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GLOBAL WELL-POSEDNESS FOR THE RADIAL, DEFOCUSING,
NONLINEAR WAVE EQUATION FOR 3< p < 5

By BENJAMIN DODSON

Abstract. In this paper we continue the study of the defocusing, energy-subcritical nonlinear wave
equation with radial initial data lying in the critical Sobolev space. In this case we prove scattering in
the critical norm when 3 < p< 5.

1. Introduction. In this paper we prove global well-posedness and scatter-
ing for

(1.1) utt−∆u+ |u|p−1u= 0, u : R×R3 →R, u(0,x) = u0, ut(0,x) = u1,

with 3< p < 5 and radial initial data in the critical L2-based Sobolev space.
The critical Sobolev space for (1.1) arises from the scaling symmetry

(1.2) u(t,x) 7→ λ
2

p−1u(λt,λx).

The Ḣsc norm, where sc is the critical Sobolev exponent

(1.3) sc =
3
2
− 2
p−1

,

is preserved under this scaling. It is well known that this scaling symmetry com-
pletely determines the local theory for (1.1) (see [13]). We prove that the scaling
symmetry also completely determines the global theory for radial initial data. The
ill-posedness results of [13] imply that this result is sharp for radial initial data.

The proof continues the study that we began in [4, 3], where we proved,

THEOREM 1.1. The defocusing, cubic nonlinear wave equation

(1.4) utt−∆u+u3 = 0, u(0,x) = u0, ut(0,x) = u1,

is globally well-posed and scattering for all radial initial data in Ḣ1/2 × Ḣ−1/2.

In this paper we prove the corresponding result for 3 < p < 5, or equivalently
by (1.3), for 1

2 < sc < 1.

Manuscript received July 25, 2020; revised May 27, 2022.
Research supported in part by NSF grant DMS-1764358.
American Journal of Mathematics 146 (2024), 1–46. © 2024 by Johns Hopkins University Press.
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2 B. DODSON

THEOREM 1.2. The defocusing, nonlinear wave equation

(1.5) utt−∆u+ |u|p−1u= 0, u(0,x) = u0, ut(0,x) = u1,

is globally well-posed and scattering for radial initial data (u0,u1) ∈ Ḣsc(R3)×
Ḣsc−1(R3). Moreover, there exists a function f : [0,∞) → [0,∞) such that if u
solves (1.5) with radial initial data (u0,u1) ∈ Ḣsc × Ḣsc−1, then

(1.6) ∥u∥
L

2(p−1)
t,x (R×R3)

≤ f(∥u0∥Ḣsc +∥u1∥Ḣsc−1).

There are several reasons to conjecture that such a result is true for both radial
and nonradial data.

First, as we have already mentioned, critical Sobolev regularity completely
determines local well-posedness.

THEOREM 1.3. Equation (1.5) is locally well-posed for initial data (u0,u1) ∈
Ḣsc(R3)×Ḣsc−1(R3) on some interval [−T (u0,u1),T (u0,u1)], where the time of
well-posedness T (u0,u1) depends on the profile of the initial data (u0,u1), not just
its size. Global well-posedness and scattering hold for small Ḣsc × Ḣsc−1 norm.

Additional regularity is enough to give a lower bound on the time of well-
posedness. Therefore, there exists some T (∥u0∥Ḣs ,∥u1∥Ḣs−1) > 0 for any sc <
s < 3

2 .
Furthermore, equation (1.1) is ill-posed for initial data in the Sobolev space

Ḣs× Ḣs−1 when s < sc.

Proof. See [13]. □

Local well-posedness combined with conservation of the energy

(1.7) E(u(t)) =
1
2

∫
ut(t,x)

2dx+
1
2

∫
|∇u(t,x)|2dx+ 1

p+1

∫
|u(t,x)|p+1dx,

implies global well-posedness for finite energy initial data, that is, u0 ∈ Ḣsc ∩ Ḣ1

and u1 ∈ Ḣsc−1 ∩L2. Indeed, by the Sobolev embedding theorem,

(1.8) E(u(0))≲ ∥ut(0)∥2
L2(R3)+∥∇u(0)∥2

L2(R3)+∥∇u(0)∥2
L2(R3)∥u(0)∥

p−1
Ḣsc (R3)

,

and therefore,

(1.9) E(u(0))≲∥u0∥Ḣsc
∥ut(0)∥2

L2 +∥∇u(0)∥2
L2 .

By conservation of energy, E(u(0)) = E(u(t)), so (1.9) gives a uniform bound
over the norm ∥ut(t)∥2

L2 + ∥∇u(t)∥2
L2 . Since (1.5) is energy-subcritical, Theo-

rem 1.3 implies that a uniform bound over the energy is enough to ensure global
well-posedness. Additionally, the results of [20] imply that for initial data of finite
energy with sufficiently rapid decay at infinity, the global solution to (1.1) scatters.
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Definition 1.1 (Scattering). A solution to (1.1) is said to scatter forward in time
if there exist (u+0 ,u

+
1 ) ∈ Ḣsc × Ḣsc−1 such that

(1.10) ∥(u(t),ut(t))−S(t)(u+0 ,u
+
1 )∥Ḣsc×Ḣsc−1 → 0,

as t→+∞, where S(t) is the solution operator to the linear wave equation

utt−∆u= 0.

Scattering backward in time is defined in the corresponding way. A global solution
is said to scatter if it scatters both forward and backward in time.

Remark. Conservation of energy does not imply global well-posedness or scat-
tering for the focusing problem, which will not be discussed here. See [14] for a
discussion of blowup solutions in the focusing case.

The second reason to conjecture scattering for a solution to (1.1) with generic
initial data (u0,u1) ∈ Ḣsc × Ḣsc−1 is that it is known that an a priori upper bound
on the Ḣsc × Ḣsc−1 norm for a solution to (1.1) implies scattering for both radial
and nonradial data.

THEOREM 1.4. Suppose u0 ∈ Ḣsc(R3), u1 ∈ Ḣsc−1(R3), and u solves (1.5)
on a maximal interval 0 ∈ I ⊂ R, with

(1.11) sup
t∈I

∥u(t)∥Ḣsc (R3)+∥ut(t)∥Ḣsc−1(R3) < ∞.

Then I = R and the solution u scatters both forward and backward in time.

Proof. See [17] for the proof in the radial case and [5] for the proof in the
nonradial case. □

Theorem 1.4 is called a type two scattering result, while a blowup solution
to (1.1) that satisfies (1.11) would be a type two blowup solution.

Remark. The pseudoconformal transformation of a NLS soliton is an example
of a type two blowup solution.

Type one blowup is a solution to (1.1) for which the bound (1.11) does not
hold. Since S(t) is unitary, (1.10) cannot occur if (1.11) does not hold.

The tools for type two scattering results are very well-developed, especially for
the energy-critical wave equation. Observe that when sc = 1, or

(1.12) utt−∆u+u5 = 0, u(0,x) = u0, ut(0,x) = u1,

(1.11) automatically follows from conservation of the energy

(1.13) E(u(t)) =
1
2

∫
ut(t,x)

2dx+
1
2

∫
|∇u(t,x)|2dx+ 1

6

∫
u(t,x)6dx,
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reducing scattering questions for the defocusing, energy-critical problem to type
two scattering questions. The qualitative behavior of (1.12) has been completely
worked out, proving global well-posedness and scattering, for both the radial [6,
22] and the nonradial case [1, 2, 8, 16]. The proof relies very heavily on conserva-
tion of the energy, which ensures a uniform bound over the critical Sobolev norm,
and also yields a Morawetz estimate,

(1.14)
∫∫

u(t,x)6

|x|
dxdt≲ E(u(0)),

which gives a space-time integral estimate for a solution to (1.12).
When 3 < p < 5 there is no known conserved quantity that gives an upper

bound on ∥u∥Ḣsc×Ḣsc−1 . Additionally, since Morawetz estimates arise from con-
servation laws, there is also no known Morawetz estimate at the critical Sobolev
regularity. Such a Morawetz estimate would likely significantly simplify the proof
of Theorem 1.4, while proving an upper bound on ∥u∥Ḣsc×Ḣsc−1 would mean that
Theorem 1.4 would imply Theorem 1.2 for both radial and nonradial data. The
author believes that [4] and this paper are the first global well-posedness and scat-
tering results for initial data in a critical Sobolev space when there is no known
conserved quantity that controls the critical Sobolev norm.

To prove Theorem 1.2 we utilize the Fourier truncation method. The initial
data is split into two pieces; a piece with small Ḣsc ×Ḣsc−1 norm and a piece with
finite energy. Then, a solution u to (1.5) is shown to have the decomposition

(1.15) u(t) = v(t)+w(t),

where v(t) has uniformly bounded energy, and w(t) is a small data scattering so-
lution to (1.5). By Theorem 1.3, a uniform bound on the energy of v(t) is enough
to imply global well-posedness of (1.5).

Remark. The Fourier truncation method was used in [10] to prove global well-
posedness for the cubic problem when s > 3

4 .

To prove scattering, the wave equation (1.5) is rewritten in hyperbolic coor-
dinates. These coordinates were quite useful to the cubic wave equation because
the hyperbolic energy scales like the Ḣ1/2 × Ḣ−1/2 norm. For 3 < p < 5, the hy-
perbolic energy and the energy (1.13) “sandwich” the Ḣsc × Ḣsc−1 norm, giving
scattering.

Remark. Previously, [18] used hyperbolic coordinates to prove scattering
for (1.5) with radial data lying in the energy space and a weighted Sobolev space.
The weighted Sobolev space used in [18] also scales like the Ḣ1/2 × Ḣ−1/2 norm.

As in [4], energy and hyperbolic energy bounds merely give a scattering size
bound for any initial data in the critical Sobolev space, but with scattering size
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depending on the initial data (u0,u1) and not just its size. To prove a scattering
size bound that depends only on the size of the initial data, we use Zorn’s lemma.
As in [3, 4], we use a profile decomposition to show that if (un0 ,u

n
1 )∈ Ḣsc ×Ḣsc−1

is a bounded sequence, then ∥un∥
L

2(p−1)
t,x (R×R3)

is also uniformly bounded.

Remark. The upper bound in (1.6) is completely qualitative. Concentration
compactness-type arguments that proved scattering in the energy-critical case also
obtained a quantitative bound. See for example [23]. Here we do not obtain any
quantitative bounds at all. In the author’s opinion, it would be very interesting to
obtain some sort of quantitative bound.

Outline of the argument. We begin by proving global well-posedness for the
p = 4 case in section two. This is a warm-up for section three, where we then
generalize this global well-posedness result to any 3< p < 5. After proving global
well-posedness, the hyperbolic coordinates are well-defined. In section four, we
prove an estimate on the initial data, before obtaining a scattering bound in section
five. We conclude with a concentration compactness argument in section six.

Acknowledgments. The author was a guest of the Institute for Advanced Study
during the writing of this paper. The author is also grateful to the anonymous ref-
eree for a detailed list of many helpful suggestions.

2. Global well-posedness in the p = 4 case. To simplify the exposition,
first consider the specific case of p= 4 in (1.1),

(2.1) utt−∆u+ |u|3u= 0.

In this case

(2.2) sc =
3
2
− 2

4−1
=

5
6
.

Global well-posedness is proved using the Fourier truncation method. Using
(1.2), fix 0< ϵ≪ 1 and rescale so that

(2.3) ∥(P>1u0,P>1u1)∥Ḣ5/6×Ḣ−1/6 < ϵ.

Remark. In sections four and five, this data will again be rescaled so that most
of the critical Sobolev norm lies in a ball of radius one.

Then decompose the initial data

(2.4) v0 = P≤1u0, w0 = P>1u0, v1 = P≤1u1, w1 = P>1u1.
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By Theorem 1.3, (2.1) has a local solution. Decompose the solution to (2.1),
u= v+w, where v and w solve

wtt−∆w+ |w|3w = 0, w(0,x) = w0, wt(0,x) = w1,(2.5)

vtt−∆v+ |u|3u−|w|3w = 0, v(0,x) = v0, vt(0,x) = v1.(2.6)

We know from [13] that (2.5) is globally well-posed and scattering. The proof
uses Strichartz estimates and small data arguments.

THEOREM 2.1 (Strichartz estimates). Let I ⊂ R, t0 ∈ I be an interval and let
u solve the linear wave equation

(2.7) utt−∆u= F, u(t0) = u0, ut(t0) = u1.

Then we have the estimates

(2.8)
∥u∥Lp

tL
q
x(I×R3)+∥u∥L∞

t Ḣ
s(I×R3)+∥ut∥L∞

t Ḣ
s−1(I×R3)

≲p,q,s,p̃,q̃ ∥u0∥Ḣs(R3)+∥u1∥Ḣs−1(R3)+∥F∥
Lp̃′
t Lq̃′

x (I×R3)
,

whenever s≥ 0, 2 ≤ p, p̃≤ ∞, 2 ≤ q, q̃ < ∞, and

(2.9)
1
p
+

1
q
,

1
p̃
+

1
q̃
≤ 1

2
,

1
p
+

3
q
=

3
2
−s= 1

p̃′
+

3
q̃′
−2.

Proof. Theorem 2.1 was proved for p = q = 4 in [21] and then in [7] for a
general choice of (p,q). □

Then,

(2.10)
∥w∥

L6
t,x∩L

12/5
t L12

x ∩L∞
t Ḣ

5/6

≲ ∥(w0,w1)∥Ḣ5/6×Ḣ−1/6 +∥w∥3
L6
t,x
∥w∥

L
12/5
t L12

x
≲ ϵ,

which by (2.3) implies that w is scattering. Additionally, the radial Strichartz esti-
mate and Bernstein’s inequality implies

(2.11) ∥w∥L∞
t L

2
x
≲ ϵ+∥w∥3

L6
t,x
∥w∥L∞

t L
2
x
≲ ϵ.

THEOREM 2.2 (Radial Strichartz estimate). For (u0,u1) radially symmetric, if
u solves (2.7) with F = 0,

(2.12) ∥u∥L2
tL

∞
x(R×R3) ≲ ∥u0∥Ḣ1(R3)+∥u1∥L2(R3).

Proof. This theorem was proved in [11]. The dual of (2.12) is that if u0 =

u1 = 0, and F is radial, then

□(2.13) ∥u∥L∞
t L

2
x
≲ ∥F∥L2

tL
1
x
.
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Therefore, to prove global well-posedness of (1.1) in the case when p= 4, it is
enough to prove global well-posedness of (2.6). To that end, let E(t) be the energy
of v,

(2.14) E(t) =
1
2

∫
|∇v|2 + 1

2

∫
v2
t +

1
5

∫
|v|5dx.

By the Sobolev embedding theorem and (2.4),

(2.15) E(0)≲ (∥u0∥Ḣ5/6 +∥u1∥Ḣ−1/6)2 +(∥u0∥Ḣ5/6 +∥u1∥Ḣ−1/6)5.

To prove global well-posedness of (2.6), it is enough to prove a uniform bound
on E(t). Indeed, suppose that (2.6) has a solution on an interval [0,T ), and that

(2.16) sup
t∈[0,T )

E(t)< ∞.

Then by Theorem 1.3, there exists some δ > 0 such that for any t0 ∈ [0,T ),

(2.17) ṽtt−∆ṽ+ |ṽ|3ṽ = 0, ṽ(t0,x) = v(t0,x), ṽt(t0,x) = vt(t0,x),

has a solution on [t0, t0 + δ]. By (2.10) and standard perturbation theory (see
Lemma 6.2), this proves that the solution to (2.6) can be continued past T .

THEOREM 2.3. The energy E(t) given by (2.14) is uniformly bounded for
all t ∈ R, and moreover,

(2.18) sup
t∈R

E(t)≲∥u0∥Ḣ5/6 ,∥u1∥Ḣ−1/6
E(0).

Proof. The proof is quite similar to the proof in [4]. By direct computation,

(2.19)
d

dt
E(v(t)) =−

∫
vt[|v+w|3(v+w)−|w|3w−|v|3v]dx.

By Taylor’s theorem,

(2.20)

|v+w|3(v+w)−|v|3v−|w|3w = 4w
∫ 1

0
|v+ τw|3dτ −4w

∫ 1

0
|τw|3dτ

= 12wv
∫ 1

0

∫ 1

0
|sv+ τw|(sv+ τw)dsdτ

= 4|v|3w+O(|v|2|w|2)+O(|v||w|3).

By Hölder’s inequality and (2.14),

(2.21)
⟨vt, |v|2|w|2⟩≲ ∥vt∥L2

x(R3)∥v∥
1/3
L6
x(R3)

∥v∥5/3
L5
x(R3)

∥w∥2
L18
x (R3)

≲ E(t)∥w(t)∥2
L18
x (R3),
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and

(2.22) ⟨vt, |v||w|3⟩≲ ∥vt∥L2
x(R3)∥v∥L6

x(R3)∥w∥3
L9
x(R3) ≲ E(t)∥w(t)∥3

L9
x(R3).

Therefore,

(2.23)
d

dt
E(t) =−4⟨vt, |v|3w⟩+E(t)O(∥w(t)∥2

L18
x (R3)+∥w(t)∥3

L9
x(R3)).

If the term 4⟨vt, |v|3w⟩ could be dropped, then we would have

(2.24)
d

dt
E(t)≲ E(t)[∥w(t)∥2

L18
x (R3)+∥w(t)∥3

L9
x(R3)].

By radial Strichartz estimates, (2.4), and (2.10),

(2.25)
∫

R
∥w(t)∥2

L18
x (R3)+∥w(t)∥3

L9
x(R3)dt≲ ϵ2.

Indeed,

THEOREM 2.4 (Radial Strichartz estimates). Let (u0,u1) be spherically sym-
metric, and suppose u solves (2.7) with F = 0. Then if q > 4 and

(2.26)
1
2
+

3
q
=

3
2
−s,

then

(2.27) ∥u∥L2
tL

q
x(R×R3) ≲ ∥u0∥Ḣs(R3)+∥u1∥Ḣs−1(R3).

Proof. This was proved in [19]. □

Then for w solving (2.5), by (2.10), the Sobolev embedding theorem, and the
principle of superposition,

(2.28) ∥w∥L2
tL

18
x ∩L3

tL
9
x
≲ ∥w0∥Ḣ5/6 +∥w1∥Ḣ−1/6 +∥|w|3w∥

L1
tL

9/5
x

≲ ϵ.

Then by Gronwall’s inequality, (2.24) and (2.25) would easily imply that

(2.29) sup
t∈R

E(t)≲ E(0).

Remark. In fact, it is possible to say something more than (2.28). Namely, by
Duhamel’s principle,

(2.30) w(t) = S(t)(w0,w1)−
∫ t

0
S(t− τ)(0, |w|3w)dτ,

[1
0.

16
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so since the operator Pj commutes with S(t),

(2.31)

(∑
j

∥Pjw∥2
L2
tL

18
x

)1/2

≲
(∑

j

∥Pjw0∥2
Ḣ5/6 +∥Pjw1∥2

Ḣ−1/6 +∥Pj(|w|3w)∥2
L1
tḢ

−1/6

)1/2

≲ ∥w0∥Ḣ5/6 +∥w1∥Ḣ−1/6 +∥|w|3w∥L1
tḢ

−1/6

≲ ∥w0∥Ḣ5/6 +∥w1∥Ḣ−1/6 +∥|w|3w∥
L1
tL

9/5
x

≲ ϵ.

The contribution of 4⟨vt, |v|3w⟩ is controlled using a Morawetz estimate in
conjunction with weighted Strichartz estimates, as was done in [4]. Define

(2.32) E(t) = E(t)+ cM(t)+

∫
|v|3vwdx,

where M(t) is the Morawetz potential

(2.33) M(t) =

∫
vt
x

|x|
·∇vdx+

∫
vt

1
|x|
vdx,

and c > 0 is a small, fixed constant. By Hardy’s inequality,

(2.34) cM(t)≲ c∥∇v∥L2(R3)∥vt∥L2(R3) ≲ cE(t),

and by (2.10),

(2.35)
∫

|v|3vwdx≲ ∥v∥10/3
L5
x

∥v∥2/3
L6
x
∥w∥

L
9/2
x

≲ ϵE(t).

Therefore, E(t)∼E(t).

Next, by the product rule,

(2.36) 4⟨vt, |v|3w⟩−
d

dt

∫
|v|3vwdx=−⟨v, |v|3wt⟩.

Also, by direct computation and integrating by parts, since v is radial,

(2.37)

c
d

dt
M(t) =−2πcv(t,0)2 − 3c

5

∫
|v(t,x)|5

|x|
dx

− c
∫
(|v+w|3(v+w)−|v|3v−|w|3w) x

|x|
·∇vdx

− c
∫
(|v+w|3(v+w)−|v|3v−|w|3w) 1

|x|
vdx.

Remark. The virial identities will be computed in more detail in the next sec-
tion.
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Therefore,

(2.38)

d

dt
E(t) =−2πcv(t,0)2 − 3c

5

∫
|v(t,x)|5

|x|
dx

− c
∫
(|v+w|3(v+w)−|v|3v−|w|3w) x

|x|
·∇vdx−⟨v, |v|3wt⟩

− c
∫
(|v+w|3(v+w)−|v|3v−|w|3w) 1

|x|
vdx

+O(E(t)[∥w(t)∥2
L18
x (R3)+∥w(t)∥3

L9
x(R3)]).

By Hardy’s inequality, the Sobolev embedding theorem, and the Cauchy–
Schwartz inequality,

(2.39)

∫
(|v+w|3(v+w)−|v|3v−|w|3w) 1

|x|
vdx

≲

(∫
1
|x|
v5dx

)2/3

·
∥∥∥∥ 1
|x|1/2 v

∥∥∥∥2/3

L3
x

∥w∥L9
x
+

∥∥∥∥ 1
|x|
v

∥∥∥∥
L2
∥v∥L6

x
∥w∥3

L9
x

≲ δ

(∫
1
|x|

|v|5dx
)
+

1
δ
E(t)∥w(t)∥3

L9
x
.

Also, following (2.21) and (2.22),

(2.40)

c

∫
[|v|2|w|2 + |v||w|3] x

|x|
·∇vdx

≲ ∥∇v∥L2∥v∥1/3
L6 ∥v∥

5/3
L5 ∥w∥2

L18
x
+∥∇v∥L2

x
∥v∥L6

x
∥w∥3

L9
x

≲ E(t)[∥w∥2
L18
x
+∥w∥3

L9
x
].

Therefore,

(2.41)

d

dt
E(t)+2πcv(t,0)2 +

3c
5

∫
|v(t,x)|5

|x|
dx

+ c

∫
w
x

|x|
·∇(|v|3v)dx+ ⟨v, |v|3wt⟩

≲
1
δ
E(t)[∥w(t)∥2

L18
x (R3)+∥w(t)∥3

L9
x(R3)]+ δ

(∫
|v(t,x)|5

|x|
dx

)
.

Make a Littlewood–Paley decomposition,

(2.42) ⟨|v|3v,wt⟩=
∑
j

⟨|v|3v,Pjwt⟩.

By Lemma 3.3, if Pj is a Littlewood–Paley projection operator,

(2.43)
∫

1
|x|

|P≤jv|5dx+
∫

1
|x|

|P≥jv|5dx≲
∫

1
|x|

|v|5dx.
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Therefore, by Hölder’s inequality, (2.43), and the Cauchy–Schwartz inequality,

(2.44)

∑
j

⟨|v|3v−|P≤jv|3(P≤jv),Pjwt⟩

≲
∑
j

∥|x|1/10P≥jv∥L5/2
x

(∫
1
|x|

(|P≤jv|5 + |P≥jv|5)dx
)3/5

×∥|x|1/2Pjwt∥L∞
x

≲

(∫
1
|x|

|v|5dx
)3/5

·
∑
j

∥|x|1/10P≥jv∥L5/2
x
∥|x|1/2Pjwt∥L∞

x
.

By Bernstein’s inequality and the radial Sobolev embedding theorem,

(2.45) ∥|x|1/10P≥jv∥L5/2
x (R3)

≲ 2−4j/5∥∇v∥L2
x(R3) ≲ 2−4j/5E(t)1/2.

Also, by Bernstein’s inequality, the radial Sobolev embedding theorem, and inte-
grating by parts,

(2.46)

⟨|P≤jv|3(P≤jv),Pjwt⟩

=

〈
|P≤jv|3(P≤jv),

∇

∇
Pjwt

〉
∼ 2−j⟨|P≤jv|3(∇P≤jv),(Pjwt)⟩

≲ 2−j∥|x|1/10
∇P≤jv∥L5/2

x (R3)

(∫
1
|x|

|P≤jv|5dx
)3/5

∥|x|1/2Pjwt∥L∞
x(R3)

≲ 2−4j/5E(t)1/2
(∫

1
|x|

|v|5dx
)3/5

∥|x|1/2Pjwt∥L∞
x
.

The term
∫
(Pjw)

x
|x| ·∇(|v|3v)dx can be handled using a similar calculation.

Indeed, by Bernstein’s inequality and (2.43),

(2.47)

∫
(Pjw)

x

|x|
·∇(|P≤jv|3(P≤jv))dx

=

∫
∇

∇
(Pjw)

x

|x|
·∇(|P≤jv|3(P≤jv))dx

∼ 2−j

∫
(Pj∇w)

x

|x|
·∇(|P≤jv|3(P≤jv))dx

≲ 2−j∥|x|1/2Pj∇w∥L∞
x
∥|x|1/10

∇P≤jv∥L5/2
x

(
1
|x|

|P≤jv|5dx
)3/5

≲ 2−4j/5E(t)1/2
(∫

1
|x|

|v|5dx
)3/5

∥|x|1/2Pj∇w∥L∞
x
.
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Meanwhile, integrating by parts,

(2.48)

∫
(Pjw)

x

|x|
·∇(|v|3v−|P≤jv|3(P≤jv))dx

=−
∫
(Pj∇w) ·

x

|x|
(|v|3v−|P≤jv|3(P≤jv))dx

−2
∫
(Pjw)

1
|x|

(|v|3v−|P≤jv|3(P≤jv))dx.

The term

(2.49) −
∫
(Pj∇w) ·

x

|x|
(|v|3v−|P≤jv|3(P≤jv))dx

may be handled in a manner identical to (2.44)–(2.46), giving

(2.50) (2.49) ≲ 2−4j/5E(t)1/2
(∫

1
|x|

|v|5dx
)3/5

∥|x|1/2Pj∇w∥L∞
x
.

Meanwhile, by (2.43), the Sobolev embedding theorem, the Cauchy–Schwartz in-
equality, Young’s inequality, Bernstein’s inequality, and the Littlewood–Paley the-
orem,

(2.51)

−2
∫

(Pjw)
1
|x|

(|v|3v−|P≤jv|3(P≤jv))dx

≲
∫

1
|x|

|Pjw||P≥jv|(|P≤jv|3 + |P≥jv|3)dx

≲
∫ (∑

j

|Pjw|2
2−j/3−j/5

|x|6/5 (|P≤jv|6 + |P≥jv|6)
)1/2

×
(∑

j

2j/3+j/5|P≥jv|2
1

|x|4/5

)1/2

dx

≲
(∑

j

2−j/3−j/5∥Pjw∥2
L∞

)1/2
sup
j

(∫
1
|x|

|P≥j |5 +
1
|x|

|P≤jv|5dx
)3/5

×
∥∥∥(∑

j

|Pjv|2
)1/2∥∥∥1/3

L5

(∑
j

24j/5
∥∥∥∥ 1
|x|3/5 |Pjv|

∥∥∥∥2

L2

)1/3

≲ δ

(∫
1
|x|

|v|5dx
)
+

1
δ
E(t)

(∑
j

2−j/3−j/5∥Pjw∥2
L∞

)5/4

≲ δ

(∫
1
|x|

|v|5dx
)
+

1
δ
E(t)∥w(t)∥5/4

L45/4 .
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Remark. We use Young’s inequality to show

(2.52)

∥∥∥∥(∑
j

2j/3+j/5|P≥jv|2
1

|x|4/5

)1/2∥∥∥∥
L

5/2
x

=

∥∥∥∥(∑
j

2j/3+j/5
∣∣∣∑
k≥j

Pkv
∣∣∣2 1
|x|4/5

)1/2∥∥∥∥
L

5/2
x

≲

∥∥∥∥(∑
j

2j/3+j/5|Pjv|2
1

|x|4/5

)1/2∥∥∥∥
L

5/2
x

.

Therefore, by (2.41)–(2.51),

(2.53)

d

dt
E(t)+2πcv(t,0)2 +

3c
5

∫
|v(t,x)|5

|x|
dx

≲
1
δ
E(t)[∥w(t)∥2

L18
x (R3)+∥w(t)∥3

L9
x(R3)]+ δ

(∫
|v(t,x)|5

|x|
dx

)
+

1
δ
E(t)5/4

(∑
j

2−4j/5∥|x|1/2Pj∇t,xw∥L∞
x

)5/2
.

For δ > 0 small, but fixed,

(2.54) δ

(∫
1
|x|

|v|5dx
)

may be absorbed into the left-hand side of (2.53).

Next, recall Corollary 3.3 from [4].

COROLLARY 2.5. For any j ∈ Z, if w solves the linear wave equation

(2.55) wtt−∆w = 0, w(0,x) = Pjw0, wt(0,x) = Pjw1,

then for any 2< q < ∞,

(2.56) ∥|x|1/2w∥Lq
tL

∞
x(R×R3) ≲ ∥Pjw0∥Ḣ1/q′ +∥Pjw1∥Ḣ1/q′−1 .

In this case q = 5
2 , so by Corollary 2.5 and (2.30),

(2.57) ∥|x|1/2Pjw∥L5/2
t L∞

x
≲ ∥Pjw0∥Ḣ3/5 +∥Pjw1∥Ḣ−2/5 +∥Pj(|w|3w)∥L1

tḢ
−2/5 .

Also,

(2.58)
∥|x|1/2Pj∇t,xw∥L5/2

t L∞
x

≲ ∥Pjw0∥Ḣ8/5 +∥Pjw1∥Ḣ3/5 +∥Pj(|w|3w)∥L1
tḢ

3/5 .
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Remark. The estimate (2.58) in the case of ∇xw follows easily from (2.57)
using the Littlewood–Paley decomposition. For ∂tw, we use the fact that

(2.59) ∂tS(t)(w0,w1) = S(t)(w1,∆w0),

which by (2.57) implies

(2.60)

∥|x|1/2Pj∇tS(t)(w0,w1)∥L5/2
t L∞

x
= ∥|x|1/2PjS(t)(w1,∆w0)∥L5/2

t L∞
x

≲ ∥Pjw1∥Ḣ3/5 +∥Pj∆w0∥Ḣ−2/5

= ∥Pjw1∥Ḣ3/5 +∥Pjw0∥Ḣ8/5 .

Utilizing (2.60) in the integral term in (2.30),

(2.61)

∥∥∥∥|x|1/2Pj∇t

∫ t

0
S(t− τ)(0, |w|3w)dτ

∥∥∥∥
L

5/2
t L∞

x

≲
∫

∥Pj(|w|3w)∥Ḣ3/5dτ = ∥Pj(|w|3w)∥L1
tḢ

3/5 .

Using the computations in (2.31), for any σ > 0 small, σ = 1
60 will do, by

Bernstein’s inequality,

(2.62)

∑
j≥0

2−4j/5∥|x|1/2Pj∇t,xw∥L5/2
t L∞

x(R×R3)

≲σ

(∑
j≥0

2−8j/5+σ∥|x|1/2Pj∇t,xw∥2
L

5/2
t L∞

x(R×R3)

)1/2

≲
(∑

j≥0

2−8j/5+σ∥Pjw0∥2
Ḣ8/5(R3)

+2−8j/5+σ∥Pjw1∥2
Ḣ3/5(R3)

)1/2

+
(∑

j≥0

2−8j/5+σ∥Pj(|w|3w)∥2
L1
tḢ

3/5

)1/2

≲ ∥w0∥Ḣ5/6 +∥w1∥Ḣ−1/6 +∥|w|3w∥
L1
tL

9/5
x

≲ ϵ.

Since w0 and w1 have the Littlewood–Paley support P≥0, by (2.11),

(2.63)

∥w∥L∞
t L

2
x
≲ ∥w0∥L2 +∥w1∥Ḣ−1 +∥w∥L∞

t L
2
x
∥w∥3

L6
t,x

≲ ∥w0∥Ḣ5/6 +∥w1∥Ḣ−1/6 +∥w∥L∞
t L

2
x
∥w∥3

L6
t,x

≲ ϵ.
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Therefore, making a computation similar to (2.62),

(2.64)

∑
j≤0

2−4j/5∥|x|1/2Pj∇t,xw∥L5/2
t L∞

x(R×R3)

≲
∑
j≤0

2−4j/5∥Pjw0∥Ḣ8/5

+2−4j/5∥Pjw1∥Ḣ3/5 +2−4j/5∥Pj(|w|3w)∥L1
tḢ

3/5

≲σ

(∑
j≤0

2−8j/5−σ∥Pjw0∥2
Ḣ8/5 +2−8j/5−σ∥Pjw1∥2

Ḣ3/5

+2−8j/5−σ∥Pj(|w|3w)∥2
L1
tḢ

3/5

)1/2

≲ ∥w0∥L2 +∥w1∥Ḣ−1 +∥|w|3w∥
L1
tL

6/5
x

≲ ∥w0∥Ḣ5/6 +∥w1∥Ḣ−1/6 +∥w∥3
L3
tL

9
x
∥w∥L∞

t L
2
x
≲ ϵ.

Therefore, by (2.15), (2.25), (2.62), (2.64), and Gronwall’s inequality, for

ϵ(∥u0∥Ḣ5/6 ,∥u1∥Ḣ−1/6)> 0

sufficiently small, (2.18) holds, proving Theorem 2.3. □

3. Global well-posedness for general p. Now prove global well-posedness
of (1.1) for any 3< p < 5.

THEOREM 3.1. The nonlinear wave equation

(3.1) utt−∆+ |u|p−1u= 0, u(0,x) = u0, ut(0,x) = u1,

with radial initial data u0 ∈ Ḣsc(R3), u1 ∈ Ḣsc−1(R3), sc = 3
2 −

2
p−1 , 3 < p < 5,

is globally well-posed.

Proof. The proof is a generalization of the argument in the p= 4 case.

First prove a generalized Morawetz inequality.

THEOREM 3.2 (Morawetz inequality). If u solves (3.1) on an interval I , then

(3.2)
∫
I

∫
|u(t,x)|p+1

|x|
dxdt≲ E(u),

where E is the conserved energy (1.7).

Proof. Define the Morawetz potential

(3.3) M(t) =

∫
uturr

2dr+

∫
uturdr.

[1
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By direct computation,

(3.4)
d

dt
M(t) =−1

2
u(t,0)2 − p−1

p+1

∫
|u|p+1rdr.

Then (3.2) holds by the fundamental theorem of calculus and Hardy’s inequality.
□

The Morawetz estimate commutes very well with Littlewood–Paley projec-
tions.

LEMMA 3.3. For any j,

(3.5)
∫

1
|x|

|P≤jv|p+1dx+

∫
1
|x|

|P≥jv|p+1dx≲
∫

1
|x|

|v|p+1dx.

Proof. Let ψ be the Littlewood–Paley kernel.

(3.6)
1

|x|
1

p+1
P≤jv(x) =

1

|x|
1

p+1

∫
23jψ(2j(x−y))v(y)dy.

When |y|≲ |x|,

(3.7)
1

|x|
1

p+1
23jψ(2j(x−y))≲ 23jψ(2j(x−y)) 1

|y|
1

p+1
.

When |y| ≫ |x| and |x| ≥ 2−j , since ψ is rapidly decreasing, for any N ,

(3.8)

1

|x|
1

p+1
23jψ(2j(x−y))≲N

1

|x|
1

p+1

23j

(1+2j |x−y|)N

≲
1

|x|
1

p+1 2j |y|
23j

(1+2j |x−y|)N−1

≲
1

|y|
1

p+1

23j

(1+2j |x−y|)N−1 .

Combining (3.7) and (3.8),

(3.9)
∥∥∥∥ 1

|x|
1

p+1
|P≤jv|

∥∥∥∥
Lp+1(|x|≥2−j)

≲

∥∥∥∥ 1

|x|
1

p+1
v

∥∥∥∥
Lp+1(R3)

.

When |y| ≫ |x| and |x| ≤ 2−j , since ψ is rapidly decreasing, for any N ,

(3.10)

1

|x|
1

p+1
23jψ(2j(x−y))≲N

1

|x|
1

p+1

23j

(1+2j |x−y|)N

≲
1

|x|
1

p+1

23j

(1+2j |x−y|)N− 1
p+1

1

2
j

p+1 |y|
1

p+1

.
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By direct computation,

(3.11)
∥∥∥∥ 23j− j

p+1

(1+2j |x−y|)N− 1
p+1

∥∥∥∥
L

p+1
p (R3)

≲ 2
2j
p+1 .

Therefore, by (3.10), (3.11), Young’s inequality, and Hölder’s inequality,

(3.12)

∥∥∥∥ 1

|x|
1

p+1
|P≤jv|

∥∥∥∥
Lp+1(|x|≤2−j)

≲

∥∥∥∥ 1

|x|
1

p+1

∥∥∥∥
Lp+1(|x|≤2−j)

∥∥∥∥ 23j− j
p+1

(1+2j |x|)N− 1
p+1

∥∥∥∥
L

p+1
p

∥∥∥∥ 1

|y|
1

p+1
v

∥∥∥∥
Lp+1

≲

∥∥∥∥ 1

|x|
1

p+1
v

∥∥∥∥
Lp+1(R3)

.

This proves (3.5). □

Next, split a local solution (3.1), u= v+w, where w solves

(3.13) wtt−∆w+ |w|p−1w = 0, w(0,x) = w0, wt(0,x) = w1,

and v solves

(3.14) vtt−∆v+ |u|p−1u−|w|p−1w = 0, v(0,x) = v0, vt(0,x) = v1.

Again use the rescaling (1.2) so that v0 = P≤1u0, v1 = P≤1u1, w0 = P>1u0, w1 =

P>1u1, and

(3.15) ∥w0∥Ḣsc (R3)+∥w1∥Ḣsc−1(R3) < ϵ.

As in (2.15),

(3.16) E(0)≲ (∥u0∥Ḣsc +∥u1∥Ḣsc−1)2 +(∥u0∥Ḣsc +∥u1∥Ḣsc−1)p+1.

By small data arguments, (3.13) is globally well-posed and scattering for ϵ > 0
sufficiently small. Indeed,

(3.17) ∥w∥
L

2(p−1)
t,x ∩L

2
sc
t L

2
1−sc
x

≲∥w0∥Ḣsc+∥w1∥Ḣsc−1+∥w∥p−1

L
2(p−1)
t,x

∥w∥
L

2
sc
t L

2
1−sc
x

<ϵ,

and as in (2.11),

(3.18) ∥w∥L∞
t L

2
x
≲ ∥w0∥L2 +∥w1∥Ḣ−1 +∥w∥L∞

t L
2
x
∥w∥p−1

L
2(p−1)
t,x

< ϵ.

Now define the energy of v,

(3.19) E(t) =
1
2

∫
|∇v|2 + 1

2

∫
vt(t,x)

2dx+
1

p+1

∫
|v(t,x)|p+1dx,
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and let

(3.20) E(t) = E(t)+ cM(t)−
∫

|v|p−1vwdx,

where c > 0 is a small constant and M(t) is given by (3.3), with u replaced by v.
Then by (2.19) and (3.4),

(3.21)

d

dt
E(t)+ c

2
v(t,0)2 + c

(
1− 2

p+1

)∫
|v(t,x)|p+1

|x|
dx

=−⟨vt, |v+w|p−1(v+w)−|v|p−1v−|w|p−1w⟩+ d

dt

∫
|v|p−1vwdx

− c
∫

[|v+w|p−1(v+w)−|v|p−1v−|w|p−1w]
x

|x|
·∇vdx

− c
∫

[|v+w|p−1(v+w)−|v|p−1v−|w|p−1w]
1
|x|
vdx.

By (2.39), Hardy’s inequality, and the Cauchy–Schwarz inequality,

(3.22)

∫
[|v+w|p−1(v+w)−|v|p−1v−|w|p−1w]

1
|x|
vdx

≲

(∫
1
|x|

|v|p+1dx

) p−2
p−1

∥∥∥∥ 1
|x|1/2 v

∥∥∥∥ 2
p−1

L3
x

∥w∥L3(p−1)

+

∥∥∥∥ 1
|x|
v

∥∥∥∥
L2
∥v∥L6∥w∥p−1

L3(p−1)

≲ δ

(∫
1
|x|

|v|p+1dx

)
+

1
δ
E(t)∥w∥p−1

L3(p−1) .

Also by (2.20),

(3.23)
|v+w|p−1(v+w)−|v|p−1v−|w|p−1w

= p|v|p−1w+O(|v|p−2|w|2)+O(|v||w|p−1).

By Hölder’s inequality,

(3.24)

∫
[O(|v|p−2|w|2)+O(|v||w|p−1)]

x

|x|
·∇vdx

≲ ∥∇v∥L2∥v∥L6∥w∥p−1
L3(p−1) +E(t)∥w∥2

L
3

1−sc

≲ E(t)
[
∥w∥p−1

L3(p−1) +∥w∥2

L
3

1−sc

]
,

and

(3.25) ⟨vt, [O(|v|p−2|w|2)+O(|v||w|p−1)]⟩≲ E(t)
[
∥w∥p−1

L3(p−1) +∥w∥2

L
3

1−sc

]
.
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Next, by the product rule,

(3.26) p⟨vt, |v|p−1w⟩− d

dt

∫
|v|p−1vwdx= ⟨|v|p−1v,wt⟩.

Following (2.44),

(3.27)

∑
j

⟨|v|p−1v−|P≤jv|p−1(P≤jv),Pjwt⟩

≲

(∫
1
|x|

|P≤jv|p+1 +
1
|x|

|P≥jv|p+1
) p−1

p+1

×
∑
j

∥|x|1/2Pjwt∥L∞

∥∥|x| p−3
2(p+1) |P≥jv|

∥∥
L

p+1
2

≲
∑
j

2−
4j
p+1E(t)1/2

(∫
1
|x|

|v|p+1dx

) p−1
p+1

∥|x|1/2Pjwt∥L∞

≲ δ

(∫
1
|x|

|v|p+1dx

)
+

1
δ
E(t)

p+1
4

(∑
j

2−
4j
p+1 ∥|x|1/2Pjwt∥L∞

) p+1
2
.

Meanwhile, integrating by parts as in (2.47),

(3.28)

∑
j

⟨|P≤jv|p−1(P≤jv),Pjwt⟩

≲ δ

(∫
1
|x|

|v|p+1dx

)
+

1
δ
E(t)

p+1
4

(∑
j

2−
4j
p+1 ∥Pjwt∥L∞

) p+1
2
.

Using (3.17) and (3.18) in place of (2.10) and (2.11),

(3.29) E(0)
p+1

4

∫
R

(∑
j

2−
4j
p+1 ∥Pjwt∥L∞

) p+1
4
dt≲ E(0)

p+1
4 ϵ

p+1
4 .

The contribution of

(3.30) −c
∫
w
x

|x|
·∇(|v|p−1v)dx

may also be handled by splitting

(3.31)

w
x

|x|
·∇(|v|p−1v) =

∑
j

Pjw
x

|x|
·∇|v|p−1v

=
∑
j

(Pjw)
x

|x|
·∇(|P≤jv|p−1(P≤jv))

+
∑
j

(Pjw)
x

|x|
·∇((|v|p−1v−|P≤jv|p−1(P≤jv))),

integrating by parts, and summing up.
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Then arguing as in the p= 4 case, (3.25) and (3.29) imply that

(3.32) sup
t∈R

E(t)≲ E(0),

which completes the proof of Theorem 3.1. □

4. Scattering: Estimates on initial data. To prove scattering, let ϕ(x) be
a radial, smooth function supported on |x| ≤ 1 and ϕ(x) = 1 on |x| ≤ 1

2 . Then for
R(u0,u1)> 0 sufficiently large,

(4.1)
∥∥∥(1−ϕ

( x
R

))
u0

∥∥∥
Ḣsc (R3)

+
∥∥∥(1−ϕ

( x
R

))
u1

∥∥∥
Ḣsc−1(R3)

< ϵ.

Then rescale according to (1.2),

(4.2) u0(x) 7→ (2R)
2

p−1u0(2Rx), u1(x) 7→ (2R)
p+1
p−1u1(2Rx).

By (2.3), if n is an integer such that 2n > 2R, then abusing notation and letting
(u0,u1) denote the data given by the scaling (4.2),

(4.3)
∥(1−ϕ(x))u0∥Ḣsc (R3)+∥(1−ϕ(x))u1∥Ḣsc−1(R3)

+∥ϕ(x)P>nu0∥Ḣsc (R3)+∥ϕ(x)P>nu1∥Ḣsc−1(R3) ≲ ϵ.

By small data arguments, (4.1) implies that

(4.4) ∥u∥
L

2(p−1)
t,x ([0,∞)×{x:|x|≥ 1

2+t}) ≲ ϵ,

if u is the solution to (1.1) with initial data (u0,u1). Translating the initial data in
time from t= 0 to t= 1,

(4.5) ∥u∥
L

2(p−1)
t,x ([1,∞)×{x:|x|≥t− 1

2})
≲ ϵ.

As in [4, 18], the proof of

(4.6) ∥u∥
L

2(p−1)
t,x ([1,∞)×{x:|x|≤t− 1

2})
< ∞,

will make use of the hyperbolic change of coordinates,

(4.7) ũ(τ,s) =
eτ sinhs

s
u(eτ coshs,eτ sinhs).

If u solves (1.1) and is radial, then ũ(τ,s) solves

(4.8)
(
∂ττ −∂ss−

2
s
∂s

)
ũ(τ,s)+e−(p−3)τ

( s

sinhs

)p−1
|ũ(τ,s)|p−1ũ(τ,s) = 0.



SCATTERING FOR CRITICAL NLW 21

The hyperbolic energy is given by

(4.9)
E(ũ) =

1
2

∫
(∂sũ(τ,s))

2s2ds+
1
2

∫
(∂τ ũ(τ,s))

2s2ds

+
1

p+1

∫
e−(p−3)τ

( s

sinhs

)p−1
|ũ(τ,s)|p+1s2ds.

By direct computation,

(4.10)
d

dτ
E(ũ)(τ) =−p−3

p+1

∫
e−(p−3)τ

( s

sinhs

)p−1
|ũ(τ,s)|p+1s2ds≤ 0,

which implies that the energy of ũ is non-increasing.

We also have a Morawetz estimate.

THEOREM 4.1. If ũ solves (4.8) on any interval I = [0,T ], then

(4.11)
∫
I

∫
e−(p−3)τ

( s

sinhs

)p−1(coshs
sinhs

)
|ũ(τ,s)|p+1s2dsdτ ≲ E(ũ(0)).

Proof. Using the Morawetz potential in (3.3),

(4.12) M(τ) =

∫
ũs(τ,s)ũτ (τ,s)s

2ds+

∫
ũτ (s,τ)ũ(τ,s)sds.

Then by direct computation,

(4.13)

d

dτ
M(τ)

=−1
2
ũ(τ,0)2 − p−1

p+1

∫ (coshs
sinhs

)( s

sinhs

)p−1
|ũ(τ,s)|p+1s2ds.

Then by (4.10) and the fundamental theorem of calculus, the proof is complete. □

Previously, in [4], for the cubic wave equation, the initial data was split into a
(ṽ0, ṽ1) ∈ Ḣ1 ×L2 component and a (w̃0, w̃1) ∈ Ḣ1/2 × Ḣ−1/2. Here, it would be
nice if we could do something similar, only with Ḣ1/2 replaced by Ḣsc . However,
the hyperbolic energy scales like the Ḣ1/2 norm, and thus is not invariant under
the general scaling (1.2). Instead, what we will do is place (ṽ0, ṽ1) ∈ Ḣ1 ×L2,
but (w̃0, w̃1) will merely lie in a Sobolev space after multiplying by exponential
weights. The weights in the nonlinear part of the energy (4.9) will then be used
in conjunction with the weights for the Sobolev space to bound the growth of the
energy of ṽ.

THEOREM 4.2. There exists a decomposition

(4.14) ũ0 = ṽ0 + w̃0, ũ1 = ṽ1 + w̃1,
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satisfying

(4.15) ∥ṽ0∥Ḣ1 +∥ṽ1∥L2 ≲R(1−sc)(∥u0∥Ḣsc +∥u1∥Ḣsc−1),

where R is given in (4.2), and

(4.16)

∑
k≥1

e(−2sc+1)k∥χ(s−k)w̃0∥2
Ḣsc∪Ḣ1

+
∑
k≥1

e(−2sc+1)k∥χ(s−k)w̃1∥2
Ḣsc−1∪L2

+∥ϕ(es−1)w̃0∥2
Ḣsc∪Ḣ1 +∥ϕ(es−1)w̃1∥2

Ḣsc−1∪L2 ≲ ϵ2.

Here, χ(s−k) is given by the partition of unity,

(4.17) 1 =
∑
k≥1

χ(s−k)+ϕ(es−1),

where χ ∈ C∞
0 (R), and χ is supported on −1 ≤ s≤ 1.

Proof. To calculate

(4.18) ũ(τ,s)|τ=0 =
eτ sinhs

s
u(eτ coshs,eτ sinhs)|τ=0,

use Duhamel’s principle,

(4.19) u(t) = S(t−1)(u0,u1)−
∫ t

1
S(t−s)(0, |u|p−1u)ds.

The analysis will be split into three pieces, analysis of the zero velocity linear solu-
tion, S(t−1)(u0,0), analysis of the zero initial data linear solution S(t−1)(0,u1),
and analysis of the Duhamel term,

∫ t
1 S(t−s)(0, |u|

p−1u)ds. □

Zero velocity term. In the zero velocity case, the contribution of S(t)(u0,0)
to ũ0 will be decomposed as follows:

(4.20)

ṽ0 = ϕ(es−1)(P≤nu0)(e
s−1) · (es−1)

+ϕ(es−1)(P≤nu0)(1−e−s) · (1−e−s)

+
∑
k≥1

χ(s−k)(P≤n+ k
ln(2)
u0)(1−e−s) · (1−e−s),

[1
0.
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and

(4.21)

w̃0 = ϕ(es−1)(P>nu0)(e
s−1) · (es−1)

+ϕ(es−1)(P>nu0)(1−e−s) · (1−e−s)

+
∑
k≥1

χ(s−k)(P>n+ k
ln(2)
u0)(1−e−s) · (1−e−s)

+
∑
k≥1

χ(s−k)u0(e
s−1) · (es−1),

and the corresponding ∂τ derivatives are the contributions to ṽ1 and w̃1.
Indeed, setting u1 = 0 and ignoring the contribution of the Duhamel term,

(4.22)
sũ(τ,s) = eτ sinhs ·S(t−1)(u0,0)(eτ coshs,eτ sinhs)

=
1
2
[u0(e

τ+s−1) · (eτ+s−1)+u0(1−eτ−s) · (1−eτ−s)].

By direct computation,

(4.23)
∥∂s[ϕ(eτ+s−1)(P≤nu0)(e

τ+s−1) · (eτ+s−1)]|τ=0∥L2([0,∞))

≲R(1−sc)∥u0∥Ḣsc (R3),

and

(4.24)

∥∥∥∥[ϕ(eτ+s−1)(P≤nu0)(e
τ+s−1) ·

(
eτ+s−1

s

)]∣∣∣∣
τ=0

∥∥∥∥
L2([0,∞))

≲R(1−sc)∥u0∥Ḣsc (R3).

Meanwhile, by (4.3),

(4.25)
∥∥∥∥ϕ(eτ+s−1)(P>nu0)(e

τ+s−1) ·
(
eτ+s−1

s

)∣∣∣∣
τ=0

∥∥∥∥
Ḣsc (R3)

≲ ϵ.

Similar calculations also hold for

(4.26) ϕ(1−eτ−s)u0(1−eτ−s) · (1−eτ−s)|τ=0.

Remark. Since ∂τf =±∂sf for the components of (4.22), the same estimates
also hold for ∂τ w̃(τ,s)|τ=0. Here we make use of

(4.27)
∥∥∥∥∂s(su)s

∥∥∥∥
Ḣs1−1(R3)

≲ ∥u∥Ḣs1 (R3), for any 0 ≤ s1 ≤ 1.
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Turning now to the χ(s−k) terms, since u0 ∈ Ḣsc , sc > 1
2 , using summation

by parts,

(4.28)

∥∥∥∂s[∑
k≥1

χ(s−k)(P≤n+ k
ln(2)
u0)(1−eτ−s) · (1−eτ−s)

]∣∣∣
τ=0

∥∥∥
L2([0,∞))

=
∥∥∥∂s[∑

k≥1

χ(s−k)(P≤nu0)(1−eτ−s) · (1−eτ−s)

+
∑
k≥1

χ(s−k)
∑

1≤l≤k

(Pn+ l
ln(2)
u0)(1−eτ−s) · (1−eτ−s)

]∥∥∥
L2

=
∥∥∥∂s[∑

l≥1

[∑
k≥l

χ(s−k)
]
(Pn+ l

ln(2)
u0)(1−eτ−s) · (1−eτ−s)

+
∑
k≥1

χ(s−k)(P≤nu0)(1−eτ−s) · (1−eτ−s)
]∥∥∥

L2

≲ 2n(1−sc)
∑
k≥1

∥u0∥Ḣsce
−k/2ek(1−sc)+

∑
k≥1

∥Pn+ k
ln(2)
u0∥Ḣ1/2

≲R(1−sc)∥u0∥Ḣsc .

We use Bernstein’s inequality to estimate the last term. Also, by the radial Sobolev
embedding and the fact that sc > 1

2 ,

(4.29)

∥∥∥∑
k≥1

χ(s−k)(P≤n+ k
ln(2)
u0)(1−eτ−s) ·

(1−eτ−s

s

)∣∣∣
τ=0

∥∥∥
L2([0,∞))

≲ 2n(1−sc)
(∑

k≥1

1
k2

)1/2
∥u0∥Ḣsc (R3)

≲R(1−sc)∥u0∥Ḣsc (R3).

Also by (4.3),

(4.30)
∥∥∥∑
k≥1

χ(s−k)(P>n+ k
ln(2)
u0)(1−eτ−s) ·

(1−eτ−s

s

)∣∣∣
τ=0

∥∥∥
Ḣsc (R3)

≲ ϵ.

Finally, take

(4.31)
∑
k≥1

χ(s−k)u0(e
τ+s−1) ·

(eτ+s−1
s

)∣∣∣
τ=0

.
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For any 0< s< 1, if g(x) is monotone increasing or decreasing and g′(x)∼M for
all x ∈ [0,∞), by a change of variables and Bernstein’s inequality,

(4.32)

2ks∥Pk(Pjf(g(x)))∥L2 ≲
2(k−j)s

M1/2 ∥Pjf∥Ḣs , and,

2ks∥Pk(Pjf(g(x)))∥L2 ≲ 2−k∥∇Pk(Pjf(g(x)))∥L2

≲M1/22k(s−1)2j(1−s)∥Pjf∥Ḣs ,

which implies ∥f(g(x))∥Ḣs ≲M s−1/2∥f∥Ḣs .

Therefore,

(4.33)

∥∥∥χ(s−k)[1−ϕ(eτ+s−1)]u0(e
τ+s−1) ·

(eτ+s−1
s

)∣∣∣
τ=0

∥∥∥
Ḣsc

≲ e−k/2
(∫ ek+1

ek−1
|u0(r)|2r2dr

)1/2

+e−k/2+k·sc
(∫ ek+1

ek−1
||∇|scu0(r)|2r2dr

)1/2

≲ e−k( 1
2−sc)

(∫ ek+1

ek−1
|u0(r)|2r2(1−sc)dr

)1/2

+e−k( 1
2−sc)

(∫ ek+1

ek−1
||∇|scu0(r)|2r2dr

)1/2

.

By (4.1), (4.2), and Hardy’s inequality, this satisfies Theorem 4.2. In this case, it is
not quite true that ∂sf =±∂τf , we have the terms

(4.34)

(∂s+∂τ )
[∑
k≥1

χ(s−k)(P≤n+ k
ln(2)
u0)(1−eτ−s) · (1−eτ−s)

]∣∣∣
τ=0

= χ′(s−1)(P≤nu0)(1−e−s) · (1−e−s)

+
∑
l≥1

χ′(s− l)(Pn+ l
ln(2)
u0)(1−e−s) · (1−e−s),

and

(4.35)
(∂s−∂τ )

[∑
k≥1

χ(s−k)u0(e
τ+s−1) · (eτ+s−1)

]∣∣∣
τ=0

= χ′(s−1)u0(e
s−1) · (es−1).

Since
∑

k≥1 |χ′(s−k)|≲ 1
s

∑
k≥1 |χ(s−k)|, for any s∈ [0,∞), using (4.29)–(4.31)

completes the estimates of the zero velocity term.

Zero initial data. Turning to estimating the contribution of S(t)(0,u1), split

(4.36) u1 = ϕ(x)P≤nu1 +[u1 −ϕ(x)P≤nu1].
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By direct calculation,

(4.37)
∥∥∥∥∂τ,s∫ es−1

1−e−s

ϕ(r)P≤nu1(r)rdr

∥∥∥∥
L2([0,∞))

≲ 2n(1−sc)∥u1∥Ḣsc−1 ,

and by Hölder’s inequality,

(4.38)
∥∥∥∥1
s

∫ es−1

1−e−s

ϕ(r)P≤nu1(r)rdr

∥∥∥∥
L2([0,∞))

≲ 2n(1−sc)∥u1∥Ḣsc−1 .

Turning to the contribution of g = u1 −ϕ(x)P≤nu1, as in [4], observe that

(4.39)
sin(t

√
−∆)√

−∆
g = ∂t

(
cos(t

√
−∆)

∆
g

)
.

Note that (4.3) guarantees that

(4.40) ∥g∥Ḣsc−1 ≲ ϵ.

Plugging in the formula for a solution to the wave equation when r > t, let
w(t,r) = cos(t

√
−∆)f , where f = g

∆ . Then,

(4.41)

∂t(w(t,r))

=
1
2r
∂t(f(t+ r)(t+ r)+f(r− t)(r− t))

=
1
2r

[f(t+ r)+f ′(t+ r)(t+ r)−f(r− t)−f ′(r− t)(r− t)].

Since f ∈ Ḣsc+1(R3), the contribution of

(4.42) f ′(eτ+s−1) · (eτ+s−1)|τ=0, f ′(1−eτ−s) · (1−eτ−s)|τ=0

may be handled in a manner identical to the contribution of the terms arising from
S(t)(u0,0).

Now consider the contribution of

(4.43)
1
s
[f(eτ+s−1)−f(1−eτ−s)]|τ=0.

The terms when 1 ≤ k ≤ n ln(2) 1−sc
sc−1/2 will be placed in (ṽ0, ṽ1) and the terms

when k > n ln(2) 1−sc
sc−1/2 will be placed in (w̃0, w̃1).

By a change of variables, for k ≥ 1,

(4.44)
∫
(χ(s−k)f ′(es−1) ·es)2ds≲ e2(sc− 1

2 )k

∫ ek+1

ek−1
|f ′(r)|2r2(1−sc)dr,
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and by the Sobolev embedding theorem,

(4.45)

∫
(χ(s−k)f ′(1−e−s) ·e−s)2ds≲ e−k

(∫ 1−e−k−1

1−e−k+1
|f ′(r)|2dr

)
≲ e−2k∥f∥2

Ḣ1+sc (R3)
.

Furthermore, by the fundamental theorem of calculus,

(4.46) |f(es−1)−f(1−e−s)| ≤
∫ es−1

1−e−s

|f ′(r)|dr,

so

(4.47)
∫
χ(s−k)2|f(es−1)−f(1−e−s)|2ds≲

∑
0≤l≤k

el
(∫ el+1

el−1
|f ′(r)|2dr

)
.

Therefore,

(4.48)

∥∥∥ ∑
1≤k≤n ln(2) 1−sc

sc− 1
2

1
s
χ(s−k)[f(eτ+s−1)−f(1−eτ−s)]

∣∣∣
τ=0

∥∥∥
Ḣ1

+
∥∥∥ ∑

1≤k≤n ln(2) 1−sc
sc− 1

2

χ(s−k)∂τ [f(eτ+s−1)−f(1−eτ−s)]
∣∣∣
τ=0

∥∥∥
L2

≲R1−sc∥f∥Ḣsc+1 .

Indeed, by the product rule and (4.47),

(4.49)

∥∥∥ ∑
1≤k≤n ln(2) 1−sc

sc− 1
2

1
s
χ(s−k)[f(eτ+s−1)−f(1−eτ−s)]

∣∣∣
τ=0

∥∥∥
Ḣ1

+
∥∥∥ ∑

1≤k≤n ln(2) 1−sc
sc− 1

2

χ(s−k)∂τ [f(eτ+s−1)−f(1−eτ−s)]
∣∣∣
τ=0

∥∥∥
L2

≲
∑

1≤k≤n ln(2) 1−sc
sc−1/2

∥∥∥1
s
χ(s−k)[esf ′(es−1)+e−sf ′(1−e−s)]

∥∥∥
L2

+
∑

1≤k≤n ln(2) 1−sc
sc−1/2

∥∥∥ 1
s2χ(s−k)[f(e

s−1)−f(1−e−s)]
∥∥∥
L2

+
∑

1≤k≤n ln(2) 1−sc
sc−1/2

∥∥∥1
s
χ(s−k)[esf ′(es−1)+e−sf ′(1−e−s)]

∥∥∥
L2

+
∑

1≤k≤n ln(2) 1−sc
sc−1/2

∥∥∥1
s
χ′(s−k)[f(es−1)−f(1−e−s)]

∥∥∥
L2

≲R1−sc∥f∥Ḣsc+1 .
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Next, using the change of variables in (4.32), (4.46), and (4.47),
(4.50)∑
k>n ln(2) 1−sc

sc− 1
2

e−k(2sc−1)
∥∥∥1
s
χ(s−k)[f(eτ+s−1)−f(1−eτ−s)]

∣∣∣
τ=0

∥∥∥2

Ḣsc

≲
∑

k>n ln(2) 1−sc
sc− 1

2

e−k(2sc−1)
∥∥∥∥1
s
χ(s−k)

(∫ es−1

1−e−s

f ′(r)dr

)∥∥∥∥
Ḣsc

≲ ϵ2
∑
k≥1

1
k2 ≲ ϵ2.

Also, by the change of variables in (4.32) and the dual of Hardy’s inequality,
∥f∥Ḣ−s ≲ ∥|x|sf∥L2 for 0 ≤ s≤ 1,

(4.51)

∑
k>n ln(2) 1−sc

sc− 1
2

e−k(2sc−1)
∥∥∥χ(s−k)

s
∂τ [f(e

τ+s−1)−f(1−eτ−s)]
∣∣∣
τ=0

∥∥∥2

Ḣsc−1

=
∑

k>n ln(2) 1−sc
sc− 1

2

e−k(2sc−1)
∥∥∥χ(s−k)

s
[f ′(es−1)es+e−sf ′(1−e−s)]

∥∥∥2

Ḣsc−1

≲
∥∥∥ 1
|x|
f ′
∥∥∥2

Ḣsc−1

(∑
k≥1

1
k2

)
≲ ∥f ′∥2

Ḣsc ≲ ϵ2.

Finally, consider

(4.52) f(eτ+s−1)−f(1−eτ−s),

when s < 1. By direct computation,

(4.53) ∂τ [f(e
τ+s−1)−f(1−eτ−s)]|τ=0 = f ′(es−1) ·es+f ′(1−e−s) ·e−s.

Then for g ∈ Ḣ1−sc , by Hardy’s inequality,

(4.54)

∫
f ′(es−1) ·es ·g(s)sds+

∫
f ′(1−e−s) ·e−s ·g(s)sds

≲ ∥f∥Ḣ1+sc∥g∥Ḣ1−sc ≲ ϵ∥g∥Ḣ1−sc .

Also, by the fundamental theorem of calculus,

(4.55)

f(es−1)−f(1−e−s)

=

∫ s+ s2
2 + s3

3! +···

s− s2
2 + s3

3! −···
f ′(r)dr

=

∫ 1

0
f ′
(
s+θ

(
s2

2
+
s3

3!
+ · · ·

))
·
(
s2

2
+
s3

3!
+ · · ·

)
dθ

+

∫ 0

−1
f ′
(
s+θ

(
s2

2
− s3

3!
+ · · ·

))
·
(
s2

2
+
s3

3!
+ · · ·

)
dθ.
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Therefore, since s≤ 1,

(4.56)
∥∥∥∥ϕ(s)s [f(es−1)−f(1−e−s)]

∥∥∥∥
Ḣsc

≲ ∥f∥Ḣsc+1 ≲ ϵ.

Thus, the contribution of the zero initial data term is suitable for Theorem 4.2.

Duhamel term. Now take the Duhamel term unl. Because the curve t2−r2=1
has slope dr

dt > 1 everywhere,

(4.57) sũnl(τ,s)|τ=0 =

∫ eτ coshs

1

∫ eτ sinhs+eτ coshs−t

eτ sinhs−eτ coshs+t
r|u|p−1u(t,r)drdt.

By direct computation,

(4.58)

∫ k

0
(∂s,τ (sũnl)|τ=0)

2ds

≲
∫ k

0
e2s

(∫ coshs

1
(es− t)|u|p−1u(t,es− t)dt

)2

ds

+

∫ k

0
e−2s

(∫ coshs

1
(t−e−s)|u|p−1u(t, t−e−s)dt

)2

ds.

The term es(
∫ coshs

1 (es − t)|u|p−1u(t,es − t)dt)χs∈[2,∞)(s) will contribute to
(w̃0, w̃1), where χA(s) is the characteristic function of a set A, and

(4.59)
es
(∫ coshs

1
(es− t)|u|p−1u(t,es− t)dt

)
χs∈[0,2]

+

∫ k

0
e−s

(∫ coshs

1
(t−e−s)|u|p−1u(t, t−e−s)dt

)
.

will contribute to (ṽ0, ṽ1).
By Hölder’s inequality, since es − coshs ∼ es, combined with global well-

posedness in the previous section and (4.5),

(4.60)

∫ k

0
e2s

(∫ coshs

1
(es− t)|u|p−1u(t,es− t)dt

)2

ds

≲
∫ k

0

∫ coshs

1
e3s(es− t)2|u|2p(t,es− t)dtds

≲
∫ ek

0

∫
t2−r2≤1

|u|2p(t,r)r4dtdr

≲ ∥u∥2(p−1)

L
2(p−1)
t,x (|x|>|t|)

∥∥|x| 3
2−scu

∥∥2
L∞
t,x
e2(sc− 1

2 )k ≲ ϵ2e2(sc− 1
2 )k.
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Remark. The Strichartz norms L2(p−1)
t,x and ∥|x|3/2−scu∥L∞ are invariant under

the scaling (4.2).

Additionally, by the radial Sobolev embedding theorem and (4.4), using the
calculations in (4.60),

(4.61)

∑
k

e−2(sc− 1
2 )k

∫ k

k−1
e2s

(∫ coshs

2
(es− t)|u|p−1u(t,es− t)dt

)2

ds

≲
∑
k

e−2(sc− 1
2 )k

∫ k

k−1

∫ coshs

2
e3s(es− t)2|u|2p(t,es− t)dtds

≲
∑
k

e−2(sc− 1
2 )k

∫ ek

0

∫
t2−r2≤1,r∼ek,t≥2

|u|2p(t,r)r4dtdr ≲ ϵ2.

Meanwhile, by (4.60) and the radial Sobolev embedding theorem,

(4.62)
∫

∞

0
e2s

(∫ 2

1
(es− t)|u|p−1u(t,es− t)dt

)2

ds≲ 1.

Also by a change of variables and Hölder’s inequality, since (t− e−s)≳ 1 for
s≥ 1 and t≥ 1,

(4.63)

∫
∞

1
e−2s

(∫ coshs

1
(t−e−s)|u|p−1u(t, t−e−s)dt

)2

ds

≲
∫

∞

1

∫ coshs

1
e−s(t−e−s)2|u|2p(t, t−es)dtds

≲
∫

∞

2

∫
t2−r2≤1

|u|2p(t,r)r2dtdr ≲ ∥u∥2(p−1)

L
2(p−1)
t,x

∥|x|3/2−scu∥2
L∞
t,x

≲ ϵ2.

Also, by the radial Sobolev embedding theorem and Young’s inequality, since
∥|x|3/2−scu∥L∞ ≲ ϵ outside |x|= t,

(4.64)

∫ 1

0
e−2s

(∫ coshs

1
(t−e−s)|u|p−1u(t, t−e−s)dt

)2

ds

≲
∫ 3

1

(∫
t2−r2≤1

u(t,r)2pr2dr

)1/2

dt≲ ϵ2
∫ 3

1

1
(t−1)−1+ sc

2
dt≲ ϵ2.

This takes care of the nonlinear Duhamel piece, which completes the proof of The-
orem 4.2.

Remark. Note that the Duhamel term is why we have the norm Ḣsc ∪ Ḣ1 ×
Ḣsc−1 ∪L2 in (4.16).
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5. Scattering: Virial identities. Now we are ready to prove scattering.

THEOREM 5.1. For any radial (u0,u1), the global solution to (1.1) scatters
both forward and backward in time. That is, if u is the global solution to (1.1) with
initial data (u0,u1), then

(5.1) ∥u∥
L

2(p−1)
t,x (R×R3)

≤M(u0,u1)< ∞.

Proof. The standard Littlewood–Paley projection operator is only known to
have a rapidly decreasing weight, which when commuting with the exponentially
decreasing weights in Theorem 4.2, will only be rapidly decreasing. So instead,
in this section we will rely on projection operators with smooth, compactly sup-
ported kernels. Choose ψ ∈ C∞

0 (R3) to be a radial, decreasing function supported
on |x| ≤ 1

2 , and such that
∫
ψ(x)dx= 1. Then define the Fourier multipliers

(5.2) P̃0f(x) =

∫
ψ(x−y)f(y)dy,

and for j ≥ 1,

(5.3) P̃jf(x) = 23j
∫
ψ(2j(x−y))f(y)dy−23(j−1)

∫
ψ(2j−1(x−y))f(y)dy.

Clearly,

(5.4) f =
∑
j≥0

P̃jf.

Remark. If j < 0, then P̃j = 0.

Now modify the definition of ṽ0 and w̃0 from Theorem 4.2. Let

(5.5) ˜̃v0 = ṽ0 + P̃≤nϕ(s)w̃0 +
∑
k≥1

P̃
≤n− k

ln2 ·
sc− 1

2
1−sc

χ(s−k)w̃0, ˜̃w0 = ũ0 − ˜̃v0,

and let

(5.6) ˜̃v1 = ṽ1 + P̃≤nϕ(s)w̃1 +
∑
k≥1

P̃
≤n− k

ln2 ·
sc− 1

2
1−sc

χ(s−k)w̃1, ˜̃w1 = ũ1 − ˜̃v1.

Remark. Note that (4.15) and (4.16) still hold for the new (ṽ0, ṽ1) and (w̃0, w̃1),
since the supports of ϕ(s) and χ(s−k) are almost disjoint, and thus the terms are
almost orthogonal.

Furthermore, modifying (3.13) and (3.14), split ũ= ṽ+ w̃, where w̃ solves

(5.7)
∂ττ w̃−∂ssw̃− 2

s
∂sw̃+e−(p−3)τ

( s

sinhs

)p−1
· |w̃|p−1w̃ = 0,

w(0,s) = ˜̃w0(s), wτ (0,s) = ˜̃w1,
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and ṽ solves

(5.8)
∂ττ ṽ−∂ssṽ−

2
s
∂sṽ+e

−(p−3)τ
( s

sinhs

)p−1
[|ũ|p−1ũ−|w̃|p−1w̃] = 0,

ṽ(0,s) = ˜̃v0, ṽτ (0,s) = ˜̃v1.

Equation (5.7) may be shown to be scattering using small data arguments. In-
deed, by Strichartz estimates, finite propagation speed, (4.16), and the fact that
( s

sinhs)≲ e−δs for any 0 ≤ δ < 1, if w̃ solves ∂ττ w̃−∂ssw̃− 2
s∂sw̃ = 0 with initial

data ( ˜̃w0, ˜̃w1),

(5.9)
∥∥∥e− p−3

p−1 τ
( s

sinhs

) p−3
p−2
w̃
∥∥∥
L

2(p−1)
τ,s

≲ ϵ.

Remark. See Lemma 5.2 for a more detailed calculation in a more difficult
setting.

The same calculation also works for the radial Strichartz estimates,

(5.10)
∫ ∥∥∥e− p−3

p−1 τ
( s

sinhs

)
w̃
∥∥∥2

L
3

1−sc
dτ ≲ ϵ2.

Furthermore, using Strichartz estimates,

(5.11)

∥∥∥∥e− p−3
p−1 τ

∫ τ

0
S(τ − t′)

(
0,e−(p−3)t′

( s

sinhs

)p−1
|w̃|p−1w̃

)
dt′

∥∥∥∥
L

2(p−1)
τ,s

≲
∥∥∥e− p−3

p−1 τe−(p−3)τ
( s

sinhs

)p−1
|w̃|p−1w̃

∥∥∥
L1
τL

6
5−2sc
s

≲
∥∥∥e− p−3

p−1 τ
( s

sinhs

) p−2
p−1
w̃
∥∥∥p−1

L
2(p−1)
τ,s

∥∥∥e− p−3
p−1 τ

( s

sinhs

)
w̃
∥∥∥
L2
τL

3
1−sc
s

.

Therefore,

(5.12)
∥∥∥e− p−3

p−1 τe−(p−3)τ
( s

sinhs

)p−1
|w̃|p−1w̃

∥∥∥
L1
τL

6
5−2sc
s

≲ ϵp,

which gives us Strichartz estimates with the appropriate weights for any admissible
pair.

Now, define the modified energy

(5.13)

E(τ) = E(τ)+ cM(τ)

+

∫ ∑
j≥0

[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃j ṽ)] · (P̃jw̃)e
−(p−3)τ

( s

sinhs

)3
s2ds,
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where c > 0 is a small constant,

(5.14)
E(τ) =

1
2

∫
ṽs(s,τ)

2s2ds+
1
2

∫
ṽτ (s,τ)

2s2ds

+
1

p+1

∫
e−(p−3)τ

( s

sinhs

)p−1
|ṽ(s,τ)|p+1s2ds,

and

(5.15) M(τ) =

∫
ṽs(s,τ)ṽτ (s,τ)s

2ds+

∫
ṽ(s,τ)ṽτ (s,τ)sds.

As in (2.35) it is possible to show that

(5.16)
∫ ∑

j≥0

[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃j ṽ)] ·(P̃jw̃)e
−(p−3)τ

( s

sinhs

)3
s2ds≪E(τ).

It will be convenient to take p = 4, since one may easily generalize the computa-
tions when p = 4 to any 3 < p < 5. By the Littlewood–Paley theorem, if Pj is the
standard Littlewood–Paley operator, and the boundedness of the maximal function,

(5.17)

∥∥∥∑
j

|P≥jv|(|P≤jv|3 + |P≥jv|3)|Pjw|
∥∥∥
L1

≲
∑
k≥0

∥∥∥(∑
j

|Pj+kv|2
)1/2

sup
j
(|P≤jv|3 + |P≥jv|3)

(∑
j

|Pjw|2
)1/2∥∥∥

L1

≲
∑
k≥0

2−2k/3∥v∥10/3
L5

(∑
j

∥Pjw∥2
L∞2−4j/3

)1/2(∑
j

∥Pj+kv∥2
L222(j+k)

)1/3

≲ ∥w∥Ḣ5/6∥v∥10/3
L5 ∥∇v∥2/3

L2 .

Generalizing this computation to (5.16), observe that P̃j commutes well with
( s

sinhs)
3/5. Indeed, for any j ≥ 0,

(5.18)
[
P̃j ,

( s

sinhs

)3/5]
≲ 2−j

( s

sinhs

)3/5
P̃j−1,

which gives good estimates on the contribution of the error terms

(5.19)
( s

sinhs

)3/5
P̃j ṽ− P̃j

(( s

sinhs

)3/5
ṽ
)
.

Making use of the Strichartz estimates calculations in (5.9) and (5.12),

(5.20)
∑
j≥0

∥∥∥e−τ/4
( s

sinhs

)3/5
P̃jw̃

∥∥∥2

L9/2
≲ ϵ2,
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so by the Sobolev embedding theorem the contribution of w may be handled in a
manner identical to Pjw in (5.17). Finally, by construction, for any fixed j ≥ 0,

(5.21) P̃j =
∑
k≥0

c(k,j)Pk,

where c(k,j) has good decay away from j, so the Littlewood–Paley theorem may
be used as in (5.17).

Now then, by (4.10) and (4.13),

d

dτ
E(τ) =

− c

2
ṽ(τ,0)2

− cp−1
p+1

∫ (coshs
sinhs

)
e−(p−3)τ

( s

sinhs

)p−1
|ṽ(s,τ)|p+1s2ds

− p−3
p+1

∫ ( s

sinhs

)p−1
e−(p−3)τ |ṽ(s,τ)|p+1s2ds

+
d

dτ

∫ ∑
j≥0

[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃j ṽ)] · P̃jw̃s
2ds

(5.22)

−
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ũ|p−1ũ−|ṽ|p−1ṽ−|w̃|p−1w̃]ṽτs

2ds(5.23)

−
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ũ|p−1ũ−|ṽ|p−1ṽ−|w̃|p−1w̃]ṽss

2ds(5.24)

−
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ũ|p−1ũ−|ṽ|p−1ṽ−|w̃|p−1w̃]ṽsds.(5.25)

First, as in (3.22),

(5.26)

∫
e−(p−3)τ

( s

sinhs

)p−1
[|ũ|p−1ũ−|ṽ|p−1ṽ−|w̃|p−1w̃]ṽsds

≲
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ṽ|p|w̃|+ |w̃|p−1|ṽ|2]sds

≲

(∫
e−(p−3)τ

( s

sinhs

)p−1
|ṽ|p+1

(coshs
sinhs

)
s2ds

) p−2
p−1

×
∥∥∥ 1
s1/2 ṽ

∥∥∥ 2
p−1

L3

∥∥∥e− p−3
p−1 τ

( s

sinhs

)
w̃
∥∥∥
L3(p−1)

+
∥∥∥e− p−3

p−1 τ
( s

sinhs

)
w̃
∥∥∥p−1

L3(p−1)

∥∥∥1
s
ṽ
∥∥∥
L2
∥ṽ∥L6

≲ δ

(∫
e−(p−3)τ

(coshs
sinhs

)( s

sinhs

)p−1
|ṽ|p+1s2ds

)
+

1
δ
E(τ)

∥∥∥e− p−3
p−1 τ

( s

sinhs

)
w̃
∥∥∥p−1

L3(p−1)
.

This takes care of (5.25).
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Next, following (3.24) and (3.25),

(5.27)

∫
e−(p−3)τ

( s

sinhs

)p−1
|ṽ|p−2|∂s,τ ṽ||w̃|2s2ds

≲
∥∥∥e− p−3

p−1 τ
( s

sinhs

)
w̃
∥∥∥2

L
3

1−sc

×
∥∥∥e− p−3

p+1 τ
( s

sinhs

) p−1
p+1
ṽ
∥∥∥p−2− 5−p

p−1

Lp+1
∥∂s,τ ṽ∥

1+ 5−p
p−1

L2

≲ E(τ)
∥∥∥e− p−3

p−1 τ
( s

sinhs

)
w̃
∥∥∥2

L
3

1−sc
,

and

(5.28)

∫
e−(p−3)τ

( s

sinhs

)p−1
|w̃|p−1|ṽ||∂s,τ ṽ|s2ds

≲
∥∥∥e− p−3

p−1 τ
( s

sinhs

)
w̃
∥∥∥p−1

L3(p−1)
∥∂s,τ ṽ∥2

L2

≲ E(τ)
∥∥∥e− p−3

p−1 τ
( s

sinhs

)
w̃
∥∥∥p−1

L3(p−1)
.

By (5.9) and (5.10), these terms may be handled using Gronwall’s inequality.
Thus, the only terms left to consider in (5.23) and (5.24) are

(5.29)
−p

∫
e−(p−3)τ

( s

sinhs

)p−1
[|ṽ|p−1w̃]ṽτs

2ds

−p
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ṽ|p−1w̃]ṽss

2ds.

By the product rule,

(5.30)

d

dτ

∫ ∑
j

[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1P̃≤j ṽ]e
−(p−3)τ

( s

sinhs

)p−1
P̃jw̃s

2ds

−p
∫
e−(p−3)τ

( s

sinhs

)p−1
|ṽ|p−1ṽτ w̃s

2ds

=−
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1P̃≤j ṽ](P̃jw̃τ )s

2ds

−
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1
∂τ [|P̃≤j ṽ|p−1P̃≤j ṽ]P̃jw̃s

2ds

− (p−3)
∫ ∑

j

[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)

×e−(p−3)τ
( s

sinhs

)p−1
s2ds.
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By the Cauchy–Schwartz inequality,

(5.31)

− (p−3)
∫

|ṽ|p−1ṽw̃e−(p−3)τ
( s

sinhs

)p−1
s2ds

≲ δ

(∫
|ṽ|p+1e−(p−3)τ

( s

sinhs

)p−1
s2ds

)
+

1
δ

∥∥∥e− p−3
p−1 τ

( s

sinhs

)
w̃
∥∥∥p−1

L3(p−1)
∥∂s,τ ṽ∥2

L2 .

This computation may be generalized to show
(5.32)

− (p−3)
∫ ∑

j

[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)e
−(p−3)τ

( s

sinhs

)p−1
s2ds

≲ δ(

∫
|ṽ|p+1e−(p−3)τ

( s

sinhs

)p−1
s2ds)+

1
δ
∥e−

p−3
p−1 τ

( s

sinhs

)
w̃∥p−1

L3(p−1)∥∂s,τ ṽ∥2
L2 .

using the same arguments as in (5.16)–(5.21).
Next,

(5.33)

∫
e−(p−3)τ

( s

sinhs

)p−1
∂τ [|P̃≤j ṽ|p−1P̃≤j ṽ]P̃jw̃s

2ds

≲
∥∥∥( sinhs

coshs

) p−3
2(p+1)

P̃≤j ṽτ

∥∥∥
L

p+1
2

×
(∫

e−(p−3)τ
( s

sinhs

)p−1(coshs
sinhs

)
|ṽ|p+1s2ds

) p−1
p+1

×
∥∥∥( sinhs

coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

P̃jw̃
∥∥∥
L∞
.

By the radial Sobolev embedding theorem,

(5.34)
∥∥∥( sinhs

coshs

) p−3
2(p+1)

P̃≤j ṽτ

∥∥∥
L

p+1
2

≲ 2
j(p−3)
p+1 E(ṽ)1/2.

Therefore,

(5.35)

∑
j

(5.33) ≲ δ

(∫
e−(p−3)τ

( s

sinhs

)p−1(coshs
sinhs

)
|ṽ|p+1s2ds

)

+
1
δ
E(t)

p+1
4

(∑
j

2j
p−3
p+1

∥∥∥∥( sinhs
coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

)2(p−1)
p+1

P̃jw̃

∥∥∥∥
L∞

) p+1
2

.
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LEMMA 5.2. Using Corollary 2.5, the weights in τ and s, and the definition of
w̃0 and w̃1,

(5.36)

∫ (∑
j

2j
p−3
p+1

∥∥∥( sinhs
coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

P̃jw̃
∥∥∥
L∞

) p+1
2
dτ

≲ ϵ
p+1

2 R−(1−sc)
p−3

2 .

Proof. First replace w̃ by S(τ)( ˜̃w0, ˜̃w1), where ( ˜̃w0, ˜̃w1) are given by (5.5)
and (5.6). Observe that by Corollary 2.5, Theorem 4.2, and Bernstein’s inequality,

(5.37)

(∑
j>n

2j(
p−3
p+1 )∥s1/2S(τ)(P̃jϕ(s)ṽ0, P̃jϕ(s)ṽ1)∥

L
p+1

2
τ L∞

x

) p+1
2

≲
(∑
j>n

2j(
p−3
p+1 )∥(P̃jϕ(s)ṽ0, P̃jϕ(s)ṽ1)∥

Ḣ
p−1
p+1 ×Ḣ

p−1
p+1 −1

) p+1
2

≲R
p−3

2 R
p−1

2 R−sc· p+1
2 ∥(P̃>nϕ(s)ṽ0, P̃>nϕ(s)ṽ1)∥

p+1
2

Ḣsc×Ḣsc−1 .

Doing some algebra using (1.3),

(5.38)

p−2−sc ·
p+1

2
=
p−5

2
+
p+1

2
(1−sc)

=−(p−1)(1−sc)+
p+1

2
(1−sc)

=
3−p

2
(1−sc).

Then by (4.3), (5.36) holds for w̃ replaced by S(τ)(P̃>nϕ(s)w̃0, P̃>nϕ(s)w̃1).
Next, for 0< k < n ln(2) · 1−sc

sc−1/2 , observe that by finite propagation speed,

(5.39) S(τ)(P
>n− k

ln(2)
sc−1/2

1−sc

χ(s−k)w̃0,P>n− k
ln(2)

sc−1/2
1−sc

χ(s−k)w̃1)

is supported on the set {(τ,s) : τ + s ≥ k− 2, τ > 0, s > 0}. Therefore, for any
such k, by (4.16),

(5.40)

∫ ( ∑
j>n− k

ln(2)
sc−1/2

1−sc

2j
p−3
p+1

∥∥∥( sinhs
coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

×S(τ)(P̃jχ(s−k)w̃0, P̃jχ(s−k)w̃1)
∥∥∥
L∞

) p+1
2
dτ

≲ e−(sc− 1
2 )kR−(1−sc)

p−3
2 ∥(w̃0, w̃1)∥Ḣsc×Ḣsc−1 .
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The proof uses the algebraic fact that

(5.41)
e−(p−3)ke

p+1
2 (sc−1/2)k2

k
ln(2)

sc−1/2
1−sc

· p−3
2 (1−sc)

= e−(p−3)k2
p+1

2 (sc−1/2)kek(sc−1/2)· p−3
2 = 1.

Furthermore, observe that on the set {(τ,s) : τ +s≥ k−2},

(5.42) e−2 p−3
p+1 τ

( s

sinhs

) 2(p−1)
p+1 ≤ e−

2(p−3)
p+1 τe−α|k−τ |,

for some α(p) > 0. Therefore, (4.16) combined with (5.42) give good summation
of (5.36) in k for S(τ)( ˜̃w0, ˜̃w1), where ( ˜̃w0, ˜̃w1) is given by (5.5) and (5.6).

The contribution of terms for which k satisfies n− k
ln(2)

sc−1/2
1−sc

< 0 are better.
This is because ( sinhs

coshs)
1/2 ≲ inf{s1/2,1}. Therefore, it is possible to combine the

weighted estimates in Corollary 2.5 with the radial Strichartz estimates in Theo-
rem 2.1 (to handle the case when j = 0) to prove (5.36) when w̃ is replaced by
S(τ)(w̃0, w̃1).

For the contribution of the nonlinear term, observe that the same arguments
would prove

(5.43)
∥∥∥e− 2(p−3)

p+1 τ
( s

sinhs

) 2(p−2)
p+1

P̃jS(τ)(w̃0, w̃1)
∥∥∥
L2
τL

q
≲ ϵR−(1−sc)

p−3
p+1

when

(5.44) q =
1
2
− 5p−7

6(p+1)
.

This is because (p+1
2 , q) is a Ḣ

2p−4
p+1 -admissible pair, and any fractional power

( s
sinhs) gives good decay at large s.

Remark. It is okay to change the ( s
sinhs) exponent from 2(p−1)

p+1 to 2(p−2)
p+1 .

Combining inequalities (5.43), (5.9), the calculations in (5.27), radially sym-
metric Strichartz estimates in Theorem 2.4, and the standard Strichartz estimates
in Theorem 2.1 proves

(5.45)
∥∥∥e− 2(p−3)

p+1 τe−(p−3)τ
( s

sinhs

)p−1
|w̃|p

∥∥∥
L1
τL

2q
q+2
s

≲ ϵpR−(1−sc)
p−3
p+1 ,

which by the principle of superposition proves the lemma. □

Returning to the proof of Theorem 5.1, by direct computation,

(5.46) [|ṽ|p−1ṽ−|P̃≤j ṽ|p−1P̃≤j ṽ] =O(|P̃>j ṽ|(|P̃≤j ṽ|p−1 + |P̃>j ṽ|p−1)).
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Also, by Bernstein’s inequality and the radial Sobolev embedding theorem,

(5.47)

∫
e−(p−3)τ

( s

sinhs

)p−1
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1P̃≤j ṽ]P̃jw̃τs

2ds

≲

(∫
e−(p−3)τ

( s

sinhs

)p−1(coshs
sinhs

)
|ṽ|p+1s2ds

) p−1
p+1

×
∥∥∥( sinhs

coshs

) p−3
2(p+1) |P̃>j ṽ|

∥∥∥
L

p+1
2

×
∥∥∥( sinhs

coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

P̃jw̃τ

∥∥∥
L∞
.

By the radial Sobolev embedding theorem and the definition of P̃j ,

(5.48)
∥∥∥( sinhs

coshs

) p−3
2(p+1) |P̃>j ṽ|

∥∥∥
L

p+1
2

≲ 2−
4j
p+1E(ṽ)1/2.

Now then, as in Lemma 5.2,

(5.49)

∫ (∑
j

2−
4j
p+1

∥∥∥( sinhs
coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

P̃jw̃τ∥L∞

) p+1
2
dτ

≲ ϵ
p+1

2 R−(1−sc)
p−3

2 .

First replace w̃ by S(τ)(w̃0, w̃1). Then by (5.21) and Lemma 5.2
(5.50)∫ (∑

j

2−
4j
p+1

∥∥∥( sinhs
coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

P̃j∂τS(τ)(w̃0, w̃1)
∥∥∥
L∞

) p+1
2
dτ

=

∫ (∑
j

2−
4j
p+1

×
∥∥∥( sinhs

coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

∂τS(τ)(P̃jw̃0, P̃jw̃1)
∥∥∥
L∞

) p+1
2
dτ

=

∫ (∑
j

2−
4j
p+1

×
∥∥∥( sinhs

coshs

)1/2
e−

2(p−3)
p+1 τ

( s

sinhs

) 2(p−1)
p+1

S(τ)(P̃jw̃1, P̃j∆w̃0)
∥∥∥
L∞

) p+1
2
dτ

≲ ϵ
p+1

2 R−(1−sc)
p−3

2 .

The contribution of the Duhamel term may be handled using the principle of
superposition as in (2.60)–(2.64) combined with (5.45).

The term

(5.51) −p
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ṽ|p−1w̃]ṽss

2ds
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may be handled in a similar manner, only integrating by parts in s. Indeed,

(5.52)

−p
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ṽ|p−1ṽsw̃]s

2ds

=−
∫
e−(p−3)τ

( s

sinhs

)p−1
∂s[|ṽ|p−1ṽ]w̃s2ds

=−
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1

×∂s[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)s
2ds

−
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1
∂s[|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)s

2ds.

The contribution of

(5.53) −
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1
∂s[|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)s

2ds

may be handled as in (5.33). Integrating by parts,
(5.54)

−
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1
∂s[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)s

2ds

=

∫ ∑
j

e−(p−3)τ
( s

sinhs

)p−1
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃s)s

2ds

+2
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)sds

+

∫ ∑
j

e−(p−3)τ∂s

(( s

sinhs

)p−1)
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)s

2ds.

The term

(5.55)
∫
e−(p−3)τ

( s

sinhs

)p−1
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃s)s

2ds

may be handled exactly as in (5.47). Since ∂
∂s(

s
sinhs)

p−1 ≲ ( s
sinhs)

p−1, the contribu-
tion of

(5.56)
∫ ∑

j

e−(p−3)τ∂s

(( s

sinhs

)p−1)
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)s

2ds

may be handled as in (5.32). The term

(5.57) 2
∫ ∑

j

e−(p−3)τ
( s

sinhs

)p−1
[|ṽ|p−1ṽ−|P̃≤j ṽ|p−1(P̃≤j ṽ)](P̃jw̃)sds

may be handled using (5.26) and (5.16)–(5.21).
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Then by (5.12) and a Gronwall-type estimate, we have proved

(5.58)
∫∫

|ṽ(τ,s)|p+1
(coshs

sinhs

)( s

sinhs

)p−1
e−(p−3)τs2dsdτ < ∞.

By the radial Sobolev embedding theorem,

(5.59)
( sinhs

coshs

)
|ṽ(τ,s)|p−3 ≲ E(ṽ)

p−3
2 < ∞.

Therefore, we have proved

(5.60)
∫∫

|v(eτ coshs,eτ sinhs)|2(p−1)(eτ sinhs)2e2τdsdτ < ∞,

which by a change of variables formula implies

(5.61)
∫

∞

1

∫
t2−r2≥1

|v(t,r)|2(p−1)r2drdt < ∞.

Also, by (5.9) and a change of variables,

(5.62)

∫∫
e−2(p−3)τ |w̃(eτ coshs,eτ sinhs)|2(p−1)

( s

sinhs

)2(p−2)
s2dsdτ

=

∫∫
e2τ |w(eτ coshs,eτ sinhs)|2(p−1)(eτ sinhs)2dsdτ

=

∫∫
t2−r2≥1

|w(t,r)|2(p−1)r2drdt≲ ϵ2(p−1).

Combining (4.5) with (5.61) and (5.62) completes the proof of Theorem 5.1. □

6. Scattering. As in [3, 4], we use concentration compactness and a per-
turbative argument to obtain a uniform bound on the scattering size for initial data
with bounded Ḣsc × Ḣsc−1 norm.

Let (un0 ,u1) be a radially symmetric sequence uniformly bounded in Ḣsc ×
Ḣsc−1,

(6.1) ∥un0 ∥Ḣsc (R3)+∥un1 ∥Ḣsc−1(R3) ≤A,

and let un be the solution to (1.1) with initial data (un0 ,u
n
1 ). By Zorn’s lemma, to

prove (1.6), it suffices to show that

(6.2) ∥un∥
L

2(p−1)
t,x (R×R3)

is uniformly bounded for any such sequence.
The proof of this fact uses the profile decomposition of [15]. We prove that

(un0 ,u
n
1 ) must converge, at least after passing to a subsequence, and then show that

this convergence implies the existence of a maximizer, which by the analysis in the
previous five sections has finite L2(p−1)

t,x norm.
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The argument by now is a fairly standard concentration compactness argu-
ment. See [9] for the use of this argument to prove scattering for an energy-critical
nonlinear wave equation. See [12, pp. 245–269] for a detailed description of the
concentration compactness method.

THEOREM 6.1 (Profile decomposition). Suppose that there is a uniformly
bounded, radially symmetric sequence such that

(6.3) ∥un0 ∥Ḣsc (R3)+∥un1 ∥Ḣsc−1(R3) ≤A< ∞.

Then there exists a subsequence, also denoted (un0 ,u
n
1 ) ⊂ Ḣsc × Ḣsc−1 such that

for any N < ∞,

(6.4) S(t)(un0 ,u
n
1 ) =

N∑
j=1

Γj
nS(t)(ϕ

j
0,ϕ

j
1)+S(t)(R

N
0,n,R

N
1,n),

with

(6.5) lim
N→∞

limsup
n→∞

∥S(t)(RN
0,n,R

N
1,n)∥Lq

t,x(R×R3) = 0.

Γj
n = (λjn, t

j
n) belongs to the group (0,∞)×R, which acts by

(6.6) Γj
nF (t,x) = λjnF (λ

j
n(t− tjn),λjnx).

The Γj
n are pairwise orthogonal, that is, for every j ̸= k,

(6.7) lim
n→∞

λjn
λkn

+
λkn

λjn
+(λjn)

1/2(λkn)
1/2|tjn− tkn|= ∞.

Furthermore, for every N ≥ 1,

(6.8)

∥(u0,n,u1,n)∥2
Ḣsc×Ḣsc−1

=
N∑
j=1

∥(ϕj0,ϕ
k
0)∥2

Ḣsc×Ḣsc−1 +∥(RN
0,n,R

N
1,n)∥2

Ḣsc×Ḣsc−1 +on(1),

and for any 1 ≤ j ≤N ,

(6.9) (Γj
n)

−1(RN
0,n,R

N
1,n)⇀ 0,

weakly in Ḣsc × Ḣsc−1.
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Therefore, to summarize Theorem 6.1,

S(t)(un0 ,u
n
1 ) =

N∑
j=1

S(t− tjn)(λjnϕ
j
0(λ

j
nx),(λ

j
n)

2ϕj1(λ
j
nx))

+S(t)(RN
0,n,R

N
1,n),

(6.10)

S(λjnt
j
n)
( 1

λjn
un0

( x

λjn

)
,

1

(λjn)2
un1

( x

λjn

))
⇀ϕj0(x),(6.11)

weakly in Ḣsc(R3), and

(6.12) ∂tS(t+λ
j
nt

j
n)
( 1

λjn
un0

( x

λjn

)
,

1

(λjn)2
un1

( x

λjn

))∣∣∣
t=0

⇀ϕj1(x)

weakly in Ḣsc−1(R3).
First consider the case that λjnt

j
n is uniformly bounded. In this case, after

passing to a subsequence, λjnt
j
n converges to some tj . Changing (ϕj0,ϕ

j
1) to

S(−tj)(ϕj0,ϕ
j
1) and absorbing the error into (RN

0,n,R
N
1,n),

(6.13)
( 1

λjn
un0

( x

λjn

)
,

1

(λjn)2
un1

( x

λjn

))
⇀ϕj0(x),

and

(6.14) ∂tS(t)
( 1

λjn
un0

( x

λjn

)
,

1

(λjn)2
un1

( x

λjn

))∣∣∣
t=0

⇀ϕj1(x).

Then if uj is the solution to (1.1) with initial data (ϕj0,ϕ
j
1), by Theorem 5.1,

(6.15) ∥uj∥
L

2(p−1)
t,x (R×R3)

≤M(ϕ0
j ,ϕ

1
j)< ∞.

Next, suppose that after passing to a subsequence, λjnt
j
n ↗+∞. Then a solution

to (1.1) approaches a translation in time of a solution to (1.1) that scatters backward
in time to S(t)(ϕ0,ϕ1), that is,

(6.16) lim
t→−∞

∥u−S(t)(ϕ0,ϕ1)∥Ḣsc×Ḣsc−1 = 0.

Indeed, by Strichartz estimates, the dominated convergence theorem, and small
data arguments, for some T < ∞ sufficiently large, (1.1) has a solution u on
(−∞,−T ] such that

(6.17)
∥u∥

L
2(p−1)
t,x ∩L

2
sc
t L

2
1−sc
x ((−∞,−T ]×R3)

≲ ϵ,

(u(−T,x),ut(−T,x)) = S(−T )(ϕ0,ϕ1),
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and by Strichartz estimates,

(6.18) lim
t→+∞

∥S(t)(u(−t),ut(−t))− (ϕ0,ϕ1)∥Ḣsc×Ḣsc−1 ≲ ϵp.

Then by the inverse function theorem, there exists some (u0(−T ),u1(−T )) such
that (1.1) has a solution that scatters backward in time to S(t)(ϕ0,ϕ1). Moreover,
by Theorem 5.1, this solution must also scatter forward in time. Therefore,

(6.19) S(−tjn)(λjnϕ
j
0(λ

j
nx),(λ

j
n)

2ϕj1(λ
j
nx))

converges strongly to

(6.20) (λjnu
j(−λjntjn,λjnx),(λjn)2ujt (−λjntjn,λjnx))

in Ḣsc × Ḣsc−1, where uj is the solution to (1.1) that scatters backward in time
to S(t)(ϕj0,ϕ

j
1), and the remainder may be absorbed into (RN

0,n,R
N
1,n). Let (ϕ̃0

j , ϕ̃
1
j)

denote the initial data of such a solution. In this case as well,

(6.21) ∥uj∥
L

2(p−1)
t,x (R×R3)

≤M(ϕ̃0
j , ϕ̃

1
j)< ∞.

The proof for λjnt
j
n ↘−∞ is similar.

Next, by (6.8), there are only finitely many j such that

∥ϕj0∥Ḣsc +∥ϕj1∥Ḣsc−1 > ϵ.

For all other j, small data arguments imply

(6.22) ∥uj∥
L

2(p−1)
t,x (R×R3)

≲ ∥ϕj0∥Ḣsc +∥ϕj1∥Ḣsc−1 .

Then make use of standard perturbation results for nonlinear wave equations.

LEMMA 6.2 (Perturbation lemma). Let I ⊂ R be a time interval. Let t0 ∈ I ,
(u0,u1)∈ Ḣsc ×Ḣsc−1, and suppose there exist some constantsM ,A,A′ > 0. Let
ũ solve the equation

(6.23) (∂tt−∆)ũ= F (ũ) = e,

on I×R3, and also suppose

sup
t∈I

∥(ũ(t),∂tũ(t))∥Ḣsc×Ḣsc−1 ≤A, ∥ũ∥
L

2(p−1)
t,x (I×R3)

≤M,

∥(u0 − ũ(t0),u1 −∂tũ(t0))∥Ḣsc×Ḣsc−1 ≤A′,(6.24)

and

(6.25) ∥e∥
L

2
1+sc
t L

2
2−sc
x (I×R3)

+∥S(t−t0)(u0−ũ(t0),u1−∂tũ(t0))∥L2(p−1)
t,x (I×R3)

≤ϵ.
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Then there exists ϵ0(M,A,A′) such that if 0 < ϵ < ϵ0 then there exists a solution
to (1.1) on I with (u(t0),∂tu(t0)) = (u0,u1), ∥u∥L2(p−1)

t,x (I×R3)
≤ C(M,A,A′), and

for all t ∈ I ,

(6.26) ∥(u(t),∂tu(t))− (ũ(t),∂tũ(t))∥Ḣsc×Ḣsc−1 ≤ C(A,A′,M)(A′+ ϵ).

Proof. This Lemma appears throughout the literature on nonlinear wave equa-
tions. □

By Lemma 6.2, the asymptotic orthogonality property (6.7), and (6.22),

(6.27) limsup
n↗∞

∥un∥2
L

2(p−1)
t,x (R×R3)

≲
∑
j

∥uj∥2
L

2(p−1)
t,x (R×R3)

< ∞.

This proves Theorem 1.3. □

JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD 21218
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