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ABSTRACT

Tropical cyclone (TC) precipitation poses serious hazards including freshwater flooding. 

High-resolution hurricane models predict the location and intensity of TC rainfall, which can 

influence local evacuation and preparedness policies. This study evaluates 0–72-hour 

precipitation forecasts from two experimental models, the Hurricane Analysis and Forecast 

System (HAFS) model and the Basin-scale Hurricane Weather Research and Forecasting 

(HWRF-B) model, for 2020 North Atlantic landfalling TCs. We use an object-based method 

that quantifies the shape and size of the forecast and observed precipitation. Precipitation 

objects are then compared for light, moderate, and heavy precipitation using spatial metrics 

(e.g., area, perimeter, elongation). Results show that both models forecast precipitation that is 

too connected, too close to the TC center, too enclosed around the TC center. Collectively, 

these spatial biases suggest that the model forecasts are too intense even though there is a 

negative intensity bias for both models, indicating there may be an inconsistency between the 

precipitation configuration and the maximum sustained winds in the model forecasts. The 

HAFS model struggles with forecasting stratiform versus convective precipitation and with 

the representation of lighter (stratiform) precipitation during the first six hours after 

initialization. No such spin-up issues are seen in the HWRF-B forecasts, which instead 

exhibit systematic biases at all lead times and systematic issues across all rain rate thresholds. 

Future work will investigate spin-up issues in the HAFS model forecast and how the 

microphysics parameterization affects the representation of precipitation in both models.
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1. Introduction 

Forecast verification is used to determine the skillfulness of numerical weather prediction 

(NWP) models at forecasting weather-related variables. For example, precipitation 

verification is performed due to the extreme impacts it can have on humans and the 

environment. The most significant hazard associated with precipitation is flooding, which can 

result in many fatalities, extensive structural damage, and negative economic repercussions. 

According to Rappaport (2014), rainfall-induced flooding was the second leading cause of 

death behind storm surge for tropical cyclones (TCs) that occurred from 1963 to 2012. Due to 

the dangers of rainfall, affected areas must be able to adequately prepare for landfalling TCs. 

Accurate forecasts from hurricane models greatly assist in this preparation. 

This research evaluates precipitation forecast skill for two experimental National Oceanic 

and Atmospheric Administration (NOAA) hurricane models: the Hurricane Analysis and 

Forecast System (HAFS) and the Basin-Scale Hurricane Weather Research and Forecasting 

model (HWRF-B hereafter). The HAFS model is an application of the Unified Forecast 

System (UFS), a community-based modeling system at NOAA that provides enhancements to 

operational forecasting (Unified Forecast System, 2022). There are two versions of the HAFS 

model: the stand-alone regional domain configuration (HAFS-SAR) and the global-nesting 

configuration (HAFS-globalnest). The HAFS-SAR (Dong et al. 2020) is a limited area model 

(LAM) that contains a high-resolution static nest centered about the North Atlantic region, 

while the HAFS-globalnest features a global domain in addition to a regional nest over the 

North Atlantic region in which there is two-way feedback (Hazelton et al. 2021a, 2022a). 

This study evaluates the HAFS-globalnest; hereafter, the model will be referred to as HAFS. 

The HWRF-B model was developed at the NOAA/Atlantic Oceanographic and 

Meteorological Laboratory (AOML) Hurricane Research Division (HRD) to address 

shortcomings in operational HWRF related to multi-scale and multi-storm interactions 

(Zhang et al. 2016; Alaka et al. 2017, 2020, 2022). The HWRF-B has a large static outermost 

domain and contains high-resolution movable multi-level nests that follow multiple tropical 

systems of interest. Conversely, the operational HWRF only accommodates nests for a single 

TC per forecast integration. The outer domain of the HWRF-B produces forecasts of the 

large-scale environment while the two telescopic nests produce high-resolution forecasts for 

each tropical system of interest, including sharp gradients in the inner core region (Alaka et 

al. 2022).
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Numerical approaches implemented to verify precipitation forecasts fall into two general 

categories: point-based and object-based methods. Point-based methods are more traditional 

and compare the pixel values from forecast and observed grids using a variety of statistics 

(e.g., Pearson’s correlation) (Wilks 2011). Object-based methods are executed by first 

converting the forecast and observed precipitation fields into objects through a rain rate 

thresholding process. Spatial metrics are then calculated and compared for the forecast and 

observed objects (see section 2). Although point-based methods provide a general assessment 

of the forecast skill, a major drawback is the “double penalty” that occurs when precipitation 

is forecast correctly but in the wrong location (Davis et al. 2006; Rossa et al. 2008; Gilleland 

et al. 2010). This penalizes the forecast twice: first for failing to forecast the rainfall in the 

correct location and second for generating a false alarm in an incorrect location. This double 

penalty issue has become more pronounced with high-resolution forecasts that can produce 

smaller-scale features that are slightly displaced in space and/or time. In this study, we first 

present point-based methods and object-based methods in two case studies to illustrate the 

two approaches and the advantages of an object-based approach. 

One of the earliest studies to implement an object-based method to evaluate precipitation 

forecasts was Ebert and McBride (2000) in which they used contiguous rain areas (CRAs; 

unified, rain rate threshold-defined forecast and observed entities that overlap or are near 

each other) to determine displacement and intensity errors. This technique involved pattern 

matching where the forecast field was translated over the observed field until a best fit 

condition was satisfied. Davis et al. (2006) developed an object-based approach similar to the 

CRA technique where the rain area identification process included thresholding and filtering 

procedures to result in whole objects with smoothed boundaries. The forecast and observed 

objects were then matched depending on the separation distance between their centroids. 

Errors between matched objects were computed and compared for the centroid position, 

rainfall intensity, area, and other spatial attributes (Davis et al. 2006). Li et al. (2016) used a 

unique approach to define precipitation objects through a watershed transformation. 

Precipitation intensities were depicted as altitudes on a topographic surface, which were 

represented by pixels. The maximum pixel values were treated as storm centers and other 

precipitation pixels were assigned to the storm center closest to them in terms of topographic 

distance, which created the objects. The forecast and observed precipitation objects were 

matched based on whether they overlapped, and an overall score was determined depending 

on the values of various geometric measures. 
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Zick and Matyas (2016) demonstrated an object-based method that quantified TC 

precipitation fields using shape metrics. The objects were created based on the satisfaction of 

search radius and rain rate threshold conditions. Shape metrics, which included asymmetry, 

fragmentation, and dispersiveness, were calculated across all objects at different timesteps for 

Hurricane Katrina. A statistical test was used to identify significant differences between the 

shape metric values throughout the TC lifecycle, which helped in identifying timesteps when 

the precipitation was rapidly evolving. A similar approach can be used to identify significant 

differences between forecast and observed shape metric values (Matyas et al. 2018; Zick 

2020; Zick et al. 2022). This study applies a similar object-based approach to evaluate the 

HAFS and HWRF-B models versus observations.

Model verification is relevant to both model developers and forecasters. Developers often 

seek opportunities to enhance models. Thus, identification of the strengths and weaknesses of 

hurricane models can show where improvements can be made. The skillfulness of TC 

precipitation forecasts is also useful information for forecasters because it allows them to 

better understand the aspects for which the model succeeds and fails. Forecasts can then be 

adjusted depending on the findings from the model evaluation (i.e., if the HAFS tends to 

“under-forecast” the extent of TC rainfall, a forecaster might forecast precipitation for a 

wider area than what is indicated by the model).

Since the HAFS and HWRF-B models were both experimental (i.e., non-operational) 

during the 2020 hurricane season, only a few studies have examined their performance. TC 

track and intensity are usually prioritized for model verification, so there is a general lack of 

TC rainfall evaluation studies. Improving the skillfulness of TC precipitation forecasts in 

numerical models should be a focal point because of the hazards associated with torrential 

rainfall. Also, an increase in the accuracy of TC precipitation forecasts may support 

improvements in track and intensity forecasts due to the relationship between TC cloud 

features and TC intensity indicated by the Dvorak Technique (Dvorak 1990; Velden et al. 

2006). This study will provide an in-depth analysis of the HAFS and HWRF-B rainfall 

forecasts of landfalling TCs. 

The following research questions are investigated in this study: 1) How do point- and 

object-based precipitation verification methods compare with each other for evaluating high-

resolution TC forecasts? 2) How accurate are the HAFS and HWRF-B models at predicting 

the short-range rainfall distribution in tropical cyclones? and 3) How do the verification 

metrics of the HAFS and HWRF-B precipitation forecasts vary by lead time? Each model is 
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evaluated individually versus the observations due to slightly different samples for each 

model. Due to point-based methods tending to over-penalize forecasts when there are 

location errors (Davis et al. 2006; Rossa et al. 2008; Gilleland et al. 2010), the object-based 

methods are expected to more closely represent the accuracy of the hurricane models. In an 

evaluation of the HAFS skill in forecasting TCs in (Hazelton et al. 2021a), the model tended 

to have a negative bias in forecasting the intensity of the storms. However, for the 2020 

season, the HAFS model overpredicted intensity due to a lack of ocean coupling (Hazelton et 

al. 2022a). In this study, we calculate the track and intensity biases associated with the 

landfalling storms. We expect the intensity bias to be reflected in the spatial characteristics of 

the TC precipitation (e.g., that a positive intensity bias would be associated with a more 

enclosed eyewall). Both model forecasts may be negatively impacted by model spin-up 

during earlier lead times when dynamical and physical adjustments in the models are required 

to reach a balanced state (Sun et al. 2014; Wong and Skamarock 2016; Chu et al. 2018), 

although spin-up issues should be less prevalent in HWRF-B due to its vortex initialization 

scheme (Biswas et al. 2018; Liu et al. 2020). In addition, skill performance may degrade with 

time as commonly observed in model forecasts (Lorenz 1963; Hohenegger and Schar 2007).

The paper is organized as follows: information about data is provided in section 2, 

methods are provided in section 3, point-based metrics are presented in section 4, case studies 

of Hurricanes Isaias and Laura are investigated in section 5, all landfalling storms from the 

2020 North Atlantic hurricane season are evaluated in section 6, and conclusions are 

presented in section 7.

2. Data

a. Stage IV

The National Centers for Environmental Prediction (NCEP) Stage IV analysis data, 

produced by the National Weather Service (NWS) River Forecast Centers (RFC), serves as 

the observational dataset used to verify the TC precipitation forecasts from the HAFS model. 

Stage IV consists of precipitation data retrieved from NOAA’s Next Generation Weather 

Radars (NEXRAD) system with a rain gauge correction and is available as hourly, 6-hourly, 

and 24-hourly accumulations (Lin and Mitchell 2005; NOAA 2020). The grid spacing of 

Stage IV is approximately 4 km and its domain covers the contiguous United States (Lin and 

Mitchell 2005).
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Stage IV is commonly used for model verification studies centered on precipitation 

forecasts (Davis et al. 2006; Luitel et al. 2016; Li et al. 2016; Zick 2020). Additionally, this 

dataset has been shown to be useful in estimating convective precipitation (Nelson et al. 

2015). One disadvantage of using Stage IV is the inaccuracies that may occur due to the 

automated process implemented for the quality control of hourly data (Nelson et al. 2015). 

Individual radars can also go down in extreme weather events, as seen in Hurricane Laura 

(see section 4), which can lead to Stage IV precipitation underestimates in the vicinity of that 

radar.

b. Models

This study investigates precipitation forecasts in two models: the global-nested version of 

HAFS and the HWRF-B. The model specifications are summarized here; further details on 

the HAFS and HWRF-B models are available in Hazelton et al. (2022a) and Alaka et al. 

(2020, 2022), respectively. The HAFS model has a 13-km global domain along with a static 

nest over the North Atlantic region. The static nest has a horizontal resolution of 3 km, and 

75 vertical levels are utilized for the global and regional domains. For the dynamical core, the 

HAFS implements the nested version of the finite-volume cubed-sphere (FV3) (Harris and 

Lin 2013). In a study by Hazelton et al. (2018), the nested FV3 provided promising results in 

forecasting TC structure, shown by its good performance in forecasting the maximum wind 

radii. Vortex initialization and ocean coupling were not yet implemented in the experimental 

version of HAFS used in this study, although an updated version includes those capabilities. 

For the physics parameterizations, many of the schemes are shared between the HAFS and 

the operational GFS, but some, such as the planetary boundary layer (PBL) scheme, have 

been modified to better suit the environment around TCs (Hazelton et al. 2021b, 2022b). 

The basin-scale (i.e., multi-storm) version of the HWRF model (i.e., HWRF-B) is also 

assessed. HWRF is a state-of-the-art numerical hurricane prediction system that has been 

operational at NCEP since 2007; it has improved TC intensity forecasts through advanced 

data assimilation procedures, more appropriate physics parameterizations, and other upgrades 

(Gopalakrishnan et.al., 2021). HWRF is a triply-nested modeling system, with an outermost 

domain that has a horizontal resolution of 13.5 km and two telescopic moving nest domains 

with horizontal resolutions of 4.5 km and 1.5 km, respectively, that follow a tropical system 

of interest. There are 75 vertical pressure-sigma levels and a model top of 10 hPa. HWRF 

utilizes the Nonhydrostatic Mesoscale Model (NMM) for its atmospheric dynamic core, and 
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the atmosphere is coupled to the Princeton Ocean Model (POM). HWRF uses a vortex 

initialization scheme developed by Kurihara et al. (1995) that has been shown to reduce 

model spin-down issues (Liu et al. 2020). For more details about the operational HWRF 

modeling system, including details about physics parameterizations, please refer to the 

HWRF documentation (Biswas et al. 2018). 

The HWRF-B model is identical to the operational HWRF except for two advanced 

configuration options (Zhang et al. 2016; Alaka et al. 2017, 2020, 2022). For one, the 

outermost domain in HWRF-B is much larger than in the operational HWRF, spanning the 

entire National Hurricane Center (NHC) area of responsibility (i.e., North Atlantic and 

eastern North Pacific basins), and, unlike the operational HWRF, the HWRF-B outermost 

domain is not recentered on the TC at the forecast initialization time. The second difference is 

that HWRF-B can be configured with moving nests for multiple tropical systems (up to five 

in the 2020 version). Alaka et al. (2022) showed that HWRF-B improved track and intensity 

forecasts compared to the operational HWRF, which motivated its use in this study. Like the 

operational HWRF, the innermost nest in HWRF-B has a grid spacing of approximately 1.5-

km. 

This research evaluates the forecast precipitation for nine North Atlantic TCs of at least 

tropical storm intensity that made landfall in the U.S. in 2020 (Table 1). This study focuses 

on landfalling TCs because the Stage IV domain is limited to the contiguous United States. 

Three landfalling storms are excluded (Tropical Storm Bertha, Tropical Storm Cristobal, and 

Hurricane Marco) due to either the lack of HAFS model data or Stage IV coverage. 

Additionally, Tropical Storm Fay and Hurricane Eta are only included in the lead time 

analysis (section 6b) because of their short study periods that do not allow for sufficient time 

steps for evaluating the storms individually (section 6a). Out of the nine storms included in 

the analysis, two were tropical storms, four were hurricanes, and three were major hurricanes 

at peak intensity (Table 1). 

For the individual TCs, increments of 3-hourly accumulated precipitation within the first 

72 hours of each model simulation for the storm are included in the analysis, after which the 

forecasts are expected to differ substantially from the observations. Therefore, up to 24 (3-

hour) forecasts of each model simulation are evaluated. Four model simulations are run each 

day as the models are initialized every six hours at 00, 06, 12 and 18 UTC. Table 1 lists the 

number of model timesteps used in the analysis for each storm. These numbers are dependent 

on the period of study and the availability of the data. Due to the desire to retain as much data 
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as possible for analysis in sections 4-6, the two models include slightly different samples 

(Table 1). This study does not aim to compare the model performance of the two models; 

instead, we aim to compare each model individually with the observations, which justifies the 

heterogenous sample. The study period for each TC begins approximately 3-6 hours before 

landfall and ends around the time when the storm no longer has TC characteristics as 

designated by the NHC hurricane database (HURDAT2) (Landsea and Franklin 2013). The 

first model run included in the assessment for each storm is about 48 hours prior to the 

beginning of the study period, which allows for sufficient timesteps to be evaluated for each 

storm to ensure an extensive analysis of the HAFS and HWRF-B model performance. 

Corresponding track and intensity errors for this landfalling TC sample are shown in Figure 1 

(for all storms combined) and Table 2 (for individual storms). Overall, HAFS and HWRF-B 

have similar intensity error statistics for this sample, and HAFS has slightly lower track 

errors at longer lead times.

Storm 

Name

Period of Study Earliest Model 

Initialization

Total 

Observed 

Analyses

Total 

HAFS 

Forecast 

Times 

Total 

HWRF-B 

Forecast 

Times

Fay* 

(TS)

18 UTC 10 Jul - 

06 UTC 11 Jul

18 UTC 08 Jul 4 10 34

Hanna 

(H)

21 UTC 25 Jul - 

00 UTC 27 Jul

00 UTC 24 Jul 9 77 66

Isaias 

(H)

21 UTC 03 Aug - 

00 UTC 05 Aug

18 UTC 01 Aug 9 88 79

Laura 

(MH)

06 UTC 27 Aug - 

06 UTC 29 Aug

00 UTC 25 Aug 16 158 162

Sally 

(H)

09 UTC 16 Sep - 

12 UTC 17 Sep

06 UTC 14 Sep 9 86 90

Beta 00 UTC 22 Sep - 06 UTC 20 Sep 8 66 74
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(TS) 00 UTC 23 Sep

Delta 

(MH)

21 UTC 09 Oct - 

18 UTC 10 Oct

18 UTC 07 Oct 7 68 66

Zeta 

(H)

21 UTC 28 Oct - 

18 UTC 29 Oct

18 UTC 26 Oct 7 75 75

Eta* 

(MH)

21 UTC 8 Nov - 

06 UTC 9 Nov

12 UTC 7 Nov 3 18 26

Table 1. Details of U.S. landfalling Atlantic TCs in 2020 that are included in the study. 
Storms with an asterisk (*) are only included in the lead time analysis. Parenthetical letters 
indicate peak intensity over the storm lifecycle (TS = Tropical Storm, H = Hurricane, MH = 
Major Hurricane).

 
Sample size

Mean absolute 

track error (km)

Mean absolute 

intensity error (kt)

Mean intensity 

error/bias (kt)

  HAFS HWRF-B HAFS HWRF-B HAFS HWRF-B HAFS HWRF-B

Hanna 

(AL082020)
24 21 66.3 80.1 8.4 8.3 -3.2 -1.1

Isaias 

(AL092020)
15 39 89.3 102.9 6.7 9.7 -5.4 -8.4

Laura 

(AL132020)
86 81 84.8 81.2 7.1 8.0 -3.3 -3.4

Sally 

(AL192020)
48 43 59.3 79.6 11.8 11.5 -10.8 -11.1

Beta 

(AL222020)
39 39 51.4 71.6 5.6 6.9 -4.8 -6.7

Delta 

(AL262020)
34 33 61.6 61.9 4.2 4.3 -1.0 -1.1

Zeta 

(AL282020)
40 42 51.4 70.1 10.4 8.3 -8.9 -5.2
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Table 2. Time-averaged verification of 6-72-h HAFS and HWRF-B forecast errors for 
landfalling TCs included in this study. Sample sizes for individual storms are also provided 
for each model. Errors are computed relative to the HURDAT2.
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Figure 1. Verification of 6-72-h HWRF-B (orange square) and HAFS (blue circle) 
forecast errors for landfalling TCs included in this study. Specifically: a) mean absolute track 
errors in units of nautical miles, and b) mean absolute intensity (i.e. maximum wind) errors 
(solid) and mean intensity errors/bias (dashed) in units of knots. Values below panel (b) 
indicate the sample sizes for HAFS (top row) and HWRF-B (bottom row) at each forecast 
lead time are shown beneath the panels. Errors are computed relative to the HURDAT2.

3. Methods

a. Object-based verification method

To perform an object-based analysis on the precipitation fields for the forecast and the 

observed data, it is preferable to use a common grid due to minor sensitivities of the spatial 

metrics to the resolution. Here, the HAFS, HWRF-B, and Stage IV data are interpolated onto 

a grid with 5-km resolution using the nearest neighbor method. Currently, there are no studies 

that investigate how different interpolation methods affect object-based analyses, but Accadia 

et al. (2003) found the nearest neighbor method to be more suitable than the bilinear method 

when performing high-resolution grid transformations. In addition to the regridding, a mask 

is applied to conceal forecast and observed data outside of 150 km from the coastal 

NEXRAD sites towards the surrounding bodies of water due to the limitations of radar range 

and the lack of rain gauge data over water. This mask is generated using a 2-minute 

resolution topography map to identify ocean points (where elevation equals 0 meters) within 

150 km of radar sites; ocean points farther than 150 km from a radar site are removed or 

masked. That mask was then interpolated to the 5-km common grid.

The precipitation objects are obtained by first setting a search radius and then 

thresholding the precipitation values. Precipitation data are only evaluated within 600 km of 

the TC center. Many studies use 500 km as a search radius for TCs over ocean (Lonfat et al. 

2004; Hernández Ayala and Matyas 2016), but since this study analyzes landfalling TCs, the 

search radius is increased to account for the expansion of the rainbands that occurs during 

landfall and extratropical transition, similar to other studies of TC landfall (Zick and Matyas 

2016; Matyas et al. 2018; Kirkland and Zick 2019). For the TC center, we use 3-hourly spline 

interpolated HURDAT2 center positions for the observed precipitation, and we use the model 

forecast storm center for the forecast precipitation. 

A binary image is then established by applying 2, 5, and 10 mm hr-1 rain rate thresholds to 

the precipitation field (e.g., Figure 2). Precipitation intensities that are greater than or equal to 

the threshold are assigned a value of one while the intensities that are less than the threshold 
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are assigned a value of zero. The rain rate of 2 mm hr-1 approximately represents the 

threshold between precipitation resulting from warm clouds and cold clouds (Lau and Wu 

2003); therefore, the 2 mm hr-1 threshold is chosen to evaluate the model’s ability to capture 

cold rain processes that are stratiform (non-convective) in nature. While this region contains 

both stratiform and convective precipitation, it is composed of primarily stratiform 

precipitation with smaller embedded regions of convective precipitation. The 5 and 10 mm 

hr-1 rain rates represent two approximate thresholds between stratiform and convective 

precipitation. Even though deep convection in TCs can cause convective rain rates to occur 

below the 10 mm hr-1 threshold (Tokay et al. 1999), this research focuses on landfalling TCs, 

so the 10 mm hr-1 threshold more accurately captures convective precipitation over land 

(Schumacher and Houze 2003). Assessing stratiform and convective precipitation provides an 

opportunity to evaluate any differences in the model's capabilities when forecasting low 

versus high rain rates. 

Figure 2. Illustration of methodology to obtain precipitation objects using (a) the Stage IV 
precipitation field for Hurricane Isaias accumulated over 3 hours and valid 03 UTC 4 August 
2020 and (b) the precipitation objects derived from (a) using a search radius of 600 km and a 
precipitation threshold of 5 mm hr-1. The white and black circles represent the 600-km search 
radius, and the red cross indicates the TC center.

After the thresholding process, the precipitation objects are defined by the connected 

pixels (those that share sides) and have a value of one. Lastly, minimum areas of 10,000 km2 

for the 2 mm hr-1 threshold objects and 1,000 km2 for the 5 and 10 mm hr-1 threshold objects 

are applied to focus on mesoscale precipitation regions. Objects tend to be smaller at the 

higher rain rate thresholds, so a stricter minimum area threshold is implemented. Pinto et al. 
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(2015) perform a similar procedure for isolating mesoscale convective systems. Figure 2 

shows a visual representation of the object identification process described above. The 

smaller objects in the field and precipitation outside of the search radius are eliminated, 

leaving only precipitation objects that meet the specified rain rate and area thresholds. 

A variety of shape metrics, based on the geometric attributes of the forecast and observed 

objects, are utilized in this study. Table 3 displays the computed shape metrics, described 

here, for the precipitation field in Figure 2. All shape metrics are unitless unless otherwise 

specified. The shape metrics fall under two broad categories which include general metrics 

and location metrics. The general metrics (Table 4) are familiar measures that have formulas 

composed of geometric attributes (see equations in Figure 3); many have been used in 

previous studies employing object-based methods to measure TC features (Matyas 2007; 

Zick and Matyas 2016; Matyas et al. 2018; Zick 2020; Zick et al. 2022). Elongation is a 

measure of the ratio of the minor to the major axis, and it gives insight into whether the 

precipitation objects are more circular (near zero) or oval (near one). Solidity is a measure of 

how much area a precipitation object fills with respect to its convex hull, the smallest convex 

shape fitted to the object. The higher values represent precipitation fields with fuller objects 

while the lower values represent fields with emptier objects. Closure measures the 

distribution of the precipitation about the TC center. To achieve a high value, precipitation 

must enclose or nearly enclose the TC center. Closure can also be modified to limit the radial 

extent to smaller circles (or distances from the TC center). In this study, we use 100-, 150-, 

and 500-km variations of closure. The two lower search radii exclude the precipitation from 

distant rainbands, which enables evaluation of the closure of the TC inner core. The 

dispersion metric measures the precipitation object distances from the TC center, with larger 

objects weighted more heavily in the calculation. Higher values show that the objects within 

a precipitation field are farther from the TC center while lower values show that the objects 

are closer to the TC center. Fragmentation is a measure of the patchiness of the TC 

precipitation, which results from breaking up the precipitation field (i.e., increasing number 

of objects) and patchiness in the precipitation objects themselves (i.e., the emptiness of the 

objects). Higher values of this metric show that the TC precipitation is more fragmented 

while lower values show cohesiveness of the TC precipitation. Supplementary metrics that do 

not depend on an equation include the Sum of Areas and Sum of Perimeters, which involve 

summing their respective values over all objects in the field.
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Metric Value Metric Value Metric Value

Elongation 0.35 Solidity 0.75 Closure (100 km) 0.16

Closure (150 km) 0.31 Closure (500 km) 0.38 Dispersion 0.36

Fragmentation 0.61 Sum of Areas 2043 

pixels

Sum of 

Perimeters

534.77 

pixel 

sides

Weighted Centroid 

Longitude

-78.3° Weighted Centroid 

Latitude

34.5° Max Precipitation 

Bearing

347.9°

X-Displacement 71.5 km Y-Displacement 188.8 km

Table 3. General and location shape metrics corresponding to the objects shown in Figure 
2.

Metric Description

Elongation Calculates the average elongation of the objects within a precipitation 

field

Solidity Computes the fraction of the sum of all object areas to the sum of 

their convex hull areas

Closure Determines the distribution of precipitation around the TC center

Dispersion Measures the spread of the objects from the TC center

Fragmentation Provides a measure of how fragmented the objects are themselves 

and as a whole

Sum of Areas The number of pixels that form an object

Sum of Perimeters The number of pixels that form the boundary of an object
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Table 4. Descriptions of the “General” metrics.

Figure 3. Interpretations of the General metrics with corresponding equations. N 
represents the total number of objects in a precipitation field and the total area/convex area is 
the sum of the areas/convex areas of all objects in a precipitation field.

There are numerous location metrics related to the location of the objects/pixels in a 

precipitation field. The metrics in this category are the displacement in the x-and y-directions 

and the maximum precipitation bearing. The displacement metrics depend on the centroid, 

which is the center of mass of an object, represented in longitude and latitude values. When 

multiple objects exist, we use a weighted centroid, which is the average centroid position 

weighted by the area of the objects in the binary precipitation field. The x- and y-

displacement metrics are east-west and north-south components of the displacement, 

respectively. These displacement metrics help determine whether the model has a bias 

associated with the placement of TC precipitation and may also give insight into along-track 

and across-track errors with the simulated TC track. Finally, to gain insight into any 

significant differences between where the model forecasts the TC maximum precipitation and 

where the observed data places this maximum, the bearing from the TC center to the 

maximum precipitation pixel is evaluated. When more than one maximum precipitation pixel 

is identified, we use the average position of those pixels. 
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After the shape metrics are calculated, these metrics are compared between the forecast 

and observed precipitation fields for each storm using the Mann Whitney U test. According 

to Wilcoxon (1992), the Mann Whitney U test is a nonparametric statistical test that 

compares the distributions of two independent groups, which are the model and observed 

shape metrics for this analysis, based on the mean ranks of the data. If the distributions of the 

two independent groups are assumed to be the same, then the test compares differences in the 

medians instead of the distributions. After the test is performed, the null hypothesis is 

rejected for shape metrics that are associated with p-values that are equivalent to or less than 

a significance level of 0.05 (also referred to as “significant metrics” in this study), which 

indicates disagreement between the model and the observed shape metric values. When 

differences are found in a particular shape metric, we perform a post-hoc comparison to 

evaluate whether the model is over- or under-forecasting that metric. Due to the mask, some 

of the TC precipitation may be removed, affecting the shape of the precipitation. However, as 

long as the TCs are located in similar locations, it will affect the model and observed 

precipitation similarly. Here, we focus on model verification for the 3-72 hour forecasts, 

when position differences are generally small (see Figure 1). In this study, storm locations are 

similar and the mask does not affect the results, but future studies should keep this in mind 

when a mask is needed due to data coverage.

The model objects are also assessed based on the lead time of the forecasts. The shape 

metrics are compared between the forecast and observed data for each forecast hour. The 

maximum forecast hour is 72 hours; forecasts beyond three days are not included in this 

analysis. The Mann Whitney U test is used, as with the general object assessment, to identify 

significant differences between the model and observed shape metrics at each lead time.

b. Point-based verification

Point-based verification methods are included in this study to determine how these 

approaches perform compared to the object-based verification methods. Section 5 shows that 

point-based methods are less representative of the model performance, so these metrics are 

not used in the full object-based analysis of the HAFS and HWRF-B precipitation forecasts in 

section 6. The point-based metrics include Spearman’s rank correlation, categorical statistics, 

and error metrics.

The Spearman’s rank correlation (Spearman 1961) is a nonparametric test used to 

quantify the strength of the monotonic relationship between two datasets. The values of the 
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Spearman’s “rho” coefficients fall in the range [-1, 1] in which negative one represents a 

perfect negative relationship, positive one represents a perfect positive relationship, and zero 

represents no relationship. Categorical statistics are derived from counts of hits, misses, false 

alarms and correct negatives, which make up the contingency table (Wilks 2011). In this 

study, we use probability of detection (POD), false alarm ratio (FAR), and equitable threat 

score (ETS). The POD represents the fraction of observed precipitation that was correctly 

forecasted (Wilks 2011). The FAR is the fraction of the forecasted precipitation that was not 

observed. ETS is a variation of the threat score (also known as the critical success index), 

which measures the fraction of forecasted events that were correctly predicted. The threat 

score is generally recommended for rare events (such as precipitation) because it measures 

the accuracy of a forecast after removing the influence of correct negatives (Schaefer 1990; 

Hamill and Juras 2006; Wilks 2011). The ETS adjusts for correctly forecasted events due to 

random chance (Wilks 2011). These metrics range from zero to one and are calculated for 

each rain rate threshold (2, 5, and 10 mm hr-1).

Error metrics (Table 5) are implemented to quantify the error in the model forecasts 

following Wilks (2011). These metrics are calculated by comparing the forecast and observed 

precipitation values using multiple equations. Mean error values less than zero indicate that 

the forecast precipitation is under-predicted while values greater than zero indicate the 

forecast precipitation is over-predicted compared with the observations. The mean absolute 

error is the magnitude of the average forecast error and can range from zero to infinity.

Metric Equation

Equitable threat score hits−hit srandom
hits+misses+ false alarms−hit srandom

 where 

hit srandom=
(hits+misses)(hits+ false alarms)

total

False Alarm Ratio false alarms
hits+ false alarms

Probability of Detection hits
hits+misses
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Metric Equation

Equitable threat score hits−hit srandom
hits+misses+ false alarms−hit srandom

 where 

hit srandom=
(hits+misses)(hits+ false alarms)

total

False Alarm Ratio false alarms
hits+ false alarms

Mean Error 1
N∑

i=1

N

(F i−Oi)

Mean Absolute Error 1
N∑

i=1

N

¿F i−Oi∨¿¿

Table 5. Equations for the categorical statistics and error metrics, where F is the forecast 
data, O is the observed data, and N is the total number of pixels.

4. Point-based Metric Results from all 2020 Storms

Traditionally, TC precipitation verification has focused on point-based metrics (Tuleya et 

al. 2007; Villarini et al. 2011; Luitel et al. 2016; Villarini et al. 2022). We begin this analysis 

with an overview of model performance using some commonly-used point-based metrics 

described in section 3b. These include methods for dichotomous (yes/no) forecasts 

(probability of detection, false alarm ratio, and equitable threat score) and methods for 

continuous variables (Spearman’s “rho” correlation, mean error, and mean absolute error). 

Figure 4 shows these results for the entire landfalling TC sample (provided in Table 1). 

In general, the dichotomous forecast metrics indicate that forecast skill decreases with 

rain rate threshold (Figure 4a-c). More specifically, the POD decreases, the FAR increases, 

and the ETS decreases as the rain rate threshold increases. These trends are present in both 

the HAFS and HWRF-B model forecasts. Additionally, the HAFS model appears to have 

slightly greater skill (higher POD, lower FAR, higher ETS) (Figures 4a-c), though caution 

should be taken in comparing the two models since this study evaluates slightly different 

samples (Table 1). These results are consistent with other studies that find a higher false 

19

419
420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436



alarm ratio and lower model forecast skill for the higher rain rate values (McBride and Ebert 

2000; Zick 2020; Sierra-Lorenzo et al. 2022), a result that is generally attributed to 

mismatches in the location or timing of precipitation. 

Point metrics based on continuous variables are also shown (Figure 4d-f). The 

Spearman’s correlations indicate moderate to good agreement between the model and 

observed precipitation, with correlations for individual forecasts generally spanning 0.4–0.9 

(Figure 4d). Here, higher correlations indicate that the forecast and observations are 

producing similar precipitation values at a given pixel. In particular, the HAFS forecast has 

moderate to strong correlations with the Stage IV observations, with most values falling in 

the 0.7-0.8 bin, indicating that the HAFS model produced precipitation patterns that were 

similar to the observations. Again, the HAFS forecast appears to have greater skill compared 

with HWRF-B, but some of that variation could be related to the slightly different samples 

for the two models. These moderate to high correlations are encouraging since the specific 

location of heavier precipitation is important for flood forecasting. Mean error (Figure 4e) 

can be used to understand the model bias compared with observations. The HWRF-B 

forecasts have a slight negative bias with most of the forecasts producing precipitation that is 

about 0-1 mm hr-1 lower than the observations. The HAFS forecasts exhibit a more evenly 

distributed mean error around the center, which indicates a bias closer to zero for its sample. 

Mean absolute errors for the two models are similar and predominantly fall between 1-3 mm 

hr-1 (Figure 4f). 

Figure 4: (a-c) Box plots and (d-f) histograms showing point-based verification metrics 
for all 2020 landfalling TCs for the 3-72 h precipitation forecasts from the the HAFS and 
HWRF-B models compared with Stage IV observations. 
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5. Results from Case Studies of Hurricane Isaias and Hurricane Laura

In this section, we present two case studies to illustrate the model evaluation of the 

precipitation forecasts of Hurricane Isaias and Hurricane Laura. Here, the object-based and 

point-based verification methods are demonstrated and compared. Specifically, we use the 

results in this section to show that point-based metrics can be misleading when there are 

location errors. For Hurricane Laura, the point-based metrics indicated lower performance 

compared to Hurricane Isaias. Yet, the object-based metrics indicate better overall 

performance in Hurricane Laura, which means that the Hurricane Laura precipitation 

structure is similar between the model and observed fields despite the location errors 

indicated by the point-based metrics. This section also illustrates how the object-based 

metrics can be used to evaluate model forecast precipitation in the two case studies. 

a. Hurricane Isaias Forecast Evaluation

As summarized by Latto et al. (2021), Hurricane Isaias made landfall near Ocean Isle 

Beach, North Carolina at category 1 intensity on 3 August 2020. The hurricane quickly 

weakened into a tropical storm and traveled northeastward, affecting states farther up the East 

Coast. On 5 August, the storm became an extratropical system. The highest precipitation 

totals from this system occurred in parts of Virginia, Maryland and Pennsylvania (Roth 

2021). The period of study for Hurricane Isaias used in this analysis begins 2100 UTC 3 

August, near landfall, and ends 0000 UTC 5 August, when the storm became extratropical. A 

total of 88 and 79 (3-hourly) model output times were used from HAFS and HWRF-B 

forecasts of Hurricane Isaias, respectively (Table 1).

1) POINT-BASED VERIFICATION

The point-based metrics indicate overall similar skill for the HAFS and HWRF-B 

precipitation forecasts for Hurricane Isaias (Figure 5), with a note that the samples for the two 

models are not homogeneous and therefore should be compared with caution. The POD 

values suggest that both models are forecasting more hits than misses (Figure 5a), and the 

FAR values are relatively low at the lower thresholds and relatively high at the higher 

thresholds (Figure 5b). The trends in FAR and POD values as the threshold increases indicate 

that the models performed more poorly at greater thresholds. The ETS values also indicate 

moderately decreasing model skill with rain rate threshold (Figure 5c). The correlation values 
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show that the forecast and observed fields were well correlated, but these values are slightly 

higher for the HAFS model than the HWRF-B model (Figure 5d). The mean error values 

show that both models slightly underestimated the precipitation of Hurricane Isaias (Figure 

5e), but biases are slightly improved compared with the larger TC sample (Figure 4e) . The 

mean absolute error shows similar error between the HAFS and HWRF-B models with many 

values falling between 1 and 4 mm (Figure 5f), which is higher than the mean absolute errors 

for the entire landfalling TC sample (Figure 4f). However, correlations are generally higher 

for Hurricane Isaias compared with the larger TC sample (Figures 4d, 5d), suggesting better 

pattern matching in Hurricane Isaias compared with the other TCs in this study.

Figure 5: (a-c) Box plots and (d-f) histograms showing point-based verification metrics 
for Hurricane Isaias (2020) for the 3-72 h precipitation forecasts from the HAFS and HWRF-
B models compared with Stage IV observations. 

2) OBJECT-BASED VERIFICATION

For Hurricane Isaias, there are many more significant metrics identified by the Mann 

Whitney U test for the HAFS forecasts compared with the HWRF-B forecasts (Table 6). A 

larger number of significant metrics indicates more discrepancies between the shape of the 

forecast and observed fields and, thus, a less accurate forecast. The number of significant 

metrics increases as the rain rate threshold increases for the HAFS model, while there is no 

similar trend for the HWRF-B model (Table 6). At the 2 mm hr-1 threshold, both models 

significantly under-forecasted the sum of areas, dispersion, and x-and y-displacement metrics 

(Table 6, Figure 6a, Figure 7d-f). Additionally, the HWRF-B model overestimates the 150-
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km closure (Figure 6a, Figure 7d-e). At the 5 mm hr-1 threshold, the HAFS model performed 

similarly to the 2 mm hr-1 threshold in addition to overestimating 100- and 500-km closure 

(Table 6, Figure 6a, Figure 7g,i). In contrast, the HWRF-B model performed the best at the 5 

mm hr-1 threshold by only under-forecasting the dispersion (Table 6, Figure 6b, Figure 7h-i). 

At the 10 mm hr-1 threshold, the HAFS model still struggled with capturing the dispersion, x-

displacement, y-displacement, and closure metrics, but the fragmentation was also under-

forecasted, and the solidity was over-forecasted (Table 6, Figure 6c, Figure 7j,l). Like the 

HAFS model, the HWRF-B model had issues with underestimating the fragmentation and x-

displacement and overestimating the 150-km and 500-km closure at the 10 mm hr-1 threshold 

(Table 6, Figure 6c, Figure 7k-l).

In general, across all thresholds, there is a tendency for both models to forecast 

precipitation that is too central/compact and too enclosed around the TC center compared 

with the observations. Typically, higher compactness and closure would be associated with a 

more intense TC in the model compared with the observations. However, for Isaias, both 

models have a negative intensity bias (Table 2). This is an interesting result that will be 

examined further in section 6. Additionally, the x- and y-displacement metrics suggest 

location biases in the precipitation forecast. These location biases might be associated with 

slightly higher mean absolute track errors in Hurricane Isaias compared with other 2020 

landfalling TCs (Table 2). Positional differences will also be explored further in section 6.

HAFS HWRF-B

Metric 2 mm hr-1 5 mm hr-1 10 mm hr-1 2 mm hr-1 5 mm hr-1 10 mm hr-1

Solidity 0.93 0.14 <0.01 0.95 0.67 0.08

Elongation 0.97 0.92 0.3 0.19 0.26 0.83

Closure 

(100 km)

0.11 0.01 <0.01 0.53 0.4 0.13

Closure 

(150 km)

0.03 0.01 <0.01 0.68 0.18 0.02

Closure 0.06 0.03 0.01 0.65 0.1 0.01
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(500 km)

Dispersion 0.03 0.01 <0.01 0.01 0.04 0.09

Fragmentation 0.55 0.57 <0.01 0.42 0.87 0.03

Sum of Areas 0.02 0.16 0.12 0.01 0.54 0.15

Sum of 

Perimeters

0.16 0.05 0.08 0.06 0.18 0.93

X-Displacement 0.02 <0.01 <0.01 0.03 0.14 0.04

Y-Displacement 0.04 0.01 0.01 0.03 0.15 0.09

Table 6. Mann Whitney U test results (p-values) from comparisons between model 
(HAFS and HWRF) and Stage IV metrics calculated for Hurricane Isaias (2020). Significant 
p-values (<= 0.05) are indicated with a bold-faced font style.
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Figure 6: Box plots showing object-based metrics for the HAFS and HWRF-B models 
compared with Stage IV for Hurricane Isaias (2020) for general metrics at (a) 2 mm hr-1, (b) 5 
mm hr-1, and (c) 10 mm hr-1 thresholds and for (d) location metrics at all three thresholds. In 
(a) – (c), shape metric values range from 0 to 1 and the values are indicated on the left axis, 
while sum of areas and sum of perimeters are the number of pixels and values are indicated 
on the right axis. In (d), shape metric values are distances as indicated on the left axis. 
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Sample sizes for (a) – (c) are equal across all metrics and labeled for the left-most solidity 
metric only. Sample sizes for (d) are labeled for all metrics.

Figure 7: Precipitation and precipitation objects for the Hurricane Isaias forecast 
initialized 00 UTC 2 Aug 2020 and valid 06 UTC 4 Aug 2020. (a-c) show full 3-hourly 
precipitation, (d-f) show corresponding 2 mm hr-1 objects, (g-i) show corresponding 5 mm hr-1 

objects, and (j-l) shows corresponding 10 mm hr-1 objects for (left) HAFS, (middle) HWRF-B 
and (right) Stage IV. The white circle represents the search radius, and the red cross indicates 
the TC center. 

b. Hurricane Laura Forecast Evaluation

Pasch et al. (2021) report that Hurricane Laura made landfall near Cameron, Louisiana as 

a category 4 storm on 27 August 2020 and then weakened into a tropical storm over Arkansas 
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on 28 August as it traveled inland. The storm acquired a northeastward track over northern 

Arkansas and became a remnant low over Kentucky on 29 August. The greatest rainfall 

accumulations occurred in Louisiana and portions of Arkansas. The study period for 

Hurricane Laura spans from 0600 UTC 27 August, at landfall, to 0600 UTC 29 August, when 

the storm transitioned into a remnant low. A total of 158 and 162 (3-hourly) timesteps were 

used in the evaluation of the HAFS and HWRF-B model forecast of Hurricane Laura, 

respectively (Table 1). It is important to note that the Lake Charles and Fort Polk radars were 

down during the entire study period, which may contribute to degraded forecast performance 

due to an underestimation of Stage IV rainfall in central and southeastern Louisiana. An 

underestimation of Stage IV rainfall could lead to underestimation of areal coverage for our 

object-based metrics, as well as reduced performance in the other spatial metrics (e.g., lower 

closure if eyewall is not sampled). 

1) POINT-BASED VERIFICATION

For Hurricane Laura, the HAFS model overall performed better than the HWRF-B model 

in forecasting precipitation as shown by the point-based metrics (Figure 8). In this case, the 

samples are very similar (Table 1), but the two models should still be compared with caution. 

The POD indicates better performance in forecasting hits for the HAFS model (Figure 8a). 

However, the FAR values indicate that there were slightly more false alarms forecasted for 

the HAFS model than the HWRF-B model (Figure 8b). The ETS value distributions are 

generally similar for the two models (Figure 8c). As with the Isaias forecast, the trends in 

these three point-based metrics show a decrease in model skill with higher rain rate 

thresholds (Figure 8a-c), consistent with more mismatches in location for the higher rain rate 

values. The correlations are overall moderate for both models, but slightly higher for the 

HAFS model (Figure 8d). A tendency for the models to under-forecast precipitation is shown 

by the mean error values (Figure 8e), but this underestimation is more evident for the HWRF-

B model. These mean errors indicate a stronger negative bias in the Hurricane Laura forecasts 

compared with the entire landfalling TC sample (Figures 4e, 8e). The mean absolute error 

values are similar for both models with most values ranging between 1 and 3 mm, which is 

similar to the entire TC sample (Figures 4f, 8f). Compared with the Isaias forecast, 

correlations between the model forecast and the observations are much lower in Hurricane 

Laura (Figures 5d, 8d). Additionally, the correlations for Hurricane Laura are slightly lower 

than the larger TC sample (Figures 4d, 5d), suggesting a poorer pattern match compared with 

the observations.
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Figure 8: (a-c) Box plots and (d-f) histograms showing point-based verification metrics 
for Hurricane Laura (2020) for the 3-72 h precipitation forecasts from the HAFS and HWRF-
B models compared with Stage IV observations. 

2) OBJECT-BASED VERIFICATION

There are more significant metrics resulting from the Mann Whitney U test for the 

HWRF-B forecast than the HAFS forecast for Hurricane Laura (Table 7), indicating that the 

HAFS forecast precipitation structure was more like the observations. The HAFS and 

HWRF-B samples are very similar for Hurricane Laura (Table 1), but model comparisons 

should still be treated with caution. For both models, the number of significant metrics 

decreases as the threshold increases, indicating that accuracy increases with higher rain rates 

(Table 7). At the 2 mm hr-1 threshold, both models under-forecasted the sum of areas, sum of 

perimeters, and dispersion (Table 7, Figure 9a, Figure 10d-f). Additionally, the HWRF-B 

model underestimated the fragmentation and overestimated the y-displacement (Table 7, 

Figure 9a, Figure 10e-f). The only significant metric at the 5 mm hr-1 threshold for the HAFS 

model is the solidity, which was over-forecasted (Table 7, Figure 9b, Figure 10g,i). Similar to 

the 2 mm hr-1 threshold, the HWRF-B model underestimated the dispersion and 

fragmentation and overestimated the y-displacement at the 5 mm hr-1 threshold (Table 7, 

Figure 9b, Figure 10h-i). At the 10 mm hr-1 threshold, there are no significant metrics for the 

HAFS model (Table 7), but the HWRF-B over-forecasted the y-displacement as seen with the 

lower thresholds (Table 7, Figure 9c, Figure 10k-l). The lack of radar coverage is possibly 

affecting the Stage IV observations during part of the study period. Specifically, a rainband 

extending to the southeast of the TC center might be underestimated in the Stage IV product 
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(Figure 10c), which would also impact the solidity and fragmentation calculations. Still, the 

object-based metrics indicate good agreement between the model forecast and observed 

precipitation, especially for the HAFS model (Table 7). Visual inspection of Stage IV data, 

along with comparisons to satellite-derived rain rates, indicates that there is likely a minimal 

impact of the radars going down in this case, except for during a short 3-hour window around 

0600 – 0900 UTC 27 August. After that time, a dry slot forms within the Fort Polk and Lake 

Charles radar coverage regions, which likely explains the minor impact on our results.

For the Hurricane Laura forecast, the object-based metrics generally indicated a good 

match between the TC structure in the model and the observations, which is consistent with 

relatively low intensity errors in the model forecasts for this storm (Table 2). More structural 

differences are present at the lower rain rate thresholds for both models, which suggest some 

issues with the representation of stratiform rain. There is also a consistent underestimation of 

y-displacement by HWRF-B, indicating that this model predicted precipitation that was too 

far south compared with the observations. Track errors are similar in the HAFS and HWRF-B 

forecasts of Hurricane Laura (Table 2), so these locational differences might be related to a 

southward bias in the position of rainbands with respect to the TC center, which is likely 

contributing to the higher dispersion values in the HWRF-B forecast as well (Figure 9a-c). 

HAFS HWRF-B

Metric 2 mm hr-1 5 mm hr-1 10 mm hr-1 2 mm hr-1 5 mm hr-1 10 mm hr-1

Solidity 1 0.05 0.63 0.44 0.47 0.38

Elongation 0.52 0.68 0.65 0.32 0.63 0.73

Closure 

(100 km)

0.41 0.56 0.6 0.69 0.75 0.63

Closure 

(150 km)

0.63 0.88 0.68 0.92 0.99 0.69

Closure 

(500 km)

0.65 0.53 0.31 0.27 0.63 0.23
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Dispersion 0.03 0.19 0.3 <0.01 0.01 0.09

Fragmentation 0.45 0.82 0.31 0.01 <0.01 0.75

Sum of Areas 0.05 0.97 0.65 <0.01 0.27 0.94

Sum of 

Perimeters

0.03 0.58 0.56 <0.01 <0.01 0.98

X-Displacement 0.77 0.26 0.24 0.37 0.8 0.54

Y-Displacement 0.28 0.2 0.11 0.05 0.02 0.04

Table 7. Mann Whitney U test results (p-values) from comparisons between model 
(HAFS and HWRF) and Stage IV metrics calculated for Hurricane Laura (2020). Significant 
p-values (<= 0.05) are indicated with a bold-faced font style.
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Figure 9: Box plots showing object-based metrics for the HAFS and HWRF-B models 
compared with Stage IV for Hurricane Laura (2020) for general metrics at (a) 2 mm hr-1, (b) 5 
mm hr-1, and (c) 10 mm hr-1 thresholds and for (d) location metrics at all three thresholds. In 
(a) – (c), shape metric values range from 0 to 1 and the values are indicated on the left axis, 
while sum of areas and sum of perimeters are the number of pixels and values are indicated 
on the right axis. In (d), shape metric values are distances as indicated on the left axis. 
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Sample sizes for (a) – (c) are equal across all metrics and labeled for the left-most solidity 
metric only. Sample sizes for (d) are labeled for all metrics.

Figure 10: Precipitation and precipitation objects for the Hurricane Laura forecast 
initialized 12 UTC 25 Aug 2020 and valid 15 UTC 27 Aug 2020. (a-c) show full 3-hourly 
precipitation, (d-f) show corresponding 2 mm hr-1 objects, (g-i) show corresponding 5 mm hr-1 

objects, and (j-l) shows corresponding 10 mm hr-1 objects for (left) HAFS, (middle) HWRF-B 
and (right) Stage IV. The white circle represents the search radius, and the red cross indicates 
the TC center. 

c. Discussion 

Overall, the point-based and object-based metrics communicate different results with 

regards to the accuracy of the models in forecasting precipitation for Hurricane Isaias 

compared to Hurricane Laura. The object-based metrics show better performance for the 
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Hurricane Laura forecast for the HAFS model and similar performance for both storms for 

the HWRF-B model. In contrast, most of the point-based metrics indicate that both models 

performed worse for the Hurricane Laura forecast, as indicated by lower correlations (Figures 

5d, 8d), greater negative biases (Figures 5e, 8e), higher FAR (Figures 5b, 8b) and lower POD 

(Figures 5c, 8c). Interestingly, the mean absolute errors are slightly higher in Hurricane Isaias 

(Figures 5f, 8f), which suggests that there may be some underlying biases that are missed by 

the other point-based metrics. Still, the overall reduced performance in Hurricane Laura is 

likely due to the “double penalty” associated with point-based verification. If the forecast 

precipitation is displaced by even a small amount, the point-based metric scores are likely to 

be reduced due to misses and false alarms that are introduced by the displacement. Therefore, 

the models did not necessarily perform worse for the Hurricane Laura forecast than the 

Hurricane Isaias forecast as indicated by the point-based metrics. Instead, there tended to be 

more location mismatches in the Hurricane Laura forecast compared to the Hurricane Isaias 

forecast. The effect of the displacement errors on the point-based metrics are also shown with 

the reduced model skill at higher rain rate thresholds (e.g., higher FAR). The point-based 

metrics are likely to indicate poorer performance at greater thresholds because convective 

precipitation tends to be smaller in area and more isolated than stratiform precipitation, and 

therefore, harder to predict location-wise. The lower correlations for the Hurricane Laura 

forecast may also be related to missing radar data in Louisiana. Still, despite the missing 

radar data, the object-based forecast verification indicates better performance in the 

Hurricane Laura forecast. These results suggest that the object-based metrics are 

advantageous when there are location errors, which is a common issue in high-resolution 

model forecasts. The shape metrics also allow the forecasts to be evaluated in a more spatial 

sense than the point-based metrics. Spatial metrics gives insight into how well models 

perform with regards to forecasting the structure of the TC precipitation, which is useful 

information for model developers. 

6. Object-based Results from all 2020 Storms

a. Forecast Verification in Individual Storms  

This section presents the comprehensive results from implementing the object-based 

verification for all the 2020 storms as well as results from evaluating the effect of lead time 

on model performance. Figure 1a indicates that track forecast errors are initially small (< 40 

km) and increase with time as expected. Absolute intensity errors consistently fall between 6 
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and 10 kts for both models and do not increase with forecast lead time (Figure 1b). Generally, 

for both models, there is a negative intensity bias (i.e., model weaker than observations) for 

the sample of landfalling TCs in this study. However, at longer lead times (66-72 hours), the 

mean errors approach zero. Note that the sample sizes decrease to fewer than ten samples at 

the longer lead times, and thus these data may provide a less accurate representation of the 

model performance (Figure 1b). Whenever possible, we compare the object-based metric 

results in this section with these more familiar track and intensity error metrics.

Object-based metrics indicate numerous differences between the shape and size of the 

precipitation field at all thresholds for both models (Table 8). Many similarities across all rain 

rate thresholds are also indicated. For example, the 2 mm hr-1 precipitation area is 

consistently under-forecasted by both models. The object-based analysis reveals that the two 

models have a similar number of shape metrics with significant differences at all rain rate 

thresholds. At the same time, there is greater consistency in the directional bias in the 

HWRF-B forecast, particularly for 2 mm hr-1 rain rates, which may indicate that there are 

more systematic issues within its forecast sample.

  Metric Hanna Isaias Laura Sally Beta Delta Zeta

2 mm hr-1

Sum of Areas *,* A,B A,B A,B *,* A,B *,*

Sum of Perimeters *,* *,* *,B *,B *,* *,* *,B

Elongation *,* *,* *,* *,* *,* *,* *,*

Solidity *,* *,* *,* *,* *,* *,* *,*

Closure 100 km *,* *,* *,* *,* A,B *,* A,B

Closure 150 km *,* A,* *,* *,* A,B *,* A,B

Closure 500 km *,* *,* *,* *,* *,* *,* *,*

Dispersion *,* A,B A,B *,* *,* A,B *,B

Fragmentation *,* *,* *,* *,* *,* *,* *,*

X-Displacement *,B *,B *,* *,B *,B *,* *,*

Y-Displacement A,* A,B *,B *,* *,* *,* A,*

5 mm hr-1
Sum of Areas *,* *,* *,* *,* *,* *,* *,*

Sum of Perimeters A,B A,* *,* *,B *,* *,B *,*
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Elongation *,* *,* *,* *,* *,* *,* *,*

Solidity A,* *,* A,* A,* *,* *,* *,*

Closure 100 km *,* A,* *,* *,* A,* *,* *,*

Closure 150 km *,* A,* *,* *,* A,* *,* *,*

Closure 500 km *,* *,* *,* *,* *,* *,* *,*

Dispersion *,* *,B *,B *,* *,* *,B *,B

Fragmentation *,* *,* *,* A,* A,* *,* *,*

X-Displacement *,B A,* *,* *,B A,B *,* *,*

Y-Displacement A,* A,* *,* *,* *,* *,* *,*

10 mm 
hr-1

Sum of Areas *,* *,* *,* *,B *,B *,* *,B

Sum of Perimeters *,* *,* *,* A,B *,B *,* A,B

Elongation *,* *,* *,* *,* *,* *,* *,*

Solidity *,* A,* *,* A,B *,* *,B *,*

Closure 100 km *,* A,* *,* *,* A,* *,* *,*

Closure 150 km *,* A,B *,* *,* A,B *,* *,*

Closure 500 km *,* A,B *,* *,* A,B *,* *,*

Dispersion *,* A,* *,* *,* A,B *,* *,B

Fragmentation *,B A,B *,* A,B *,* *,* *,*

X-Displacement *,* A,B *,* *,B A,* *,* *,*

Y-Displacement *,B A,* *,B *,* A,B *,* *,*

Table 8: Shape metrics with significant p-values (<= 0.05) resulting from the Mann 
Whitney U test performed between the model forecast and Stage IV data for each storm. 
Significant differences are indicated by an A (HAFS) and B (HWRF-B). Asterisks indicate 
no difference. The model biases for each storm are indicated by italicized font for smaller 
values and bold face font for larger values compared with the Stage IV observations.

At the lowest threshold, the HAFS model struggles with underestimating the area and 

dispersion whereas the HWRF-B model struggles with underestimating the area, dispersion, 

x-displacement, and sum of perimeters. An underestimation of the x-displacement metric is 

associated with precipitation objects that are displaced to the west compared with the 

observations, which may be related to an underlying west track bias in the model forecast 
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(not shown). In general, there are slightly larger track errors for the HWRF-B sample (Figure 

1a), including a larger west bias compared with HAFS (not shown). These track errors in 

HWRF-B are consistent with significant x-displacement differences in the location of 

precipitation. Additionally, for two storms each, there are issues with the HAFS model 

overestimating the 150-km closure and the HWRF-B model underestimating the 

fragmentation at the 2 mm hr-1 threshold. Both models forecast objects that are too small and 

too central for their respective samples. 

At the 5 mm hr-1 threshold, the HAFS model consistently forecasts objects that are too 

empty. Meanwhile, the HWRF-B model consistently forecasts objects that are too central and 

too displaced to the west, similar to its performance at the 2 mm hr-1 threshold. Other issues 

at this threshold include the HAFS model forecasting objects that are too displaced to the 

south and the HWRF-B model underestimating the sum of perimeters metric for two storms 

each. Compared with other thresholds, there is less agreement in the HAFS and HWRF 

model biases, i.e., there are no similarities in the metrics that are indicated as significant for at 

least two storms, but again, these models are evaluated for slightly different samples.

At the 10 mm hr-1 threshold, there are fewer consistent biases in the HAFS model 

forecast, but there are still problems with the model under-forecasting the sum of perimeters 

and fragmentation, and over-forecasting the solidity for more than one storm. There is strong 

agreement in the HWRF-B model underestimating the areas and perimeters and forecasting 

the objects too far north. Furthermore, the HWRF-B model produces objects that are too full 

and too displaced to the west for two storms each. The models exhibit the most similar 

performance at this threshold as they both consistently underestimate the perimeters and 

fragmentation and overestimated the solidity. Low fragmentation and high solidity are 

strongly (inversely) related to one another since fragmentation includes solidity in its 

calculation (Figure 3). Collectively, these two metrics indicate that the convective 

precipitation is too solid and connected in the model forecast compared with the observation. 

Since models struggle with capturing the observed precipitation structure in similar ways, 

there may be a common systematic bias in their representation of convective precipitation in 

their respective samples.

Importantly, the HAFS and HWRF-B models have similar biases in individual storms. 

For example, the 2 mm hr-1 precipitation area is significantly underestimated by both models 

in four storms: Delta, Isaias, Laura, and Sally. Additionally, both models predict 2 mm hr-1 

precipitation regions that are too centrally located in Delta, Isaias, and Laura. Precipitation 

36

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743



that is more centrally oriented with respect to the TC center could indicate a positive intensity 

bias in the model, which is not consistent with the observations (Figure 1b), but caution 

should be used when linking stratiform precipitation structure with TC intensity. 

Additionally, these three storms have negative intensity biases in both model forecasts (Table 

2). On average, the negative intensity biases in Delta and Laura are smaller compared with 

the rest of the landfalling cases (Table 2), but again, the dispersion of stratiform precipitation 

may not be closely linked to TC intensity. Another example is with the Tropical Storm Beta 

forecast in which both models underestimate the closure at all thresholds and overestimate 

the dispersion at the 10 mm hr-1 threshold. These spatial differences indicate that the model 

precipitation is too exposed and spread out compared with the observations, which would 

generally suggest a weaker TC compared with observations. However, the individual TC 

statistics for Tropical Storm Beta do not suggest a larger negative intensity bias compared 

with other TCs in the study (Table 2). Other common results include the models under-

forecasting the sum of areas metric at all thresholds for Hurricane Sally, over-forecasting 

closure for Hurricane Zeta at the 2 mm hr-1 threshold, and over-forecasting the sum of 

perimeters metric for Hurricane Hanna at the 5 mm hr-1 threshold. These similarities amongst 

the forecasts of both models suggest that these storms (or, potentially, the GFS initial 

conditions for these storms) may have characteristics that cause certain metrics to be more 

difficult to forecast.

For the performance of both models in the maximum precipitation bearing metric, the 

maximum precipitation is generally forecasted in the correct location, but the model forecast 

bearings are more like each other than to the observed bearings (Figure 11a-c). Individually, 

the only storms where there are notable differences between the forecast and observed 

maximum precipitation are Tropical Storm Beta (Figure 11d-f) and Hurricane Delta (Figure 

11g-i). In the HAFS forecast for Tropical Storm Beta, there is a bias for the maximum 

precipitation to be located too far eastward, while the HWRF-B forecasts has a slight north 

bias. For Hurricane Delta, both models tend to forecast the greatest precipitation amounts in 

the north and north-northeast directions from the TC center, but the observed data indicates 

the maximum precipitation being in the southeast direction for numerous timesteps as well.

These shape metric results indicate that the HAFS model performance varies depending 

on the rain rate threshold while the HWRF-B model performs similarly across the rain rate 

thresholds (Table 8). For the HAFS model, persistent issues in forecasting objects that are too 

small, central, and enclosed within 150 km from the TC center are unique to the 2 mm hr-1 
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threshold; the forecast objects tending to be too empty and fragmented are unique to the 5 

mm hr-1 threshold; and forecast objects being too simple, cohesive, and full for multiple 

storms is only indicated at the 10 mm hr-1 threshold. The HAFS model also performs poorly 

in the y-displacement for numerous storms across multiple thresholds, and the forecast 

objects tend to be located too far south at the 2 and 5 mm hr-1 thresholds. Track biases for this 

HAFS sample also indicate a south bias of approximately 10-20 km (not shown), which is 

consistent with these precipitation results. Additionally, these results indicate that the HAFS 

model performance differs in the forecasting of stratiform and convective precipitation and 

emphasize a slight south bias for the forecast objects. This south bias is difficult to compare 

with an absolute track error (Figure 1a) and might offer additional insight into both 

precipitation structure and positioning differences compared with the observations.

For HWRF-B, the forecast objects tend to be too small, central, cohesive, simple, and 

displaced to the west for at least two thresholds, and all these spatial biases are present for at 

least three storms. These persistent biases suggest that there are systematic issues with the 

HWRF-B precipitation forecasts that are not unique to stratiform or convective precipitation.
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Figure 11: Maximum precipitation bearings with respect to the storm center for (top row) 
all storms, (middle row) TS Beta, and (bottom row) Hurricane Delta based on precipitation 
from (left) HAFS, (middle) HWRF-B, and (right) Stage IV (ST4). 

Collectively, the precipitation characteristics indicate that both models tend to forecast 

storms that are too organized and compact compared with the observed storms, especially for 

the stratiform rain rate regions. For example, the 2 mm hr-1 closure for the HAFS model is 

consistently too high for the inner core region, which indicates a more enclosed stratiform 

precipitation that is generally consistent with stronger TC circulations and more intense 

storms (Kieper and Jiang 2012; Matyas and Tang 2019). Precipitation is also too central for 

the HAFS and HWRF-B models at the lower thresholds, which is a characteristic of stronger 

storms due to the TCs being more compact. The under-forecasting of fragmentation at the 10 
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mm hr-1 threshold for the HAFS model and at the 2 and 10 mm hr-1 thresholds for the HWRF-

B model is indicative of more intense storms as well (Zick and Matyas 2016). The exception 

to the models forecasting more compact storms is the forecast for Tropical Storm Beta in 

which the model forecast precipitation was more spread and less closed compared with the 

observations. This also resulted in greater fragmentation in the HAFS forecasts of the storm. 

Interestingly, the spatial metric results indicate a model bias toward more compact storms, 

which is generally associated with a positive intensity bias. Instead, there is a negative 

intensity bias for all storms in the sample for both models (Table 2). These results suggest an 

inconsistency between the precipitation configuration and the maximum sustained winds in 

the model forecast.

b. Forecast Verification by Lead Time Evaluation

Generally, the lead time results (Figure 12) indicate spin-up issues associated with the 

HAFS forecasts and systematic issues with the HWRF-B forecasts. For the HAFS model, at 

the 2 mm hr-1 threshold, the larger number of significant metrics occurring for the first six 

hours of the model simulations (Figure 12a) may be attributed to the spin-up that occurs 

when models are initiated via “cold start,” as with this version of HAFS. When a model is 

initialized with fewer observations or with observations that are not representative of the 

model’s resolvable scales, it takes some model integration time for the model to reach a state 

of balance and spin up some forecast variables such as precipitation. An initial 6-hour spin-up 

process is suggested based on results for the 2 mm hr-1 threshold. Recent and ongoing work 

has been done to implement initialization and data assimilation in HAFS to mitigate this spin-

up issue.

After 54 hours, the model accuracy starts to diminish, suggesting that the model performs 

well with forecasts up to around two days in advance (excluding the spin-up period). The 

increasing model error at longer lead times is most evident for the HAFS model forecast of 

10 mm hr-1 precipitation. The model spin-up has the greatest effect on the HAFS model 

accuracy at the 2 mm hr-1 threshold, but there is a slight suggestion of increasing model errors 

at longer lead times too. At the 5 mm hr-1 threshold, the model is still affected by the spin-up 

but to a lesser extent, and at the 10 mm hr-1 threshold, the spin-up does not seem to have any 

effect on the model (Figure 12c,e). These results suggest that the HAFS model takes longer to 

realistically forecast stratiform precipitation (around six hours) compared to convective 

precipitation. At the 10 mm hr-1 threshold, there is around one significant metric for most lead 
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times with increasing numbers of differences at longer lead times (Figure 12e). This is due to 

the forecast objects being consistently too full at the 10 mm hr-1 threshold, which indicates 

that the model generally did not perform favorably in forecasting the solidity at this 

threshold. Again, this result points to a HAFS model bias toward more circular, solid 

convective precipitation structure compared with the observations, and that this model bias is 

slightly exacerbated at longer lead times. 

For the HWRF-B model, there is a similar number of significant metrics amongst the lead 

times at all thresholds (Figure 12b,d,f), which suggests that the HWRF-B forecasts are not 

affected by the spin-up issue. However, the model consistently under-forecasts the sum of 

perimeters, dispersion, and fragmentation at the 2 mm hr-1 threshold; consistently under-

forecasts the sum of perimeters and dispersion at the 5 mm hr-1 threshold; and significantly 

over-forecasts the solidity at the 10 mm hr-1 threshold for many lead times. Additionally, 

there are multiple lead times with significant location metrics at the 2 mm hr-1 threshold, 

which may be attributed to the model forecasting objects that are too displaced to the west 

(Figure 12b). These results emphasize the systematic issues with the HWRF-B model 

capturing these metrics, which explains the individual lead times being associated with a 

similar frequency of significant metrics. For the HWRF-B model, there is no obvious 

degradation of model forecast skill with lead time (Figure 1b,d,f). This might be attributed to 

the more advanced data assimilation in this version of the HWRF-B model, or the model 

degradation with lead time might be obscured by the larger number of significant metrics at 

all lead times. 
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Figure 12: Stacked bar graphs of the number of metrics that are significantly different 
between the (left) HAFS and Stage IV and (right) the HWRF-B and Stage IV precipitation at 
each lead time (3-72 hours) at the (top) 2 mm hr-1, (middle) 5 mm hr-1, and (bottom) 10 mm 
hr-1 thresholds. The bars are color-coded based on the category of the metrics.

7. Conclusions

The objectives of this study were to compare point- and object-based precipitation 

verification methods, evaluate the ability of the HAFS and HWRF-B models to forecast TC 

precipitation, and assess how model accuracy varies with lead time. In the case study 

evaluation, the point-based metrics mostly indicated poorer performance in the Hurricane 

Laura forecast compared with the Hurricane Isaias forecast for both models, whereas the 
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object-based metrics indicated poorer performance in the Hurricane Isaias forecast. Since the 

Hurricane Laura forecast from both models had more displacement issues, it was penalized 

for more misses and false alarms, resulting in lower accuracy. The object-based metrics 

provided an in-depth spatial analysis of the TC precipitation, and the forecasts were not 

overly penalized for mismatches in location. These results suggest that point-based methods 

should be used with caution when evaluating TC precipitation forecasts due to the double 

penalty problem. Lower precipitation forecast accuracy may be more related to location 

issues as opposed to precipitation structure issues in the model. Still, since the grid point 

location is important for forecasting flooding hazards associated with TCs, we recommend 

that both point- and object-based metrics be assessed in conjunction with one another. 

The models were evaluated at three rain rate thresholds: 2 mm hr-1 threshold (to evaluate 

stratiform precipitation) and 5 and 10 mm hr-1 thresholds (to evaluate convective 

precipitation). The results suggest that the HAFS model has separate issues with forecasting 

stratiform and convective precipitation due to more varied results by rain rate threshold. 

Specifically, the model forecasted objects that were too small, central, and closed (within 150 

km from the TC center) at the 2 mm hr-1 threshold; too empty and fragmented at the 5 mm hr-

1 threshold; and too simple, cohesive, and solid at the 10 mm hr-1 threshold. In contrast, the 

results show that the HWRF-B model has more consistent and perhaps systematic issues at all 

thresholds including the forecast objects being too small, central, cohesive, simple, and too 

far west. Collectively, these spatial metrics suggest that both models tend to forecast storms 

that are too central, closed, and compact compared with the observations, which suggests that 

the model forecasts may be too intense. This is most evident with closure being too high for 

the HAFS forecasts, indicating stronger TC circulations, and the dispersion and 

fragmentation being too low for the forecasts of both models, indicating more organized 

storms. Instead, there was a negative intensity bias for both models throughout the 

forecasting period, which suggests that there is an inconsistency between the precipitation 

configuration and the maximum sustained winds in the model forecast.

The lead time analysis indicated model spin-up issues with the HAFS forecasts and 

systematic issues with the HWRF-B forecasts. The results showed spin-up issues mostly at 

the 2 mm hr-1 threshold for up to six hours, which suggests that convective precipitation does 

not seem to be affected by model spin-up whereas stratiform precipitation needs around six 

hours before it is realistically represented in the HAFS model. Previous studies have 

suggested that model spin-up issues with precipitation forecasting are predominantly related 
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to convective initiation (Sun et al. 2014), so spin-up issues related to stratiform precipitation 

are surprising and need to be investigated further. Moreover, the HAFS model performance 

noticeably worsened after 54 hours at the 2 mm hr-1 threshold and there were problems with 

the model forecasting fuller objects than observed for numerous lead times at the 10 mm hr-1 

threshold. For the HWRF-B model, object perimeters and dispersion were significantly 

underestimated for many of the lead times at the 2 and 5 mm hr-1 thresholds. Additionally, the 

fragmentation and the x-displacement were under-forecasted at the 2 mm hr-1 threshold, and 

the solidity was over-forecasted at the 10 mm hr-1 threshold across lead times. Like the results 

of the HWRF-B forecast evaluation by storm, these lead time results imply that there are 

systematic issues with its forecasts.

In this study, the models were expected to have reduced performance during the spin-up 

period, and this was confirmed with the HAFS model at the 2 mm hr-1 threshold. The lead 

time results did not show spin-up issues with the HWRF-B model. Declining model accuracy 

at the later lead times, also hypothesized, was shown at 2 and 10 mm hr-1 thresholds for the 

HAFS model, but this was not indicated with the HWRF-B forecasts, which instead showed 

systematic biases across all lead times through 72 hours. This result for HWRF-B might be 

due to its more advanced data assimilation and vortex initialization. Another possibility is 

that the decreasing performance with lead time might be obscured by the larger number of 

significant structural differences at all lead times. 

There were several limitations in this study including (1) the sensitivity of the shape 

metrics to the search radius, (2) the small sample size, and (3) errors related to the Mann 

Whitney U test. First, precipitation from non-tropical systems is occasionally included in the 

precipitation object if it is located within the search radius, which can cause inaccuracies. 

Visual inspection of the output found that this was only a minor factor in Hurricane Zeta. 

Second, this study could provide stronger evidence of systematic issues with the models if a 

greater sample of storms were analyzed. Third, there are limitations with the Mann Whitney 

U test as it only distinguishes differences in the shape metrics based on the medians if the 

distributions are equal. When distributions are not equal, a significant result indicates 

differences in the distributions more generally, which is not as robust as a comparison of the 

medians. To confirm that the Mann Whitney U test was detecting actual differences in the 

median, we performed post-hoc comparisons for all the results reported in this study. Lastly, 

since the Mann Whitney U test is performed many times in this analysis, the possibility of 
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type I errors (significant differences are detected when there are none) and type II errors (no 

significant differences are detected when there are actual differences) is increased.

This study demonstrated the usefulness of implementing an object-based method for 

model verification to thoroughly assess the HAFS and HWRF-B precipitation forecasts using 

a variety of spatial metrics. Weaknesses in the HAFS and HWRF-B precipitation forecasts at 

three rain rate thresholds were identified, which will support model developers to work 

towards improving these flaws, through improvements to the microphysics, convective 

parameterization, or other model physics and dynamics. Forecasters seeking guidance from 

these models can also use this research to compensate for the model deficiencies that were 

detected with regards to forecasting TC precipitation. This study contributes to existing 

research on the HAFS and HWRF-B models by evaluating their ability to forecast TC 

precipitation structures rather than only the track or intensity. This research also evaluates 

more recent versions of the models (2020) compared to previous studies that analyze the 

model performance during earlier years. The results suggest that future studies are needed to 

investigate spin-up issues of stratiform precipitation in the HAFS model, the systematic 

issues in the HWRF-B model, and the positive bias in forecasting the storm intensity for both 

models. Lastly, future studies also need to investigate the inconsistency between model 

forecast precipitation structure and TC intensity. 
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