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ABSTRACT. In this paper we prove a Liouville theorem for the Chern—Simons—
Schroédinger equation. This result is consistent with the soliton resolution con-
jecture for initial data that does not lie in a weighted space. See [10] for the
soliton resolution result in a weighted space.

1. Introduction. The self-dual Chern—Simons—Schréodinger equation with m-
equivariance is

mA Ay =0, )

i(0y + i A[u])u + 0%u + %&u —(
where
> QdT/ 1 " 2.0 7./
Ailu] = — (m 4+ Aglu])|ul R and Aplu] = ~5 |u|“r'dr'. (2)
r 0

The Chern—Simons—Schrédinger equation was introduced in [4] as a nonrelativis-
tic planar quantum electromagnetic model that exhibits self-duality. It is a gauge
covariant nonlinear Schrodinger equation on R2. See also [2], [5], [6]. The model (1)
is derived after fixing the Coulomb gauge condition and imposing the equivariant
symmetry on the scalar field ¢:

o(t, ) = u(t,r)e’™?. (3)
See [9], [7], and [8].

Remark 1.1. The non-equivariant Chern—Simons—Schrédinger equation will not
be discussed here. See [1], [3], [11], [14], and [17] for more information.

The solution to (1) has the conserved quantities mass and energy.

1 1 m + Aglu]

1
Blu) = [ Flonul? + 5 Pluf? — S ful*de,
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where we denote [ f(r) = 27 [ f(r)rdr. Indeed, (1) is the Hamiltonian PDE for
the energy in (4). We also use the inner product

uﬂwd%/meBMr (5)

Integrating by parts,

d ) m + Ag[u]
Bl = / Re(9,) 9y ue)rdr + / (—

—/|u|2Re(ﬂut)rdr—/%Ae[u]|u|2/ Re(uuy)r'dr'dr
0

m + Aglu]
T

)2 Re(tuy )rdr

= —{((Orr + %&«)ﬂ, ug) + (( )?u, uy)

o0 oo A
- <|U|2U,Ut> */ |u\2/ MRe(ﬂut)drr’dr’
0 r

L’W)2u7ut>

= (O + 0 )} +
— (JulPu, ug) + (Ag[u]d, ue) = (iug, ug) = 0.

Thus,

Ou = —iV E[u], (7)
where V (acting on a functional) is the Frechet derivative with respect to the inner
product (-,-). Also,

O Mu] = Re/aut = Re/a(i&%u + %@u) =0. (8)

The energy functional can be written in the self-dual form

1
Elu] = /§|Duu\2, )
where D, is the covariant Cauchy-Riemann operator defined by

m + Ag[u]
r

Duf=0,f - /. (10)

Indeed,
~Re [@.7) )y == [ (m-+ Aolu) (1)
_ %/&Ag[uﬂf\Q - i/ooo || rdr.

Definition 1.2 (Bogomol'nyi operator). The operator u — D,, is called the Bogo-
mol’nyi operator. Due to (9) and the Hamiltonian structure, any static solutions to
(1) are given by solutions to the Bogomol'nyi equation

DoQ = 0. (12)

For m > 0, there is an explicit m-equivariant static solution to the Bogomol’'nyi
equation, the Jackiw—Pi vortex. This solution is unique up to the symmetries of
the equation ([12]):

m + Ag[u]
' (11)

,r,m

Q(r) =V8(m+1)———— m > 0. (13)

1 + r2m+2 ?
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Equation (1) has the pseudoconformal transform C,
1 1 .
Cul(t,r) = —u(—=, =)™ /4 £, (14)
(L AN
Since the soliton solution is non-scattering, applying the pseudoconformal transform
to @ gives an explicit, finite-time blowup solution,
1 T 2
S(t,T) = mQ(m)e at t < 0. (15)
It is conjectured that any blowup solution must contain either (13) or (15).
Indeed, [13] proved global well-posedness and scattering for (1) with initial data
with mass below the mass of the ground state,

luollze < Q|2 (16)
Theorem 1.3. Let m € Zxo. Let ¢o € L2, with |[¢o| L2, and
uo||3> < 8m(m + 1). (17)

Then (1) is globally well-posed in L2, and scatters both forward and backward in
time.

Proof. See Theorem 1.3 of [13]. O
Making a u-substitution,
9 o [ rPmid > du

(18)

Remark 1.4. A function ug € L2, if ug € L? and ug has the form (3). A function
ug € H}, if ug € H' and has the form (3).

More recently, [9] and [10] proved a decomposition for finite time blowup solutions
to (1) with finite energy and initial data in a weighted Sobolev space.

Theorem 1.5. If m € Z, and u is a H}, -solution to (1) that blows up forward in
time at T < 400, then u(t) admits the decomposition

u(t, ) = Qxpy v — 275 n L?, as t /T (19)

Moreover, using the pseudoconformal transformation in (14), it is possible to
obtain a similar decomposition for a solution that exists globally forward in time,
but fails to scatter forward in time, for initial data that also lies in a weighted
L?-space.

Proof. See [10]. O

In this paper, we prove a Liouville theorem for solutions to (1) that are global
in at least one time direction.

Theorem 1.6 (Liouville theorem). Suppose ug € H}, for some m > 1 is an initial
data for (1) that has a solution on the maximal interval of existence I. Furthermore,
suppose that I = (—o0,tg), where ty could be +00, or (ty,00), where ty could be —oo.
Also suppose that for any n > 0, there exists R(n) < oo such that

swp [ Jult, )P do < (20)
tel J|z|>R
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where I is the interval of existence for a solution to (1). Then u is equal to the
soliton solution (13), up to the scaling symmetry,

1 t =
=30e )

and multiplication by e*¥ for some v € R.

ux(t,r) A>0, (21)

Remark 1.7. The computations in the next three sections are reliant on the fact
that the soliton lies in the weighted L? space given by the norm ||(z) - ||z2. See for
example (89) and (109). When m = 0, the soliton fails to lie in this space, see (13),
which creates certain technical complications. We do not consider the m = 0 case
here, but see [9] for more information on the m = 0 case.

This result was inspired by the Liouville theorem of [15]. There, [15] proved that
for a solution to the mass-critical generalized Korteweg de-Vries equation,

with initial data close to the rescaled soliton in H}!(R), and with H'(R) norm
uniformly bounded, then the solution to (22) must be the soliton. For the mass-
critical generalized KdV equation, it is expected that multi-soliton solutions occur,
which necessitates additional constraints on the size of the initial data than we have
here.

Unlike the generalized KdV equation, the structure of the self-dual Chern—
Simons—Schrodinger equation is defocusing outside of a soliton. For this reason,
it is unnecessary to require a uniform bound on ||u(t)||g: on I. Also, since ug need
not be close to the soliton, we do not assume an a priori bound on |lug||zz2.

Remark 1.8. For a solution to (1), u € HL! that exists globally forward in time,
then either u(t) scatters forward in time, or u(¢) admits the decomposition

u(t,) — Q/\(t)p/(t) — eitA(im*rZ)u* — 0, in L2, as t — 00. (23)

Here, ¢ " ?y* is the solution to the free, (—m — 2)-equivariant Schrodinger
flow,
1 2)?
i0pu + O2u + ~Opu — Wu =0. (24)
r T

The space H};! is the space of m-equivariant functions, (3), that lie in H' and the
weighted L2-space, |||z|ul/zz < oc.

If (23) could be proved for any ug € H} , then Theorem 1.6 would likely follow
fairly easily, since (23) would at least imply that «* = 0, and thus ||ul/z2 = ||Q]| 2.
This is due to the fact that a scattering solution, or a solution with a scattering
piece could not satisfy (20).

The proof of Theorem 1.6 may be broken down into three steps. First, using a
virial identity combined with (20), we prove that any solution to (1) that satisfies
(20) must have the mass of the soliton,

u(®)l2 = QI 2 (25)

Next, using an argument analogous to the argument in [16], we prove that a
solution to (1) satisfying (20) and (25) must be global in both time directions.
Indeed, any finite time blowup solution with |lug||z2z = ||Q]|L2 must be a rescaled
version of (15), which clearly does not satisfy (20).
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Combining (20), (25), ug € H', and the virial identity shows that u(t) is the
soliton.

2. Mass above the soliton. In this section, we prove that if (20), then u has the
same mass as the soliton.

Theorem 2.1. Suppose ug € H' is an initial data for (1) that has a solution on
the mazximal interval of existence I. Also suppose that for any n > 0, there exists
R(n) < oo such that

swp [ Jult, )P do < (26)
tel Jiz|>R
where I is the interval of existence for a solution to (1). Then ||lu|r2z = ||Q| L2,

where @ 1is the soliton, (13).
Proof. We prove this using the virial identity

O /Im(ﬁ -ropu) = 4Eu). (27)
Lemma 2.2. For any solution u, 0 < R < oo,
T _
sup [ w( ) mln10,u) Savia, o B (28)
tel

Here 9(r) € C*°(R?) is a radially symmetric function, ¥(r) =1 forr <1, ¥(r) =

% for r > 2. Moreover,

Or(p(r)r) = o(r), (29)
where ¢(r) is a positive, smooth function, ¢(r) = 1 for r < 1, ¢(r) supported on
r <2, and ¢(r) = x(r)? for some x € C§°(R?).

Proof of Lemma. Consider two cases separately, when ||u(t)||g1 is uniformly
bounded, and the case when ||u(¢)|| g1 is not uniformly bounded.
Case 1.
sup | Vu(t)| L2 < oo. (30)
tel
In this case, I = R. Now then,

r B r
/w(E)Im[u -rOpu] S sup ||VU||L2H¢(E)7°UHL2 Supu) Bsup [[Vu(t)|| 2@y S R.
tel tel

(31)
Case 2. Since ||Vu(t)||z2 is continuous in time, if sup,c; [|Vu(t)||2 = oo, then
there exists a sequence t,, such that

V()| = n. (32)
> [Vu(tl
o U\Tln ) || L2
M) = T 9aQls (33)
Plugging A(t,) into (21), let
O(tn,z) = ﬁuan, ) (34)
By direct computation,
Blo(t)] = 5755 Elut)] = 555 Eluol. (33)

Now, recall Proposition 4.1 from [10].
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Proposition 2.3 (Decomposition). Let Z1,Zs € CZ,, be profiles that satisfy

(AQaZI)r (’LQ, Zl)r
d“QMa@» wz@»)¢0 (36)

Here, A is the operator 0, + 1. Then for any M < oo, there exists 0 < o™ < 1
such that the following properties hold for all uw € H}, with ||ul|p2 < M satisfying
the small energy condition \/Elu] < o*||ul| g1 -

There exists a unique (\,7y) € Ry x R/27Z such that e € H},, defined by the
relation

u = [Q + 6],\,7, (37)
satisfies the orthogonality conditions,
(67 Zl)T = (67 ZQ)T = Ov (38)

and smallness
lellyy ~ar AV/ETal. (39)

Remark 2.4. The space H., is a function space adapted to the linear coercivity
of the energy. When m > 1, as is true in this paper, the spaces H} and H}, are
equivalent.

Proof. The proof in [10] relies on the uniqueness of the soliton as a function with
zero energy, the nonlinear coercivity of energy in [10], and the implicit function
theorem.

Proposition 2.5 (Nonlinear coercivity of energy). For any M > 0, there exists
n > 0 such that the nonlinear coercivity

EQ + ¢ ~ar el - (40)

holds for any e € H}, with ||e||r: < M satisfying the orthogonality conditions (38)
and smallness |[€] ;<.

Proof of Proposition 2.5. We follow the argument in [10]. Observe that, by (10),

A
26[Q + d = |Daue(@ + Ol = [0,(Q + )~ TG gy, (a)
Now then, since Dg@ = 0,
A €
8T(Q+e)—m++[Q+](Q—i—e)
_ 9.0 m+;49[Q]Q+aT€7 m+ A[Q]
3 2149[@76]@ B Aa[ﬁ]Q _24[Q. ] Aol (42)
T T r T
Doe — 2A0£Q,E]Q B Ai[e]Q B 2A9£Q,6]6 B Ai[e]6
Agle 2A49[Q, € Agle
~ Lge— iHQ* eLQ l._ (;HEv

Here,

Ag[th1, o] = —% /OT Re(Yrapo)r'dr’, (43)
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and

244]Q, ¢
Loe = Dge — %Q. (44)
Using the coercivity of Lg proved in [9], [7],

Lemma 2.6 (Coercivity of Lg). Let m > 0. Let 21, 29 € C5,, satisfy (36). Then,
ILofllze ~ Ifllz,,  VFEH,  with  (f,21)=(f22)=0.  (45)

Now then, by Hardy’s inequality,

12 40Qu el £ ([~ QUeldr) -l mselen 5 el el Sae el (a0

Also, by Hardy’s inequality,

1 < 1 1/2) 113/2 3/2
I+ 40ld@le S (| rizglefdr) - 1) 72Qe S Nl S el (4)
Therefore, we have proved

E[Q+ €] = [[Lqe -

Agle
ez, + Our(lely, ). (48)

T

Now decompose € = xre + (1 — xr)e, where xr(r) = x(%) is the function defined
in Lemma 2.2. Then decompose

A A A
Lge — 0[€]€:LQ€_ 0[6](1—XR)6— G[E]XRG. (49)
r T
By direct computation,
AO[ ] < f 2 € < 2 < 2
| xXrellLz < ( ; lel*rdr)ll —llz= S Rllellz=llelly, < BM|lely, - (50)
Next, decompose
244[Q, xrE 244]Q, (1 — €
Lae = Dalxre) + Dal(1 — xp)g) — 2@xnd g 2HlQ 0 =xnld - (o)
Using the decay of @,
240[Q, (1 — xr)e] 1
| Qllz S Hllelly - (52)
T’ m
Therefore,
Ag[c] Ag[e] 1
Ige = =2%ellze = IL(xre) + (Do~ =29 (1= xn)ell1a + p lelly +RM el
(53)
Decompose
Aple] 2 2
ILo(xre) + (Do — — =) = xr)ellz: = [ La(xre)llz2 50
5
Agle Agle
e ~ 211 xnelzs + 2{La(xne). (Do ~ 21001~ xae)
By the support of xr and 1 — xg,
Agle] <
(Lo(xre), (Do = — )1 = xr)e) < [l|0re] + *EII 2(B<r<R) (55)
Using the nonlinear Hardy inequality in [10],
AQ[E]
(D = “4%)(1 = xr)ell3 ~ar (1 = xr)ell, (56)
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Therefore, we have proved
2E[Q + ] ~ el + 11— xn)elld, +R*M|ellt,

2 1 1, (57)

+||€||7'{}n + E||€||7{}n + [[|0rel + ;€||L2(§ST§R)'
Taking R < — H and averaging over log(||€||,;, ) intervals of the form £ <r < R,
the proof of Proposmon 2.5 is complete. O

Now then, suppose there exists a sequence ||v,||3 constant, E[v,] — 0. By the
uniqueness of ) (up to scaling) as a solution to E[Q] = 0 and the fact that Efu] > 0,
and thus @ is an energy minimizer, v, converges in H_ , and thus, v, — Q in H}, .
Therefore, ||v, — Q| — 0 as n — ooc.

Next, since "

0 T
5)\@(}”)\:1 = AQ7 (58)
and 5
2l =it (59)

combining the implicit function theorem with (36), for E[v,] sufficiently small, we
can find a unique A and v such that (38) holds.

Then by Proposition 2.5, (39) holds. O
Therefore, for n(M) sufficiently large,
E[](tn) < " lo(tn)ll g2, ~ 7 (60)
and we can make the decomposition
0(tn) = [Q + Ar (o) (61)
Now, note that (21) implies
/ H(Z)Imla - rd,u)( / W( “g" VIm[o - r9,] () (62)
/ (28 i v Q] (63)
A(tn) )\ _
+ [ i@ 1o, / o) e o, Q1) (6)
Altn
+ /z/)(xT)Im[arare](tn). (65)

Since @ is real-valued, (63) = 0. Next,

|2 Smyl %\/ Elv(t,)] Sarpu By Eluo)- (66)

R
67
( ) ~ )\( ) Hv€>\77
Next,
tn) _
MIm[e-ro.Q] S [lexy
Finally, integrating by parts,

/1/1(96)\](;” m[Qx,qy - TOrer ] = /

- [0 Qs - ero) S ez S 1

22 [l70r @ q Il L2 S 1. (67)

[0 Q,\ v €xn]
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This proves the Lemma. O

Now then, let V(¢) denote a truncated virial-type quantity, and compute
d
—V(t):/w L YRelt - 10, Au] —/1/) 1 YRe[Ad - 10,u)
r

*/1/)(R) elt - ro,(A¢fu /w YRe[Ai[u]t - r0ul
m+A9 / m—l—Ag ]
V(-

—/zﬁ(%)Re[ﬁwa —— 20 - 10,
/w(R)Reu 70, (Jul*u)] /1/} YRe[|u|*@ - 70,u]

= [opio - [ ol

~ [ mizem+ Aala + [whpur el

w2 o2l 2 Loyt - ot @
=2 (Dol - 51 [ 65 |u|2+2/w 2l (el

r s 1 r r 4
ottt -3 [ - s
Integrating by parts,
[ oot = [l o gl ()
Therefore,

m+A9 (%)
70—2/\6 |2+2/|x a2 A CGe)ed /\x Ju?

L LAY ) IS TIE
o[l |>+2/(¢<R>A N - L

+ [ xRl Sl

"\2 aoa 1 r 4

= [ =gt = 5 () - sl

Using (4

/\a ol +2 [ (R E e (gt = 4l
(73)

Next, since Aglu] < M?,

o g+ [ - o g g [

By direct computation,

| Aglu] — Aglxrul| = / "Tl? = herulrdr, (75)
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so |Ag[u] — Ag[xrul| is supported on r > R. Therefore,

J R e e R EL IVORN(D

r r ~ R?

Finally, for

T 9 gy a1 r r 4
— (=) = x(= = (%) - d(= 7
SR = xitult = 5 [ 1) - ol (77)
consider two cases separately, as in Lemma 2.2. For |Jul|z4: < 1, by interpolation,

- [ = ittt = 5 1) - s

s/ hﬁﬁ{/ ?)llul%, < or(L),
r>R r>R

where ogr(1) is a quantity that approaches 0 as R — oo. For the last step, (26) is
used. When |[Ju|| ;1 > 1, then by Proposition 2.5,

U= Qxt)yt) T €(t, ) = )\(t)e”(t)Q(/\(t)x) + e(t, x), (79)
with A(t) > 1. Then by direct computation,

(78)

x
AO)*Q(~)*dr < og(1). 80
[, Ao < on) (50)
Also, by Proposition 2.5 and (26),
| 1eta)itds < el el < onl). (s1)
Therefore,
d
7V () = Elxru] + or(1). (82)
Therefore,
T
/ Elxpuldt < R + Ton(1). (83)
0
Taking R = T'/3, there exists a sequence !, — 00, R, — 00, satisfying
r
Blx(5-)u(t,)] 0. (34)
Therefore,
r
X ult) = [Q + (55)
n
and for n sufficiently large,
r
el ~ Blx(g-)u(t,)]. (56)

Therefore, ||€[|z2(jz|<r:) — O for some R; — oo, and

lull £2(je|> R ) — 0. (87)

The bounds (26) on the mass implies that there exists A\g > 0 such that A(¢),) >

Ao > 0. Therefore,
HQ,\(t;),y(t;)||L2(|x\<R') = 1Qll2, (88)

=*tn

as n — oo. O

Remark 2.7. Note that the estimate in (83) utilizes that T'— co. We cannot use
this argument if v blows up in finite time in both directions.
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3. Rigidity for finite time blowup solutions at the soliton. Now we duplicate
the result of [16] for the Chern—Simons—Schrodinger equation, showing that if w is a
blowup solution to (1) with ||ug||zz = ||@Q||z2 and ug € H*, the soluton u must be of
the form (15). Such a solution would violate (26) in the scattering time direction.

Theorem 3.1. When m > 1, if u is a finite time blowup solution with ||uo||p2 =
Q2 and vy € H*, then u is equal to a pseudoconformal transformation of a
soliton.

Proof. By time translation symmetry and the scaling symmetry, suppose that u
blows up at time ¢ = 0, and let ug be the data for u(t,r) at t = —1.

Lemma 3.2. Fiz R > 0 large. Let ¢ € C§°(R?) be a smooth cut-off, p(z) =1 for
|z| <1, and ¢(x) =0 for |z| > 2. Then,

lim lo(3lalu(t, @)z = 0. (89)

Proof. If u blows up in finite time, limy; ¢ |u(t)| 7. = co. Now let

_ g
M= a0 %0)
and let )
vo(t,z) = Wu(u W) (91)

Then by (35), E(v(t)) — 0, and |[v(¢)|| ;52 and ||v(¢)|| L2 are uniformly bounded for
—1 <t < 0. Therefore, by Proposition 2.3, for ¢ sufficiently close to 0,

u(t) = [Q + e]i(t)ﬁ(t)’ (92)
and furthermore,
llell 7z, = 0. (93)
By (92), (93), and |jv]| 4 = 1, A(t) ~ 1, so
e Wy(t)y ~Q, in L2 (94)
and since |[v]|z2 = [|Ql/z2, (94) can be upgraded to convergence in L2. Since
A(t) /oo ast 70, (89) holds. O
Lemma 3.3. For any R > 0,
. x _ B
%1}% / (i)(E)Im(u -ropu)dr = 0. (95)

Proof. The argument is identical to the argument proving Lemma 2.2, except that
now, insert ||e(t)||L2 — 0 into (63)—(65), proving (95). O

Returning to the proof of Theorem 1.3, by direct computation,

cclit/ 72 |ul? dz*4/1m(ﬂ~raru)dx. (96)

Integrating by parts,

/¢ )22 ulde = 4/(;5 YIm(ta-rdyu da:—i—R /d) (;)rlm(ﬁ.r&u)da@
(97)
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Also, by direct computation and integrating by parts,

A 1
G [oGrma rouds =2 [ o(1) |&\2(Ti#ﬂﬂfmﬁ—5wﬂm
1
5 [ S0l + Llul}da.
(98)
Therefore, by Lemmas 3.2 and 3.3, taking R oo, for any —1 < t < 0,
/|x|2|u(t, 2)[2dz = SE[u]f2. (99)
Making a pseudoconformal transformation of the solution, let
1 1
v(t,r) = mu( |Z| )6”2/4t. (100)

By (100),

! 2 1 1 1 r? 1 7 9 1
5 [10Pde = gl 0l 5 [ -1, PPrdr = S, (o)

and by (97),

1 1 r, ar 1 r 2
U (—=, =) —u(—=,-)dzr) = == Elu]. 102
Re( [ Gun(—3 ) grzu(—7. D)dn) =~ Elu (102)
Therefore, E[v] = 0, and thus, v is a soliton, so u is a pseudoconformal transforma-
tion of a soliton. O

Remark 3.4. When m = 0, the pseudoconformal transformation of the soliton
does not lie in H},.

4. The Liouville theorem. Now we have proved that the only solution to (1)
that satisfies (26) has mass ||ug|/rz = ||Q||2 and is global in both time directions.
Then we complete the proof of the Liouville theorem by showing that « is a soliton.

Theorem 4.1. The solution satisfying ||u||pz = ||Q||zz and (21) is the soliton.

Proof. We again use the virial identity in (69) and (70), only this time we integrate
from —T to T. Integrating by parts,

/¢ YRelt-r0, Au] — /w ReAur@u—2/¢ |0u|2+O(R2/ [ul?),

~(103)
where again ¢(r) = 9,.(r¢)(r)) and ¢(r) = x(r)? for some y € C§°. Now then,

oo 2m+1
% /7«>R NQ(5 ) = % a +(A(;)T)2m+2)2dr < ij. (104)
Next, for
u = AQ(Az) + Ae(\z), (105)
since ||u|z2 = ||Q||L2, by standard linear algebra,
lell72 = =2(AQ(Ar), Ae(Ar)). (106)
Therefore,

lell7= = 2|¢e, Q)] < 2I<X(%)/\6(Ax), AQ(Az))| + 2[((1 - X(%))/\e(/\w), AQ(Az))|.
(107)
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By Holder’s inequality,

2((1 - (R))Ae(kx) Q)| < RQIAQ lell 2 (108)
Now let N
- / Q(r)dr. (109)
Since Q(r) < 2 for r large and Q(r) < 1 for all , Q(r) € L%(R?). Moreover,
8.Q(r)=Q(r), and  3,.Q(\r) = A\Q(\r). (110)
Therefore,
(T, AQAN) = (X(F5)AeOr), 8, Q). (1)

Integrating by parts,

1 T
(111)N*HX )>\6(>\7“)||H1 SXE[X(E)AG(MH)\Q(M)P/Q 112)
112
1 r 1
< ZE(=)u]Y? + ——.
Therefore,
1 1
2 1/2
€l S 5 BX(R)u 2 + 55 (13)
and by (104) and (113),
2 < TN, 1/2 1 114
L S s PG+ (114)
Also by (104),
1 R
4d / —|Ae(Ax)|*da. 11
[ it S e+ [ Ot (115)

By standard perturbation theory and the fact that the L} , norm is invariant under
the scaling (21),

ot o to+ 3er? 4
J/ L/ert o) tdedt < e(to)|[Le < Alto)? J/ le(®)|a. (116)

to to

Plugging in (113), since A(t) ~ A(to) for t € [to,to + W]’

to+ Sag? o+ Sag? L r o+ a7 1
M [ el s [T B gplde+ [T e )

to to tO

Making an averaging argument, for a fixed Ry,

29R
S [ BRI @) (118)
j r>27 Rg r
Therefore, for any § > 0 there exists some Ry < R, < C(0)Ry such that

to-‘r;z R t0+%
/‘A%)/ et ) dadr S 6 [ le(t)[4adt
to >R, T fo

(119)
A(f 2 totsnoz tl 7 ]
<90 2 ) Jdt + R
R4
* to
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Therefore, we have proved

b
1
[ PG S Bl + B+ [ e 020
a
Taking R = T'/*, averaging (120), and plugging in (113), we have proved
li inf t = li inf t =0. 121
A ok l[e(®)]lz2 =0, Am it le()]lz> =0 (121)

Now for any j € Z, j > 0, let
F=inf{t >0:|et)||> =277}, b = Z{t <0:|le®)|z2 =277} (122)

Then let T} = t;r -t ;= [t;,tj] Then T; — oo as j — oco. Then by (113),

1 r 1

+\(14 +

e )ze < 7)\(t;t)2E[X(E)u(tj )]+ I (123)
Therefore, by (120),

/ Elx(5)uldt S = / Ex()u]*/*dt) + ]7;4. (124)
Therefore,
/Ij E[X(%)u]dt < T?j4 % ~ 1. (125)
Then, by the dominated convergence theorem, taking j — oo,
/RE[u]dt <1, (126)
which implies E[u] = 0, and thus wu is a soliton. O
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