International Mathematics Research Notices, 2024, 2024(9), 7748-7775

https://doi.org/10.1093/imrn/rnad304
OXFORD Advance access publication date 29 December 2023

Article

Sharp Global Well-Posedness and
Scattering for the Radial Conformal
Nonlinear Wave Equation

Benjamin Dodson*

3400 N. Charles Street, Baltimore, MD, 21218, USA
*Corresponding author: Benjamin Dodson. Email: bdodson4@jhu.edu

In this paper we prove global well-posedness and scattering for the conformal, defocusing, nonlinear
wave equation with radial initial data in the critical Sobolev space, for dimensions d > 4. This result
extends a previous result proving sharp scattering in the three dimensional case.

1 Introduction
In this paper we prove global well-posedness and scattering for the conformal wave equation
utt—Au+|u|d4ju=O, u(0, X) = uo, ur (0, X) = uq, u:R xR = R, (1.1)

with radially symmetric initial data in dimensions d > 4. This continues an earlier study we began in
[6], 191, [7], and [10]. See also [23].
Specifically, we prove a sharp scattering result for radially symmetric initial data.

Theorem 1.1. The initial value problem (1.1) is globally well-posed and scattering for any radially
symmetric initial data uy € HY2(R%) and u; e H-Y?(RY). Moreover, there exists a function
Cd, luollgprz, Nualig-12),

C:Zs4 x [0,00) x [0, 00) — [0, 00), (1.2)
such that if u is the solution to (1.1) with radially symmetric initial data in uo, us,

ull 2o < CW, luollg2, uzllg-12). (1.3)
LT (RxRd)

tx

Definition 1.2 (Global well-posedness and scattering). Here we use the standard definitions of
global well-posedness and scattering. Specifically, global well-posedness means that a solution
to (1.1) exists, the solution is unique, and the solution depends continuously on the initial data.
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2(d+1)  2(d+1)
In this paper, a solution means a solution u € L ;7" L,"" which satisfies Duhamel’s principle,

~2 @) u(odr. (1.4)

U(t) = cos(tv—Ayup + SV=A) 7/ sin((t— )
0

V=A /A

By scattering, we mean that there exist uf, u; € HY?, uf,u; € H"?, such that,

Lim fju() - cos(tv—Ayuf — Slnf;i;) Ul llgpz = O, (1.5)

Bim 1 u(6) — cos(tv =B — ° Sg) WH)llge =0, (1.6)

tErfio lut) — cos(tv/—=A)yug — Sln$f) Uy llgpz =0, (1.7)
and

Jim 13 (u(t) — cos(tv/'=Aug — Smgf) U gz = 0. (1.8)

Theorem 1.1 is sharp due to the scaling symmetry. Specifically, if u solves (1.1), then for any A > 0,
u(t,x) = Pa u(kt AX), (1.9)
also solves (1.1) with initial data
v(0,x) = A5 uo(kx) U+(0,X) = Ad%lul()»x). (1.10)

Note that [[V(0, X)llg2 = lUollge and [Ve(0, X)llz-12 = lU1llg-12 for any A > 0. This fact was well-exploited
by [21] to prove ill-posedness for initial data in H® x H5~! for s < 1. See also [3].

1.1 Outline of previous results

Previous interest in the conformal wave equation, (1.1), has mainly focused on the d = 3 case. In this
case, (1.1) is the cubic wave equation,

Uy — Au+u® =0. (1.11)

It has been known for a long time that global well-posedness and scattering hold for initial data in
H! x L? that decays sufficiently fast as |x| — oo, see [34] and [33]. Observe that such initial data has the
conserved energy,

1 9 1 2 d-1 24y
Eu) = 2/|Vu(t,x)| ax + 2/|ut(t,x)| dx+72(d+1)/|u(t,x)| -1 dx. (1.12)

Conservation of the conformal energy gives scattering, which will be shown in section three.
For initial data in H' nHY? x L2 N H~%/2, global well-posedness follows easily from (1.12) and the local
well-posedness result of [21].

Theorem 1.3. The initial value problem (1.1) is locally well-posed on some interval (—T, T) for any
(Uo, u1) € HY2 x H~1/2 where T = T(u, u). Global well-posedness and scattering hold for small
initial data.

Moreover, the solution satisfies

uel®HY2(-T,T) xR,  ur € LPHY2((=T,T) x RY),

24+ 2d+D

L7 (=T, T) x RY). (1.13)

ue Ltloc
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Furthermore, if the solution only exists on an interval [0, T;) for some T, < oo, then

lim ull 200 = 00. (114)
T/T+ L1 ([0,T]xRY)

By time reversal symmetry, the analogous result holds on (-T-,0].

Therefore, (1.1) has a local solution, and by (1.12), blowup cannot occur in finite time.

Using the Fourler truncation method, [20] proved global well-posedness for (1.11) for initial data in
HS x H~! for any s > 2. This method, introduced by [2] for the nonlinear Schrédinger equation, utilizes
the smoothing effect of the Duhamel term

/t SINE = OV=A) 3y (1.15)
o J-a
The data was then split into a high frequency piece that was small and a low frequency piece that is in
H' x L2. Global well-posedness holds for (1.11) with either piece as the initial data (from Theorem 1.3
and (1.12)). For s > 2, it is possible to “paste” the two solutions together and obtain a solution to (1.11)
for initial data in HS x H~1.

This work was subsequently extended by many authors. See [15], [1], [26], [27], [5], [8] for subsequent
improvements on this result.

A second approach that has proven to be very fruitful is the study of type two blowup. There are two
different ways in which scattering can fail. The first way is if the H/2 norm is unbounded. Since the
solution to the linear wave equation is a unitary operator, it is clear that one of (1.4)-(1.8) would fail.
This is called “type one blowup”.

It's also possible, at least in the non-radial case, for scattering to fail and yet the AY2 x H~%/2
norm remain bounded. This behavior is frequently observed for a soliton, although see also the
pseudoconformal transformation of the soliton for the nonlinear Schrédinger equation (see for example
[22]).

Type two blowup is when scattering fails, but the critical norm remains bounded. Type two blowup
does not hold for (1.1) when d = 3, see [12]. See also [29], [11], and [13]. The proof in [12] uses
the concentration compactness argument, excluding the existence of a non-scattering solution of
minimal size.

It is worth noting that the result in [12] (and in [29], [11]) holds for both the defocusing and the
focusing case. This is because, unlike in the energy-critical case, there does not exist a soliton solution
to (1.11) that lies in HY/2 x H~1/2,

Still, for the focusing, cubic wave equation,

U — Au—u® =0, (1.16)

there do exist solutions for which the H/? x H~/? is unbounded. Indeed, for this equation, the energy
is given by

2(d+1)

E(u = %/\Vu(t,x)lzdx-i- %/lut(t,x)lzdx— %/\u(t,xﬂﬁdx, (1.17)

which unlike (1.12) does not prevent any norms of a solution to (1.16) from getting arbitrarily large. See
[14] for the state of the art in this direction and a description of prior results.

1.2 Outline of the argument
Theorem 1.1 is proved using the Fourier truncation method and conservation of the conformal energy.
Specifically, inspired by [20], we split the initial data into two pieces,

Uop = Vo + Wo, Uy = V1 + Wy, (1.18)

where (uo, v1) has finite conformal energy and (wo, w1) has small H/? x H~'/? norm.
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Following [34] and [21], we know that (1.1) is scattering with initial data (vo, 1) and (wo, w1). Therefore,
it remains to handle the cross-terms. The contribution of the cross terms F is of the form

((t+ |XDLu + (d — v, (¢t + [XDF), L =a + % .V, (1.19)

where F contains terms of the form \w|ﬁ [ul. In [10],
d-3 4
(1.19) < It + 1xDLu + (d — Dl It + XD W] 7 [l [l T 11 Ty - (1.20)
= =

Combining the radially symmetric Sobolev embedding theorem and the dispersive estimate,

I+ xDIWIFT e S 1, (1.21)

and therefore (1.20) implies a bound on the integral of £, where £(t) is the conformal energy (see (3.4)).

For initial data in H/2 x H~1/2, we still have the bound
Ixlw] 77 e < 1, (1.22)

from the radial Sobolev embedding theorem, along with the bound

2 1
[P SN TENES 3 (1.23)

Remark 1. For the discussion in this section, it is reasonable to ignore the logarithmic divergence
of the radial Sobolev embedding that arises from the Littlewood-Paley projection in L.

On the other hand, for general initial data in H/2 x H~'/2, there is no reason to think that the dispersive
estimate [[tjw| 77 |~ will hold, since the HY2 x H~1/2 norm is invariant under the operator

— sin(ty=A)
( cos(tv—4) Ja ) (1.24)

—/—=Asin(ty/=A) cos(tv/—A)

Instead, we use that the square L? norm of Vi, is bounded by the conformal energy divided by %, which
gives us good decay to cancel out the contribution of tjw| = |u]. We use the Morawetz estimate and the
local energy decay to do this, which gives a bound on the scattering size.

In section two, we recall some Strichartz estimates and the small data result of [21]. In section three
we recall the scattering result of [34]. In section four, we prove scattering in the d = 4 case. In section five,
we prove a modified small data resultin dimensions d > 5.In section six, we prove scatteringinthed > 4
case. Finally, in section seven we complete the proof of Theorem 1.1 using the profile decomposition.

Unlike in [10] we do not obtain an explicit bound on the scattering size of the solution, merely that
such a bound exists. It seems likely to the author that it would be possible to prove an explicit bound by
determining the structure of maximizers of the Strichartz estimates. In particular, one could attempt to
obtain an upper bound on R(e) (in (4.6)) for maximizers of the Strichartz estimates that are at scale one.

Remark 2. This method barely fails for the d = 3 case. The reason is that the endpoint L* estimate
version of Lemma 2.4 is needed in dimension d = 3. This argument could be used to prove
scattering in the Besov case, [6]. However, unlike in the d > 4 case, the computation in (4.31)
has a power £(s), instead of £(s)* for some « < 1, and therefore the computations do not give
a polynomial bound on the scattering size.

2 Strichartz Estimates and Small Data Results

Global well-posedness and scattering for (1.1) with small initial data is a direct result of Strichartz
estimates.
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Theorem 2.1 (Strichartz estimates). Let I be a time interval and let u : I x R? — C be a Schwartz
solution to the wave equation,

Ut — Au+F =0, u(to, -) = Uo, Ut (to, ) = Uq, for some toel (2.1)

Thenfors > 0,2 <p,p < 00,2 < q,{ < oo obeying the scaling conditions

7+7=%—s:%+%—2, (2.2)
and the wave admissibility conditions
%+c12—71%+d2—?1 < dTTl, (2.3)
Nullr it auray + Ul e axrsy + 10Ul ops-1 qursy Sspabasd (2.3)
luollig ey + MUl ey + 1F 17 oy (2.4)

Proof. This theorem was copied from [37]. See [18], [16], [17], [21], [31], [28], and [19] for references. M

Of particular importance to this paper is the conformal Strichartz estimate,

< . .
il s Sa O s + e Ol + 1Pl e (2.5)

X

which was proved in the original paper [35]. A straightforward application of (2.5) gives global well-
posedness and scattering for (1.1) with small initial data, for both radially symmetric initial data and
general initial data, see [21].

Theorem 2.2. For any d > 3, there exists some €p(d) > 0 such that if

U0, Mggay + 1Ue(0, lg-12@ay < €0(d), (2.6)

then (2.1) is globally well-posed and the solution satisfies

Il 2gen S WO, iy + 140, )22 gay - 2.7)
LT Ry (RY) ®%)
Moreover, if u solves (1.1), [[u]l 2an < oo is equivalent to scattering to a free solution both
d—1
ox T (RxRY)

forward and backward in time.

Remark 3. This theorem is proved in many places and in far more generality, see for example [37].
Still, for the large data resultin dimensions d > 5, it will be useful to prove a slight modification
of the small data result. Because of this, it is instructive to give a short proof of the small data
result here.

Proof. The theorem is proved using Picard iteration. Define the sequence

U () = cos(tv=A)up + % VA_A)ul, (2.8)
and forn > 1,
t ol _ ST B
u(n)(t) — M(O)(t) _ / LJ%A)IM(YPD(.[MHu(n—l)(r)dr. (29)
o —
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Then, by (2.5),

+74

-1 =

U™ | I S lluollge + uallg-ze + U215 .
L™ ®RxRY LT ®xRY)

Therefore, for €y(d) > 0 sufficiently small and some constant C(d) sufficiently large,

“ U(nil) || 20d+1)
a1

X

< C(d)eg = U™ 2esn < C(d)eo,
) Lt‘jfl (RxRd)

(RxR4

and therefore, by induction,

U™ 2gen
LT ®xRd

< C(d)eo, vn.
)

Also, by (2.5) and (2.12),

4
U™ — u™ D s < [Cdeo] T U —u™ 2| puun ,
LT RxRY) LT RxRY)

2(d+1)

7753

(2.10)

(2.11)

(2.12)

(2.13)

which by the contraction mapping theorem proves that u®™(t) converges in L,i (R x R%) to a unique

solution.

While global well-posedness and scattering hold for small nonradial data, the proof in this paper of
global well-posedness and scattering for (1.1) with large initial data relies heavily on radial symmetry.

In particular, the proof relies heavily on the radial Strichartz estimate of [32]. See also [25].

Theorem 2.3 (Strichartz estimates for radially symmetric initial data). Let u be a radially sym-

metric function on R such that uy — Au = 0. Then, the following estimates hold,

lullyp g exrsy S NTUO g + U0,

where

Observe that after doing some algebra with (2.15),if p = 2,

SY
|
N

Q|
N —
Q.
|
=

Note that one particular case of (2.14) is

flull = o0 < U0 llgz + e Q)2
L2137 (RxRY)

Moreover, we combining Theorem 2.3 with the radial Sobolev embedding theorem implies

Lemma 2.4. Forany0 <6 <1,d > 3,

4219
x2S Oul 2 Sao U@ lge + e O)llg-2-
2L (RxRY)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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Proof. Choose some q very close to 5 - §=3. For y = &1 — 4, Theorem 2.3 implies that

NV Ul wwrs S TUO g + (U0l (2.19)

Then, by the radial Sobolev embedding theorem,
a1 1
X2 Y ullz i ey S WO gz + HueO)llg-vz, T=7 70 (2.20)

Interpolating (2.17) and (2.20) gives (2.18). |

The Christ-Kiselev lemma implies that Theorem 2.3 and Lemma 2.4 also hold for a small data
solution to (1.1).

Lemma 2.5 (Christ-Kiselev lemma). Let X,Y be Banach spaces, let I be a time interval, and let
K e C%(IxI— B(X — Y)) be a kernel taking values in the space of bounded operators from X to
Y.If 1 <p <q <ooissuch that

I [Ktf @Stz < Ao, (2.2)
forall f € LP(I - X) and some A > 0, then we also have

I K(t, 9)f (9)dsllagoyy Spa Alfllrgox- (2.22)

selis<t

Proof. This lemma was copied out of [37]. This lemma was proved in [4]. See also [30] or [36]. |

3 Conformal Energy and Morawetz Estimates

For large initial data, global well-posedness and scattering for (1.1) is equivalent to proving that (1.1)
has a solution which satisfies

lull 2wsn < 00. (3.1)
LT ®RxRY)

Indeed, if (3.1) holds, R can be partitioned into finitely many subintervals I; for which

HM” 2d+1) < 1. (32)
LT (xR

One can then use the Picard iteration argument from Theorem 2.2 to prove global well-posedness and
scattering.

On the other hand, if scattering is known to occur, then by (2.5) and the Picard iteration argument
from Theorem 2.2, (3.1) holds.

For large data, [34] and [33] proved global well-posedness and scattering for (1.1) with large initial
data with sufficient regularity and decay.

Theorem 3.1. Suppose uo and u; are initial data that satisfy

-1
{x)Vuollz + lluollzz + I{X)urllzz + 14X} &2 Uoll 2as1 < 0. (3.3)
Lt

Here, (x) = (1 + |x[>)¥2. Then the solution to (1.1) is globally well-posed and scattering. The
solution u need not be radially symmetric.
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Proof. The conformal energy,

1
Ew =7 / I(t+ XDLu + (d — Dul® + [t — [xDLu+ (d — Dul*dx
R

) (34)
2 2 X 2 2
st AV e
4y [@ o - Zapupax s T @ 4t o
is a conserved quantity, where L = (3; + é—‘ -V)andL = (8 — ‘X‘ -V).
Indeed, define the tensors
1 1 d 2(d+7)
T, x) = =3l + = |Vul’ + -
(t, %) 2ItMI +2| ul® + 2(d+1)‘u‘ e
TO(t, %) = TO(t, X) = —(3:u) (0 W), (3.5)
. Sik d— 2+)
k : j 2
TH(L, %) = (3 Udg, U) — 7(|Vu| |3ul?) — }k2(d+1)| |
The tensor functions satisfy the differential equations
FTOMX) + 8, TY(E,x) =0,  &TU(t, %) + 3, T*(t,x) = 0. (3.6)

The Einstein summation convention is observed. The differential equations (3.6) imply that the quantity

— Ly, (3.7)

Q) = /(t2 + 1XIHTO(t, %) — 25T, %) + (d — Dtu@w) — 5

is conserved. Indeed, by (3.6),

%Q(t) = 2t/TOO(t, x)dx — /(t2 + X198, T (t, x)dx — 2t/ij°i(t, x)dx + Zt/ X0y, T (¢, x)dx
(3.8)
+(d — 1)/u(3tu)dx + (- 1)t/(3tu)2dx +(d — 1)t/ u(Au — |u|ﬁu)dx — (- 1)/u(atu)d><‘

Integrating the second term in (3.8) by parts,
= zt/TOO(t,x)dx - Zt/éjijk(t,x)dx +d- 1)t/(3tu)2dx +d- 1)t/ uAu— u=wdx.  (3.9)
Since 8jk8jk = d,

= Qt/TOO(t,x)dx72t/|Vu|2 +dt/(|w|2 — [Beul?)dx + %/\u\%dx

(3.10)
+(d - 1)t/ [0:uldx — (d — 1)t/ |Vul?dx — (d — 1)t/ u| ‘5 dx.

Doing some algebra,

= 2t/T°0(t x)dx—t/\Vu\ dx—t/latu\zdx— —t/| u = dx = 0. (3.11)

Therefore, Q(t) is conserved.
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Now then,

/(t2 + XD T (t, x)dx — /ztijoi(t, x)dx

[0 ) } 2, 1 x 1 5 d— 2041,
—/(t + 1] )(2|3tu\ +2|| A -vu? + I(V ™ IBy)u\ +2(d+1)lul T )dx
1 (3.12)
/(t+|x|) [Luf?dx + = /(t—|x|> |Lul*dx
1 2 d i 1 2 2d+11)
+§/(t +\X| NV — ﬁé)r)ul ax + ——— 2(d+1) /(t +|X| Yu| &1 dx.
Next, integrating by parts,
1 1
5((t + 1XDLu, (d = Du)> + 5(@ — [xDLu, (d = Du)pe
1 (3.13)
=(d- 1)t/(atu)udx+ d- 1)/u(x -Vuydx = (d — 1)t/(atu)udx - % /lulZdX‘
Since
_ _1)2 _
- d(dz 1)/lulzdx-i— (dTl)/lulzdx:—%/lulzdx, (3.14)

(3.12)-(3.14) imply that Q(t) is equal to the right-hand side of (3.4).
Now then, translating in time so that the initial data is at time t = 1, (3.3) implies that £(1) < oo.
Since £(t) is a conserved quantity,

/ / u = dxdt < &dt (3.15)
1 1
Time reversal symmetry of (1.1) implies (3.1). |

The computations using the stress-energy tensor also yield a Morawetz estimate.

Proposition 3.2. For any T > O, if u solves (1.1),

/ /[IXI3 +m|u|ﬁ]dxdt§ sup [ Vexull%. (3.16)

te[0,T]

Proof. Since u is radially symmetric, we compute in polar coordinates. Let M(t) denote the Morawetz
potential,

d-1
M(t) :/utu,rd‘ldr+ T/uturd‘zdr. (3.17)
Using Hardy's inequality,
sup IM(t)| S sup [Vull?, + lucl. (3.18)
0<t<T te[0,T]

Next, by the product rule,

%M(t) =/utunrd’1dr+ %/ufrd’gdwr/ UseUr 781y + d_Tl/ ugurd=2dr. (3.19)
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Integrating by parts,
-1 d—1 f 545
Ul dr + —— [ ur dr=0. (3.20)
Next, integrating by parts, since Au = u, + d%lu,,

/Auu,rd’ldr-i- d;zl/Auurd’zdr: —W/uzrd"‘dr. (3.21)

Next, integrating by parts,

/|u|d Tyt — —/ | A - zdr_fd—/mﬁdff) ri=24dr, (3.22)

Since (3.21) and (3.22) have the same sign, the proof is complete. |

Finite propagation speed also allows us to cut-off in space, which will be important to the proof of
scattering. The reason for this is that examining the conformal energy in (3.4) implies that

tz/ ) |Vt,Xu(t,x)|2dx§£(t)+/ [u(t, x)|dx. (3.23)
xl=51tl |

X< 1t
Thus, a cut-off in space yields a better bound on (3.18).

Proposition 3.3. Suppose u solves (1.1). Forany T > 0, if x € Cgo(Rd), xx)=1for x| <1, xx)=0
for |x| > 2, then for any § > 0,

1
/ /X(* W | | ]dth <5 SELIP ||Vtxu”L2(‘X\<25T) + sup 52T2 Hu”LZ(\XKuTy (324)

Proof. This time use

d-1
M(t) = /x(%)uturrd’ldr—i-T /x(%)uutrd’zdr. (3.25)

We can use the same computations in (3.17)—(3.22), only we also have to take into account the fact that
when integrating by parts, derivatives can hit x ($). Now then, since

1 .
|V(k)x((%)| <k ST for k=1,2,3, and is supported on 8T < |x| < 28T. (3.26)

Moreover, for any | > 0

1 X 1 .
ﬁlv(k)X(ﬁ)l <kl prmrny for k=123, and is supported on 8T < |x| < 28T. (3.27)

Therefore, the contribution of the additional terms coming from x (%) is bounded by

E /T/ |V xul?dxdt + E /T/ [u|?dxdt
8T Jo Jst<px<osT oX 83T Jo Jor<px<asT

1
5 SUP Hvtxu||L2(|x\<2§T) + sup 82T2 ”u”LZ(|x\<25T)
te[0,T]

(3.28)
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Next, we prove a local energy decay estimate.

Proposition 3.4. Forany T > O, R > 0, if u solves (1.1),

/ / XGRIVUP + 1 ]dxdt S SUP et -asr
|x|<R te[0,T] -
(3.29)

Z(d+1\

lullZ + SUP lull e
32T2 L2 (x1=28T) o] LA (xi<2sT)

+ sup

Proof. Define (1) € Cgo(Rd) and suppose y(rn) =1for0<r <1,y () = % forr > 2, and 9,(ry (1)) = ¢ (1) >
0 for r > 0. Now, define the Morawetz potential

r r d—1 r T
M(t) :R’l/x(a—T)x/J(i)utuﬂddr—k TR*l/X((TT)zzf(ﬁ)utur”“dr. (3.30)
Asin (3.25),
1
sup M(t) <5 SUP ”Vtxu”Lz(‘XKzﬂ) + Sup 52T2 ||u||L2(\x\<28T) (3'31)
0<t<T te[0,T]

Next, by direct computation,

d
M) =R /x(—w/( Yyt dr+—R / Gy (o r=tdr

(3.32)
+R*1/x(—>w< yuguridr + 21 / (—)zp( D yusurttdr.
Integrating by parts in r, by (3.27),
R [ yuerldr + 11 SR [ uirt-iar
) ) (3.33)
__* T T 04 1 )
-2 /X(STW(R)MJ dr+ 8T /3T5\x\525Tuth'
Next, integrating by parts and using (3.27),
d— g 1 d— i1
/x(—)w ) (U + —— U-V)Uv dr + TR x(—)w( D)+ uv)w dr

1 1 1 1
= (—) (= )u2r3dr+ —/ Vu)2dx + 7/ —) ( )uzr"l 3dr + —— u?dx.
2 /X ¢ 8T T§\x|§257’| | R ( d/ 83T3 §T<|x|<28T
(3.34)

Now then,

1 / ' / 2 W2
x \Vuldxdt + / / dxdt
T Jo Jst<ixi<2sT 8373 ST<[x|<28T

1
<5 ts}ég ”Vtxu”Lz(‘XKzar) + Sup 52T2 lu ||L2(\x|<28T)
€

(3.35)
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Also,

// (v (urt 3drdt<//( Wu2dxdt (3.36)

and we can use Proposition 3.3 to estimate this term.
Next, integrating by parts,

R ve oy wrddr — A 1 p- /
R /X(BT)V/(R)Iuld uu, ridr 5

e / SV DI dr+i/ GV (D274 4 wdx (3,37
T 2(d+ 1R RZ ) X 5T ST<|x|<25T (3:37)

2(d+1) 2(d+1)

== /x( (I 1 1d“fi/ Jul = ax.
= 2R(d+1) 8T Jsr<<26t

The last inequality uses the fact that ¥/(r) < 0 for all r. This completes the proof of the theorem. [ |

4 Scattering in the d = 4 Case

The proofs of global well-posedness and scattering are slightly different in the d = 4 and d > 4 cases.
We start with the d = 4 case.

Theorem 4.1. If u is a solution to the conformal wave equation,
U — AU+ uliu=0, u(0,x) = up € H7?, u:(0,x) = uy € H Y2, Ug,u1  radial, (4.1)
u: R xR* - R, then u is a global solution to (4.1) and scatters, that is

frull % < C(ug, u1) < o0. (4.2)

3 (RxR4)

Remark 4. Note that Theorem 4.1 does not state that the bound on (4.2) depends on the HY/? x H~1/2
norm of the initial data, but rather depends on the actual initial data (uo, u1). The proof that a
bound exists that is a function of the H? x H~'/2 norm will utilize the profile decomposition.

Proof. In this case, it will be helpful to begin with a more detailed explanation of the approximation
analysis that will be used in every subsequent proof.

By time reversal symmetry, it is enough to show that ““”L}‘i/%[o,oo)xw)
translate in time so that the initial data is at t = 1 and show that [jul|;
that we do not need to worry aboutt < 1.

Again let x € CP(R*) be a smooth, cutoff function, x(x) = 1 for |x| < 1 and x(x) = 0 for |x| > 2. Then,
split the initial data,

< oo. Furthermore, we can

198 (LooyxR) < OO This means

Up = Vg + Wo, Uy =Up + Wws, (4.3)
where
X X
Vo = X(ﬁ)PsNUO, U1 = X(ﬁ)PSNUL (4.4)

forsome 0 <R < oo and 0 < N < co. Here Py is the standard Littlewood-Paley projection to frequencies
< N. By the dominated convergence theorem, there exists some N < oo such that

IP~nUollppz + IIPsnU1llgg-12 < § (4.5)

It is convenient to rescale the initial data so that N = 1.
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After rescaling, the dominated convergence theorem implies that there exists some R < oo such that
X X €
||X(§)P51U0||H1/2 + ||X(§)P51U1||H71/2 =3 (4.6)
Therefore, if £(t) is the conformal energy of v, since d = 4 and v is radially symmetric,

Et) = % / It + [XDLu + 3v|? + |(t — x])Lv + 3v|?dx + 2% /(t2 + X1 dx, (4.7)
JRd .

where L = (d; + 9,) and L = (3; — 9y). Then by direct computation using the Fourier and spatial support
of vg and vy,

EWMl=1 S R0l + R2valZ + R2Jvoll %3 + 1vollZ < R2(volZ,. + 101l3,,0). (4.8)
Now, for any o > 0, define
oX oX
wg = x(—-)P_1wo, w] = x (5 )P.1w;. (4.9
R o R o
Foranyo > 0,
EWo + wf, v1 +wi) < oo. (4.10)

Therefore, by Theorem 3.1, if u” solves (4.1) with initial data
ug = vo + wg, uf =v1 +wj, (4.17)
then
U llzor < Clo, Uo, 1) < 00, (4.12)

and therefore u° is globally well-posed and scattering.
To prove Theorem 4.1, it suffices to prove (4.12) holds with a bound that does not depend on o, that
is,

lu® ||L[10/3 < C(up, Up) < o0. (4.13)
Then, since
limu§ = uo, in  HY?, and limug = uy, in  HY? (4.14)
o\.0 o\0

in that case (4.2) follows directly from standard perturbation theory. The reason for making the
approximation of the initial data in (4.11) is to guarantee that the solution u” is global and scattering,
so that we can make a bootstrap argument. We suppress the o’s for the rest of the argument. ]

Remark 5. Please note that it is perfectly fine to prove a bound on flull o5 that does depend on R,
since R is fixed as o \, 0. ‘

Now decompose (4.1) into a system of equations,

Wy — AW+ WEW=0, wOX)=wo,  W(0,x) =w,
) ., (4.15)
Ui — AU+F=0, F=ul3u—|wlzw, u(0, X) = vy, Ut(0,X) = V1.
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By (4.5), (2.5), Theorems 2.2, 2.3 and Lemmas 2.4 and 2.5,

||WHL§L§(RxR4) + |‘w‘|L}3/3(mxm4) + \||X|3/5w||L§L;°(RxR4) + |HX|11/1OW||L;>°L;°(RXW) + |||X|w”Lt1§<(R><]R4) S €. (4~16)
By direct computation,
d 1 4 4 4
—E@W) = —5((t+ [XDLu + 3v, (t + [xD(JulF U — (w3 w — [V]ZV))
dt 2
(4.17)

1
=~ 34t = IXDLy + 30, (t = XDl u — [w]Fw — vl v)).

Also by direct computation,

4 4 4
[ul?u— [wizw — (vl < [wlvl(vl? + [w3). (4.18)
Therefore,
4 4 4 4/3 1/3
Ixiquizu—ulrv = wiswle S |||X\WHL;OIIUIIL{O/3 + |||XIWI|L;0||LUHL1/0,3 Vil (4.19)
; :
and
<1
Wl gy S 5 MXIWHLe, (4.20)
SO
el u— ot s <1 5 4 2wl w2 401
HECAulZ U = VIEv = [WIEW l2gxsem S g”lX‘WHL%O”U”L}(O/z + gIIIXIWIIL;o IIWIILiMIIUHL;w- (4.21)

10/3 « £

Since |vll ;s < 52, our goal is to estimate [ 2Rt If v solves vy — Av + |u[*?v = 0 then &1 = 0.

T
Since

Vit — AU+ U[*3u = —u/*u + )73 + JwtPw, (4.22)

the error arises from replacing the vy terms in %E(t) with the right-hand side of (4.22),

d 4 4 4
—EM) = —t/ [(t+ 1XDLu + 3v](Jul? u — [w|3w — [v|3v)dx
at Jixissi

—t/H W[(t — IXPL + 3v](uliu — (w3 w — v fv)dx (4.23)
X|=

1 E()°1° 1EMm*°

3 g MKWl + 5 =g lxiwlge wil ..

Now then, by the fundamental theorem of calculus, for t > 31%

e(t)zg(amtwr/ %E(T)dr, (4.24)
t

t
5172
andforl <t < s,

t
8(t)=5(1)+/ i5(r)air. (4.25)
1 dr

202 aunp 9z uo Josn AysiaAun suiidoH suyor Aq 8GEE€0S//8Y2L/6/¥202/2I0e/uiw/wod dno-olwapese//:sd)y wolj papeojumoq



7762 | B.Dodson

Now, by a change of variables,

_12 t2

e} 1/2 5]
/ £67H dt=81/2/ ipdt, (4.26)
s 1t
and
-1/2
/ S(O) €O 4t < £00). (4.27)
1

Next, by Fubini’s theorem, letting t' = sup{1, §/?t} to simplify notation,

1 E(s)%/10 1 E@)°
/ / (2/5 H|X|UJ(S)||L100150“Jr/1 / (3)/5 lHx[ws) Iz ||W||i{03/3d8dt
. B

oolg 9/10 oolgt4/5
N/ © ||\x|w<t)||L;odt+/ 10 Nl ® e w15 dt

t9/5 F) t8/5
(4.28)
E(t
Sf(/o ED avo il + (/ dt)4/SIIIXIWIILwIIWllll/oa/z
55(/ Earpno 4 < ( T gy
JO

The terms with (t + |x|)Lv and (t — |x|)Lv may be handled in exactly the same way, so using (4.18) and
(4.23), it remains to compute

t t
/ / t[(t + X)L + 3v]|w|[v|*3dxdr, and / / t[(z + XL 4 3v]|w[*3|v|dxdz, (4.29)
|x]=8t] v Jx|<8|t|

separately.
It is convenient to replace £(t) by

E(t) = sup £(s). (4.30)

O<s<t

Note that ££(t) is bounded by the right-hand side of the absolute value of (4.23). We abuse notation
and let £(t) denote £(t).
Now, let R = inf{(£Q + L2£07)-1 g1y},

Remark 6. All time intervals are [t', t] where t' = sup{1, §'/%t}.

By Holder'’s inequality,

t
t/ / [(z 4 [xDLv 4 3v]|w||v|*3dxdz
t JIxI=R

1/2 — 1/2
S U+ KDLV + 301 I + XD+ 30H
(4.31)
1/2
XIWlizis | 7 lmunLgqu,SR)n\anmxw
1/2 1/2

1
SEQM IR+ BLY 4 30LL e 0t s VL e IV
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and
t
t/ / [(x + [xDLv 4 3v]|w|[v|*3dxdz
812t J R<|x|<8|t|
a5 =} 15 35 1 s
SN+ XDLU + 301 gy X7 @+ IXDLY + 3012 o KPP Wiz ||Wu||w“x|9m) (4.32)
— 1/5 4/3
SO NRITHE + KDLV + 30,2 e ey 1K Wlhizngo | s |3/1o VI sy
Next,

t
t/ / [(x + X)L 4 3v]|w|*3|v|dxdz
512t J|x|<s|t|

4/3 2/3 1/3
SR WD NXI 201 12 + IXDLU + 30l 11X V11 (4.33)

L2130 Ll

< 1/2 3/5.,,14/3 3/2,.112/3 1/5 2/15
S EO YN WL N2V NKIVEL oo WO g

By the Sobolev embedding theorem and radial Sobolev embedding theorem,

X1Vl axi<sien 1Vl 0x<srey S ”X(8|t\)UHH1 < ||X(5|t|)VU||L2 + ﬁ“““&ux\szmuy (4.34)
Now, for /2t <t < t,
fIIX( DViv @l < < IIX( @+ 1XDLU + 3vhe + HX(*){(T [XDLv + 3u}llr2 + IIX( DVl (4.35)
Now, by Hélder's inequality and [[u(0)ll )3 < £p,
IIX(%)U(T)HLZ < O ullos < (604’5‘9(%10 S 8APE). (4.36)
Plugging (4.36) into (4.35),
TGO VeV @l S E@)2 + 82058 @), (4.37)

Plugging (4.37) into (4.34),

SY2L/5 € (7)3/10 . SY2L/5 € (7)3/10

XV () g gxi<sitn » ”U(T)HL‘*(\X\<§|U) = 5(7)1/2 . St (4.38)
Again using the fact that §V/?t < ¢ < t and £(t) is increasing,
g(t)l/Z tl/Sg(t)3/10
XV (D) g2 (xi<sty» ||U(T)||L;l(|x|55t) Sa T + T . (4439)

Next, we utilize the Morawetz estimate in Proposition 3.3 and the local energy estimate in Proposition
3.4.

Proposition 4.2. For any T > 1, T = sup{1, §Y/°T},

E(T) 2/5£(T)3/°
|3 <5 e S
/ /X(a )[|X|3U T \U| ]dth TZ + 5

T
//x(—)\w||u||w|<|u\1/3+|w|1/3)dxdt+/ /x(%)\m%w(w\”%|w|1/3>%dxdt.

(4.40)
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Proof. Recalling (4.4) and the proof of Proposition 3.3,
Utt—AU+|U|%U+[F—|U\%U]:O, (4.41)

1
/ / |X|3 m\u|10/3]d><dt <s

1
Sup ”VIXMHLZ(‘XKQ,;T) + SUP 62T2 |IM|IL2(‘X|<25T)
te[0,T]

(4.42)
+/T/ () IVUl[E = vl v)dxdt
v ] KT
T . 1
+/ /X(—)IU\[F [u]? v]— dxdt.
T x|
Now then, by (4.34)-(4.37),
1 EM T3S
sup IIVtquILz(‘XKm) + sup 82T2 \|u||L2(‘X‘<2m <s Tt (4.43)

te[0,T]

Finally, plugging in the bounds in (4.18) to the final two terms in the right-hand side of (4.42) proves
Proposition 4.2. |

Next we prove a local energy decay estimate.
Proposition 4.3 (Local energy decay). Forany T > 1,R > 0, if T' = sup{1, 8T},

a7 E(T)  TPET?3P
1 o 2 < e S
/ (/W X170+ vfldxde <5 S0 4 T

/ /x(—wf( ) IVUIDIIGUI + i)t (4.44)

//x(—w( )P wl(ul? + jw|*?)dxdt.

Proof. As in Proposition 4.2, the proof follows directly from the proof of Proposition 3.4, 4.18, 4.41,
and 4.43. |
Next, we show that we can absorb the error terms in Propositions 4.2 and 4.3 into the left-hand side.
Proposition 4.4. For T > 1, T' = sup{1, §V/?T},
ET)  TPEM

2 10/3 <,
sRliIgR / AKRX(—) IVu|? +v? dxdt+/ /x(—) IX\3 24 —IU\ Jdxdt < -t ™
(4.45)

Proof. For any 5 > 0, by (4.16),
/ /x(—)\ul le(lu\m—i-|w\1/3)|ildxdt

< [xGp < ||u\10/3>1/4<//x< I |3|u| B Wl o) Vs (4.46)

X X
Sn(/T, /X(ﬁ)lvlwﬂdxdtﬂrn(/? /x(a )X v2dxdt) + CODE* 1V <om)-
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For n(8) « 1 the first two terms on the right-hand side of (4.46) can be absorbed into the left-hand side
of (4.45). Now, by (4.39),

S(T) TZ/SS(T)3/5

CODIVIE et <o IWIE2ps S Ce® (7 = (4.47)
Next, for any R > 0,

1 T 1

Zah(=y < =
VST (4.48)

so as in (4.46),
sup ¢ / / (—)xp( L) ol twiul + [w)2)dxdt

} (4.49)

<n(/ / X )|u|1°/3dxdt>+n</ / 52X+ CODIV 5y 101

Next, using (4.31)—(4.33) and splitting into the cases |x| < R and |x| > R separately,

// VU1 Ul + fw] V)t
X
< ||x<ﬁ>“2w||§£32R1/6<supR MHX( =) 2Vl <) 2 Wl

X 1 1 1/2 NG
il (=
”X((ST) X372 H

||x< X[/50°® || (4.50)

Ll
|x[3/10 "L

X 4/5 1y—
+||;<<5—T>1/ZVU||L;CL R mo(supR “2nx< )“2vv||LzX<|X|§R>>“5|||x\3/5w||mnx<—)3“°

e i LR e (R

12130 LI

HIVUIle12x1<267) HX( vl w|

\X|3/2

< n(supR 1||x( )WVUHLz)

+n(/ / (6T i |3 [v|?dxdt)

X 10/3
([ [ x

E(T) TYPEM)3P
T2 T2 ’

(4.51)

+C(n)e?

For n(8) > 0 sufficiently small, we can absorb the first three terms of (4.51) into the left-hand side of
(4.45), which implies that (4.51) is controlled by the right-hand side of (4.60).
Finally, since y/(§)§ < 1, s0

/ / (—)x/x( DY RIuIY + ) )yrdxdt S (4.50), (4.52)
R>O R s12T
which by Propositions 4.2 and 4.3 proves Proposition 4.4. |

The above computations may also be used to estimate (4.31)-(4.33). First, by Propositions 4.3,
(4.33) 5 EONXPPWIzroqsv2e g xre) + EPEOYIXIP Wiz 5120 R0 - (4.53)

Multiplying this term by + and integrating in time, choosing e < 8, by (4.17),

E(t E(t
/ C(a) |||x|3/5wuLgL;o(WmxmmNC(8> / ()dt<< / %dt (4.549)
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Also,

o0 5(04/5
/1 C© t9/5 |||X|3/5w||L§L;°<[sl/2t,5t]xn§4)dt
£ *1
< CEX( /1 t—zdt)‘*/S( /1 Yu|x|3/5w||imo(wt_tw)dt)”5

< eC(a></1m %dt)‘“s <</1 EO g1,

Turning now to (4.31) and (4.32),

1/4 -1/6 1/2 1 1/2 5/6
LY IXITY (T + IXDLU + 3N ey Wl 72 ez 1XIV s <y

E) t2/55(t)3/5

<s t3/25(t)1/4R1/6( =

11/12
Y2 w2

E(t)  tPEM)3S

=trPEO (T + YWl S E® +PPED ) Wl

tZ
Now then,
i S(t)3/5 d
C(S) ||w||L2L4 t+ C(5) o5 NWllz212 sv2e g mes) AL
E(t EM
< C(d)e / « )dt-l‘ C(5)(/ ¢ dt)3/5(/ ”WHL7L“ ([6Y2t,()xR%) dt)z/s
t
< / & )dt + 1.
0
1
2/5(|x|~1 1/5 3/5 L4
tE@ NI {(z + X)L + 3U}IIL31X(R5|X|§W)H\XI Wizl |x|3/10U‘|L15¥3<|X\56|t\)
E) | tPEWMP
S PRTVOEMM (5 + ) VI P wlle
S E® +PEOYNXP Wl
Then,

%) tl/Sg(t)4/5
o) / E O Iz s+ CO) / e Wl e B

* £t £t *1 * £t
< C(B)e/o %dqu)(/o %dt)%(/o IR PWIE 0 2 ey 4D <</O %dtﬂ,

Therefore, combining (4.56)—(4.59) with (4.24)—(4.28) implies

/ g(t)dt<£(1)+ / g(t)dt
1

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

for some 0 < n « 1. Observe that £(1) depends on R, and R(e) > 1 for e « 1, but crucially [;° £2dt does

not depend on the ¢ > 0 in (4.10).

5 A Modified Small Data Argument

Extending the argument for the d = 4 case to dimensions d > 4 has a number of technical complications

due to the low power of the nonlinearity |u| Ty when d > 4.
Indeed, ford > 4,ifu=v+w,

7T u — V] 7T — [w T w < inf{lwljvl 7, [vllw| 7},

(5.1)
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Therefore, when computing the first two lines of (4.23) for d > 5, if we place w e L?X, where X is some
weighted LP space and v € L2Y, where Y is some weighted L4 space, we would need to place (t—|x|)Lv € L[Z
for some r < oo and Z another weighted Banach space.

The obvious candidate for this would be to use the local energy decay estimate in (4.44). However,
(4.44) does not quite give a bound on a weighted L? space. Instead, (4.44) only implies

ET) | TET?S

NXI7H2(E = KDLV (3 ppry S I + — (5.2)

Remark 7. In dimensions d > 4, T¥°£(T)%/° will be T*D&(T)1~*@ for some a(d) \, 0 as d — oo, but
this is not too important to the discussion right now.

To work around the logarithmic divergence, we would like to use an argument similar to the argument
in (4.31) and (4.32), namely to set

EM TeEM™
R= (? + T

)7 (53)
and consider the cases |x| < R and |x| > R separately.

When |x| > R, the computations are pretty similar to the d = 4 case. Taking |w||u|ﬁ in (5.1) gives
(%T) + T“%?H)“ for some 0 < B < 1 along with R#~!, and then we can proceed as in the d = 4 case.
However, for |x| < R, by (5.1) we at most have a second order power of v. Therefore, in that case we
cannot copy the analysis for (4.31) and obtain (£ 4+ TED™)1+#'R' for some g’ > 0.

Remark 8. Observe for example that the computations in (4.56) relied very heavily on the fact
that the error term considered was of the form |U|% |[w| and % > 1.

What comes to the rescue is that, since w is a solution to the small data problem, v should usually be

larger than w, and when it is not, we can put that part with the equation for w at minimal cost. Instead
split u = v + w, where

Vi = AU+ (L= xCDUITTU=0, v =vo,  (0,X) =y,

wtt—Aw—i-x(%)luld%u:O, w(0, X) = wo, wi (0, X) = wh, o
(Vo, v1) and (wo, wq) satisfy (4.3)-(4.6), and x € CF(R), x(x) = 1 for |x] <3 and x(x) = 0 for |x| > 6.
Theorem 5.1 (Small data result). The initial value problem

wn—Aw-i-X(%)Md%u:O, w(0, x) = wo, w(0, %) = Wy, (5.5)

is globally well-posed and scattering. Moreover,
HWIILt% . + “w”LgLE% i) Se, (5.6)

and forany 0 <6 <1,

X F 0w Soe (5.7)

20,577 (RxRY)

Proof. First note that by the approximation analysis in (4.9)-(4.14) and persistence of regularity, u and

w are smooth, 50 x (34) is well-defined.
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Define the Picard iteration scheme

sin(tv/—A) w

w(t) = cos(tv/—A)wo + NS

and forn > 1,

tsin((t — 1)v/—A
NEN XD

w ) =w) _/ )|u(r)|ﬁu(t)dt4
0

First, since | ;7| < 6 on the support of x (7)),

1y

W™ 2 Se+ w500 .
= g &2

L, (RxRY) L 5T RxRY)

Therefore, for € > 0 sufficiently small,

W™ 2w Se.
L, 5T RxRY)

Next,

Usin((t — 1)v/—A u
— 2 Xgw

wm () —w™ () = /
0
We show
u u 4 _ 4 _ 4
[ () = X () M@ u@) S w® = wD|(w ™7 4 (w7,
Indeed, when [w® — w™ Y| > jw®| 4wV,
u u e < )+ =1 1+ 14
[X(W) - X(W)]W(TN‘H u(@) S IwTTE 4w |
S w® —w P wE 4w,
For [w™ — w® | « jlw™| 4+ |[w™ |, by the fundamental theorem of calculus,
Yy

u

u u T d
xGw) ~ 1 Gam) = /o T r a—nwen T

1 u u
4 (m (n=1)
= — S(w'™ —w dr.

/0 X (fw(n) + (1 —-7)wh=D ) (tw® 4+ (1 — 7)wh=1)2 ( yar

By the support properties of x,

, u u < 1
x'( =) 7 S T
Tw® + (1 —)wn (tw™ 4+ (1 — r)ywh-D) u
so (5.13) also holds. Therefore, by (5.12),
W™D — WO e < et w? — WD e :
L, ®RxRY) LT (RxRY)

2(d+1)

u 4
) = X () U@ T u@dr.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

which by the contraction mapping principle implies that w™ converges in L, ' . By Theorem 2.3 and

Lemmas (2.4) and (2.5), (5.6) and (5.7) hold.
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6 Scattering When d > 4

Now we are ready to prove scattering when d > 4.

Theorem 6.1. If d > 4 and u is a solution to the conformal wave equation,

Uy — AU+ [u|TTu =0, u(0,x) = ug € HY?, U0, x) = up € H 12, Up,u;  radial, (6.1)
then u is a global solution to (6.1) and scatters, that is
Ul 2@ < C(uo, U1) < oo. (6.2)
AT ®xRY)
Proof. Let
u 4 4
F=@=Xx( )= —ju=v. (6.3)
Asin (4.8),
9 9 9 2(d+1)
EM) SR Vol + 1Vl + IVollyss - (6.4)
Also, as in (4.17),
d 1 1
FEW = =5 {t+ XDLU + (d = v, (t+ XDF) = S {(t = XLV + (d = Dv, (t = [xDE). (6.5

Since 1 — x(3) is supported on the set |u| > 3|w|, and therefore, [u| 2 |w| on the support of (1 — x ().
Therefore,

IFI < vl 6.6)
Also,
u 4 4 4 4 u 4
F=1-x()ul™u— |TFTv = [JulFTu — u|FTv] — x () ul™Tu
w w
6.7)
< WIVIET + ] 7) + Wl H < w71
Next,
. EM
4 +
NxIFllzgsy S MXIWI 20 Ul S S —Z—XIWI 20n (6.8)
LS @Y T (R t@T L, @Y
Using (2.18) and the radial Sobolev embedding theorem,
< w7 - < 69
xIWI 2¢n S Hxfwi e Hxwi S € 6.9
L, (RxR9) LELXZZ’% (RxRY) L?CLEZ’% (RxR?)
Plugging (6.8) and (6.9) into (4.28) gives a similar bound. Next,
1
N2 (xzspen S E|||X\F||L2, (6.10)

which we can also plug into (6.8) and (6.9).
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Now define

S(t) td%g(t)if%

= 1nf{( 2

)7, 81t}
Whend > 5letr= %, and then if t' = sup{1, §7/2t},
t
t/ / I(z + |x))Lu 4 (d — 1)v||F|dxd
t JR<|x|<8]t|

St +[xDLu + (d — 1)UIILmLz 11X~ {(t + IXDLU + (d — 1)U}|

e I VI T w0l

_ A d+1
SHEOP I+ PDLY + @ = DOy VI I Wi

(6.11)

(6.12)

Remark 9. Once again, the terms with (t+|x|)Lv and (t—|x|)Lv can be handled in exactly the same

manner.

Then by Holder's inequality and (6.11),

S(t) tF e

1 a5
SEOT (5 )7 - ( sup RVl qapgeon + =5Vl grizo) ©
t R<R<M |X| /
/ / dedt)d = 1w||L7U.
t |x\<5t
When d =5,
t
t/ / [(r + X)L + (d — 1)v||F|dxdz
v JR<|x|<8]t|
_s 1 _2 13 2/3
SN XIWH 218 e | oi7s 73 Ullez 11X S+ xDLu+(d — DU ez ) I (E + IXDLU + @d=Dvllp,
S(t) tzg(t)z / / —|U\3dxd‘[)1/3
v Jx|<st [X]
x( sup RVt Veavlliz ei<on) +tlam ‘g/zu\mxaxwt)) IHXIWll 20
72<R<5‘
For x| < R, let
g_d-2 d-2d-1 d-1 1 1 1 s L ()
= — o — o —_= — @= —— - %"
2 2 2 2 p 2000d3’ 100043’ d-3(E 1)

t
t/ / [(t + X)L + (d — 1)v||F|dxdt
v Jxi=rR

T -1 FER
S I+ XDLY + @ = DVl X7+ DLV + @ = DV e
= Tt s
S el o GOl wnm

S QT IR sup RV Vil2 uyer) + |

1 -3
@ T«
Ulli2, qxi=st) @V
O<R<st |x|3/2 7 I=20

1 r = s
Xl Ul g X GOV Nl w|Lsz

Now, similar to Propositions 4.4,

(6.13)

(6.14)

(6.15)

(6.16)
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Proposition 6.2. Ford > 4,if T > 1, T' = sup{1, §V/?T},

supR~ / / X(—) [IVU|? 4 v?]dxdt
[x|<R

R>0

, . (6.17)
EMT TawmgM)ar
/ /X(*) +ﬁ|U|d1]d xdt <s Tz +T'
Proof. Following (4.34) and (4.35), for t € [§%/2t, ],
< €T )
IIX( )VtXUHLZ S T2 IV (<257 (6.18)
and by Holder’s inequality,
d-1 2 -1
2 _ 2 E(M)a T#i E(T)
T2 WV guzasn ST m“U”L% STP " S —p — (6.19)

By Propositions 3.3 and 3.4, it only remains to handle the error terms arising from F, where F satisfies
(6.6) and (6.7). We can do this using (6.12), (6.13), and (6.14) combined with the analysis in (4.60)-(4.52)
applied to the d > 4 case. |

Plugging in (6.17) to (6.12)~(6.14), if t' = sup{1, §*/%t},

+1

2

2
o
£ S EM) +/ 7( 2 p lxIwl 200 dr
v T L @)

5(t) tﬁs(t)ﬁ

TCEOEM T st “( YEE w7

2 LZLP (6.20)
Et t1/35 )23 . ‘
+C(8)t4/35(t)1/3( ® %)2/3|HX|W”L§L}§, ifd=5,
2
-‘rC(S)ttd 18(15)d (S(t) + %)HI Id “UJ|| L%@%, if d>5,

X

wheress, p, «, B are given by (6.15). Following the computations in (4.24)—(4.28) and (4.53)—(4.47), we obtain
a uniform bound on

/oo E0 4t < o, (6.21)
1 t

which proves the theorem.

7 Profile Decomposition

Proof. Proof of Theorem 1.1 In light of Theorem 4.1 and 6.1, to prove Theorem 1.1, it suffices to prove

thatif w9, ul) is a sequence of initial data satisfying
Iudlige + Iufllge < A < oo, 7.9
then
sup [[U"|| e < 0. (7.2)
n LT (RxRY)

is uniformly bounded, where u" is the solution to (1.1) with initial data (uf}, u}).
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Indeed, since HY? x H~1/2 is separable, we can take a dense sequence (u},u}) in (7.1). Passing to a
subsequence where (7.2) is increasing, it is enough to show that Theorems 4.1, 6.1, and a standard profile
decomposition argument imply that (7.2) is uniformly bounded for any A. By standard perturbative
arguments, Theorem 1.1 follows. n

Remark 10. Observe that this argument does not give any idea how the function on the right-
hand side of (1.3) depends on A.

The argument proving (7.2) is identical to the argument in [9] for the cubic wave equation, (1.1) with
d = 3, and uses the profile decomposition in [24].

Remark 11. It is useful to use the notation S(t)(f, g), which denotes the solution to the free wave
equation with initial data (f, g),

sin(tv/—A)
v=A

Theorem 7.1 (Profile decomposition). Suppose that there is a uniformly bounded, radially sym-
metric sequence

SM(f, 9) = cos(tv—A)f + g. (7.3)

||u8|\H1/2(Rd) + Hu?”H—I/Z(Rd) <A < oo0. (744)

Then there exists a subsequence, also denoted (u}, u?) ¢ H? x H=? such that for any N < oo,

SOE, uf) = D TISMO@), @) + SORY, RY,), (7.5)
j=1
with
3 3 N N _
Lim hryi sup ISR, Rl,n)llLt%@ = 0. (7.6)

Here, 1"{‘ = ()J},, tj}l) belongs to the group (0, 00) x R, which acts by
TLE(E %) = (M) T EGo(t — ), 1), (7.7)

The I} are pairwise orthogonal, that is, for every j # k,

) AJ Ak . ’
lim 204 20 )2 ()21t — ] = oo (7.8)
n—oo )‘n )L)n

Furthermore, for every N > 1,

N

Il (Uoyn, ul,n)HZHl/zXHfm = Z H(¢}ov ¢§)”12—'11/2><H*1/2
j=1 (7.9)

HIRY RY D2 g2 + On(1).

In the course of proving Theorem 7.1, [24] proved

1

SOt (—
O

1 .
o ), o W) ~ B, (7.10)
TN T W,

J
n
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weakly in H/2(R?), and

X 1 X i
= MS(AT)’ W%‘(;))ltzo - ¢]1(X) (7.11)

n

3S(t + Wyt

weakly in H-1/2(RY).

Suppose that for some j, Wt is uniformly bounded. Then after passing to a subsequence, Wt
converges to some . Changing (¢{),¢’1) to (S(—t))(¢), ¢), B:S(t — tJ)(qb{),qb’l)lt_o) and absorbing the error
into (ROY]’ )

1 X 1 X i . .
((A). = ug(;j)' T u;l(;j)) —~¢lx), weaklyin HY? (7.12)
n n n
and
1 X 1 0 X i . 1/
3:S(t)( i uo(—j), e ul(—j))h:o — ¢l (), weakly in HV=, (7.13)
()7 )7 A

If u® is the solution to (1.1) with initial data (¢}, ¢,), then

TP s <M, (7.14)
L 5T RxRY)

Next, suppose that after passing to a subsequence, A);lt{q /" 4o0. In this case, for any (4%,#1) e HY? x
H-1/2 there exists a solution u% to (1.1) that s globally well-posed and scattering, and furthermore, that
U scatters to S(t)(#h, #;) as t \, —oo.

Jim u® @ = SO@h, Dl =O. (7.15)

Indeed, by Strichartz estimates, the dominated convergence theorem, and the small data arguments in
Theorem 2.2, for some T; < oo sufficiently large, (1.1) has a solution u on (oo, —T] such that

O] g Seo@, @ T;,0,ul (<T;,%) = ST}, 41, (7.16)

((—00,~Tj] xR?)

X

where ¢y(d) > 0 is sufficiently small. Also by Strichartz estimates and small data arguments,

2(d+1)

Jm ISP (=), u? (1) = (G0, Sl e S € 00 (7.17)

Then by the inverse function theorem, there exists some (u (=T; 0, u ( -T)) such that (1.1) has a solution

that scatters backward in time to S(t)(q&{),qb’l) Since u? (- T) € HY? and e T) € H Y2, (1.1) has a
solution that scatters forward and backward in time,

U9 20sn <M < o0, (7.18)
LT RxRY)

and u9 (- T, %) = ug) Tj, %), u?)(—T}-,x) = u1 (=T j,%). Therefore,
S(—E) () T Gy(hx), () % ¢, (1)) (7.19)
converges strongly to

d+1

() T U (=i, 8, W), o) T u? (=, 1x)) (7.20)
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in HY2 x H~1/2 where W is the solution to (1.1) that scatters backward in time to S(t)(q%,qb’i), and the
remainder may be absorbed into (Rf,, RY,).

The proof for Ajntjn N\, —oo is similar. _ »

By (7.9), there are only finitely many j, say J, such that ||}l + 1¢) -2 > €o(d). For all other j, small
data arguments imply

MU 2
LT ®xR

tx

) S Mol + 19} iz (7.23)

Then by the decoupling property (7.8), (7.9), (7.12), (7.21), and Theorem 2.2,

. 2
lim sup [u"1? yesn
n,/oo -1

< uh 2 <S5 'M? + A? < co. 7.22
- N;n (g S2M (7.22)

J
LT ®xRY) j=1

This proves that (5.2) holds.
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