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Abstract. In this paper we prove a Liouville theorem for the Chern–Simons–
Schrödinger equation. This result is consistent with the soliton resolution con-
jecture for initial data that does not lie in a weighted space. See [10] for the
soliton resolution result in a weighted space.

1. Introduction. The self-dual Chern–Simons–Schrödinger equation with m-
equivariance is

i(∂t + iAt[u])u+ ∂2ru+
1

r
∂ru− (

m+Aθ[u]

r
)2u+ |u|2u = 0, (1)

where

At[u] = −
∫ ∞

r

(m+Aθ[u])|u|2
dr′

r′
, and Aθ[u] = −1

2

∫ r

0

|u|2r′dr′. (2)

The Chern–Simons–Schrödinger equation was introduced in [4] as a nonrelativis-
tic planar quantum electromagnetic model that exhibits self-duality. It is a gauge
covariant nonlinear Schrödinger equation on R

2. See also [2], [5], [6]. The model (1)
is derived after fixing the Coulomb gauge condition and imposing the equivariant
symmetry on the scalar field φ:

φ(t, x) = u(t, r)eimθ. (3)

See [9], [7], and [8].

Remark 1.1. The non-equivariant Chern–Simons–Schrödinger equation will not
be discussed here. See [1], [3], [11], [14], and [17] for more information.

The solution to (1) has the conserved quantities mass and energy.

E[u] =

∫

1

2
|∂ru|2 +

1

2
(
m+Aθ[u]

r
)2|u|2 − 1

4
|u|4dx,

M [u] =

∫

|u|2dx,
(4)
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2 BENJAMIN DODSON

where we denote
∫

f(r) = 2π
∫

f(r)rdr. Indeed, (1) is the Hamiltonian PDE for
the energy in (4). We also use the inner product

〈f, g〉 = Re

∫

f(r)g(r)rdr. (5)

Integrating by parts,

d

dt
E[u] =

∫

Re(∂rū)(∂rut)rdr +

∫

(
m+Aθ[u]

r
)2Re(ūut)rdr

−
∫

|u|2Re(ūut)rdr −
∫

m+Aθ[u]

r
|u|2

∫ r

0

Re(ūut)r
′dr′dr

= −〈(∂rr +
1

r
∂r)ū, ut〉+ 〈(m+Aθ[u]

r
)2u, ut〉

− 〈|u|2u, ut〉 −
∫ ∞

0

|u|2
∫ ∞

r

m+Aθ[u]

r
Re(ūut)drr

′dr′

= −〈(∂rr +
1

r
∂r)ū, ut〉+ 〈(m+Aθ[u]

r
)2u, ut〉

− 〈|u|2u, ut〉+ 〈At[u]ū, ut〉 = 〈iut, ut〉 = 0.

(6)

Thus,

∂tu = −i∇E[u], (7)

where ∇ (acting on a functional) is the Frechet derivative with respect to the inner
product 〈·, ·〉. Also,

∂tM [u] = Re

∫

ūut = Re

∫

ū(i∂2ru+
i

r
∂ru) = 0. (8)

The energy functional can be written in the self-dual form

E[u] =

∫

1

2
|Duu|2, (9)

where Du is the covariant Cauchy–Riemann operator defined by

Duf = ∂rf − m+Aθ[u]

r
f. (10)

Indeed,

−Re

∫

(∂rf̄) · (
m+Aθ[u]

r
)f(r)rdr = −1

2

∫

(m+Aθ[u])∂r(|f |2)dr

=
1

2

∫

∂rAθ[u]|f |2 = −1

4

∫ ∞

0

|f |4rdr.
(11)

Definition 1.2 (Bogomol’nyi operator). The operator u 7→ Du is called the Bogo-
mol’nyi operator. Due to (9) and the Hamiltonian structure, any static solutions to
(1) are given by solutions to the Bogomol’nyi equation

DQQ = 0. (12)

For m ≥ 0, there is an explicit m-equivariant static solution to the Bogomol’nyi
equation, the Jackiw–Pi vortex. This solution is unique up to the symmetries of
the equation ([12]):

Q(r) =
√
8(m+ 1)

rm

1 + r2m+2
, m ≥ 0. (13)
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Equation (1) has the pseudoconformal transform C,

[Cu](t, r) = 1

|t|u(−
1

t
,
r

|t| )e
ir2/4t, ∀t 6= 0. (14)

Since the soliton solution is non-scattering, applying the pseudoconformal transform
to Q gives an explicit, finite-time blowup solution,

S(t, r) =
1

|t|Q(
r

|t| )e
−i r2

4t , t < 0. (15)

It is conjectured that any blowup solution must contain either (13) or (15).
Indeed, [13] proved global well-posedness and scattering for (1) with initial data
with mass below the mass of the ground state,

‖u0‖L2 < ‖Q‖L2 . (16)

Theorem 1.3. Let m ∈ Z≥0. Let φ0 ∈ L2
m with ‖φ0‖L2

m
and

‖u0‖2L2 < 8π(m+ 1). (17)

Then (1) is globally well-posed in L2
m and scatters both forward and backward in

time.

Proof. See Theorem 1.3 of [13].

Making a u-substitution,

‖Q‖2L2 = 16π(m+1)2
∫ ∞

0

r2m+1

(1 + r2m+2)2
dr = 8π(m+1)

∫ ∞

0

du

(1 + u)2
= 8π(m+1).

(18)

Remark 1.4. A function u0 ∈ L2
m if u0 ∈ L2 and u0 has the form (3). A function

u0 ∈ H1
m if u0 ∈ H1 and has the form (3).

More recently, [9] and [10] proved a decomposition for finite time blowup solutions
to (1) with finite energy and initial data in a weighted Sobolev space.

Theorem 1.5. If m ∈ Z+ and u is a H1
m-solution to (1) that blows up forward in

time at T < +∞, then u(t) admits the decomposition

u(t, ·)−Qλ(t),γ(t) → z∗, in L2, as t↗ T. (19)

Moreover, using the pseudoconformal transformation in (14), it is possible to

obtain a similar decomposition for a solution that exists globally forward in time,

but fails to scatter forward in time, for initial data that also lies in a weighted

L2-space.

Proof. See [10].

In this paper, we prove a Liouville theorem for solutions to (1) that are global
in at least one time direction.

Theorem 1.6 (Liouville theorem). Suppose u0 ∈ H1
m for some m ≥ 1 is an initial

data for (1) that has a solution on the maximal interval of existence I. Furthermore,

suppose that I = (−∞, t0), where t0 could be +∞, or (t0,∞), where t0 could be −∞.

Also suppose that for any η > 0, there exists R(η) <∞ such that

sup
t∈I

∫

|x|≥R

|u(t, x)|2dx < η, (20)
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where I is the interval of existence for a solution to (1). Then u is equal to the

soliton solution (13), up to the scaling symmetry,

uλ(t, r) =
1

λ
u(

t

λ2
,
x

λ
), λ > 0, (21)

and multiplication by eiγ for some γ ∈ R.

Remark 1.7. The computations in the next three sections are reliant on the fact
that the soliton lies in the weighted L2 space given by the norm ‖〈x〉 · ‖L2 . See for
example (89) and (109). When m = 0, the soliton fails to lie in this space, see (13),
which creates certain technical complications. We do not consider the m = 0 case
here, but see [9] for more information on the m = 0 case.

This result was inspired by the Liouville theorem of [15]. There, [15] proved that
for a solution to the mass-critical generalized Korteweg de-Vries equation,

ut + uxxx + ∂x(u
5) = 0, (22)

with initial data close to the rescaled soliton in H1
x(R), and with H1(R) norm

uniformly bounded, then the solution to (22) must be the soliton. For the mass-
critical generalized KdV equation, it is expected that multi-soliton solutions occur,
which necessitates additional constraints on the size of the initial data than we have
here.

Unlike the generalized KdV equation, the structure of the self-dual Chern–
Simons–Schrödinger equation is defocusing outside of a soliton. For this reason,
it is unnecessary to require a uniform bound on ‖u(t)‖H1 on I. Also, since u0 need
not be close to the soliton, we do not assume an a priori bound on ‖u0‖L2 .

Remark 1.8. For a solution to (1), u ∈ H1,1
m , that exists globally forward in time,

then either u(t) scatters forward in time, or u(t) admits the decomposition

u(t, ·)−Qλ(t),γ(t) − eit∆
(−m−2)

u∗ → 0, in L2, as t→ ∞. (23)

Here, eit∆
(−m−2)

u∗ is the solution to the free, (−m − 2)–equivariant Schrödinger
flow,

i∂tu+ ∂2ru+
1

r
∂ru− (m+ 2)2

r2
u = 0. (24)

The space H1,1
m is the space of m-equivariant functions, (3), that lie in H1 and the

weighted L2-space, ‖|x|u‖L2 <∞.

If (23) could be proved for any u0 ∈ H1
m, then Theorem 1.6 would likely follow

fairly easily, since (23) would at least imply that u∗ = 0, and thus ‖u‖L2 = ‖Q‖L2 .
This is due to the fact that a scattering solution, or a solution with a scattering
piece could not satisfy (20).

The proof of Theorem 1.6 may be broken down into three steps. First, using a
virial identity combined with (20), we prove that any solution to (1) that satisfies
(20) must have the mass of the soliton,

‖u(t)‖L2 = ‖Q‖L2 . (25)

Next, using an argument analogous to the argument in [16], we prove that a
solution to (1) satisfying (20) and (25) must be global in both time directions.
Indeed, any finite time blowup solution with ‖u0‖L2 = ‖Q‖L2 must be a rescaled
version of (15), which clearly does not satisfy (20).
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Combining (20), (25), u0 ∈ H1, and the virial identity shows that u(t) is the
soliton.

2. Mass above the soliton. In this section, we prove that if (20), then u has the
same mass as the soliton.

Theorem 2.1. Suppose u0 ∈ H1 is an initial data for (1) that has a solution on

the maximal interval of existence I. Also suppose that for any η > 0, there exists

R(η) <∞ such that

sup
t∈I

∫

|x|≥R

|u(t, x)|2dx < η, (26)

where I is the interval of existence for a solution to (1). Then ‖u‖L2 = ‖Q‖L2 ,

where Q is the soliton, (13).

Proof. We prove this using the virial identity

∂t

∫

Im(ū · r∂ru) = 4E[u]. (27)

Lemma 2.2. For any solution u, 0 < R <∞,

sup
t∈I

∫

ψ(
r

R
)Im[ū · r∂ru] .M [u],E[u] R. (28)

Here ψ(r) ∈ C∞(R2) is a radially symmetric function, ψ(r) = 1 for r ≤ 1, ψ(r) =
3
2r for r ≥ 2. Moreover,

∂r(ψ(r)r) = φ(r), (29)

where φ(r) is a positive, smooth function, φ(r) = 1 for r ≤ 1, φ(r) supported on

r ≤ 2, and φ(r) = χ(r)2 for some χ ∈ C∞
0 (R2).

Proof of Lemma. Consider two cases separately, when ‖u(t)‖H1 is uniformly
bounded, and the case when ‖u(t)‖H1 is not uniformly bounded.

Case 1.

sup
t∈I

‖∇u(t)‖L2 <∞. (30)

In this case, I = R. Now then,
∫

ψ(
r

R
)Im[ū · r∂ru] . sup

t∈I
‖∇u‖L2‖ψ( r

R
)ru‖L2 .M [u] R sup

t∈I
‖∇u(t)‖L2(R2) . R.

(31)
Case 2. Since ‖∇u(t)‖L2 is continuous in time, if supt∈I ‖∇u(t)‖L2 = ∞, then
there exists a sequence tn such that

‖∇u(tn)‖L2 = n. (32)

Set

λ(tn) =
‖∇u(tn)‖L2

‖∇Q‖L2

. (33)

Plugging λ(tn) into (21), let

v(tn, x) =
1

λ(tn)
u(tn,

x

λ(tn)
). (34)

By direct computation,

E[v(tn, x)] =
1

λ(tn)2
E[u(tn)] =

1

λ(tn)2
E[u0]. (35)

Now, recall Proposition 4.1 from [10].
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Proposition 2.3 (Decomposition). Let Z1, Z2 ∈ C∞
c,m be profiles that satisfy

det

(

(ΛQ,Z1)r (iQ, Z1)r
(ΛQ,Z2)r (iQ, Z2)r

)

6= 0. (36)

Here, Λ is the operator r∂r + 1. Then for any M < ∞, there exists 0 < α∗ � 1
such that the following properties hold for all u ∈ H1

m with ‖u‖L2 ≤ M satisfying

the small energy condition
√

E[u] ≤ α∗‖u‖H1
m
.

There exists a unique (λ, γ) ∈ R+ × R/2πZ such that ε ∈ H1
m, defined by the

relation

u = [Q+ ε]λ,γ , (37)

satisfies the orthogonality conditions,

(ε, Z1)r = (ε, Z2)r = 0, (38)

and smallness

‖ε‖Ḣ1
m
∼M λ

√

E[u]. (39)

Remark 2.4. The space H1
m is a function space adapted to the linear coercivity

of the energy. When m ≥ 1, as is true in this paper, the spaces H1
m and H1

m are
equivalent.

Proof. The proof in [10] relies on the uniqueness of the soliton as a function with
zero energy, the nonlinear coercivity of energy in [10], and the implicit function
theorem.

Proposition 2.5 (Nonlinear coercivity of energy). For any M > 0, there exists

η > 0 such that the nonlinear coercivity

E[Q+ ε] ∼M ‖ε‖2
Ḣ1

m

, (40)

holds for any ε ∈ H1
m with ‖ε‖L2 ≤ M satisfying the orthogonality conditions (38)

and smallness ‖ε‖Ḣ1
m
≤ η.

Proof of Proposition 2.5. We follow the argument in [10]. Observe that, by (10),

2E[Q+ ε] = ‖DQ+ε(Q+ ε)‖2L2 = ‖∂r(Q+ ε)− m+Aθ[Q+ ε]

r
(Q+ ε)‖2L2 . (41)

Now then, since DQQ = 0,

∂r(Q+ ε)− m+Aθ[Q+ ε]

r
(Q+ ε)

= ∂rQ− m+Aθ[Q]

r
Q+ ∂rε−

m+Aθ[Q]

r
ε

− 2Aθ[Q, ε]

r
Q− Aθ[ε]

r
Q− 2Aθ[Q, ε]

r
ε− Aθ[ε]

r
ε

= DQε−
2Aθ[Q, ε]

r
Q− Aθ[ε]

r
Q− 2Aθ[Q, ε]

r
ε− Aθ[ε]

r
ε

= LQε−
Aθ[ε]

r
Q− 2Aθ[Q, ε]

r
ε− Aθ[ε]

r
ε,

(42)

Here,

Aθ[ψ1, ψ2] = −1

2

∫ r

0

Re(ψ̄1ψ2)r
′dr′, (43)
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and

LQε = DQε−
2Aθ[Q, ε]

r
Q. (44)

Using the coercivity of LQ proved in [9], [7],

Lemma 2.6 (Coercivity of LQ). Let m ≥ 0. Let Z1, Z2 ∈ C∞
c,m satisfy (36). Then,

‖LQf‖L2 ∼ ‖f‖Ḣ1
m
, ∀f ∈ Ḣ1

m with (f,Z1) = (f,Z2) = 0. (45)

Now then, by Hardy’s inequality,

‖2
r
Aθ[Q, ε]ε‖L2 . (

∫ ∞

0

Q〈r〉|ε|dr) · ‖ 1

〈r〉ε‖L2 . ‖ε‖3/2
Ḣ1

m

‖ε‖1/2L2 .M ‖ε‖3/2
Ḣ1

m

. (46)

Also, by Hardy’s inequality,

‖1
r
Aθ[ε]Q‖L2 . (

∫ ∞

0

1

〈r〉1/2 |ε|
2dr) · ‖〈r〉1/2Q‖L2 . ‖ε‖1/2L2 ‖ε‖3/2

Ḣ1
m

.M ‖ε‖3/2
Ḣ1

m

. (47)

Therefore, we have proved

2E[Q+ ε] = ‖LQε−
Aθ[ε]

r
ε‖2L2 +OM (‖ε‖3

Ḣ1
m

). (48)

Now decompose ε = χRε + (1− χR)ε, where χR(r) = χ( r
R ) is the function defined

in Lemma 2.2. Then decompose

LQε−
Aθ[ε]

r
ε = LQε−

Aθ[ε]

r
(1− χR)ε−

Aθ[ε]

r
χRε. (49)

By direct computation,

‖Aθ[ε]

r
χRε‖L2 . (

∫ R

0

|ε|2rdr)‖ ε
r
‖L2 . R‖ε‖L2‖ε‖2

Ḣ1
m

. RM ||ε‖2
Ḣ1

m

. (50)

Next, decompose

LQε = DQ(χRε) +DQ((1− χR)ε)−
2Aθ[Q,χRε]

r
Q− 2Aθ[Q, (1− χR)ε]

r
Q. (51)

Using the decay of Q,

‖2Aθ[Q, (1− χR)ε]

r
Q‖L2 .

1

R
‖ε‖Ḣ1

m
. (52)

Therefore,

‖LQε−
Aθ[ε]

r
ε‖L2 = ‖LQ(χRε)+(DQ− Aθ[ε]

r
)(1−χR)ε‖L2 +

1

R
‖ε‖Ḣ1

m
+RM‖ε‖2

Ḣ1
m

.

(53)
Decompose

‖LQ(χRε) + (DQ − Aθ[ε]

r
)(1− χR)ε‖2L2 = ‖LQ(χRε)‖2L2

+‖(DQ − Aθ[ε]

r
)(1− χR)ε‖2L2 + 2〈LQ(χRε), (DQ − Aθ[ε]

r
)(1− χR)ε〉.

(54)

By the support of χR and 1− χR,

〈LQ(χRε), (DQ − Aθ[ε]

r
)(1− χR)ε〉 . ‖|∂rε|+

1

r
ε‖2

L2(R
2 ≤r≤R)

. (55)

Using the nonlinear Hardy inequality in [10],

‖(DQ − Aθ[ε]

r
)(1− χR)ε‖2L2 ∼M ‖(1− χR)ε‖2Ḣ1

m

. (56)
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Therefore, we have proved

2E[Q+ ε] ∼ ‖χRε‖2Ḣ1
m

+ ‖(1− χR)ε‖2Ḣ1
m

+R2M2‖ε‖4
Ḣ1

m

+‖ε‖3
Ḣ1

m

+
1

R
‖ε‖Ḣ1

m
+ ‖|∂rε|+

1

r
ε‖2

L2(R
2 ≤r≤R)

.
(57)

Taking R� 1
‖ε‖

Ḣ1
m

and averaging over log(‖ε‖Ḣ1
m
) intervals of the form R

2 ≤ r ≤ R,

the proof of Proposition 2.5 is complete.

Now then, suppose there exists a sequence ‖vn‖H1
m

constant, E[vn] → 0. By the
uniqueness of Q (up to scaling) as a solution to E[Q] = 0 and the fact that E[u] ≥ 0,
and thus Q is an energy minimizer, vn converges in H1

m, and thus, vn → Q in H1
m.

Therefore, ‖vn −Q‖Ḣ1
m
→ 0 as n→ ∞.

Next, since
∂

∂λ
λQ(

x

λ
)|λ=1 = ΛQ, (58)

and
∂

∂γ
eiγQ|γ=0 = iQ, (59)

combining the implicit function theorem with (36), for E[vn] sufficiently small, we
can find a unique λ and γ such that (38) holds.

Then by Proposition 2.5, (39) holds.

Therefore, for n(M) sufficiently large,
√

E[v](tn) ≤ α∗‖v(tn)‖Ḣ1
m
∼ α∗, (60)

and we can make the decomposition

v(tn) = [Q+ ε]λ(tn),γ(tn). (61)

Now, note that (21) implies
∫

ψ(
x

R
)Im[ū · r∂ru](tn) =

∫

ψ(
xλ(tn)

R
)Im[v̄ · r∂rv](tn) (62)

=

∫

ψ(
xλ(tn)

R
)Im[Q̄ · r∂rQ] (63)

+

∫

ψ(
xλ(tn)

R
)Im[Q̄ · r∂rε](tn) +

∫

ψ(
xλ(tn)

R
)Im[ε̄ · r∂rQ](tn) (64)

+

∫

ψ(
xλ(tn)

R
)Im[ε̄ · r∂rε](tn). (65)

Since Q is real-valued, (63) = 0. Next,

(65) .
R

λ(tn)
‖∇ελ,γ‖L2 .M [u]

R

λ(tn)

√

E[v(tn)] .M [u] R
√

E[u0]. (66)

Next,
∫

ψ(
xλ(tn)

R
)Im[ε̄ · r∂rQ] . ‖ελ,γ‖L2‖r∂rQλ,γ‖L2 . 1. (67)

Finally, integrating by parts,
∫

ψ(
xλ(tn)

R
)Im[Q̄λ,γ · r∂rελ,γ ] = −

∫

ψ(
xλ(tn)

R
)Im[r∂rQ̄λ,γ · ελ,γ ]

−
∫

∂r(ψ(
rλ(tn)

R
)r)Im[Q̄λ,γ · ελ,γ ] . ‖ε‖L2 . 1.

(68)



LIOUVILLE THEOREM 9

This proves the Lemma.

Now then, let V (t) denote a truncated virial-type quantity, and compute

d

dt
V (t) =

∫

ψ(
r

R
)Re[ū · r∂r∆u]−

∫

ψ(
r

R
)Re[∆ū · r∂ru]

−
∫

ψ(
r

R
)Re[ū · r∂r(At[u]u)] +

∫

ψ(
r

R
)Re[At[u]ū · r∂ru]

−
∫

ψ(
r

R
)Re[ū · r∂r((

m+Aθ[u]

r
)2u)] +

∫

ψ(
r

R
)Re[(

m+Aθ[u]

r
)2ū · r∂ru]

∫

ψ(
r

R
)Re[ū · r∂r(|u|2u)]−

∫

ψ(
r

R
)Re[|u|2ū · r∂ru]

(69)

=

∫

φ(
r

R
)|∂ru|2 −

1

4

∫

1

R2
φ′′(

r

R
)|u|2

−
∫

ψ(
r

R
)|u|2(m+Aθ[u]) +

∫

ψ(
r

R
)|u|2r(m+Aθ[u]

r
)

+2

∫

ψ(
r

R
)|u|2(m+Aθ[u]

r
)2 − 1

4

∫

φ(
r

R
)|u|4 −

∫

ψ(
r

R
)|u|4

= 2

∫

φ(
r

R
)|∂ru|2 −

1

2R2

∫

φ′′(
r

R
)|u|2 + 2

∫

ψ(
r

R
)|u|2(m+Aθ[u]

r
)2

−
∫

φ(
r

R
)|u|4 − 1

2

∫

[ψ(
r

R
)− φ(

r

R
)]|u|4.

(70)

Integrating by parts,
∫

φ(
r

R
)|∂ru|2 =

∫

|∂r(χ(
r

R
)u)|2 +O(

∫

r≥R

1

R2
|u|2). (71)

Therefore,

(70) = 2

∫

|∂r(χ(
r

R
)u)|2 + 2

∫

|χ( r
R
)u|2(m+Aθ[χ(

r
R )u]

r
)2 −

∫

|χ( r
R
)u|4

+O(

∫

r≥R

1

R2
|u|2) + 2

∫

(ψ(
r

R
)− φ(

r

R
))(
m+Aθ[u]

r
)2|u|2

+

∫

|χ( r
R
)u|2 · {(m+Aθ[u]

r
)2 − (

m+Aθ[χu]

r
)2}

−
∫

[χ(
r

R
)2 − χ(

r

R
)4]|u|4 − 1

2

∫

[ψ(
r

R
)− φ(

r

R
)]|u|4.

(72)

Using (4),

2

∫

|∂r(χ(
r

R
)u)|2 + 2

∫

|χ( r
R
)u|2(m+Aθ[χ(

r
R )u]

r
)2 −

∫

|χ( r
R
)u|4 = 4E[χRu].

(73)
Next, since Aθ[u] .M2,

O(

∫

r≥R

1

R2
|u|2) + 2

∫

(ψ(
r

R
)− φ(

r

R
))(
m+Aθ[u]

r
)2|u|2 .

1

R2

∫

r≥R

|u|2. (74)

By direct computation,

|Aθ[u]−Aθ[χRu]| =
∫ r

0

[|u|2 − |χRu|2]r′dr′, (75)
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so |Aθ[u]−Aθ[χRu]| is supported on r ≥ R. Therefore,
∫

|χ( r
R
)u|2 · {(m+Aθ[u]

r
)2 − (

m+Aθ[χRu]

r
)2} .

1

R2

∫

r≥R

|u|2. (76)

Finally, for

−
∫

[χ(
r

R
)2 − χ(

r

R
)4]|u|4 − 1

2

∫

[ψ(
r

R
)− φ(

r

R
)]|u|4, (77)

consider two cases separately, as in Lemma 2.2. For ‖u‖Ḣ1 . 1, by interpolation,

−
∫

[χ(
r

R
)2 − χ(

r

R
)4]|u|4 − 1

2

∫

[ψ(
r

R
)− φ(

r

R
)]|u|4

≤
∫

r≥R

|u|4 . (

∫

r≥R

|u|2)‖u‖2
Ḣ1 ≤ oR(1),

(78)

where oR(1) is a quantity that approaches 0 as R → ∞. For the last step, (26) is
used. When ‖u‖Ḣ1 � 1, then by Proposition 2.5,

u = Qλ(t),γ(t) + ε(t, x) = λ(t)eiγ(t)Q(λ(t)x) + ε(t, x), (79)

with λ(t) � 1. Then by direct computation,
∫

r≥R

λ(t)4Q(
x

λ(t)
)4dx ≤ oR(1). (80)

Also, by Proposition 2.5 and (26),
∫

r≥R

|ε(t, x)|4dx . ‖ε‖2
Ḣ1‖ε‖2L2(r≥R) ≤ oR(1). (81)

Therefore,
d

dt
V (t) = E[χRu] + oR(1). (82)

Therefore,
∫ T

0

E[χRu]dt . R+ ToR(1). (83)

Taking R = T 1/3, there exists a sequence t′n → ∞, Rn → ∞, satisfying

E[χ(
r

Rn
)u(t′n)] → 0. (84)

Therefore,

χ(
r

Rn
)u(t′n) = [Q+ ε]λn,γn

, (85)

and for n sufficiently large,

‖ε‖2
Ḣ1

m

∼ E[χ(
r

Rn
)u(t′n)]. (86)

Therefore, ‖ε‖L2(|x|≤R′

n)
→ 0 for some R′

n → ∞, and

‖u‖L2(|x|≥R′

n)
→ 0. (87)

The bounds (26) on the mass implies that there exists λ0 > 0 such that λ(t′n) ≥
λ0 > 0. Therefore,

‖Qλ(t′n),γ(t
′

n)
‖L2(|x|≤R′

n)
→ ‖Q‖L2 , (88)

as n→ ∞.

Remark 2.7. Note that the estimate in (83) utilizes that T → ∞. We cannot use
this argument if u blows up in finite time in both directions.
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3. Rigidity for finite time blowup solutions at the soliton. Now we duplicate
the result of [16] for the Chern–Simons–Schrödinger equation, showing that if u is a
blowup solution to (1) with ‖u0‖L2 = ‖Q‖L2 and u0 ∈ H1, the soluton u must be of
the form (15). Such a solution would violate (26) in the scattering time direction.

Theorem 3.1. When m ≥ 1, if u is a finite time blowup solution with ‖u0‖L2 =
‖Q‖L2 and u0 ∈ H1, then u is equal to a pseudoconformal transformation of a

soliton.

Proof. By time translation symmetry and the scaling symmetry, suppose that u
blows up at time t = 0, and let u0 be the data for u(t, r) at t = −1.

Lemma 3.2. Fix R > 0 large. Let φ ∈ C∞
0 (R2) be a smooth cut-off, φ(x) = 1 for

|x| ≤ 1, and φ(x) = 0 for |x| > 2. Then,

lim
t↗0

‖φ( x
R
)|x|u(t, x)‖L2 = 0. (89)

Proof. If u blows up in finite time, limt↗0 ‖u(t)‖Ḣ1 = ∞. Now let

λ(t) =
‖u‖Ḣ1

‖Q‖Ḣ1

, (90)

and let

v(t, x) =
1

λ(t)
u(t,

x

λ(t)
). (91)

Then by (35), E(v(t)) → 0, and ‖v(t)‖Ḣ1 and ‖v(t)‖L2 are uniformly bounded for
−1 < t < 0. Therefore, by Proposition 2.3, for t sufficiently close to 0,

v(t) = [Q+ ε]λ̃(t),γ̃(t), (92)

and furthermore,

‖ε‖Ḣ1
m
→ 0. (93)

By (92), (93), and ‖v‖Ḣ1 = 1, λ̃(t) ∼ 1, so

e−iγ̃(t)v(t)⇀ Q, in L2, (94)

and since ‖v‖L2 = ‖Q‖L2 , (94) can be upgraded to convergence in L2. Since
λ(t) ↗ ∞ as t↗ 0, (89) holds.

Lemma 3.3. For any R > 0,

lim
t↗0

∫

φ(
x

R
)Im(ū · r∂ru)dx = 0. (95)

Proof. The argument is identical to the argument proving Lemma 2.2, except that
now, insert ‖ε(t)‖L2 → 0 into (63)–(65), proving (95).

Returning to the proof of Theorem 1.3, by direct computation,

d

dt

∫

r2|u|2dx = 4

∫

Im(ū · r∂ru)dx. (96)

Integrating by parts,

d

dt

∫

φ(
r

R
)2r2|u|2dx = 4

∫

φ2(
x

R
)Im(ū·r∂ru)dx+

8

R

∫

φ(
r

R
)φ′(

r

R
)rIm(ū·r∂ru)dx.

(97)
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Also, by direct computation and integrating by parts,

d

dt

∫

φ(
r

R
)2Im(ū · r∂ru)dx = 2

∫

φ(
r

R
)2[|∂ru|2 + (

m+Aθ[u]

r
)2|u|2 − 1

2
|u|4]dx

+
C

R

∫

φ′(
r

R
)φ(

r

R
){r|ur|2 +

1

r
|u|2}dx.

(98)
Therefore, by Lemmas 3.2 and 3.3, taking R↗ ∞, for any −1 < t < 0,

∫

|x|2|u(t, x)|2dx = 8E[u]t2. (99)

Making a pseudoconformal transformation of the solution, let

v(t, r) =
1

|t|u(−
1

t
,
r

|t| )e
ir2/4t. (100)

By (100),

1

2

∫

|∂rv|2dx =
1

2t2
‖ur(−

1

t
, ·)‖L2 ,

1

2

∫

r2

4t2
|u(−1

t
,
r

t
)|2rdr = 1

t2
E[u], (101)

and by (97),

Re(

∫

1

t2
ur(−

1

t
,
r

t
) · ir

2t2
u(−1

t
,
r

t
)dx) = − 2

t2
E[u]. (102)

Therefore, E[v] = 0, and thus, v is a soliton, so u is a pseudoconformal transforma-
tion of a soliton.

Remark 3.4. When m = 0, the pseudoconformal transformation of the soliton
does not lie in H1

m.

4. The Liouville theorem. Now we have proved that the only solution to (1)
that satisfies (26) has mass ‖u0‖L2 = ‖Q‖L2 and is global in both time directions.
Then we complete the proof of the Liouville theorem by showing that u is a soliton.

Theorem 4.1. The solution satisfying ‖u‖L2 = ‖Q‖L2 and (21) is the soliton.

Proof. We again use the virial identity in (69) and (70), only this time we integrate
from −T to T . Integrating by parts,
∫

ψ(
r

R
)Re[ū·r∂r∆u]−

∫

ψ(
r

R
)Re[∆ū·r∂ru] = 2

∫

φ(
r

R
)|∂ru|2+O(

1

R2

∫

r≥R

|u|2),

(103)
where again φ(r) = ∂r(rψ(r)) and φ(r) = χ(r)2 for some χ ∈ C∞

0 . Now then,

1

R2

∫

r≥R

λ2Q(
x

λ
)2dx =

λ

R2

∫ ∞

R

(λr)2m+1

(1 + (λr)2m+2)2
dr .

1

R4λ2
. (104)

Next, for
u = λQ(λx) + λε(λx), (105)

since ‖u‖L2 = ‖Q‖L2 , by standard linear algebra,

‖ε‖2L2 = −2〈λQ(λr), λε(λr)〉. (106)

Therefore,

‖ε‖2L2 = 2|〈ε,Q〉| ≤ 2|〈χ( r
R
)λε(λx), λQ(λx)〉|+ 2|〈(1− χ(

r

R
))λε(λx), λQ(λx)〉|.

(107)
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By Hölder’s inequality,

2|〈(1− χ(
r

R
))λε(λx), λQ(λx)〉| . 1

R2λ2
‖ε‖L2 . (108)

Now let

Q̃(r) = −
∫ ∞

r

Q(r)dr. (109)

Since Q(r) . 1
r4 for r large and Q(r) ≤ 1 for all r, Q̃(r) ∈ L2(R2). Moreover,

∂rQ̃(r) = Q(r), and ∂rQ̃(λr) = λQ(λr). (110)

Therefore,

〈χ( r
R
)λε(λr), λQ(λr)〉 = 〈χ( r

R
)λε(λr), ∂rQ̃(λr)〉. (111)

Integrating by parts,

(111) .
1

λ
‖χ( r

R
)λε(λr)‖Ḣ1

m
.

1

λ
E[χ(

r

R
)λε(λr) + λQ(λr)]1/2

.
1

λ
E[χ(

r

R
)u]1/2 +

1

λ3R3
.

(112)

Therefore,

‖ε‖2L2 .
1

λ
E[χ(

r

R
)u]1/2 +

1

λ3R3
, (113)

and by (104) and (113),
∫

r≥R

1

R2
|u|2 .

1

λR2
E[χ(

r

R
)u]1/2 +

1

λ2R4
. (114)

Also by (104),
∫

r≥R

R

r
|u|4dx .

1

λ2R4
+

∫

r≥R

R

r
|λε(λx)|4dx. (115)

By standard perturbation theory and the fact that the L4
t,x norm is invariant under

the scaling (21),

∫ t0+
1

λ(t0)2

t0

∫

|λε(t, λx)|4dxdt . ‖ε(t0)‖4L2 . λ(t0)
2

∫ t0+
1

λ(t0)2

t0

‖ε(t)‖4L2 . (116)

Plugging in (113), since λ(t) ∼ λ(t0) for t ∈ [t0, t0 +
1

λ(t0)2
],

λ(t0)
2

∫ t0+
1

λ(t0)2

t0

‖ε(t)‖4L2 .

∫ t0+
1

λ(t0)2

t0

E[χ(
r

R
)u]dt+

∫ t0+
1

λ(t0)2

t0

1

R4
dt. (117)

Making an averaging argument, for a fixed R0,

∑

j

∫

r≥2jR0

2jR0

r
|f(x)|4dx . ‖f(x)‖4L4 . (118)

Therefore, for any δ > 0 there exists some R0 ≤ R∗ ≤ C(δ)R0 such that

∫ t0+
1

λ(t0)2

t0

∫

r≥R∗

R∗

r
|λε(t, λx)|4dxdt . δ

∫ t0+
1

λ(t0)2

t0

‖ε(t)‖4L4dt

. δ

∫ t0+
1

λ(t0)2

t0

E[χ(
r

R∗
)u]dt+

∫ t0+
1

λ(t0)2

t0

1

R4
dt.

(119)
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Therefore, we have proved
∫ b

a

E[χ(
r

R
)u]dt . R‖ε(a)‖L2 +R‖ε(b)‖L2 +

∫ b

a

1

R4
dt. (120)

Taking R = T 1/4, averaging (120), and plugging in (113), we have proved

lim
T↗∞

inf
t∈[0,T ]

‖ε(t)‖L2 = 0, lim
T↗∞

inf
t∈[−T,0]

‖ε(t)‖L2 = 0. (121)

Now for any j ∈ Z, j ≥ 0, let

t+j = inf{t ≥ 0 : ‖ε(t)‖L2 = 2−j}, t−j =
∑

{t < 0 : ‖ε(t)‖L2 = 2−j}. (122)

Then let Tj = t+j − t−j , Ij = [t−j , t
+
j ]. Then Tj → ∞ as j → ∞. Then by (113),

‖ε(t±j )‖4L2 .
1

λ(t±j )
2
E[χ(

r

R
)u(t±j )] +

1

R6
j

. (123)

Therefore, by (120),
∫

Ij

E[χ(
r

R
)u]dt .

Rj

Tj
(

∫

Ij

E[χ(
r

R
)u]1/4dt) +

Tj
R4

j

. (124)

Therefore,
∫

Ij

E[χ(
r

R
)u]dt .

Rj

T
1/4
j

+
Tj
R4

j

∼ 1. (125)

Then, by the dominated convergence theorem, taking j → ∞,
∫

R

E[u]dt . 1, (126)

which implies E[u] ≡ 0, and thus u is a soliton.
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[1] L. Bergé, A. de Bouard, and J.-C. Saut Blowing up time-dependent solutions of the planar,
Chern-Simons gauged nonlinear Schrodinger equation, Nonlinearity, 8 (1995), 235-253.

[2] G. Dunne, Self-Dual Chern-Simons Theories, Volume 36, Springer Science & Business Media,
Berlin, 2009.

[3] H. Huh, Energy solution to the Chern-Simons-Schrödinger equation, Abstract and Applied

Analysis, 2013 , Hidawi, Art. ID 590653, 7 pp.
[4] R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Physical

Review D , 42 (1990), 3500-3513.
[5] R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on

the plane, Physical Review Letters, 64 (1990), 2969-2972.
[6] R. Jackiw and S.-Y. Pi, Time-dependent Chern-Simons solitons and their quantization, Phys-

ical Review D , 44 (1991), 2524-2532.
[7] K. Kim and S. Kwon, On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-

Simons-Schrödinger Equation: Existence, Uniqueness, and Instability, Mem. Amer. Math.
Soc., 284 (2023), vi+128 pp., arXiv:1909.01055.

[8] K. Kim and S. Kwon, Construction of blow-up manifolds to the equivariant self-dual Chern-
Simons-Schrödinger equation, Ann. PDE , 9 (2023), Paper No. 6, 129 pp, arXiv:2009.02943.

[9] K. Kim, S. Kwon and S.-J. Oh, Blow-up dynamics for smooth finite energy radial data solu-

tions to the self-dual Chern-Simons-Schrödinger equation, preprint, 2020, arXiv:2010.03252.
[10] K. Kim, S. Kwon and S.-J. Oh, Soliton resolution for equivariant self-dual Chern-Simons-

Schrödinger equation in weighted Sobolev class, preprint, 2022, arXiv:2202.07314.



LIOUVILLE THEOREM 15

[11] Z. M. Lim, Large data well-posedness in the energy space of the Chern–Simons–Schrödinger
system, Journal of Differential Equations, 264 (2018), 2553-2597.

[12] Z. Li and B. Liu, On threshold solutions of the equivariant Chern–Simons–Schrödinger equa-
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