [

1<k<K | (m,n)e€
where the superscript k denotes the index of a specific minimum
vertex cover set. In this problem, the set of sensors that maxi-
mizes the smallest KL divergence of a certain line is chosen,
improving the detection time for the worst-case scenario.

C. Internal Node Elimination

In this section, the QCD algorithm is formulated for the case
when the microgrid has internal nodes, i.e., buses without loads,
sources, or capacitors. Kron reduction is used to further simplify
the nodal equations by eliminating the internal nodes [68]. The
prefault nodal equation for this case can be written as

ALY (Yoo Yap) [AV,
O3 Ysa Ypp) \AVs

where o C V is the set of nodes that have at least one source
or load connection to each bus, while 5 C V defines the set
of internal nodes, i.e., without sources, loads, or capacitors.
Therefore, it can be seen that o U 3 = V. The vector Al are
the injection currents at the set of nodes defined by «, and 0
is a column vector of zeros with dimension | 3| defining the zero
current injection at the set of nodes in 3 (internal nodes). In order
to eliminate the nodes in (3, we can use the second row in (45)

(45)

015 = Y3,aAVa + Y5, 3AVj5 (46)
where we can solve for AV} as
AV = — Y55 ' Y5.0AV, (47)
and substitute in (45)
Al, =Y, AV, —Y, 3 ([Yﬁ,ﬁrl YB,aAVa)
= Al, = (YW — Yoz [Ya0] " Y@a)m/a. (48)

TABLE I
DC MICROGRID LINE PARAMETERS

Line 12 @4 @5 @6 G4H G “®
ra mQ) | 32 08 32 32 32 32 32
Lij (W) | 55 137 55 55 55 55 55

The random variable A, defined during prefault scenario is
then given by

Al, = YAV,

where Y =Y, o — Yo 5[Y5.5) Vs
The postfault nodal equation for a series arc fault at line

(m, n) € & is given by
( ) - < | ( | ) 75( | )> < ) + ( ) A%rc'
O3 Yaa(mn) Ypammn) ) \AVs Pg
(50)

The vectors P, and Pg are column vectors of zeros with

—Y(m,n)y A Y(m n)y at mth and nth node’s index, respectively.
We can similarly solve for AV} as

(49)

AVs = =Yg by [Yo.atmm)AVa + PsAVi] (51
and substitute in (50) to obtain
Aly = Y AV + Pl ) AVire (52)
where
- -1
Yimn) = Ya,aimmn) = Ya,8(m.n) ([Yﬁ,ﬁ(mm)] Yﬂﬂ(?ﬂm))
(53)

and Py, ) = —Ya g(mn) Vs by B3 + Pa- The pdf for both
the pre and postfault A7, can be obtained using (49) and (52).

The greedy algorithm and the internal node elimination pre-
sented in Section III-B and III-C, respectively are independent
of each other. For example, if there are no internal nodes in
the dc microgrid presented in Fig. 1 (i.e., load connections are
provided at nodes 2 and 4), then by only applying the greedy
algorithm to the microgrid with parameters given in Table I, we
obtain nodes 2 and 4 to be the optimal positions to place the
currents sensors, i.e., they form a minimum vertex cover. This
case will be discussed in the next section.

IV. SIMULATION RESULTS

In this section, simulation results are presented for a typical
more electric aircraft’s dc microgrid [51], [53] using MATLAB
Simulink with the SimPowerSystems toolbox. The microgrid is
presented in Fig. 1 and can be modeled as a graph G = (V, &),
with |V| = 8 (nodes) and |€| = 7 (lines). The line resistances
and inductances used in all cases are given in Table I. The sources
and loads are modeled using buck converters using standard
cascaded control (inner current and outer voltage loop) [69]. The
switching frequency of all converters is setto Fg, = 20 kHz. The
nominal output voltage of the source converters is Vg, = 400 V.
The simulation time step is set to Ty, = 1 ps. For all cases,
the CUSUM algorithm’s time step is set to Tocp = 1 ms. This
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Simulation results for all three cases. Top: node voltages, middle: line currents, bottom: CUSUM statistics. (a) Case 1: Series arc fault detection on line

(4, 8). (b) Case 2: Series arc fault detection on line (4, 8). (c) Case 3: Series arc fault detection on line (4, 8).

time step is decided based the recommendation of being approx-
imately equal to the largest line time constant (1.7 ms), without
sacrificing a large increase in detection delay. The following
three case studies are considered.

1) Case 1: Kron reduction is applied on the microgrid shown
in Fig. 1 to eliminate the two internal nodes 2 and 4. The
current sensors are then placed at all remaining nodes
{1, 3, 5, 6, 7, 8}.

Case 2: In this case, Kron reduction is followed by the
application of minimum vertex cover strategy on the mi-
crogrid presented in Fig. 1. In this case, sensors are placed
only at nodes {3, 5, 6, 7, 8} (i.e., nodes 1, 2, and 4 are
eliminated).

Case 3: In this case, nodes 2 and 4 in Fig. 1 are now
connected to constant power loads (CPLs) such that no
internal nodes are present. Using Algorithm 1, only current
sensors at nodes 2 and 4 (minimum vertex cover) are
used.

In cases 1 and 3, the loads connected to nodes 5—8 are of CPL,
constant current load (CCL), CPL, and CPL-type, respectively.
In case 2, the load at node 8 is substituted with a resistive load.
Although the majority of loads in aircraft power systems are
of the CPL type [70], [71], we consider a combination of all
three load types to better represent more general systems [72].
In all cases, a series arc fault is triggered on line (4, 8) at time
v = 0.16 s, the case studies also include testing of the proposed
CUSUM algorithm during nominal operating conditions. The
following load changes were implemented on the dc microgrid.

2)

3)

1) Node 7: Change in load power from 10 to 13.2 kW at
t=0.04s.

2) Node 8: Change in load power from 15 to 10 kW at ¢t =
0.06 s.

3) Node 6: Change in load power from 9900 W to 15.4 kW
att = 0.08 s.

4) Node 5: Change in load power from 16.4 to 13.2 kW at
t=0.1s.

5) Node 1: Change in generator output power from 27 to
23 kW at t = 0.12 s (by changing droop gain).
The nodal voltages and line currents for cases 1-3 are pre-
sented in Fig. 5(a)—(c) (top, middle, and bottom subfigures),
respectively.

A. Case 1: System With CPL, CCL, and Internal Node
Elimination

In this section, the dc microgrid presented in Fig. 1 is used
with the internal nodes 2 and 4 eliminated using Kron reduction.
Current sensors are then placed at nodes 1, 3, and 5-8. The loads
atnodes 5-8 are of CPL, CCL, CPL, and CPL-type, respectively.
The series arc fault detection on line (4, 8) is presented in
Fig. 5(a), where the threshold Ay is set to 20, and the series
arc fault is triggered at time -y = 0.16 s on line (4, 8). Finally,
the series arc fault is said to be detected at a certain time 7,
when the value of W4 g crosses the threshold A, as shown in
Fig. 5(a) (bottom subfigure). Furthermore, Fig. 5(a) shows that
the CUSUM statistics remains unaffected by load changes.

B. Case 2: System With CPLs, CCL, and Resistive Load With
Internal Node Elimination and Optimal Sensor Placement

In this case, Kron reduction is followed by the application
of vertex cover strategy (see Algorithm 1) on the microgrid
presented in Fig. 1. The current sensor placement after applying
the two strategies are 3, 5, 6, 7, and 8 (nodes 1, 2, and 4
are now excluded) and is obtained from the KL divergence
analysis discussed in Section III-B. The series arc fault detection
on line (4, 8) is presented in Fig. 5(b) where Ay = 20 and
v = 0.16 s. It can also be seen that the CUSUM statistics,
Wi nlk] V(m,n) € &, are not affected by the load changes. The
series arc fault is said to be detected when Wy gy[k] > Ayq. It
can be seen that the detection delay is approximately equal to
case 1, even with one sensor removed.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2024 at 13:56:32 UTC from IEEE Xplore. Restrictions apply.



GAJULA et al.: PROBABILISTIC APPROACH TO SERIES ARC FAULT DETECTION AND IDENTIFICATION IN DC MICROGRIDS 35

TABLE II
DETECTION DELAY FOR EACH LINE WITH THRESHOLD A, = 20

Line Case 1 Case 2 Case 3
T7q (ms) | 74 (ms) | 74 (ms)
(1,2) 27 27 17
(2,4) 109 105 110
(2,5) 27 27 23
(2,6) 26 26 23
(3,4) 25 26 16
(4,7) 27 27 25
(4,8) 29 29 26

C. Case 3: System With CPLs, CCL, and Optimal Sensor
Placement

In this case, the nodes 2 and 4 in Fig. 1 are connected to
CPLs with a base power of 7 and 8 kW respectively, such that
no internal nodes are present in this network. The vertex cover
strategy using the greedy algorithm discussed in Section III-B is
applied and the minimum vertex cover set is given by the set S =
{2, 4}. Therefore, only current sensors at these nodes are used.
The series arc fault was set to trigger at time v = 0.16 s on line
(4, 8) and the fault is detected when Wy g > Ay = 20, as seen
in Fig. 5(c). Itis also to be noted that the load changes/nominal dc
microgrid operations do not affect the CUSUM algorithm-based
series arc fault detection. In addition, while other statistics also
increased, the fault is detected and decided to be at the one which
first crosses the threshold.

D. Detection Delay

The detection delay is defined as the amount of time it takes for
the statistic WW(; ;) to cross over a predefined threshold (Ay) after
the fault has started, as shown in (33). To compare the detection
delay between all three cases, a fixed series arc variance and
threshold is set for all lines. The load power varies as specified
in the previous cases. Simulations are then conducted for a fault
at each line and the detection delay is obtained for each line, as
given in Table II.

We can directly compare cases 1 and 2 since they have the
same number and type of sources and loads. While both have a
similar detection delay, case 1 is slightly faster for line (3, 4) and
slower for line (2, 4). In case 3, two loads were added to nodes 2
and 4. It can be seen that this case also has a comparable detection
delay while using less number of sensors. Lastly, line (2, 4)
has the highest detection delay for all the cases. The detection
delays were obtained by setting a threshold value of Ay = 20. A
smaller threshold can reduce the detection delay at the expense
of possible false alarms.

V. EXPERIMENTAL RESULTS

A four node dc microgrid testbed was built for experimental
verification of the proposed QCD-based algorithm. A schematic
representation of the testbed is presented in Fig. 6, and the

D_.’_ Buck Converter -
CPL

3

Current Sensor

e
B OO Series Arc Generator

Magna PS - 20kW

Voltage Sensor

Buck Converter -
D_.._ CPL

Fig. 6.

Four node microgrid used in experimental results.

Fig. 7. Hardware setup for experimental results.
TABLE III
TESTBED LINE PARAMETERS
Line (1,2) (23 24
T(i,5) (M) 8.7 4.2 24
300 v f—-..-—-.—-——-
< vl | ?
9 280 vi|! L ‘
< 260 i
=}
z
240 : :
0 5 10 15 20 25
&)
2
Time (s)
Fig. 8. Experimental results—voltage and injection current measurements

during a fault in line (2,3) at t = 0.267 s.

hardware setup is shown in Fig. 7. The input voltage to the
network uses a 20-kW Magna dc power supply [73]. The nomi-
nal bus voltage output is 270 V. The loads connected to nodes 3
and 4 are designed using closed loop controlled buck converters
(cascaded proportional integral (PI) control) to represent CPLs
using a Semikron silicon-based insulated gate bipolar transistors
(IGBTs) [74]. The switching frequency of the converters is set
to 10 kHz. The line parameters are given in Table III.

The voltage and current measurements were sampled at a time
step of 8 us while the CUSUM algorithm is operated at a time
step of 160 us. The node voltages and the line currents are shown
in Fig. 8 and the experimental results are shown in Fig. 9. A
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Fig. 9. Experimental results for series arc fault detection on line (2, 3). (a)
Case 1: Elimination of current sensor at node 2. (b) Case 2: Fault detection with
sensors only at nodes 3 and 4 (optimal sensor placement).

current change is initiated at nodes 3 and 4, where the current
is dropped to 12.5 and 9 A from 15 and 10 A, respectively, at ¢
= 4.69 s, by changing the input voltage reference from 270 to
300 V, respectively. Next, att = 12.6 s the load currents at nodes
3 and 4 are brought back to 15 and 10 A, respectively, by setting
the input voltage to the original value of 270 V. Finally, at ¢t =
22.103 s, the series arc fault was triggered on line (2, 3), which
can be seen in Fig. 8, where the arc noise affects all of the line
currents.

A. Case I: Internal Node Elimination

In this case, fault detection is achieved by performing internal
node elimination by Kron reduction. Since a load or generator
is absent at node 2, the following sets are defined:

a={1,3,4} p={2}

where ( contains the internal node. By formulating (49) and
(52) for the CUSUM algorithm, the series arc fault detection on
line (2, 3) can be successfully achieved, as shown in Fig. 9(a),
where once the fault is triggered at t = 22.103 s, the CUSUM
metric W, 3) increases rapidly. Furthermore, it is also shown
that the load current changes at nodes 3 and 4 (t =4.69 sand t =
12.6's), by varying the input voltage, do not affect the CUSUM’s
detection statistic W, ,,)[k].

(54)

B. Case 2: Reduced Information

In addition to the Kron reduction for internal node elimination,
as shown in Section V-A, the vertex cover algorithm can be
applied to minimize the number of current sensors deployed over
the testbed while also maintaining complete observability of all
the lines. Furthermore, the KL divergence criterion in (44) is also
used for the best possible series arc fault detection. Therefore,
applying the vertex cover method to the Kron reduced model
obtained from Section V-A, the CUSUM algorithm is operated
by only using two current sensors at nodes 3 and 4 [solutions to
the KL divergence criterion in (44)]. The series arc fault triggered
on line (2, 3) at t = 22.103 s is successfully detected even after
reducing the number of sensors, as seen in Fig. 9(b). However,
it can be seen that the fault detection delay is longer in Fig. 9(b)
compared with Fig. 9(a), which can be verified by the magnitude
of Wz 3y att = 25 s. In Fig. 9(a), the magnitude of W, 3) is
25000 and in Fig. 9(b) is 12000. Hence, a larger number of
sensors improves the detection delay in this case.

VI. CONCLUSION

This article addresses the problem of detecting and identifying
series arc faults in dc microgrids used in the more electric
aircraft, using QCD and the CUSUM algorithm. The dc mi-
crogrid’s nodal equation and the noise induced by the series arc
fault are used to determine the pre and postfault data generating
distributions. In addition, an algorithm is presented to determine
the minimum number of sensors needed to detect and identify
faults at any line using the minimum vertex cover problem,
and a Kron reduction method is shown to eliminate internal
nodes and further reduce the sensors in a network. Simulation
and experimental results are shown, where the Kron reduction
approach is applied to eliminate the internal nodes and a case
study with reduced current sensor availability is explored to
validate the CUSUM algorithm’s ability to detect a series arc
fault on a dc microgrid.

For future work, dynamic faults comprising multiple stages,
such as arc initiation, intermittent, steady state, isolation, and
reconfiguration will be considered. In addition, analysis of ro-
bustness of the algorithm to parameter variations will be con-
ducted using robust QCD methods. Moreover, distributed and/or
decentralized QCD-based techniques will also be explored to
reduce the number of computations for larger networks. Lastly,
the proposed methods will be extended to other applications,
such as utility scale dc networks.
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