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GLOBAL WELL-POSEDNESS FOR THE RADIAL, DEFOCUSING,
NONLINEAR WAVE EQUATION FOR 3 <p <5

By BENJAMIN DODSON

Abstract. In this paper we continue the study of the defocusing, energy-subcritical nonlinear wave
equation with radial initial data lying in the critical Sobolev space. In this case we prove scattering in
the critical norm when 3 < p < 5.

1. Introduction. In this paper we prove global well-posedness and scatter-
ing for

(1.1) wg—Au+|uff'u=0, uw:RxR*—=R, u(0,z)=uy, u(0,2)=u,

with 3 < p < 5 and radial initial data in the critical L?-based Sobolev space.
The critical Sobolev space for (1.1) arises from the scaling symmetry

(1.2) u(t,z) — )\ﬁu()\t,)\x).

The H*c norm, where s, is the critical Sobolev exponent

3 2
(1.3) Sc = 5 }ﬁ,
is preserved under this scaling. It is well known that this scaling symmetry com-
pletely determines the local theory for (1.1) (see [13]). We prove that the scaling
symmetry also completely determines the global theory for radial initial data. The
ill-posedness results of [13] imply that this result is sharp for radial initial data.
The proof continues the study that we began in [4, 3], where we proved,

THEOREM 1.1. The defocusing, cubic nonlinear wave equation
(1.4) g — Au+u* =0, u(0,z) =ug, u(0,z)=u,
is globally well-posed and scattering for all radial initial data in H'/* x H='/2,

In this paper we prove the corresponding result for 3 < p < 5, or equivalently
by (1.3), for § < s. < 1.
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2 B. DODSON

THEOREM 1.2. The defocusing, nonlinear wave equation
(1.5) U — AuA|uPlu =0, w(0,2) =ug, u(0,2)=u,

is globally well-posed and scattering for radial initial data (ug,u1) € H® (R?) x
H3<~1(R®). Moreover; there exists a function f : [0,00) — [0,00) such that if u
solves (1.5) with radial initial data (ug,u1) € H% x H%~!, then

(L6) el 20 gy < F ol e+ )

There are several reasons to conjecture that such a result is true for both radial
and nonradial data.

First, as we have already mentioned, critical Sobolev regularity completely
determines local well-posedness.

THEOREM 1.3. Equation (1.5) is locally well-posed for initial data (up,u;) €
H?¢(R3) x H*~(R?) on some interval [—T (uo,u1), T (ug,u1 )], where the time of
well-posedness T (ug,u) depends on the profile of the initial data (ug,uy), not just
its size. Global well-posedness and scattering hold for small H% x H%*~! norm.

Additional regularity is enough to give a lower bound on the time of well-
posedness. Therefore, there exists some T(||uol| s, ||l grs-1) > O for any s. <
s < 3.

Furthermore, equation (1.1) is ill-posed for initial data in the Sobolev space
H3 x H5 ! when s < s..

Proof. See [13]. O

Local well-posedness combined with conservation of the energy
(1.7) E(u(t)) = l/u (t a:)zda:—l—l/Vu(t z)[*dz + 1/]u(t z) [P da
. 2 t\by D) ) p+1 ) )

implies global well-posedness for finite energy initial data, that is, ug € H% N H'
and u; € H*'N L2 Indeed, by the Sobolev embedding theorem,

(1.8) E(u(0)) £ 11 (0) B, + Va0 + 17(0) oy 1O s

and therefore,
(1.9) E(0)) Sjuol e Nue(0)172+ [[Vu(0)]|72.

By conservation of energy, E(u(0)) = E(u(t)), so (1.9) gives a uniform bound
over the norm [[u(t)[|2, + [|[Vu(t)||3,. Since (1.5) is energy-subcritical, Theo-
rem 1.3 implies that a uniform bound over the energy is enough to ensure global
well-posedness. Additionally, the results of [20] imply that for initial data of finite
energy with sufficiently rapid decay at infinity, the global solution to (1.1) scatters.
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Definition 1.1 (Scattering). A solution to (1.1) is said to scatter forward in time
if there exist (ug,u;") € H% x H*~! such that

(1.10) I Cua(t) e (£)) = S () (g s ) e rse—1 = 0,
as t — oo, where S(t) is the solution operator to the linear wave equation
Ut — Au=0.

Scattering backward in time is defined in the corresponding way. A global solution
is said to scatter if it scatters both forward and backward in time.

Remark. Conservation of energy does not imply global well-posedness or scat-
tering for the focusing problem, which will not be discussed here. See [14] for a
discussion of blowup solutions in the focusing case.

The second reason to conjecture scattering for a solution to (1.1) with generic
initial data (ug,u;) € H® x H*~!is that it is known that an a priori upper bound
on the % x H*~! norm for a solution to (1.1) implies scattering for both radial
and nonradial data.

THEOREM 1.4. Suppose ug € H*(R3), uy; € H*1(R3), and u solves (1.5)
on a maximal interval 0 € I C R, with

(1.11) iuII)||u(t)HHSC(R3) F lue @)l grse1 g3y < oo
S

Then I = R and the solution u scatters both forward and backward in time.

Proof. See [17] for the proof in the radial case and [5] for the proof in the
nonradial case. 0

Theorem 1.4 is called a type two scattering result, while a blowup solution
to (1.1) that satisfies (1.11) would be a type two blowup solution.

Remark. The pseudoconformal transformation of a NLS soliton is an example
of a type two blowup solution.

Type one blowup is a solution to (1.1) for which the bound (1.11) does not
hold. Since S(t) is unitary, (1.10) cannot occur if (1.11) does not hold.

The tools for type two scattering results are very well-developed, especially for
the energy-critical wave equation. Observe that when s, = 1, or

(1.12) ugy — Au4u’ =0, w(0,z) =uy, u(0,x)=1u,

(1.11) automatically follows from conservation of the energy

(L13)  B(u(®)) :;/ut(t,:z:)zdx+;/|Vu(t,x)|2dx+é/u(t,x)(’dx,
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reducing scattering questions for the defocusing, energy-critical problem to type
two scattering questions. The qualitative behavior of (1.12) has been completely
worked out, proving global well-posedness and scattering, for both the radial [6,
22] and the nonradial case [1, 2, 8, 16]. The proof relies very heavily on conserva-
tion of the energy, which ensures a uniform bound over the critical Sobolev norm,
and also yields a Morawetz estimate,

(1.14) // u(t’T)6daﬁdt < E(u(0)),

|z

which gives a space-time integral estimate for a solution to (1.12).

When 3 < p < 5 there is no known conserved quantity that gives an upper
bound on ||| gyse o frse-1- Additionally, since Morawetz estimates arise from con-
servation laws, there is also no known Morawetz estimate at the critical Sobolev
regularity. Such a Morawetz estimate would likely significantly simplify the proof
of Theorem 1.4, while proving an upper bound on ||| zs. . frsc-1 Would mean that
Theorem 1.4 would imply Theorem 1.2 for both radial and nonradial data. The
author believes that [4] and this paper are the first global well-posedness and scat-
tering results for initial data in a critical Sobolev space when there is no known
conserved quantity that controls the critical Sobolev norm.

To prove Theorem 1.2 we utilize the Fourier truncation method. The initial
data is split into two pieces; a piece with small F/*¢ x H*~! norm and a piece with
finite energy. Then, a solution w to (1.5) is shown to have the decomposition

(1.15) u(t) =v(t) +w(t),

where v(t) has uniformly bounded energy, and w(t) is a small data scattering so-
lution to (1.5). By Theorem 1.3, a uniform bound on the energy of v(¢) is enough
to imply global well-posedness of (1.5).

Remark. The Fourier truncation method was used in [10] to prove global well-
posedness for the cubic problem when s > %.

To prove scattering, the wave equation (1.5) is rewritten in hyperbolic coor-
dinates. These coordinates were quite useful to the cubic wave equation because
the hyperbolic energy scales like the F'/2 x H~'/2 norm. For 3 < p < 5, the hy-
perbolic energy and the energy (1.13) “sandwich” the H* x H*~! norm, giving
scattering.

Remark. Previously, [18] used hyperbolic coordinates to prove scattering
for (1.5) with radial data lying in the energy space and a weighted Sobolev space.
The weighted Sobolev space used in [18] also scales like the F1'/2 x F~'/2 norm.

As in [4], energy and hyperbolic energy bounds merely give a scattering size
bound for any initial data in the critical Sobolev space, but with scattering size
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depending on the initial data (ug,u;) and not just its size. To prove a scattering
size bound that depends only on the size of the initial data, we use Zorn’s lemma.
Asin [3, 4], we use a profile decomposition to show that if (ugy,u?) € H% x H%~!
is a bounded sequence, then ||u"|| 120D (RRY) is also uniformly bounded.

Remark. The upper bound in (1.6) is completely qualitative. Concentration
compactness-type arguments that proved scattering in the energy-critical case also
obtained a quantitative bound. See for example [23]. Here we do not obtain any
quantitative bounds at all. In the author’s opinion, it would be very interesting to
obtain some sort of quantitative bound.

Outline of the argument. We begin by proving global well-posedness for the
p = 4 case in section two. This is a warm-up for section three, where we then
generalize this global well-posedness result to any 3 < p < 5. After proving global
well-posedness, the hyperbolic coordinates are well-defined. In section four, we
prove an estimate on the initial data, before obtaining a scattering bound in section
five. We conclude with a concentration compactness argument in section six.

Acknowledgments. The author was a guest of the Institute for Advanced Study
during the writing of this paper. The author is also grateful to the anonymous ref-
eree for a detailed list of many helpful suggestions.

2. Global well-posedness in the p =4 case. To simplify the exposition,
first consider the specific case of p =4 in (1.1),

(2.1) ugr — AuA|uPu = 0.

In this case

2 5

2.2) =371 1= ¢

N W

Global well-posedness is proved using the Fourier truncation method. Using
(1.2), fix 0 < € < 1 and rescale so that

2.3) ||(P>1u07P>1u1)HH5/6><H—1/6 < €.

Remark. In sections four and five, this data will again be rescaled so that most
of the critical Sobolev norm lies in a ball of radius one.

Then decompose the initial data

(24) vo = P<jug, wo= Psiug, vi=P<u, wi=PFPsuy.
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By Theorem 1.3, (2.1) has a local solution. Decompose the solution to (2.1),
u = v+ w, where v and w solve

2.5) Wy — Aw + ]w|3w =0, w(0,2)=wo, w(0,2)=1wi,
(2.6) v — Av+ [uPu—|wPw=0, v(0,z)=vy, v(0,z)=n0y.

We know from [13] that (2.5) is globally well-posed and scattering. The proof
uses Strichartz estimates and small data arguments.

THEOREM 2.1 (Strichartz estimates). Let I C R, tg € I be an interval and let
u solve the linear wave equation

(2.7) uy —Au=F, u(to) =uo, wu(to)=1ur.
Then we have the estimates

2.8) HUHLng(IxR3) + HUHL;“HS(I><R3) + ”utHL;"H5*1(1><R3)

Spaspd 1uoll sy Hllwll ooy HIF g0 g geys

1 11 1 1 1 3 3 1 3
2.9) -+, - +-<- —+-=5-8s5==+-—
p ¢ p 4§-2 p g 2 N
Proof. Theorem 2.1 was proved for p = ¢ = 4 in [21] and then in [7] for a
general choice of (p,q). O
Then,
[[wl|

L NLPPL2nre /s
(2.10) t,al ot x (g \
S M Cwo, wi)llgrsrsscpr-ve +llwllzg llwllprers,n S,

which by (2.3) implies that w is scattering. Additionally, the radial Strichartz esti-
mate and Bernstein’s inequality implies

@.11) ol ez S e ol lwllzzos Se.

THEOREM 2.2 (Radial Strichartz estimate). For (ug,u) radially symmetric, if
u solves (2.7) with F = 0,

(2.12) lull 2= rure) S llwoll g rsy + [lun ]l 2wy -

Proof. This theorem was proved in [11]. The dual of (2.12) is that if uy =
u; = 0, and F' is radial, then

(2.13) ||U”L‘;°L§C S HFHLgL;- O
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Therefore, to prove global well-posedness of (1.1) in the case when p =4, it is
enough to prove global well-posedness of (2.6). To that end, let E/(t) be the energy
of v,

(2.14) /\WF /vt /|v\ dz.

By the Sobolev embedding theorem and (2.4),

(2.15) E(0) < (Jluoll grsss + llwnll g-176)* 4 (luoll grsss + ] gr-1s6)°.

To prove global well-posedness of (2.6), it is enough to prove a uniform bound
on E(t). Indeed, suppose that (2.6) has a solution on an interval [0,7"), and that

(2.16) sup E(t) <
tel0,7)

Then by Theorem 1.3, there exists some § > 0 such that for any ¢, € [0,7),
Q.17) By —AT+[0P =0, B(te,x) =v(to,x), Te(to, ) =v¢(to,x),

has a solution on [tg,to + d]. By (2.10) and standard perturbation theory (see
Lemma 6.2), this proves that the solution to (2.6) can be continued past 7.

THEOREM 2.3. The energy E(t) given by (2.14) is uniformly bounded for
all t € R, and moreover,

(2.18) jugE(t) Shuol /65wl 176 £(0)-
S

Proof. The proof is quite similar to the proof in [4]. By direct computation,

(2.19) c;iE( () = /vt[\v+w\3(v+w)—|wl3w— lvPv)dz

By Taylor’s theorem,

1 1
|U+w|3(v+w)]v|3v|w|3w:4w/ |v+7'w|3d7'4w/ |Tw|dr
0 0

2.20 bt
(2.20) = 12wv/ / |sv 4 Twl|(sv+Tw)dsdT
o Jo

= 4lvl*w+O(jv*lw]?) + O(|v][w]).
By Holder’s inequality and (2.14),

1/3 5/3
(or, [P ) S lloallzz oy 1o 1013 oy 201 a5

< EOlw®) s o

2.21)
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and
222) (v, vl[wf’) S HthLg(R»*)”UHLg(RS)”wHBLg(Ra) S E(t)\lw(t)Hi;(Ra).

Therefore,

d
@23) LB =~ [P+ BOO(w®) B + 100 w)

If the term 4(vy, |v|3w) could be dropped, then we would have

d
(2.24) ZE® SEOUw® L ws) + 0@l )

By radial Strichartz estimates, (2.4), and (2.10),
2.29) J 0O )+ 1)y oyt 5 €

Indeed,

THEOREM 2.4 (Radial Strichartz estimates). Let (ug,u;) be spherically sym-
metric, and suppose u solves (2.7) with F' = 0. Then if ¢ > 4 and

1 3 3
2.26 —+-—==-
(2.26) Rt
then
(2.27) lull L2a mxrz) S w0l grawoy + 1t | s-1 g3y -
Proof. This was proved in [19]. U

Then for w solving (2.5), by (2.10), the Sobolev embedding theorem, and the
principle of superposition,

3
(2.28) lwll 2 risazses, < llwoll grsse + llwill grvvs +[lJwl wl ) o5 S e

Then by Gronwall’s inequality, (2.24) and (2.25) would easily imply that

(2.29) sup E(t) < E(0).
teR

Remark. In fact, it is possible to say something more than (2.28). Namely, by
Duhamel’s principle,

(2.30) w(t) = S(t)(wo,wr) —/0 S(t—7)(0,|w]Pw)dr,
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so since the operator P; commutes with S(¢),

1/2
(Yo 1Pwlsn)
J

1/2
2 2 3 2
ean S (Pl 1Bl e+ 1P (w0l o)
J
< ol s + Ly + Pl -1

S lwoll rsse + llwnll g1y + llwPwl 1y o5 S e

The contribution of 4(vy,|v[>w) is controlled using a Morawetz estimate in
conjunction with weighted Strichartz estimates, as was done in [4]. Define

(2.32) EX)=E(t)+cM(t / lvPvwdz,
where M (t) is the Morawetz potential

1
(2.33) M(t) = / Vi Vuda + / v —vdz,
|z| |z
and ¢ > 0 is a small, fixed constant. By Hardy’s inequality,
(2.34) cM(t) S el Voll 2wy lvell 2wey S cE(1),

and by (2.10),

(2.35) / pPPvwde S o] 2 ol 35 el oz S €.

~

Therefore, £(t) ~ E(t).

Next, by the product rule,
3 d 3 3
(2.36) 4 (v, |v[*w) — pr [v|Pvwdx = — (v, || wy).

Also, by direct computation and integrating by parts, since v is radial,

d (¢,
cﬁM():—%rcvtO /\v 2)

2.37) —c/(]v+w (v+w)—\v[3v—\w|3w)‘x—|-vq)dx
X

1
—c/(]v+w3(v+w) —vPPv— \w|3w)mvdaz.

Remark. The virial identities will be computed in more detail in the next sec-
tion.
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Therefore,

d

3¢ [ |v(t,x)P
- _ 2 _ RSl
dtg( ) = —2mev(t,0) 5 / 2] dx

T
c/(|v+w[3(v+w)|v\3v|w]3w)|x|-Vvd:c< |v\3 ‘)

1
—c/(|v+w|3(v—|—w) —|v)Pv— |w|3w)mvd:€

+O(E®w ) ) + w1 o))

By Hardy’s inequality, the Sobolev embedding theorem, and the Cauchy—
Schwartz inequality,

(2.38)

1
/(|v—|—w|3(v+w) — 0P — [wPw)—vde

||
. 1 2/3 2/3
(2.39) S < mv dm) ” ‘1/2

</‘ Wﬂ“)+5E(WWQW%.

Also, following (2.21) and (2.22),

ol +H, v

Hmuwmmp

¢ / [Pt + o) - Vod

2.40 1/3 5/3
(2.40) <vauﬂm1/ww/uwmﬁ+wkuwmuwmw

S B®)[llwl3 g+ [w]s)-
Therefore,

3

()+27rcv(t 0)? C/|U izl da:

(2.41) / V([oPv)dz+ (v, v wy)

S FEOUO e+l +5( [0 ar)

Make a Littlewood—Paley decomposition,

(2.42) (JolPv,we) = (|v[*v, Pjwy).
J

By Lemma 3.3, if P; is a Littlewood—Paley projection operator,

(2.43) /| ‘|P<]v\ d:1:+/| ‘|P>]v\ da:</ v da.
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Therefore, by Holder’s inequality, (2.43), and the Cauchy—Schwartz inequality,

> (oo —|P<jol* (P<jv), Pyw)

J

1 3/5
smeP/wPZjvuLyz( / m(ngvPHPZij)dm)
(2.44) J

x Il Pyl s
1 5 3/5 1/10 1/2
< ( / ol da:) S0P ol ol ] 2 Py .
J

By Bernstein’s inequality and the radial Sobolev embedding theorem,

(2.45) 1O joll 32 oy S 2795 IV0ll 2 ey S 279 E()12.

)

Also, by Bernstein’s inequality, the radial Sobolev embedding theorem, and inte-
grating by parts,

(| P<jo’ (P<jv), Pjuwt)
\% ,
= (1P (Pege). Py ) ~ 2 Pesol (VP (o)

46) 1 35
Sl VPl ([ lPesolPae) el 2Py

| | 3/5
<2 BB (/ m!vlscﬂ) ]2 Pjuwe | s

The term [ (ij)ﬁ -V(Jv]>v)dz can be handled using a similar calculation.

Indeed, by Bernstein’s inequality and (2.43),

/ (Py) -9 (Pegof (Pyv))ie

_ Y W i -1}3 U XL
= [ G PSP (Pegu)a

can  ~27 [(BV0) T V(P (Peyu)da

1

3/5
PP

S 2ol 27Vl a0V Pegol g

| ! 3/5
s2980 ([ Siofde) el 2p vl
xr
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Meanwhile, integrating by parts,

/ (Pyu) -9 (ol = | Pegof (Peyv))d

(2.48) :—/(Pij) T(M 0= | Pejol} (Pojo))da
=2 [ (P (o o= Pegof (P da

The term

(2.49) _/(ij) (1o = |Pegof (Poye) o

may be handled in a manner identical to (2.44)—(2.46), giving

' 1 3/5
(2.50) (2.49)§243/5E(t)1/2(/|x|v\5da:> 122 PV .

Meanwhile, by (2.43), the Sobolev embedding theorem, the Cauchy—Schwartz in-
equality, Young’s inequality, Bernstein’s inequality, and the Littlewood—Paley the-
orem,

2 / <ij>|glc<rv|3v— |Pejof (Pejv))da

1
< [ PPl Pegef + P
/5 1/2
S [ (SIpwP = (Pl + 1Pool®)
1/2
o 1
X (22‘7/3+‘]/5|P>]"U‘2|m|4/5> dx

J

3/5
S (2 i) ) Csw (| st + gPenten)
1/3

(S imat) ) (2 )"
5</||v| o)+ 3B (Zz i-it5) Pruw-)”

1 1
so( [ piblan) + sE@I

(2.51)

‘$|3/5 ‘PJU|
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Remark. We use Young’s inequality to show
1 1/2
i/3+5/5 2
H(Zz” +/5| Pyl |x|4/5)
j L
i/3+i/5 1\
-|(Z2r | Sl )
J k>j

5/2
xT

(2.52) L
i) 1/2
< 3/3+3/5 2
: H< S PN ) |
Therefore, by (2.41)-(2.51),
d 3 t
5(t)+27rcv(t,0)2+56/wda:
1 5 Iv
(2.53) SEOUwOLs ) + w(?) 175 (ro))
1 £)5/4 45/5)1..11/2
a0 (Zz ||/ P; vtanLm)

For § > 0 small, but fixed,

(2.54) < / ym%)

may be absorbed into the left-hand side of (2.53).

Next, recall Corollary 3.3 from [4].
COROLLARY 2.5. Forany j € Z, if w solves the linear wave equation

(2.55) wy —Aw =0, w(0,z)=Pjwy, wi(0,x)=Pjw,

then for any 2 < q < oo,

(2.56) 212wl g 2 ey S I Pjoll grojar + 1 Pywr o

In this case ¢ = %, so by Corollary 2.5 and (2.30),

2.57) |||x\]/2ij||L5/sz S Bjwoll /s + | Pywill gg-ass + | By (lwPw) | 1y -2

Also,
T I/ZP‘V

(2.58) X
S I1Pjwoll gsss + [1Pjwil| grass + 155 ([wl w)l[ 1 gravs-
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Remark. The estimate (2.58) in the case of V,w follows easily from (2.57)
using the Littlewood—Paley decomposition. For d;w, we use the fact that

(2.59) 0eS(t) (wo,wy) = S(t)(wi, Awy),
which by (2.57) implies
2 2PV, S(8) (wo, w52, = o] V2P, S (@) wn, o) |57,
t x t x
(2.60) S 1Pjwill gass + 1P Awol| 25

= ||Pjwi | grass + || Pywo | gs/s-

Utilizing (2.60) in the integral term in (2.30),

t
yx\lﬂpjvt/ S(t— (0, [wlPw)dr
0

L)L

2.61)
< /HPj(lew)IIHa/sdT = (1P (lwlw) | 1 grars-

Using the computations in (2.31), for any ¢ > 0 small, o0 = 6—10 will do, by
Bernstein’s inequality,

S 20l PV ]

L2 (RxR3)
>0
A 12
—835/5 1/2 2
e (ZZ et Pjvt’””Li“L:(Rmﬂ)
>0
_gi Y 1/2
(2.62) N (22 S35 Pyawo [Fys s o) +2 8]/5+”||ij1||§3/5(R3))
>0

_gi/Sio 1/2
+ (D275 Py (wPw) )

Jj=0
< lwollgrsse + lwi | 176 + [[[wPw]

<e.

Ly

Since wo and w; have the Littlewood—Paley support P>, by (2.11),

lwllzzrz S llwoll 2 + |l g1+ lwllzrz lwllzg

(2.63) S lwollgrsss + llwnll s + llewll gz lewlle

<e.
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Therefore, making a computation similar to (2.62),

> 274902 2PV, 5/2
3<0

L=(RxR3)

< 27905 Py s

<0
+ 2743 Py s + 27 By (o) |y s
(2.64) So (o275 Pyl yess + 27557 Py s
]<0

8i/5—0 1/2
+ 27895 By (P w) 2y s )

S llwoll g2 + llwill g1+ wlPwll o5

LiLy
S Nwoll s+ lwill s + lwlg o 1wl pe 2z Se.
Therefore, by (2.15), (2.25), (2.62), (2.64), and Gronwall’s inequality, for

e(lluoll gssss l|wrll gr-176) >0

sufficiently small, (2.18) holds, proving Theorem 2.3. O

3. Global well-posedness for general p. Now prove global well-posedness
of (1.1) for any 3 < p < 5.

THEOREM 3.1. The nonlinear wave equation
(3.1) ug — A+ [ulP e =0, u(0,z)=uy, w(0,z)=u,

with radial initial data ug € H* (R?), u; € H* 1(R?), s, =3 — %, 3<p<s,
is globally well-posed.

Proof. The proof is a generalization of the argument in the p = 4 case.

First prove a generalized Morawetz inequality.

THEOREM 3.2 (Morawetz inequality). If u solves (3.1) on an interval I, then

+1
(3.2) //'“ tf;'p dedt < E(u),

where E is the conserved energy (1.7).

Proof. Define the Morawetz potential

3.3) M(t) = /umﬂ%r—l—/umrdr.
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By direct computation,

d 1 p—1
: —M(t) = —u(t,0)* - —— PHydr.,
G MO = —5u(t.07 =2 [ rdr

Then (3.2) holds by the fundamental theorem of calculus and Hardy’s inequality.
0

The Morawetz estimate commutes very well with Littlewood—Paley projec-
tions.

LEMMA 3.3. Forany j,
1 +1 1 +1 L e
(3.5) —|P<julP"de+ | —|PsvPTde S | —|vPT da.
] |z |z

Proof. Let v be the Littlewood—Paley kernel.

(3.6) L P = / 239(2 (z — y))o(y)dy.
2|7 R
When |y| < |z|,
1 s i 1
3.7) P S )
x| P+l Yy p+l1

When |y| > |z| and || > 27, since 9 is rapidly decreasing, for any N,

1 ' : 1 23j
299(2 (x—y)) Sn :
P e (e P
1 237
3.8 S : -
G9 |77 24 ]y| (1+27 |2 —y )N
1 23

< . .
~ oyl (LY —y N
Combining (3.7) and (3.8),

< 1

~

Lt (|z|>277)

3.9

(%

Lp+] (R?)

1
j\ngﬂ

‘:L'|p+1

] 71

When |y| > |z| and |z| <277, since 1/ is rapidly decreasing, for any N,

L i (e —y)) S — 2
.Qi'—y ~N -
|| 71 |71 (L 2]z —y[)N
(3.10) _
1 237 1

T el (12l )N P 25y e
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By direct computation,

y
<ot

23—k
s | s
L7 (R)

(1427 —y )N 7

Therefore, by (3.10), (3.11), Young’s inequality, and Holder’s inequality,

1
—|P<;v
|| P+ Lot (Jz]<277)
1 R 1
(3.12) < : ’ T ||
| 757 et al<a-n) | (14272 ) V77 L7 g i llzen
1
< — .
‘x|m Lot (R3)
This proves (3.5). O
Next, split a local solution (3.1), u = v+ w, where w solves
(3.13) wy — Aw + [wPlw =0, w(0,2) =wy, wi(0,z)=mw,

and v solves
(G.14) vy —Av+|uflu—|wfPlw =0, v(0,2) =vo, v(0,2)=0y.

Again use the rescaling (1.2) so that vg = P<jug, v = P<juy, wo = Ps1ug, w) =
P-quy, and

(3.15) lwoll grse rey + lwi | prec-1(r3y <€
Asin (2.15),
(3.16) E(0) < (lluoll groe + llwnll groe—1)* + (ol e + N[t | groe—1)P

By small data arguments, (3.13) is globally well-posed and scattering for € > 0
sufficiently small. Indeed,

< ) i p—1
D w2, o Sl el ol 2 o <e

and as in (2.11),
-1

(3.18) lwllzzrz S llwoll 2 + llwill g1 + 1wl gz 2 lwll ) <€
t,x

Now define the energy of v,

1 1 1
. =— [ |Vu|>+= 2 - p+l
(3.19) E(t) 2/| v +2/vt(t,:ﬂ) d:c—l—p+1/|v(t,x)| da,
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and let
(3.20) E(t)=E(t)+cM(t / lv[P~ vwd,

where ¢ > 0 is a small constant and M (¢) is given by (3.3), with u replaced by v.
Then by (2.19) and (3.4),

c;ltr‘:() ;v(t,0)2+c< )/|U |x||p+1

— (v, [+ wP (v +w) = oo — [wPw) + dt/|vp_lvwdx

(3.21)

—c/[|v+w|pl(v+w)— ]v|pflv—|w]p71w]|£|.Vvdﬂs
x

1
_C/[|U+w|pl(v+w) — || — |w]p*1w]ﬁvdx.
x

By (2.39), Hardy’s inequality, and the Cauchy—Schwarz inequality,

1
/UU +wP (v +w) — [vP v — |wPw] —wvdz

|z|
p— % pi
p+l P
(3.22) </| 1 dz) H| Y], Il
+H olzelrelZsg,
1
</| |v|p+1dx> + = E( )||wHL3<p -
Also by (2.20),
(3.23) v+l (v-+w) = [oP~ o — [

= plol’~ w+ O([o["~|w]?) + O(Jv[w]").

By Hoélder’s inequality,

1000l 21+ 0ol -V

|
(3.24) S Vol lfvll gellwllh ) + E(t )Ilwll2

S E@)[lwllf 1)+Hw||2

and

(3:25) (v, [O(joP~*w]?) +O(lol[w]P~)]) S B [llw]}2 + leliﬁ}-

~
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Next, by the product rule,
(3.26) p(vg, [vP w) /]v|p Lowdz = (Jv[P~ v, wy).
Following (2.44),

Y o~ = |P<joP~! (Pejo), Pyw)
j

L
(/ Pl g |'P>f“‘p“>

p*,
XY Ml Pywg]| - || || 20 |Pojol]| e
i

p—1
522;&’5“)1/2(/ |||v|p*‘df”)p Nl 2 Py -
- X
J

3.27)

1 1 ol 4y bt
55( / m\vrp“dx)+5E<t> 4 (;2 1 2] 2 Pyl )

Meanwhile, integrating by parts as in (2.47),

Y (1P<julP~! (P<jv), Pyun)
(3.28)

+1

§5</MU’p d$>+5E<t> 4 (;2 P+1”ijtHLw> .
Using (3.17) and (3.18) in place of (2.10) and (2.11),

(329  E(© ”“/(Zz P11 || Py thL"")

The contribution of

P
p+l p+l

+1
dt < B(0) 5.

(3.30) —c/w’i‘ V(|v|P~ o) da

may also be handled by splitting

WiV V(jvP~ty ZPw— VPl
]

(3.31) = Z(P'w)m-V(Iqul “(P<jv))

+Z Pw V(([o]P~to = |P<juP~ (P<jv))),

integrating by parts, and summing up.

19



20 B. DODSON

Then arguing as in the p = 4 case, (3.25) and (3.29) imply that

(3.32) supE(t) < £(0),
teR
which completes the proof of Theorem 3.1. g

4. Scattering: Estimates on initial data. To prove scattering, let ¢(z) be
a radial, smooth function supported on |z| < 1 and ¢(z) = 1 on |z| < 1. Then for
R(up,u;) > 0 sufficiently large,

“.1) H (1 - (b(%))uOHHSC(m) + H (1 - ¢(%))u1 HHScfl(m) <

Then rescale according to (1.2),

2

4.2) wo(w) > (2R)7Tug(2Rz), i (z) > (2R) 7 Tuy (2R).

By (2.3), if n is an integer such that 2" > 2R, then abusing notation and letting
(up,u) denote the data given by the scaling (4.2),

(1 =@ (@))uoll raems) + | (1 = (@) )ur || groc1 w3

4.3)
+ [9(2) Ponuol| groc rey + 110(2) Pontin || grac1(r3) S €-

By small data arguments, (4.1) implies that

@9 el e 00 itz ey = &

if w is the solution to (1.1) with initial data (uo,u; ). Translating the initial data in
time fromt¢t=0tot =1,

(4.5) <e

”u”Lifi””([l,w)x{w:\r\th%})
As in [4, 18], the proof of

(4.6) lell 20 1 oy et i3y <>

will make use of the hyperbolic change of coordinates,

T o1 h
4.7 a(r,s) = ¢ s Su(eTcoshs,eT sinhss).
s

If u solves (1.1) and is radial, then (7, s) solves

4.8) (aTT Dy %as>a(r, §) 4 eI (i

p-1 .
Sinhs) |a(r,s)|P~ a(r,s) =0.
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The hyperbolic energy is given by

E(a)= ;/(8SQ(T,S))282dS+;/(87—71(7',8))282618

1 s \p-1
—i—m e~ (P37 (m) |a(r,s) P s*ds.

4.9)

By direct computation,

d . _ P=3 [ _p-3yr( S P! pil 2
. - — <
@10)  E@ ()= [ e (Sinhs) la(r, s)[P*1s2ds < 0,

which implies that the energy of @ is non-increasing.

We also have a Morawetz estimate.

THEOREM 4.1. If @ solves (4.8) on any interval I = [0,T), then

@.11) /1 / e 0 ( 2V (O () Rasar < B((0).

nhs sinh s

Proof. Using the Morawetz potential in (3.3),

(4.12) M(T)= /ﬂs(r,s)ﬂT(T,s)szds—l—/QT(S,T)Q(T,s)sds.

Then by direct computation,

d
%M(T)

a p+1 sinhs / \sinhs

4.13)

Then by (4.10) and the fundamental theorem of calculus, the proof is complete.

21

0

Previously, in [4], for the cubic wave equation, the initial data was split into a
(T0,1) € H' x L* component and a (i, ;) € H'/? x H~'/2. Here, it would be
nice if we could do something similar, only with 1/2 replaced by H*:. However,
the hyperbolic energy scales like the H 1/2 norm, and thus is not invariant under
the general scaling (1.2). Instead, what we will do is place (%,9;) € H' x L?,
but (o, w;) will merely lie in a Sobolev space after multiplying by exponential
weights. The weights in the nonlinear part of the energy (4.9) will then be used
in conjunction with the weights for the Sobolev space to bound the growth of the

energy of 0.
THEOREM 4.2. There exists a decomposition

(4.14) iy = Tp +Wo, U1 =01 +D1,
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satisfying

(4.15) 1ol g + 1151122 S B (ol e + [l || gsc-),

where R is given in (4.2), and

S el 2K (s K)o
k>1

(4.16) + ) e AR Iy (5 — k) |3 g2
k>1

+ll(e® = Dol Fyec g + 6" = D10 2 S €

Here, x (s — k) is given by the partition of unity,

(4.17) 1= x(s—k)+ (e’ —1),

k>1
where x € C7’(R), and x is supported on —1 < s < 1.
Proof. To calculate

e" sinh s

(4.18) a(7,5)|r=0 = u(e” coshs, e’ sinhs)| -,

use Duhamel’s principle,

(4.19) u(t):S(t—l)(uo,ul)—/l S(t—5)(0,|uP~ u)ds

The analysis will be split into three pieces, analysis of the zero velocity linear solu-
tion, S(t —1)(uo,0), analysis of the zero initial data linear solution S (¢ —1)(0,u;),
and analysis of the Duhamel term, flt S(t—s)(0,|ulP~tu)ds. O

Zero velocity term. In the zero velocity case, the contribution of S(t)(ug,0)
to digp will be decomposed as follows:

5o = d(e” — 1)(Penuig) (e — 1)- (¢ — 1)
+ (et~ 1><P<nuo><1 —e ) (1—e)

3 x5 =) (Pey s wo)(1—€%) (1 €7°),

k>1

(4.20)
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and
Wy = (e — 1) (Pspug)(e®—1)- (e’ —1)
+ole” - 1)(P>nU0)(1 —e)-(1-e7)
@.21) +D X5 = B) (P s uo)(1 =€) (1—¢77)
k>1
—i—Z)((s—k)uo(es— 1)-(e®*—1),
k>1

and the corresponding O, derivatives are the contributions to ©; and 0.
Indeed, setting u; = 0 and ignoring the contribution of the Duhamel term,

sti(r,s) = e" sinhs-S(t—1)(up,0)(e" coshs,e” sinhs)
(4.22) 1

= Sluo(€"* = 1) (€7 = 1) Fug(1 =€) - (1= ™).

By direct computation,

10s[p(e™"* = 1) (P<nuo) (€™ —1) - (€7 = D)]7=0ll £2((0,0))
(4.23)

S RO Juo | e gy
and
T+s T+s e -1
P(e™* = 1)(P<puo) (e —1)-
(4.24) s m=011L2([0,0))
S R fuo | e oy -
Meanwhile, by (4.3),
s s eTts 1
(425) |6 = 1)(Ponuo) (€7 = 1) | —— L
T=01l Hsc(R3)

Similar calculations also hold for
(4.26) 61— *Yup(1 &%) - (1 ¢"*)|r—o.

Remark. Since 0, f = +0, f for the components of (4.22), the same estimates
also hold for 0,(T, s)|,—. Here we make use of

0s(su)

(4.27) ‘ < HUHH31(R3)7 forany 0 < s; < 1.

‘Hﬂ‘(ﬂ@)
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Turning now to the x(s — k) terms, since ug € H*, s, > 4

5, using summation
by parts,

0s[ Yo x(s = k) Py g w0)(1 =7 - (17

In(2
o1 (€]

= [10s| D" x(s = k) (P<nuo)(1 —e™%) - (1 —€™~)
o]

k>1

+ZX(S —k) Z (P"ﬂn(lz) up)(1—e™%)-(1 —eT_S)} ‘

k>1 1<i<k

T:o‘ L2([0,00))

LZ

(4.28) _ ‘

0:| 20 | Do xls =) (B o)1 =) (1 =)

In(2)
>1 k>l

+ D= B (Penuo) (1 =€) - (1 =7 |

L2
k>1
S2 0TS ol e 204 ST P, e vl
k>1 k>1

S R [ug| e

We use Bernstein’s inequality to estimate the last term. Also, by the radial Sobolev
embedding and the fact that s, > %

= ST S L2([0,00))
4.29 n(l—se 112
@2 0= (35 ) ol e
k>1
S R ug || e -

Also by (4.3),

. uo)(1—67f8).<1‘f_8)

In(2) S

(4.30) H S X(s—k)(P.,,

k>1

v =€
=01l {s¢(R3) ™

Finally, take

(4.31) S X(s—k)ug(e™* — 1) (eT+s_ 1>

S
k>1
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Forany 0 < s < 1, if g(x) is monotone increasing or decreasing and ¢'(z) ~ M for
all z € [0,00), by a change of variables and Bernstein’s inequality,

2 B(P, fg@)) e S
7 g L2 M1/2

432) 25| Pu(Py f(g(2))) 1 12 S 27 ¥V PR(P; f9()]] 12
S MR DI Py
which implies || f(g(2))[| g+ < M| f]l -

~

|Pifllggs. and,

Therefore,

Hx(s—k)[1 (e — Dug(e — 1) (em _ 1)

s
ekt 1/2
< ek/z</ uo(r)lzrzdr>
k-1

k+1 1/2
|VScuo<r>\2r2dr>

(4.33) 4 e R/ 2Hhese ( /
ek—1

k+1 1/2
]uo(r)|2r2(130)dr>

1 e
< o k(3s0)
~ ek-1

] ekl 1/2
+e ks ( / \|V|Scuo(r)|2r2dr> :
ek—1

By (4.1), (4.2), and Hardy’s inequality, this satisfies Theorem 4.2. In this case, it is
not quite true that 9; f = +0.- f, we have the terms

ol

(0, +2,) [kg;‘lx (P o) (1= - (1= )|
(4.34) =x'(s— 1)<P<nuo>(1 —e ) -(1—e7%)
+ZX n+lé)u0)(1_678).(1_675)7
>1

and
0[St ]
(4.35) k21 a
=xX'(s=1Nup(e*—1)- (e —1).

Since 3o joy [X' (5= k)| < 5 Xpst IX(s =)L,
completes the estimates of the zero velocity term.

[0,0), using (4.29)—(4.31)

Zero initial data. Turning to estimating the contribution of S(¢)(0,u; ), split

(4.36) ur = ¢(x) P<pui + [ur — ¢(x) P<puy].
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By direct calculation,

Sj 2n(lfsc) ’
L2([0,0))

es—1
8775/ o(r)P<puy (r)rdr
1

—e— S

4.37) ’ [t || gree1,

and by Holder’s inequality,

e’—1
(4.38) Hi/ (1) P<puy (r)rdr
1

—e— S

S 27075 | e
£2((0:=)

Turning to the contribution of g = u; — ¢(x) P<puy, as in [4], observe that

sin(tv/—A) . [cos(tv/—A)
—a 9T (A ) -

Note that (4.3) guarantees that

(4.39)

(4.40) g1l grse1 S €

Plugging in the formula for a solution to the wave equation when r > ¢, let
w(t,r) = cos(tv/—A)f, where f = 4. Then,

(w(t,r))
(4.41) = %Bt(f(tw)(tw)+f(7~_t)(r_t))
= %[f(t‘FT)—i-f/(t—l-?“)(t—&—r) —fr=t) = f'(r=t)(r—1)).

Since f € H**!(R?), the contribution of
(4.42) fle™=1)- (™ =1)|r=0, f(1—€e"%)-(1—e"*)|r=0

may be handled in a manner identical to the contribution of the terms arising from
S(t)(up,0).
Now consider the contribution of

1

(4.43) S =D = f(1 =€) l—o.

The terms when 1 < k < nln(2)81:f72 will be placed in (p,?;) and the terms

when k£ > nln(2) si:sz will be placed in (g, 01 ).
By a change of variables, for k£ > 1,

€k+l

(444) / (x(s = k) f'(c" = 1)-¢")ds S e 2t / /() Pr20 =,

ek-1
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and by the Sobolev embedding theorem,

l—e k-1

wasy JOEmRrac e pasge ([ ipopa)

—2k
Se 2 ||f||§'{1+sc(R3)-

Furthermore, by the fundamental theorem of calculus,

es—1

(4.46) e =)= =)< [ Il

SO

@an [t kPl - - i-eofass 3 ([ o).
0<i<k et

Therefore,

| T ARy fa )
1<k<nlIn(2)1=5¢

(4.48) +H Y Xs—R)O e 1)~ f(1— )]

7':0HH1

7=0 ‘

L2
1<k<nln(2)1=2¢
sc—y
SR f e
Indeed, by the product rule and (4.47),
1 T+S T—S8
| X e-mEr-n-fa-a)| |
1<k<nlIn(2)1=%¢
sc—y
| X xs-malse-n-sa-e| |

D DI [V AR R |

S

L2

(4.49) N > %X(S_k)[f(es_1)—f(1—e*8)]

LZ

D S LN (R R ()

L2

sc—1/2
1 —S
+ K=RlEe-D-s0-e|
1<k<nlIn(2) ;=55

SR fll e
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Next, using the change of variables in (4.32), (4.46), and (4.47),
(4.50)

k(2. — 1 T+s TS ’
D ] Nl VR LA i) N (98
k>nn(2)1=¢
sc—y
e®—1
< o~ k(2sc—1) IX(sk)</ f/(r)dr)H Ziz
s 1—e—s HSC k>1

k>nln(2)1=s¢
S

Also, by the change of variables in (4.32) and the dual of Hardy’s inequality,
[ f - S [l fll g2 for 0 <'s <1,

Zli‘ ek(ZscI)HX(Ss—k)8T[f(eT+s_1)_f(1_e'rs)] T:OHZSM
k>nin(2) =2
@51 = efk(zsfl)HM[f/(es—1)€s+673f’(1—e*3)]H%S )
k>nln(2) 51:; y fre
s H(kz ) S e S

Finally, consider
(4.52) fle =1 —=f(1—€%),
when s < 1. By direct computation,
453) O [f(e =)= f(1—€ )0 = f(e"—1) "+ f(1—e ") e
Then for g € H'~*¢, by Hardy’s inequality,

[ 1@ = et gs)sst [ f=e)e gls)sds

S erse gl g-se < €llgll e

(4.54)

Also, by the fundamental theorem of calculus,

flee=1)—f(1-e7)

(4.55)
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Therefore, since s < 1,

o(s)

S

[f(e?=1) = f(1—e)]

S llzgeen Se

(4.56) '
Hse

Thus, the contribution of the zero initial data term is suitable for Theorem 4.2.

Duhamel term. Now take the Duhamel term u,,;. Because the curve t*—r2=1
has slope > 1 everywhere,

e” coshs pe” sinhs+e” coshs—t
(4.57) SUpi(T,8)|r=0 = / / rlulP~ u(t, r)drdt.
1 e

7 sinhs—e™ cosh s+t

By direct computation,
k
| @urtsialoras
0

k coshs 2
4.58) < / e2s< / (es—t)|u|p_1u(t,es—t)dt> ds
0 1

k cosh s 2
4 / 6_25< / (t—e‘s)|u\p_lu(t,t—e_3)dt> ds.
0 1

The term e%( ICOShS(es — t)ulP u(t,e® — t)dt)Xsepp,e)(s) Will contribute to
(g, 101 ), where x 4(s) is the characteristic function of a set A, and

cosh s
( / <e8—t>ru“u<t,es—t>dt) Yocioa
1

k cosh s
+/ es(/ (t—eS)yu\plu(t,t—eS)dt).
0 1

will contribute to (@, ;).
By Holder’s inequality, since e® — coshs ~ e®, combined with global well-
posedness in the previous section and (4.5),

(4.59)

2

k coshs
/ % (/ (e —t)|ulP~lu(t, e’ — t)dt) ds
0 1

k pcoshs
< / / ¢35 (e — )2 ulP (L, e* — t)dtds

/ / lu|?(t,r)r*dtdr
2—r2<1

1)
S Hp

(4.60)

[ 13- H _Alsem1)k < 202(se— 1)k,
(|l >J¢) Lz ~
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Remark. The Strichartz norms Li(f*l) and ||||3/> %eu|| - are invariant under
the scaling (4.2).

Additionally, by the radial Sobolev embedding theorem and (4.4), using the
calculations in (4.60),

| k coshs 2
Zez(scz)’f/ ezs</ (e® )|u]plu(t,es—t)dt> ds

k

coshs
4.61 <Y e / / VHulP(t, e —t)dtds
(4.61) Z - £ ul(t,e" —t)
6
< Zez(‘%é)k/ / lu|?P (t,7)r*dtdr < €.
0 12—r2<l,r~ek t>2

k

Meanwhile, by (4.60) and the radial Sobolev embedding theorem,

(4.62) / % </ (€5 —t)|ulP~tu(t, e’ —t)dt) ds < 1.
0 1

Also by a change of variables and Holder’s inequality, since (¢t —e™*) 2 1 for
s>landt>1,

oo cosh s 2
/ 628</ (t—es)|u]p1u(t,t—es)dt> ds
1 1
o rcoshs
(4.63) S/ / e 5(t—e %) ul?P(t,t — e®)dtds
S [ P < g e, <
t2—r2<1

Also, by the radial Sobolev embedding theorem and Young’s inequality, since
|32 %eu|| = < € outside |z| = t,

1 coshs 2
/ 628</ (t—es)|u|plu(t,t—es)dt> ds
0 1
3 1/2 3 1
g/ (/ u(t,r)2pr2dr> dt,ﬂez/ —_dt <é.
1 2r2<1 (=177

This takes care of the nonlinear Duhamel piece, which completes the proof of The-
orem 4.2.

(4.64)

Remark. Note that the Duhamel term is why we have the norm H* U H! x
H5"1UL?in (4.16).
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5. Scattering: Virial identities. Now we are ready to prove scattering.

THEOREM 5.1. For any radial (ug,uy), the global solution to (1.1) scatters
both forward and backward in time. That is, if u is the global solution to (1.1) with
initial data (ug,uy), then

5.1 ||uH < M (ug,up) < oo

(RRY)

Proof. The standard Littlewood—Paley projection operator is only known to
have a rapidly decreasing weight, which when commuting with the exponentially
decreasing weights in Theorem 4.2, will only be rapidly decreasing. So instead,
in this section we will rely on projection operators with smooth, compactly sup-
ported kernels. Choose v € C’S°(R3) to be a radial, decreasing function supported
on |z| < 4, and such that [9(z)dz = 1. Then define the Fourier multipliers

(5.2) Pof(x / Y(z—y)f(y)dy,

and for j > 1,

53) Pif@) =27 [ 0@ ) f)dy-29" [ @) f )y,
Clearly,
(5.4) f=>_PBif.

Remark. If j <0, then PJ =0.
Now modify the definition of @iy and @y from Theorem 4.2. Let

1 X(S — ]{2)7])0, U:J() = ﬂo —'l:)(),

k Sc—3

(5.5 T =10+ Pcn(s)o+ Y P R

>1 ST TS,

and let

(41
—

1X(8—]€)1I)1, 17]1 :ﬂl—

k_.S¢72

(5.6) T =01+ Pep(s)r + » P R

E>1 ST Tose

Remark. Note that (4.15) and (4.16) still hold for the new (%, ;) and (0,0} ),
since the supports of ¢(s) and x(s — k) are almost disjoint, and thus the terms are
almost orthogonal.

Furthermore, modifying (3.13) and (3.14), split & = ¥ + W, where @ solves

2 p—1
Oy — Dyl — fasw+e—(7’—3)f<,i> @@ =0,
s sinh s

w(0,8) = Wo(s), w,(0,s) =1y,

5.7
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and ¥ solves

Equation (5.7) may be shown to be scattering using small data arguments. In-
deed, by Strichartz estimates, finite propagation speed, (4.16), and the fact that
(gps) Se =95 forany 0 < & < 1, if @ solves Oy — Oy — %asw = 0 with initial
data (i, 1),

p=3

e ()

sinh s

e

Remark. See Lemma 5.2 for a more detailed calculation in a more difficult
setting.

The same calculation also works for the radial Strichartz estimates,

(5-10) /H 3 IT s1nhs>w

Furthermore, using Strichartz estimates,

p-3 T / s \pr-1
—E=r Y —(p=3)¢ oIP~ 14 ) dt
©’ /0 S(r )<0’e (sinhs) [l w)d
_p=3

2
) s dr < €.

~

L1-sc

Ls_(z_])
(e s NP L
(5.11) gHe FiTew 3)7(—, ) [P 1wH .
sinh s LT e
p=2
_p-3 s \p1 _||P1 _p=3 s _
e B () e F ()] e
sinh s L3% sinh s 2rl-se
Therefore,
3 s \pL _ .
(5.12) He p 1T (P 3)T< - ) |@[P lw’ o <SP
sinh s L1 5 25¢
THs

which gives us Strichartz estimates with the appropriate weights for any admissible
pair.
Now, define the modified energy

&(r) = B(7) +cM(r)
(5.13) /ZW 15— | PP (Py5)] (p.w)e—(p—3)7<'i>332ds,

sinh s
3>0
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where ¢ > 0 is a small constant,

1 1
E(r) == [ 0s(s,7)?s*ds + = [ ©,(s,7)*s°ds
2 2
(5.14) 1 . -
S G TR
+JD-Fl ¢ sinh s [o(s, )PP s ds,
and

(5.15) M (1) :/v (s,7)0(s,7)s 2ds+/ (s,7)0r(s,7)sds.

As in (2.35) it is possible to show that

(5.16) /Z |5]P~ 11}—‘P< B|P- 1( )]'(ij)ei(pin(ﬁ)352d8<<E(7').

7>0

It will be convenient to take p = 4, since one may easily generalize the computa-
tions when p = 4 to any 3 < p < 5. By the Littlewood—Paley theorem, if P; is the
standard Littlewood—Paley operator, and the boundedness of the maximal function,

HZ|Pzﬂ’\(’P§jU|3+|P2jv|3)|ij\HL,

<ZH<; jiaof) sup(1Ps;ul + P20l @‘Pw')l/‘

1
(5.17) k>0 L
_ 10/3 Y 1/3
S 27l /(anjwuiwz ui)! (ZH s k0]32220H)
k>0 ]
10/3 2/3
< Ml grsss |0l 223 V]| 2.

Generalizing this computation to (5.16), observe that Pj commutes well with
(<=—)3/5. Indeed, for any j > 0,

sinh s
- s \3/5 s s N\3/5.
5.18 [P(—) } <2*J( _ ) P,
( ) 7*\sinh s ~ sinh s i1
which gives good estimates on the contribution of the error terms
s \3/5~ - s \3/5
5.19 ()" Bo-B((=2-) o).
( ) sinh s 70T sinh s v

Making use of the Strichartz estimates calculations in (5.9) and (5.12),

3/5 . 2
5.20 H (S N pwlT <
( ) ; € <smhs> i ¢

19/2 ™

i
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so by the Sobolev embedding theorem the contribution of w may be handled in a
manner identical to Pjw in (5.17). Finally, by construction, for any fixed 5 > 0,

(5.21) By =" c(k,j) Py,

where c(k, j) has good decay away from j, so the Littlewood—Paley theorem may
be used as in (5.17).
Now then, by (4.10) and (4.13),

%5(7) =
E’T)(T O)

—1 cosh s s p—1
R YOS e —(p—3)7'<7> ~ p+1 Zd
(5.22) Cp+1 (sinhs)e sinh s [o(s, )P 5%ds

_ -1
_p73 ( 5 )p 67(p73)T\6(5,7)|p+152d5

p+1 sinh s
2 [ Sl - P (B Py
7>0
-1
(5.23) _ / e (2 Y ol o (ol o sPds
1
(5.24) / ( — )p P=1a — 5P~ 5 — | @]~ @] 5,s2ds
l
(5.25) / (Snfhs)p Pl |57 15 — @ d]osds.

First, as in (3.22),

/e(p3)7<.8>p [Ja|P~ a — |5P~ "5 — |@|P~ ') osds

sinh s

s [ () ol +aP - oPlsds

sinh s

[

p—

< /e—(p—3)r( 5 )pil‘@|p+1(cf’5h3) 2ds )
sinh s sinh s

(5.26) XH L7t en’;—:%( 8 )ﬁ,
s1/2 7 Ls sinh s L3-1)
P el e,
e p- w - T
sinh s e-nils L2 L

o [ (o) () o)

1 p=3 S p—1
5P e (Ghs)
+5 ()l sinh s v

L3’
This takes care of (5.25).
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Next, following (3.24) and (3.25),

-1
/e_(p_3)T (i)p |5P218s 0|05 ds

sinh s

_p=3 s 112
T (s 7l
sinh s LT=sc

p—1
,L—?T S prl _||P™

X ||le Pt _ v
sinh s

<

(5.27)
1+

0.1

Lp+l
2

-3 S
<o B ()
SE()|e sinh s v

3
L1-sc

and

1
/ eI (2N a6, ol ds

sinh s
p—1

(5.28) < Hgi’i%?f( i )w‘

sinh s

SO (e

sinh s

I

p—1

31’

By (5.9) and (5.10), these terms may be handled using Gronwall’s inequality.
Thus, the only terms left to consider in (5.23) and (5.24) are

-1
_p/ e (iy (|5~ )5, 5>ds

(5.29) Smshs -
_p/e(p3)7<sinhs> o~ lssds.
By the product rule,
d/ Sl o — | Peof ™ Pegple I (2 )p“p.ws%zs
dr r =J =J sinh s J
-1
—p/e(p”T(. Sh )p ’17|p71177—7j)82d8
simn s
_ ~p-3r (S V' ap-is P olP B (P ) s2d
== Ze sinhs [[8]P~ 5 — | P<;9| <;0)(Pjr)s”ds
(5.30) !

B -3 (S NP o 0 m a1 p P2
/zj:e <sinh3> O-[|P<;0|P~" P<j0]| Pjws~ds
—(p-3) / S l6P 5 — | Py (P ()
J

x e~ (P37 <.L>p7132ds.
sinh s
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By the Cauchy—Schwartz inequality,

-1
—(p-3) /|v|p Wpwe (P~ 3)( > )p s*ds

sinh s

(5.31) gé(/\@,p+1@(p3)f<m;8>p lszds)
5He . IT(silfhs)w .

This computation may be generalized to show
(5.32)

o Sy R S
=3) [ St Pt Pl Py v () a

-3 (5 V2 S8 N\ . 2
Sa( [ ol (L2 sy + e HT (Sl 100

using the same arguments as in (5.16)—(5.21).

105,757

L3(p-1)

Next,
eI pil@ [| P<;5[P~! Pe ;5] Pybs*ds
SinhS T <Jj <Jj J
h 3
(S |
(533) coshs L2 1
. p—!
—p-3)r(_ S \P! coshsy\ 1y 2 Pl
% € (sinhs) (sinhs)‘v’ shds
H ( sinh s ) 1/2 2(5;13%( s )z(fﬂl)p
cosh s sinh s T
By the radial Sobolev embedding theorem,
h = i(p-3)
(5.34) H(;‘;hss)“’“ Peji|| o S2°77 B
Therefore,
< 7(p73)7. S pfl COShS - p+1 2
Z(S.33)N5 e ( - > ( : )]v[ s“ds
I sinh s sinh s
(535) :
3]| /sinhs\1/2 _20-3) s o\ S
SEWE (S 20 ( ) IT( )” & .
+5E0 <Z " coshs/ © " sinh s 3t I




SCATTERING FOR CRITICAL NLW 37

LEMMA 5.2. Using Corollary 2.5, the weights in T and s, and the definition of
Wy and Wy,

2(p—1) ptl
/(ZZJPH <Slnh8>1/26_%7—( s ) I Py ) e
(5.36) r cosh s sinh s L
p+l p-3

Proof. First replace @ by S(7) (1o, ), where (@,;) are given by (5.5)
and (5.6). Observe that by Corollary 2.5, Theorem 4.2, and Bernstein’s inequality,

p+l
(2D 28(7) (o), Pros))| ws )
L% Lz
i>n :
p+1
. p=3 ~ . o~ ~ kR
(5.37) 5( ZJ(P“)H(Pjéb(S)UOaPW(S)“)”H%Xy%i*‘) 2

j n
ptl

p=3 _p-l ~
SRR R |(Pon(5)00, Pond(8)0) e jroe1-
Doing some algebra using (1.3),

'p+1_p—5 p+1

p=2 7 =ty esd
(5.38) :_(p_l)(l_sc)+%(1—sc)
_3-p,_
= (1—s¢)

Then by (4.3), (5.36) holds for 1 replaced by S(7)(Ps¢ ()0, Pspnd(s)i01).

Next, for 0 < k < nln(2) - Si:sz, observe that by finite propagation speed,

(539) S(T)(P k sC_l/zx(S—k‘)wo,P n Lsc_uzX(S—k)ﬁ}l)

Mm@ 1-sc PN 1se

is supported on the set {(7,s) : 7+s>k—2, 7 >0, s > 0}. Therefore, for any
such k, by (4.16),

fo5,™

. 2|

(smhs)l/2 _2<p—3>7< s ) prl

e p+1 -

. s cosh s sinh s
S

j>n- In(2) fsc

(5.40) b1
X S(r)(Pyx(s = K)o, Pyx(s —kyan)|| ) T dr

< ef( Cif)kRi(lisc)T H(ﬁ)o,?f)l)”]_‘]@ x Hse=1:

~
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The proof uses the algebraic fact that

sc—1/2 p-3
o~ (P=3)k o B3t (s0=1/2)kn gy e P (1-5¢)

(5.41)
— o (P3O Bt (sc=1/2)k k(sc—1/2)- 552 _
Furthermore, observe that on the set {(7,s) : 7+s >k —2},
2(p=1)
(5.42) eT(2) T < ek,
sinhs -

for some «(p) > 0. Therefore, (4.16) combined with (5.42) give good summation
of (5.36) in k for S(7) (1o, @1 ), where (10,1 ) is given by (5.5) and (5.6).

The contribution of terms for which k satisfies n — ; ?2) sj i/ 2 < 0 are better.
This is because (3212)1/2 < inf{s!/2 1}. Therefore, it is possible to combine the
weighted estimates in Corollary 2.5 with the radial Strichartz estimates in Theo-
rem 2.1 (to handle the case when j = 0) to prove (5.36) when & is replaced by
S(7)(wg,0y).

For the contribution of the nonlinear term, observe that the same arguments
would prove

2(p-2)

T Y RN = S . —(1-s) B
(5.43) He o (sinhs) PjS(T)(wo’wl)‘ L2 L4 SeR o
when

1 Sp—17
5.44 = - :
(544) =27 6T

This is because (pgl,q) is a H »*T -admissible pair, and any fractional power

) gives good decay at large s.

( sirfh s

2(p—1) t 2(p—2)

Remark. It is okay to change the ( <o) exponent from s il

Combining inequalities (5.43), (5.9), the calculations in (5.27), radially sym-
metric Strichartz estimates in Theorem 2.4, and the standard Strichartz estimates
in Theorem 2.1 proves

- ~1 _
wan [ () o]y s OR,
sinh s LI ~
which by the principle of superposition proves the lemma. O

Returning to the proof of Theorem 5.1, by direct computation,

(5.46)  [|5[P 0 — |Peyv|P Poyt] = O(| P (| P;oP ! + | PsjnfP ).
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Also, by Bernstein’s inequality and the radial Sobolev embedding theorem,

p—1 ~ - ~
/ eI ()T (o o — [Pyl Pyt Py s
p 1

-1 hs !
< *(%3)7( 5 )p (COS ) P+ 2,
~ </6 sinh s sinh s 9 ®

y H(sinhS)z&fl) -
coshs
2(p—1)

/2 2(p-3) -
H(smhs>/ ;HT(.S )w Py,
cosh s sinh s

(5.47)

I

By the radial Sobolev embedding theorem and the definition of P;,

sinhs\ 5575 ~
(5.48) H( ) \P>jv|)
coshs

45
i <27 E(§)V/2.

LT

Now then, as in Lemma 5.2,

[ (S () e () ™ Ponedin) ™
(5.49) r

COShS Sinhs
p+1 p=3
< 72 !B—(]—SC)72 .

First replace @ by S(7) (o, ;). Then by (5.21) and Lemma 5.2
(5.50)

2(p—1) p+l

_4 || /sinhs\1/2 _20-3) s T~ o -
/(22 (coshs) ¢ (sinhs) PjaTS(T)(wo’wl>’L°°) dr
-[(22
sinhs\1/2 _20-3_/ s % .. =
XH(COShS) e (sinhs) 9r5(r)( ij’ijl)‘L"“) dr
4j
- [(22
sinhs\1/2 _20-3_/ s 2(;7;1') S~ 2
H(coshs) 7 (sinhs) S(T)(ijl’ jAwo)‘Lm) dr

pt+l

<€ 2 R (1= 50)1023.

The contribution of the Duhamel term may be handled using the principle of
superposition as in (2.60)—(2.64) combined with (5.45).
The term

-1
(5.51) —p/e_(p_3)T (,i)p [|5P~ 0] 5,52 ds

sinh s
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may be handled in a similar manner, only integrating by parts in s. Indeed,

-1
—p/e(p3)7( i )p [|5|P~ 1 5,0]s°ds

sinh s

—1
_ / ()"0, o alasds

sinh s
_ —(p=3)7 S p=1
(5.52) ——/Ej:e v (sinhs)
X Ou[[5P 5 — | PeyolP ! (Pet)) (Py)s7ds

- [ () PP (Pl (P

sinh s
The contribution of

553 - / Soer (2 )p‘lasnﬁgjw*l<ng@>]<ij>s2ds
J

sinh s

may be handled as in (5.33). Integrating by parts,
(5.54)

-1 - ~ ~
=[S (Y il o Pyl (P (P
J

sinh s

—1 - ~ ~
= [ () o P (PP s
J

sinh s

sinh s

- / S e 0o, (52) el o Peyol ! (ool (P,

sinh s

—1 - ~ ~
42 [ Y ( 2 oo Pyl (Pt (Pri)sds
J

The term

—1 ~ ~ ~
(5.55) / eI (Z N o 5 - | Pyl (P (P sds

s )P~ the contribu-

may be handled exactly as in (5.47). Since %(m) 1< (s

tion of

(5.56) / S e 0, () Yol o | Peyalt ! (Pey)] (i) sds
J

sinh s

may be handled as in (5.32). The term

o3l S NP e A el B 1D
G512 [ S () oo Py (P (P sds
J

may be handled using (5.26) and (5.16)—(5.21).
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Then by (5.12) and a Gronwall-type estimate, we have proved

h p-1
(5.58) / |5(, 5) \p“ cos 5)( 5 ) eI 2 dedr < oo,
smhs sinh s
By the radial Sobolev embedding theorem,
sinh s p=3
55 ( ) P <E®)E < oo,
(5:59) 22 o) S B@)' <

Therefore, we have proved
(5.60) / lu(e” cosh s, e sinh s)[*P~ (e7 sinh s)2e*"dsdr < oo,

which by a change of variables formula implies

(5.61) / / v(t, )PP V2 drdt < oo.
12— r2>1

Also, by (5.9) and a change of variables,
2(p-2)
//62(p3)7]w(eTcoshs,eT sinhs)\z(p*1)<_i) " Rdsdr

sinh s

(5.62) ://eZT]w(eTcoshs,eT sinh s) 2P~V (e sinh s)?dsdr

= // lw(t,r)|?P~Vr2drdt < &P,
2—r2>1

Combining (4.5) with (5.61) and (5.62) completes the proof of Theorem 5.1. [J

6. Scattering. As in [3, 4], we use concentration compactness and a per-
turbative argument to obtain a uniform bound on the scattering size for initial data
with bounded H*¢ x H*~! norm.

Let (ug,u;) be a radially symmetric sequence uniformly bounded in Hse x
Hsc—l ,

6.1) | e oy + 17 | groe1 o) < A,

and let " be the solution to (1.1) with initial data (ug,u}). By Zorn’s lemma, to
prove (1.6), it suffices to show that
(62) ||un||L%55*1)(RXR3)
is uniformly bounded for any such sequence.

The proof of this fact uses the profile decomposition of [15]. We prove that
(ug,u}) must converge, at least after passing to a subsequence, and then show that
this convergence implies the existence of a maximizer, which by the analysis in the

2(p—1)

previous five sections has finite L;,, ’ norm.
bl
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The argument by now is a fairly standard concentration compactness argu-
ment. See [9] for the use of this argument to prove scattering for an energy-critical
nonlinear wave equation. See [12, pp. 245-269] for a detailed description of the
concentration compactness method.

THEOREM 6.1 (Profile decomposition). Suppose that there is a uniformly
bounded, radially symmetric sequence such that

(63) ”UELHHSC(R3) + HU?HHSC”(R% < A < oo,

Then there exists a subsequence, also denoted (ug,u}) C H3e x H%~ such that
forany N < oo,

N
(6.4) )(ug,ut) =D TLS(E)(6h, ¢]) + St (R BRI,
7=1
with
(6.5) lim limsupHS(t)(ROn,R )||Lq _(Rxr?) =0
N—oo n—soco

I, = ()\Zl,t%) belongs to the group (0,00) x R, which acts by
(66) TLF(tx) = M,F (N, (t—t), My).

The T, are pairwise orthogonal, that is, for every j # k,

N, Ak A .
6.7) lim =+ 22 v + (N2t —th ] = oo,

n—soo )\k J

Furthermore, for every N > 1,

110,15 w1,1) | 3y et

(6.8)
_ZH qu ”HécxHéc 1+H(ROn7R )HHacxHac l+0n(1)

and forany 1 < j < N,
(6.9) (00) ™ (Rl BY) =0,

weakly in H% x H%~!
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Therefore, to summarize Theorem 6.1,

N
Y(ug,ul) =Y St —t)(Mh (M), (X)) ¢l (M)
j=1

(6.10)
+S(t) Ry, RY),
6.11) S0 (37 (57): ( A;)zu?(;)) ~ (),
weakly in H*(R?), and
6.12)  9S(t+Xit) (A;ug(fj),(;)zu?(;)) e

weakly in H%~!(R?). o

First consider the case that')\%tq]@ is uniformly bounded. In this case, after
passing to a subsequence, At} converges to some #/. Changing (¢},#]) to
S(—t7) (¢, ¢7) and absorbing the error into (R, R{",).

(6.13) (;jug(;)(;yul(;)) ~ (),
and
(6.14) S (t) (ng(g)@u?(g)) |, —dl@:

Then if w7 is the solution to (1.1) with initial data (¢}, ¢/ ), by Theorem 5.1,

j 0 1
(6.15) ]| 200 sy < M (5, 05) <
Next, suppose that after passing to a subsequence, \,#J, * 4oo. Then a solution

to (1.1) approaches a translation in time of a solution to (1.1) that scatters backward
in time to S(t)(¢o, ¢1), that is,

(6.16) Jim[u—S()(00,61) | e s = 0.

Indeed, by Strichartz estimates, the dominated convergence theorem, and small
data arguments, for some 7' < oo sufficiently large, (1.1) has a solution w on
(—eo, —T] such that

il 2 Se
2p—1) 2 = ~ <
6.17) L2 VALSE LT (~oo, - T]XR)

(u(_Tvli)vut(_Tvx)) = S(_T)(¢07¢1)7
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and by Strichartz estimates,
6.18)  lim [|S(0)(u(—1),ta(~1)) = (90,61 | fsc e 1 S -

Then by the inverse function theorem, there exists some (uo(—1"),u;(—1")) such
that (1.1) has a solution that scatters backward in time to S(t)(¢o, ¢1). Moreover,
by Theorem 5.1, this solution must also scatter forward in time. Therefore,

(6.19) S(—t) (Mo (Ma), (M) 6] (M)
converges strongly to
(6.20) (Nu? (=Nt M), (M) (=Nt M)

in H x H sc'_l, where u/ is the solution to (1.1) that scatters backward in time
to S(t)(¢),#}), and the remainder may be absorbed into (R{,, R{",). Let (asg, éjl)
denote the initial data of such a solution. In this case as well,

(6.21) 71200 sy < M (35, 85) < .

The proof for Mot N\ —oo is similar.
Next, by (6.8), there are only finitely many j such that

16911 7c + 1011 st > €
For all other j, small data arguments imply
622) 1471 2t gy 180 e 16
Then make use of standard perturbation results for nonlinear wave equations.

LEMMA 6.2 (Perturbation lemma). Let I C R be a time interval. Let ty € 1,
(ug,u1) € H® x H%~, and suppose there exist some constants M, A, A’ > 0. Let
i solve the equation

(623) (c")tt — A)’EL = F(ﬁ) =e€,
on I x R3, and also suppose

iugH(ﬂ(t)af’tﬂ(t))||HscstC—l <Al e ey < M
S , T

(6.24) H (UO — ﬁ(to), uy — atﬁ(to)) HHSC w Fsc—1 S A/,

and

”Lifi’f”(}xm) se.

(6.25) HGHLﬁ 2 3)‘|'||S(75—750)(Uo—a(fo%Ul—atﬂ(tO))

LY % (IxR
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Then there exists eo(M, A, A") such that if 0 < € < € then there exists a solution
to (1.1) on I with (u(to),0ru(to)) = (uo,u1), <C(M,AA), and

forallt eI,

‘UHL%S*U(IXRS)

626)  [[(u(t),Bru(t)) — (a(t). B (0))| rec cjrecs < CLAA, M)A +0).

Proof. This Lemma appears throughout the literature on nonlinear wave equa-
tions. O

By Lemma 6.2, the asymptotic orthogonality property (6.7), and (6.22),
“

: 2 112
(6.27) Himsup [ [y g gy 2120 sy <
J

This proves Theorem 1.3. U

JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD 21218
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