
B. Dodson (2023) “Scattering for the Defocusing, Nonlinear Schrödinger Equation With Initial Data in a Critical
Space,”
International Mathematics Research Notices, Vol. 2023, No. 23, pp. 19932–19962
Advance Access Publication October 28, 2022
https://doi.org/10.1093/imrn/rnac296

Scattering for the Defocusing, Nonlinear Schrödinger
Equation With Initial Data in a Critical Space

Benjamin Dodson∗

Department of Mathematics, Johns Hopkins University, 3400 N. Charles
Street, Baltimore, MD 21218, USA

∗Correspondence to be sent to: e-mail: bdodson4@jhu.edu

In this note, we prove scattering for a defocusing nonlinear Schrödinger equation with

initial data lying in a critical Besov space. In addition, we obtain polynomial bounds on

the scattering size as a function of the critical Besov norm.

1 Introduction

The qualitative long time behavior for the defocusing, nonlinear Schrödinger equation

iut + �u = |u|p−1u, u(0, x) = u0, (1.1)

is completely worked out in the mass-critical (p = 4
d +1) and energy-critical (p = 4

d−2 +1)

cases. In general, the critical L2-based Sobolev space for (1.1) is Ḣsc(Rd), where

sc = d

2
− 2

p − 1
. (1.2)

The critical exponent (1.2) arises from the fact that if u(t, x) solves (1.1), then for any

λ > 0,

u(t, x) �→ λ
2

p−1 u(λ2t, λx), (1.3)
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Scattering for the Schrödinger Equation 19933

also solves (1.1), and the Ḣsc norm of the initial data is invariant under (1.3). On the other

hand, well-posedness fails for s < sc, see [2]. Global well-posed and scattering has been

established for any initial data u0 ∈ Ḣsc (Rd) in the mass-critical ([4], [5], [6], [7], [26], [16],

[18]) and energy-critical cases ([1], [3], [23], [27], [17], [24]).

Definition 1 (Global well-posedness and scattering). In this paper, global well-

posedness refers to the existence of a global strong solution, that is, a solution that

satisfies Duhamel’s principle

u(t) = eit�u0 − i
∫ t

0
ei(t−τ)�|u(τ )|p−1u(τ )dτ , (1.4)

that is continuous in time, and depends continuously on the initial data. Scattering refers

to the existence of u+, u− ∈ Ḣsc(Rd) such that

lim
t↗∞ ‖u(t) − eit�u+‖Ḣsc (Rd) = 0, (1.5)

and

lim
t↘−∞ ‖u(t) − eit�u−‖Ḣsc (Rd) = 0. (1.6)

See Chapter three of [25] for a detailed treatment of global well-posedness and scattering

for dispersive partial differential equations in general.

The case when p = 4
d + 1, (sc = 0), is called mass-critical because a solution to

(1.1) preserves the mass, or L2 norm of a solution,

M(u(t)) =
∫

|u(t, x)|2dx = M(u(0)). (1.7)

Likewise, the case when p = 4
d−2 + 1, (sc = 1) is called energy critical because a solution

to (1.1) preserves the energy,

E(u(t)) =
∫

[
1

2
|∇u(t, x)|2 + 1

p + 1
|u(t, x)|p+1]dx = E(u(0)). (1.8)

The conserved quantities (1.7) and (1.8) imply that the Ḣsc (Rd) norm is uniformly

bounded for the entire time of existence of the solution to (1.1) in the mass-critical

and energy-critical cases. Thus, in the mass-critical and energy-critical cases, the proof
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19934 B. Dodson

of global well-posedness and scattering reduces to proving global well-posedness and

scattering for a solution to (1.1) with uniformly bounded Ḣsc (Rd) norm, which has been

done.

Remark 1. In the energy-critical case, the Sobolev embedding theorem implies that

E(u(0)) < ∞ when u0 ∈ Ḣ1(Rd).

It is conjectured that global well-posedness and scattering also hold for (1.1)

when 0 < sc < 1. In this case, there is no known conserved quantity that gives uniform

bounds on the Ḣsc (Rd) norm of a solution to (1.1). Therefore, there are two possible ways

in which a solution to (1.1) might fail to scatter, which are called type one blowup and

type two blowup. A solution to (1.1) is called a type one blowup solution to (1.1) if the

Ḣsc (Rd) norm is not uniformly bounded. Since eit� is a unitary operator, an unbounded

Ḣsc (Rd) norm automatically precludes (1.5) or (1.6) from occurring. A blowup solution to

(1.1) is called a type two blowup solution if the solution fails to scatter, but the Ḣsc (Rd)

norm is uniformly bounded for the entire time of its existence.

Type one blowup is known to occur for solutions to (1.1) for some d and sc > 1,

see [19]. Interestingly, the solutions obtained in [19] have good regularity and good

decay. Specifically, they would belong to the critical Besov spaces considered here. By

comparison, when 0 < sc < 1, if u0 ∈ H1
x (Rd), where H1

x is an inhomogeneous Sobolev

space, then (1.7), (1.8), and interpolation imply a uniform bound on the Ḣsc (Rd) norm

when 0 < sc < 1. In fact, global well-posedness and scattering is known for a solution to

(1.1) when u0 ∈ H1
x (Rd) and 0 < sc < 1, see [12] and [11].

Type two blowup has been precluded in many cases for (1.1) when 0 < sc < 1.

One particularly important case is the cubic nonlinear Schrödinger equation in three

dimensions (see [10]),

iut + �u = |u|2u, u : R × R
3 → C, u(0, x) = u0. (1.9)

In this case, sc = 3
2 − 2

2 = 1
2 . In a breakthrough result, [14] proved that any solution to (1.9)

with ‖u(t)‖Ḣ1/2(R3) uniformly bounded on its entire interval of existence must be globally

well-posed and scattering. Thus, the obstacle to proving scattering for (1.9) with generic

initial data in Ḣ1/2(R3) is the absence of a conservation law that controls the Ḣ1/2 norm

of a solution to (1.9) with initial data in Ḣ1/2. Observe that the momentum

P(u(t)) =
∫

Im[u(t, x)∇u(t, x)]dx, (1.10)
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Scattering for the Schrödinger Equation 19935

is conserved and scales like the Ḣ1/2 norm, but does not control the Ḣ1/2 norm of a

solution to (1.1).

The papers [1], [13], and [3] were key in developing the concentration compactness

method for the nonlinear Schrödinger equation in the energy-critical case. Type two

blowup was later precluded for a great many cases of (1.1) when 0 < sc < 1, see [22],

[21], and [20]. Since the mass-critical and energy-critical problems reduce to type two

blowup questions, the same techniques are useful for both problems.

In this paper, we continue the study of (1.1), 0 < sc < 1, with initial data lying in

a subspace of the critical Sobolev space. Previously, in [9], we proved the following:

Theorem 1. The cubic nonlinear Schrödinger equation, (1.1) with p = 3 and d = 3, is

globally well-posed for initial data u0 ∈ Ẇ
7
6 , 11

7
x (R3). No symmetry assumption is made

on the initial data, but we did not prove scattering.

Here we prove scattering for the cubic problem with initial data in Ḃ2
1,1(R3).

Observe that by the Sobolev embedding theorem,

Ḃ2
1,1(R3) ⊂ Ẇ

7
6 , 11

7
x (R3) ⊂ Ḣ1/2(R3). (1.11)

Remark 2. Throughout this paper, a Besov space always refers to a homogeneous Besov

space, and a Ws,p Sobolev space always refers to a homogeneous Sobolev space when

p �= 2. Therefore, for those cases (but not for an L2-based Sobolev space), the dot will be

dropped. Thus, we understand that Bs
p,q refers to Ḃs

p,q and Ws,p refers to Ẇs,p when p �= 2.

Theorem 2. The initial value problem

iut + �u = |u|2u, u(0, x) = u0, (1.12)

with radially symmetric initial data u0 ∈ B2
1,1(R3) has a global solution that scatters.

That is,

‖u‖L8
t L4

x(R×R3) < ∞. (1.13)

Sketch of proof of Theorem 2. Previously, in [9], we proved global well-posedness for

the cubic problem in three dimensions, (1.1) with d = 3 and p = 3 with initial data
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19936 B. Dodson

u0 ∈ W
7
6 , 11

7
x ,

‖|∇| 11
7 u0‖L7/6 < ∞. (1.14)

By the Sobolev embedding theorem, B2
1,1 ⊂ W

7
6 , 11

7 , so global well-posedness follows from

Theorem 1. Moreover, the solution to the cubic problem for t > 1 is of the form

u(t) = ei(t−1)�u(1) + v(t), ‖v‖L∞
t Ḣ1([1,∞)×R3) < ∞. (1.15)

Remark 3. It is possible to prove similar results for all equations described in

Theorem 3. No radial symmetry assumptions are needed to prove global well-posedness.

�

The proof of scattering in the cubic case uses the conformal energy of v,

E(t) = ‖(x + 2it∇)v‖2
L2 + 2t2‖v‖4

L4 . (1.16)

where v is obtained by localizing u(1) in frequency and space.

Rewriting,

ivt + �v = |u|2u = |v|2v + (|u|2u − |v|2v) = |v|2v + N , (1.17)

d

dt
E(t) ≤ −2〈(x + 2it∇)v, i(x + 2it∇)N 〉 − 8t2〈|v|2v, iN 〉. (1.18)

Then we prove

∫ ∞

1

1

t4 E(t)2dt < ∞, (1.19)

which implies ‖v‖L8
t L4

x([1,∞)×R3) < ∞. The proof of this fact strongly utilizes the radial

symmetry. By the radial Sobolev embedding theorem, ‖xw‖L∞ < ∞, where w =
ei(t−1)�u(1). Thus,

〈(x + 2it∇)v, x|w|2w〉 � ‖w‖2
L4E(t)1/2. (1.20)
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Scattering for the Schrödinger Equation 19937

By Fubini’s theorem, the contribution of (1.20) to (1.19) is bounded by

∫
1

t4 (

∫ t

1
‖w(s)‖2

L4E(s)1/2ds)dt ≤
∫

1

t3

∫ t

1
‖w(s)‖4

L4E(s)ds

=
∫ ∞

1
‖w(s)‖4

L4E(s)
∫ ∞

s

1

t3 dt �
∫

‖w(s)‖4
L4

1

s2 E(s)ds � (

∫
‖w(s)‖8

L4ds)1/2(

∫
1

s4 E(s)2ds)1/2.

(1.21)

Since w is a solution to the linear equation with initial data in Ḣ1/2, w ∈ L8
t L4

x, so the

contribution of this term to (1.19) is fine.

We prove similar bounds for the other terms in (1.18), as well as proving similar

integral bounds for all equations in Theorem 3.
We also prove Theorem 2 in a more general context, namely for (1.1) when 0 <

sc < 1, 1 < p ≤ 3, and the initial data are radially symmetric and in the critical Besov

space B
d
2 +sc
1,1 (Rd).

Theorem 3. The initial value problem (1.1) is globally well-posed and scattering for

radially symmetric initial data in the Besov space B
d
2 +sc

1,1 (Rd). In addition, when 1 < p < 3,

the scattering size,

‖u‖
L

p+1
1−sc
t Lp+1

x (R×Rd)

, (1.22)

is bounded by a polynomial function of ‖u0‖
B

d
2 +sc
1,1

.

2 Preliminaries

In this section, we discuss some preliminary information that will be needed in the rest

of the paper. Nothing in this section is new.

Definition 2 (Besov space). The Besov space Bs
p,q(Rd) is given by the norm

‖u0‖Bs
p,q(Rd) = (

∑
j

2jps‖Pju0‖p
Lq)

1/p, (2.1)

when 1 ≤ p < ∞, with the usual modification when p = ∞. Here, Pj is the usual

Littlewood–Paley projection operator. The Sobolev embedding theorem implies that

B
d
2 +sc
1,1 (Rd) ⊂ Ḣsc(Rd). The B

d
2 +sc
1,1 (Rd) norm is invariant under the scaling symmetry (1.3).
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19938 B. Dodson

The fact that the bound (1.22) implies scattering is a consequence of Strichartz

estimates.

Theorem 4. If u is a solution to (1.1), the bound ‖u‖
L

p+1
1−sc
t Lp+1

x (R×Rd)

< ∞ implies

scattering.

Proof. For the Schrödinger equation in dimensions d ≥ 3,

iut + �u = F, u(0, x) = u0, u : I × R
d → C, (2.2)

we have the Strichartz estimate

‖u‖
L2

t L
2d

d−2
x ∩L∞

t L2
x(I×Rd)

� ‖u0‖L2 + ‖F‖
L1

t L2
x+L2

t L
2d

d+2
x (I×Rd)

. (2.3)

See [25] and the references therein for a detailed treatment of this topic.

In particular, when F = 0, (2.3) implies a bound on ‖u‖Lp
t Lq

x
, when (p, q) is an

admissible pair, that is,

2

p
= d(

1

2
− 1

q
), p ≥ 2. (2.4)

Then by the Sobolev embedding theorem, if F = 0,

‖u‖Lp
t Lr

x
� ‖u0‖Ḣs , for

1

r
= 1

q
− s

d
, (p, q) is admissible. (2.5)

The pair (p, r) is then said to be s-admissible. Doing some algebra, (
p+1
1−sc

, p + 1) is

sc-admissible. Since p+1
1−sc

< ∞, a bound on (1.22) on R × R
d implies scattering for

(1.1). Indeed, since p+1
1−sc

< ∞, it is possible to partition R into finitely many intervals Ij
such that

‖u‖
L

p+1
1−sc
t Lp+1

x (Ij×Rd)

≤ ε, for some ε � 1. (2.6)

Now use the Strichartz space,

‖u‖Ṡsc (I×Rd) = ‖|∇|scu‖
L2

t L
2d

d−2
x ∩L∞

t L2
x(I×Rd)

. (2.7)
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Scattering for the Schrödinger Equation 19939

By (2.3), if Ij = [aj, bj],

‖u‖Ṡsc (Ij×Rd) � ‖u(aj)‖Ḣsc (R3) + ‖u‖Ṡsc (Ij×Rd)‖u‖p−1

L
p+1
1−sc
t Lp+1

x (Ij×Rd)

. (2.8)

Therefore, by (2.6),

‖u‖Ṡsc (Ij×Rd) � ‖u(aj)‖Ḣsc (R3). (2.9)

In particular,

‖u(bj)‖Ḣsc (R3) � ‖u(aj)‖Ḣsc (R3). (2.10)

Since there are finitely many intervals Ij, we have ‖u‖Ṡsc (R×R3) < ∞ and thus scattering,

by taking

u+ = u0 − i
∫ ∞

0
e−it�|u|p−1udt, (2.11)

and

u− = u0 − i
∫ −∞

0
e−it�|u|p−1udt. (2.12)

�

Finally, we conclude with the pseudoconformal conservation law.

Theorem 5 (Pseudoconformal conservation law). If u solves (1.1) on R × R
d,

‖(x+2it∇)u(t)‖2
L2 + 8t2

p+1

∫
|u(t, x)|p+1dx=‖xu0‖2

L2 +
∫ t

0
4s(

∫
4 −d(p−1)

p + 1
|u(s, x)|p+1dx)ds.

(2.13)

Proof. See, for example, Section 1.4 in [7]. �

3 Scattering for the Cubic NLS in Three Dimensions

We begin by proving scattering for the cubic equation (1.3) with u0 ∈ B2
1,1(R3), before

moving on to the general problem. In this section, we do not prove any quantitative

bounds on the scattering size as a function of the B2
1,1 norm of the initial data.
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19940 B. Dodson

Proof of Theorem 2. By time reversal symmetry, it suffices to prove scattering on [0, ∞).

In [9], we proved that the cubic nonlinear Schrödinger equation is globally well-posed

for initial data u0 ∈ W
7
6 , 11

7 (R3). By the Sobolev embedding theorem, B2
1,1(R3) ⊂ W

7
6 , 11

7 (R3),

so global well-posedness follows.

Furthermore, after rescaling the initial data, suppose that the global solution has

the form

‖u‖L5
t,x([0,1]×R3) ≤ δ, which implies ‖u‖Ṡ1/2([0,1]×R3) < ∞. (3.1)

Then for 1 ≤ t < ∞, decompose

u(t) = w(t) + v(t), where w(t) = eit�u(1)
0 , (3.2)

and u0 = u(1)
0 + u(2)

0 is some decomposition of u0 that will be specified later.

Let E(t) denote the conformal energy of v,

E(t) = ‖(x + 2it∇)v‖2
L2 + 2t2‖v‖4

L4 = ‖xv‖2
L2 + 2〈xv, 2it∇v〉L2 + 8t2E(t), (3.3)

where E(t) is the energy in (1.8),

E(t) = 1

2
‖∇v‖2

L2 + 1

4
‖v‖4

L4 . (3.4)

When w = 0,

d

dt
E(t) = −2t‖v‖4

L4 , (3.5)

which implies ‖v‖4
L4

x(R3)
� 1

t2 . Therefore,

‖u‖L8
t L4

x([1,∞)×R3) = ‖v‖L8
t L4

x([1,∞)×R3) < ∞. (3.6)

For a general u(1)
0 ∈ Ḣ1/2(R3), Strichartz estimates imply that

‖w‖L8
t L4

x(R×R3) � ‖u0‖Ḣ1/2(R3), (3.7)

so to prove scattering, it suffices to prove

∫ ∞

1

1

t4 E(t)2dt < ∞. (3.8)
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Scattering for the Schrödinger Equation 19941

Indeed, by (3.3),

∫ ∞

1
‖v‖8

L4dt �
∫ ∞

1

1

t4 E(t)2dt. (3.9)

By Duhamel’s principle,

v(1) = −i
∫ 1

0
ei(1−τ)�|u|2udτ + ei1�u(2)

0 . (3.10)

By direct computation,

(x+ 2i∇)

∫ 1

0
e(1−τ)�|u|2udτ =

∫ 1

0
(x + 2i(1− τ)∇)ei(1−τ)�|u|2udτ +

∫ 1

0
2iτ∇ei(1−τ)�|u|2udτ .

(3.11)

By examining the kernel,

eit�f = C

t3/2

∫
e−i |x−y|2

4t f (y)dy, (x + 2it∇)eit�f = eit�xf , (3.12)

so using the radial Sobolev embedding theorem and the computations in [9],

‖
∫ 1

0
(x + 2i(1 − τ)∇)ei(1−τ)�|u|2udτ‖L2 � ‖x|u|2u‖L1

t L2
x

� ‖xu‖L∞
t,x

‖u‖2
L8

t L4
x

� ‖u‖
L∞

t B1/2
1,2

‖u‖2
Ṡ1/2 � ‖u0‖3

B2
1,1

.

(3.13)

Next, recall from [9] that for any 0 < t < 1,

u = u1 + u2, where ‖∇u1‖L2 � t−1/4, ‖∇u2‖L6 � t−3/4, (3.14)

with constant independent of t. Therefore, by Strichartz estimates,

‖
∫ 1

0
2iτ∇ei(1−τ)�|u|2udτ‖L2 � ‖τ∇u1‖L∞

τ L2
x
‖u‖2

L4
t L6

x
+ ‖τ∇u2‖L∞

τ L6
x
‖u‖2

L4
t L6

x
�‖u0‖

B2
1,1

1.

(3.15)
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19942 B. Dodson

Now decompose the initial data. Let χ ∈ C∞
0 (R3), χ(x) = 1 on |x| ≤ 1, χ(x) is

supported on |x| ≤ 2, and let R(ε, u0) < ∞ be a constant sufficiently large so that

∑
j

2j/2‖(1 − χ(
x

R
))Pju0‖L2 ≤ ε, and

∑
j

22j‖(1 − χ(
x

R
))Pju0‖L1 ≤ ε. (3.16)

By Hölder’s inequality and the Sobolev embedding theorem,

‖∇((1 − χ(
x

R
))Pju0)‖L2 � ‖Pju0‖Ḣ1 , and ‖∇2((1 − χ(

x

R
))Pju0)‖L1 � 22j‖Pju0‖L1 .

(3.17)

Then,

∑
j

‖(1 − χ(
x

R
))Pju0‖1/2

L2 ‖(1 − χ(
x

R
))Pju0‖1/2

Ḣ1 � ε1/2‖u0‖1/2
B2

1,1
. (3.18)

Therefore, by the radial Sobolev embedding theorem, if ε ≤ ‖u0‖−2
B2

1,1
,

‖|x|eit�(1 − χ(
x

R
))u0‖L∞ � ε1/4. (3.19)

Also, by Hölder’s inequality,

‖xχ(
x

R
)u0‖L2 � R3/2‖u0‖L3 , (3.20)

so (3.12) implies

‖(x + 2i∇)v(1)‖L2 � R3/2‖u0‖B2
1,1

. (3.21)

The computations in [9] also imply

‖v(1)‖4
L4 � 1, (3.22)

and therefore,

E(1) �‖u0‖
B2

1,1
,R 1. (3.23)
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Scattering for the Schrödinger Equation 19943

To obtain the bound (3.8), observe that v solves

ivt + �v = |u|2u, v(1, x) = (3.10), (3.24)

and w solves

iwt + �w = 0, w(1, x) = ei1�u(1)
0 , (3.25)

on [1, ∞).

Rearranging (3.24),

− �v + |v|2v = ivt − F, F = 2|v|2w + v2w̄ + 2|w|2v + w2v̄ + |w|2w = F1 + F2 + F3.

(3.26)

Integrating by parts,

d

dt
E(t) = 16tE(v) + 8t2〈vt, −�v + |v|2v〉 + 4〈xv, i∇v〉 + 4t〈xvt, i∇v〉 + 4t〈xv, i∇vt〉

+2〈ix�v, xv〉 − 2〈ixF, xv〉 = −2t‖v‖4
L4 + 8t2〈vt, F〉 − 4t〈xF, ∇v〉 + 4t〈xv, ∇F〉 − 2〈ixF, xv〉.

(3.27)

Integrating by parts and plugging in (3.26), with F3 = |w|2w,

8t2〈vt, F3〉 − 4t〈xF3, ∇v〉 + 4t〈xv, ∇F3〉 − 2〈ixF3, xv〉
= 2〈(x + 2it∇)|w|2w, i(x + 2it∇)v〉L2 + O(t2〈|v|3 + |w|3, |w|3〉)

� ‖(x + 2it∇)v‖L2‖xw‖L∞‖w‖2
L4 + ‖(x + 2it∇)v‖L2‖t∇w‖L∞‖w‖2

L4

+t2‖v‖3
L4‖w‖L4‖w‖2

L∞ + t2‖w‖6
L6

� E(t)1/2‖w‖2
L4(‖xw‖L∞ + ‖t∇w‖L∞) + t3/8E(t)3/4‖w‖2

L∞ + t3/2‖w‖2
L∞ .

(3.28)

Also, integrating by parts and plugging in (3.26) with F2 = 2|w|2v + w2v̄,

8t2〈vt, F2〉 − 4t〈xF2, ∇v〉 + 4t〈xv, ∇F2〉 − 2〈ixF2, xv〉
= 2〈(x + 2it∇)F2, i(x + 2it∇)v〉L2 + O(t2〈|v|3 + |w|3, |w|2|v|〉)

� ‖(x + 2it∇)v‖L2‖xw‖L∞‖w‖L4‖v‖L4 + ‖(x + 2it∇)v‖L2‖t∇w‖L∞‖w‖L4‖v‖L4

+‖(x + 2it∇)v‖2
L2‖w‖2

L∞ + t2‖v‖4
L4‖w‖2

L∞ + t2‖w‖6
L6

� t−1/2E(t)3/4‖w‖L4 + t3/2‖w‖2
L∞ + E(t)‖w‖2

L∞ .

(3.29)
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19944 B. Dodson

Finally, take

8t2〈vt, F1〉 − 4t〈xF1, ∇v〉 + 4t〈xv, ∇F1〉 − 2〈ixF1, xv〉, (3.30)

with F1 = 2|v|2w + v2w̄. This term will be handled slightly differently from (3.28) and

(3.29). By (3.19),

− 4t〈xF1, ∇v〉−2〈ixF1, xv〉= −2〈ixF1, (x+2it∇)v〉�‖(x+2it∇)v‖L2‖v‖2
L4‖xw‖L∞ � ε1/4

t
E(t).

(3.31)

Next, integrating by parts,

4t〈xv, ∇F1〉 = −4t〈x∇v, F1〉 − 12t〈v, F1〉 = −4t〈xw, ∇(|v|2v)〉 − 12t〈v, F1〉
� t‖w‖L4‖v‖3

L4 + 4t〈∇w, x|v|2v〉 � t−1/2‖w‖L4E(t)3/4 + 4t〈∇w, x|v|2v〉.
(3.32)

Then by the product rule, integrating by parts, and (3.17),

4t〈∇w, x|v|2v〉 = 8t〈∇w, |v|2(x + 2it∇)v〉 − 4t2〈∇w, v2(x − 2it∇)v̄〉 − 8t〈∇w, i∇(|v|2v)〉
� t‖∇w‖L∞‖(x + 2it∇)v‖L2‖v‖2

L4 − 8t2〈i�w, |v|2v〉
� ‖∇w‖L∞E(t) + t‖�w‖L∞‖v‖L2E(t)1/2 � ‖∇w‖L∞E(t) + t−1/2‖v‖L2E(t)1/2.

(3.33)

Meanwhile, integrating by parts in t,

∫ T

1
8t2〈vt, F1〉dt = 8t2〈|v|3, |w|〉|T1 −

∫ T

1
8t2〈|v|2v, wt〉 −

∫ T

1
16t〈|v|2v, w〉dt. (3.34)

First observe that

8t2〈|v|3, |w|〉|T1 � t1/2‖w‖L4E(t)3/4|T1 . (3.35)

Also compute

8t2〈|v|2v, wt〉 � t‖�w‖L∞‖v‖L2E(t)1/2 � t−1/2‖v‖L2E(t)1/2,

and 16t〈|v|2v, w〉 � t−1/2E(t)3/4‖w‖L4 .
(3.36)
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Scattering for the Schrödinger Equation 19945

Therefore,

E(t) �
∫ t

1
[E(s)1/2‖w‖2

L4 + s3/8E(s)3/4‖w‖2
L∞ + s3/2‖w‖2

L∞ + E(s)‖w‖2
L∞

+ε

s
E(s) + ‖∇w‖L∞E(s) + s−1/2E(s)1/2‖v‖L2 + s−1/2E(s)3/4‖w‖L4 ]ds + t1/2‖w‖L4E(t)3/4 + R.

(3.37)

By Fubini’s theorem and Hölder’s inequality

∫ ∞

1

1

t4 (

∫ t

1
E(s)1/2‖w‖2

L4ds)2dt �
∫ ∞

1

1

t3 (

∫ t

1
E(s)‖w‖4

L4ds)dt=
∫ ∞

1
E(s)‖w(s)‖4

L4

∫ ∞

s

1

t3 dtds

�
∫ ∞

1

1

s2 E(s)‖w‖4
L4ds � (

∫ ∞

1

1

s4 E(s)2ds)1/2(

∫ ∞

1
‖w‖8

L4ds)1/2.

(3.38)

Next, interpolating (3.16) and (3.17),

‖∇eit�(1 − χ(
x

R
))Pju0‖L∞

� inf{t−3/22−j · 2j‖(1−χ(
x

R
))(Pju0)‖1/2

L1 ‖∇2(1−χ(
x

R
))(Pju0)‖1/2

L1 , 2j‖∇2(1−χ(
x

R
))(Pju0)‖L1},

(3.39)

which by (3.18) implies that for ε ≤ ‖u0‖−8
B2

1,1
„

∫ ∞

0
‖∇w‖L∞dt � ε1/4‖u0‖3/4

B2
1,1

� ε5/32. (3.40)

Similar computations also show that

‖w‖L2
t L∞

x
� ε3/8, and ‖w‖L∞ � ε3/8

s1/2 . (3.41)
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19946 B. Dodson

Therefore,

∫ ∞

1

1

t4 E(t)2dt �
∫ ∞

1

R2

t4 dt +
∫ ∞

1

1

t3 E(t)3/2‖w‖2
L4dt +

∫ ∞

1

1

t4 (

∫ t

1
E(s)1/2‖w‖2

L4ds)2dt

+
∫ ∞

1

1

t4 (

∫ t

1
s3/8E(s)3/4‖w‖2

L∞ + s3/2‖w‖2
L∞ + s1/4E(s)1/2‖w‖L∞ds)2dt

+
∫ ∞

1

1

t4 (

∫ t

1
E(s)‖w‖2

L∞ + ε

s
E(s) + s−1/2E(s)1/2‖v‖L2 + s−1/2E(s)3/4‖w‖L4ds)2dt

� R2 + (

∫ ∞

1

1

t4 E(t)2dt)3/4(

∫ ∞

1
‖w‖8

L4dt)1/4 + (

∫ ∞

1

1

s4 E(s)2ds)1/2(

∫ ∞

1
‖w‖8

L4ds)1/2

+(

∫ ∞

1

1

s4 E(s)2ds)3/4(

∫ ∞

1
s7‖w‖16

L∞ds)1/4 + (

∫ ∞

1
s‖w‖4

L∞ds)

+(

∫ ∞

1

1

s4 E(s)2ds)1/2(

∫ ∞

1
‖w‖4

L∞ds)1/2

+ε5/16(

∫ ∞

1

1

s4 E(s)2ds) + (

∫ ∞

1

1

s4 E(s)2ds)1/2(

∫ ∞

1

1

s2 ‖v(s)‖4
L2ds)1/2.

(3.42)

Therefore,

∫ ∞

1

1

t4 E(t)2dt � R2+
∫ ∞

1
‖w‖8

L4dt +
∫ ∞

1
‖w‖2

L∞dt + (

∫ ∞

1

1

t4 E(t)2dt)1/2(

∫ ∞

1

1

t2 ‖v(t)‖4
L2dt)1/2.

(3.43)

Now since v solves (3.24),

d

dt
‖v‖2

L2 � ‖w‖L∞‖v‖2
L4‖v‖2

L2 + ‖w‖L∞‖w‖2
L4‖v‖L2 , ‖v(1)‖2

L2 � R. (3.44)

Therefore, by Hölder’s inequality,

‖v(t)‖4
L2 � R2 + (

∫ t

1
‖w‖L∞‖v‖2

L4‖v‖L2 + ‖w‖L∞‖w‖2
L4‖v‖L2dt)2

� R2 + ‖w‖2
L2

t L∞
x

(

∫ t

1
‖v‖4

L4‖v‖2
L2 + ‖w‖4

L4‖v‖2
L2).

(3.45)
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Scattering for the Schrödinger Equation 19947

Therefore, by Fubini’s theorem,

∫ ∞

1

1

t2 ‖v(t)‖4
L2dt � R2 + ε2(

∫ ∞

1
‖v‖8

L4dt)1/2(

∫ ∞

1

1

t2 ‖v(t)‖4
L2dt)1/2

+ε2‖w‖4
L8

t L4
x
(

∫ ∞

1

1

t2 ‖v(t)‖4
L2dt)1/2

� R2 + ε2(

∫ ∞

1

1

t4 E(t)2dt)1/2(

∫ ∞

1

1

t2 ‖v(t)‖4
L2dt)1/2

+ε2‖w‖4
L8

t L4
x
(

∫ ∞

1

1

t2 ‖v(t)‖4
L2dt)1/2.

(3.46)

Therefore,

∫ ∞

1

1

t2 ‖v(t)‖4
L2dt � R2 + ε2(

∫ ∞

1

1

t4 E(t)2dt) + ε2
∫ ∞

1
‖w‖8

L4dt. (3.47)

Plugging (3.47) into (3.43),

∫ ∞

1
‖v(t)‖8

L4dt �
∫ ∞

1

1

t4 E(t)2dt � R2 +
∫ ∞

1
‖w‖8

L4dt +
∫ ∞

1
‖w‖2

L∞dt. (3.48)

Therefore, scattering follows. �

4 Concentration Compactness in the Cubic Case

The proof of Theorem 4 implies that for a solution u to (1.9),

‖u‖L8
t L4

x(R×R3) < ∞, is equivalent to ‖u‖L5
t,x(R×R3) < ∞. (4.1)

Thus, Theorem 2 implies that for u0 ∈ B2
1,1, (1.9) has a global solution satisfying

‖u‖L5
t,x(R×R3) < ∞. However, since R depends on ε > 0 and u0, not just the norm ‖u0‖B2

1,1
,

(3.48) does not directly give a uniform bound on

‖u‖L5
t,x(R×R3), when ‖u0‖B2

1,1
≤ A < ∞. (4.2)

Such a bound follows from a concentration compactness argument, as in [8] for the

nonlinear wave equation.

Following by now standard concentration compactness techniques, see for

example [15],
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19948 B. Dodson

Lemma 1. Let un be a bounded sequence in Ḣ1/2,

sup
n

‖un‖Ḣ1/2(R3) ≤ A < ∞, (4.3)

which is radially symmetric. After passing to a subsequence, assume that

lim
n→∞ ‖un‖Ḣ1/2(R3) = A. (4.4)

Then passing to a further subsequence, for any 1 ≤ J < ∞, there exist φ1,..., φJ ∈ Ḣ1/2

such that

un =
J∑

j=1

eitj
n(λ

j
n)2� 1

λ
j
n

φj(
x

λ
j
n

) + wJ
n, (4.5)

where

J∑
j=1

‖φj‖2
Ḣ1/2 + lim

n→∞ ‖wJ
n‖2

Ḣ1/2 = A2, (4.6)

lim
J→∞ lim sup

n→∞
‖eit�wJ

n‖L5
t,x(R×R3) = 0, (4.7)

and for j �= k,

lim
n→∞ | ln(

λ
j
n

λk
n

)| + |tj
n − tk

n| = ∞. (4.8)

Now let un be a sequence in B2
1,1(R3) with the uniform bound

‖un‖B2
1,1

≤ A. (4.9)

Then by the Sobolev embedding theorem,

‖un‖Ḣ1/2(R3) � A, (4.10)

so apply Lemma 1, and observe that for any J,

un =
J∑

j=1

eitj
n(λ

j
n)2� 1

λ
j
n

φj(
x

λ
j
n

) + wJ
n. (4.11)
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Scattering for the Schrödinger Equation 19949

Next, observe that Lemma 1 implies that for any fixed j,

e−itj
n�(λ

j
nun(λ

j
n·)) ⇀ φj, weakly in Ḣ1/2(R3). (4.12)

Using dispersive estimates, for any t ∈ R, since B2
1,1 is invariant under the scaling

symmetry (1.3),

‖eit�e−itj
n�(λ

j
nun(λ

j
n·))‖L∞ � 1

|t − tj
n|1/2

‖un‖B2
1,1

, (4.13)

in particular, if tj
n → ±∞ along a subsequence, interpolating (4.13) and the Sobolev

embedding theorem Ḣ1/2 ↪→ L3,

‖eit�e−itj
n�(λ

j
nun(λ

j
n·))‖L5

t,x([−T,T]×R3) = 0, (4.14)

for any fixed 0 < T < ∞. Since un ⇀ φ weakly in Ḣ1/2 implies

eit�un ⇀ eit�φ, weakly in L5
t,x, (4.15)

(4.14) implies that φj = 0 if tj
n → ±∞ along a subsequence.

Remark 4. The fact that weak convergence implies (4.15) follows from Strichartz

estimates and approximating a function in L5/4
t,x with a smooth, compactly supported

function and a small remainder.

Therefore, the tj
n’s must be uniformly bounded for any j, and after passing to a

subsequence, tj
n → tj ∈ R for any j. Since

eitj
n(λ

j
n)2� 1

λ
j
n

φj(
x

λ
j
n

) = 1

λ
j
n

(eitj
n�φj)(

x

λ
j
n

), (4.16)

replacing φj with eitj�φj and absorbing the remainder into wJ
n, it is possible to set tj

n ≡ 0

for all j in (4.11). Therefore,

un =
J∑

j=1

1

λ
j
n

φj(
x

λ
j
n

) + wJ
n. (4.17)

By Theorem 2, for any j, let uj be the solution to (1.12) with initial data φj. Since

λ
j
nun(λ

j
nx) ⇀ φj weakly in Ḣ1/2, the Sobolev embedding theorem implies that
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19950 B. Dodson

λ
j
nun(λ

j
nx) ⇀ φj weakly in L3. Compactly supported distributions are dense in Ḣ−1/2,

and since L3 ⊂ L1 on a compact set, λ
j
nun(λ

j
nx) converges weakly in L1 on a compact set.

Therefore, for any k ∈ Z,

‖Pkφj‖L1 < ∞, (4.18)

where Pk is the usual Littlewood–Paley projection operator, and

∑
k

22k‖Pkφj‖L1 � sup
n

‖un‖B2
1,1

. (4.19)

Therefore, for any j, by Theorem 2,

‖uj‖L5
t,x(R×R3) < ∞. (4.20)

Furthermore, (4.6), (4.7), (4.8), and small data arguments imply that if u(n)(t, x) is

the solution to (1.12) with initial data un(x),

lim
n→∞ ‖u(n)‖5

L5
t,x(R×R3)

≤
∞∑

j=1

‖uj‖5
L5

t,x(R×R3)
< ∞. (4.21)

For all but finitely many j’s, say all but j0, ‖uj‖L∞
t Ḣ1/2 ≤ ε, so by small data arguments

and (4.6),

∑
j≥j0

‖uj‖2
L5

t,x(R×R3)
� A. (4.22)

Therefore, there exists a function f : [0, ∞) → [0, ∞) such that if ‖u0‖B2
1,1

≤ A is radial,

then (1.12) has a global solution that satisfies the bound

‖u‖L5
t,x(R×R3) ≤ f (A) < ∞. (4.23)

Observe that (4.23) gives no explicit bound on the scattering size. In general,

the bounds obtained from a concentration compactness argument are likely far from

optimal. For example, in [24],

‖u‖
L

2(d+2)
d−2

t,x (R×Rd)

≤ C exp(CEC), (4.24)
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Scattering for the Schrödinger Equation 19951

where C(d) is a large constant, E is the energy (1.8), and u is a solution to the energy-

critical problem (sc = 1) with radially symmetric initial data. In the next two sections, we

will do much better with data in a subspace of the critical Sobolev space when 1 < p < 3.

5 A Local Result for (1.1) When 1 < p < 3

In the second part of the paper, we will prove explicit bounds on the scattering size of

a solution to (1.1) with radially symmetric initial data in B
d
2 +sc

1,1 , when 0 < sc < 1 and

1 < p < 3. Note that the restrictions on sc and p require d ≥ 3.

As in the cubic case, the first step is to rescale and obtain good bounds on the

interval [0, 1]. The space L
(d+2)(p−1)

2
t,x (R × R

d) is also invariant under the rescaling (1.3), so

rescale the initial data so that

‖u‖
L

(d+2)(p−1)
2

t,x ([0,1]×Rd)

≤ δ, (5.1)

for some δ � 1.

Lemma 2. If u is a solution to (1.1) on [0, 1] with initial data u0 ∈ B
d
2 +sc

1,1 , and u satisfies

(5.1), then for any j ∈ Z<0,

‖∇u‖
L2

t L
2d

d−2
x ([2j,2j+1]×Rd)

� 2j sc−1
2 ‖u0‖

B
d
2 +sc
1,1 (Rd)

. (5.2)

Proof. The local solution may be obtained by showing that the operator

�(u(t)) = eit�u0 − i
∫ t

0
ei(t−τ)�|u(τ )|p−1u(τ )dτ , (5.3)

has a unique fixed point in Ṡsc ([0, 1] × R
d).

Interpolating the Sobolev embedding theorem,

‖Pkeit�u0‖L∞ � 2k 2
p−1 2k(d− 2

p−1 )‖Pku0‖L1 , (5.4)

with the dispersive estimate,

‖Pkeit�u0‖L∞ � t−d/22−k(d− 2
p−1 )2k(d− 2

p−1 )‖Pku0‖L1 , (5.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/23/19932/6779629 by Johns H
opkins U

niversity user on 26 June 2024



19952 B. Dodson

where Pk is the usual Littlewood–Paley projection operator for any k ∈ Z,

‖eit�u0‖L∞ � t− 1
p−1 ‖u0‖

B
d
2 +sc
1,1

, (5.6)

and

‖∇eit�u0‖L∞ � t− 1
p−1 − 1

2 ‖u0‖
B

d
2 +sc
1,1

. (5.7)

Interpolating (5.5) with the Sobolev embedding theorem,

‖∇Pkeit�u0‖L2 � 2k(1−sc)2k( d
2 +sc)‖Pku0‖L1 , (5.8)

and

‖∇Pkeit�u0‖
L

2d
d−2

� 2−ksc
1

t
2k( d

2 +sc)‖Pku0‖L1 . (5.9)

Interpolating this bound with

‖∇Pkeit�u0‖
L

2d
d−2

� 2k(2−sc)2k( d
2 +sc)‖Pku0‖L1 , (5.10)

we obtain

‖∇eit�u0‖
L

2d
d−2

� t− 1
2 − 1−sc

2 ‖u0‖
B

d
2 +sc
1,1

. (5.11)

Therefore, for any j ∈ Z<0,

‖∇eit�u0‖
L2

t L
2d

d−2
x ([2j,2j+1]×Rd)

� 2j sc−1
2 ‖u0‖

B
d
2 +sc
1,1

. (5.12)

By Strichartz estimates, for any t ∈ [2j, 2j+1], let jδ be the integer closest to

log2(δ2j). By Strichartz estimates, the chain rule, and (5.1),

2j 1−sc
2 ‖∇

∫ t

2jδ
ei(t−τ)�|u(τ )|p−1u(τ )dτ‖

L2
t L

2d
d−2
x ([2j,2j+1]×Rd)

� δ22j 1−sc
2 ‖∇u‖

L2
t L

2d
d−2
x ([2jδ ,2j+1]×Rd)

� δ
sc−1

2 δ2 log(δ) sup
j<0

‖∇u‖
L2

t L
2d

d−2
x ([2j,2j+1]×Rd)

.

(5.13)
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Scattering for the Schrödinger Equation 19953

Meanwhile, the dispersive estimate combined with the Sobolev embedding theorem

‖u‖
L∞

t L
d(p−1)

2
x ([0,1]×Rd)

� ‖u0‖
B

d
2 +sc
1,1

, and

‖∇
∫ 2jδ

0
ei(t−τ)�|u(τ )|p−1u(τ )dτ‖

L
2d

d−2
� 2−j‖u‖p−1

L∞
t L

d(p−1)
2

x ([0,1]×Rd)

‖∇u‖
L1

t L
2d

d−2
x ([0,2jδ ]×Rd)

.

(5.14)

Therefore, by dispersive estimates and Hölder’s inequality, for any 0 < sc < 1,

2j 1−sc
2 ‖∇

∫ 2jδ

0
ei(t−τ)�|u(τ )|p−1u(τ )dτ‖

L2
t L

2d
d−2
x ([2j,2j+1])

� 2j2− jsc
2 sup

t∈[2j,2j+1]
‖∇

∫ 2jδ

0
ei(t−τ)�|u(τ )|p−1u(τ )dτ‖

L
2d

d−2

� 2−j sc
2 ‖u‖p−1

L∞
t L

d(p−1)
2

x ([0,1]×Rd)

‖∇u‖
L1

t L
2d

d−2
x ([0,2jδ ]×Rd)

� δ‖u‖p−1

L∞
t L

d(p−1)
2

x ([0,1]×Rd)

sup
j<0

2j 1−sc
2 ‖∇u‖

L2
t L

2d
d−2
x ([2j,2j+1]×Rd)

.

(5.15)

Therefore, for 0 < ε � 1, for δ(‖u0‖
B

d
2 +sc
1,1

, ε) > 0 sufficiently small,

sup
j<0

2j 1−sc
2 ‖∇�(u)‖

L2
t L

2d
d−2
x ([2j,2j+1]×Rd)

� ‖u0‖
B

d
2 +sc
1,1

+ ε · sup
j<0

2j 1−sc
2 ‖∇u‖

L2
t L

2d
d−2
x ([2j,2j+1]×Rd)

,

(5.16)

for some ε > 0. Thus, (5.2) holds. �

Now suppose (1.1) with initial data u0 has a solution on the maximal interval

[0, T), where 1 < T ≤ ∞. Again decompose u = v + w, where v and w solve

ivt + �v = |v + w|p−1(v + w), v(0) = 0, (5.17)

and

iwt + �w = 0, w(0) = u0, (5.18)
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19954 B. Dodson

on [0, ∞). Let E(t) denote the pseudoconformal energy of v„

E(t) = ‖(x + 2it∇)v‖2
L2 + 8

p + 1
t2‖v‖p+1

Lp+1 = ‖xv‖2
L2 + 2〈xv, 2it∇v〉 + 8t2E(t). (5.19)

Lemma 3. If u0 ∈ B
d
2 +sc
1,1 is radially symmetric, and (1.1) has a local solution satisfying

(5.1), then E(1) � 1 for δ(‖u0‖
B

d
2 +sc
1,1

) > 0 sufficiently small.

Proof. Observe that the proof of Lemma 2 also implies

‖∇v(1)‖
L2+L

2d
d−2

� ε · sup
j<0

2j 1−sc
2 ‖∇u‖

L2
t L

2d
d−2
x ([2j,2j+1]×Rd)

. (5.20)

Interpolating (5.20) with the bound

‖v(1)‖Ḣsc � ‖u0‖
B

d
2 +sc
1,1

, (5.21)

implies ‖v(1)‖Lp+1 � 1 for δ > 0 sufficiently small, since ε = ε(‖u0‖
B

d
2 +sc
1,1

, p, d, δ).

Using the computations in (3.11),

‖(x + 2i1∇)

∫ 1

0
ei(1−τ)�|u|p−1udτ‖L2

x

� ‖x|u|p−1u‖L1
t L2

x([0,1]×Rd) + ‖t∇u‖
L2

t L
2d

d−2
x ([0,1]×Rd)

‖u‖p−1

L
(d+2)(p−1)

2
t,x ([0,1]×Rd)

.
(5.22)

Then by Lemma 2,

‖t∇u‖
L2

t L
2d

d−2
x ([0,1]×Rd)

‖u‖p−1

L
(d+2)(p−1)

2
t,x ([0,1]×Rd)

� δp−1 · sup
j<0

2j 1−sc
2 ‖∇u‖

L2
t L

2d
d−2
x ([2j,2j+1]×Rd)

. (5.23)

To handle the first term in (5.22), consider the cases 1
2 ≤ sc < 1 and 0 < sc < 1

2

separately. When 1
2 ≤ sc < 1, the radial Sobolev embedding theorem implies

‖x|u|p−1u‖L1
t L2

x
� ‖x

2
p−1 u‖

p−1
2

L∞
t,x

‖u‖
p−1

2 +(1−c)

L∞
t L

d
2 (p−1)

x

‖u‖c

L
(d+2)(p−1)

2
t,x

� ‖u0‖p−c

B
d
2 +sc
1,1

δc, (5.24)

where c ↘ 0 as sc ↗ 1.
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Scattering for the Schrödinger Equation 19955

When 0 < sc < 1
2 , using the radial Strichartz estimates,

‖x|u|p−1u‖L1
t L2

x([0,1]×Rd) � ‖x
d−1

2 u‖
2

d−1

L

2
1
2 −sc

t L∞
x

‖u‖p−1+(1− 2
d−1 )−c

L∞
t L

d
2 (p−1)

x

‖u‖c

L
(d+2)(p−1)

2
t,x

� ‖u0‖p−c

B
d
2 +sc
1,1

δc,

(5.25)

where c > 0 for all 0 < sc < 1
2 and d ≥ 3, with appropriate p.

This proves the Lemma. �

6 Scattering for (1.1) When 1 < p < 3 and 0 < sc < 1

Having obtained good bounds on the interval [0, 1], we can use the pseudoconformal

conservation of energy to extend these bounds to [1, ∞).

Theorem 6. The initial value problem

iut + �u = |u|p−1u, u(0, x) = u0 ∈ B
d
2 +sc

1,1 (Rd), u : R × R
d → C, (6.1)

is globally well-posed and scattering when u0 is radially symmetric. Moreover,

‖u‖
L

p+1
1−sc
t Lp+1

x (R×Rd)

≤ C(1 + ‖u0‖
B

d
2 +sc
1,1

)r, (6.2)

for some C that does not depend on ‖u0‖
B

d
2 +sc
1,1

and r(d, sc) < ∞.

Remark 5. When ‖u0‖
B

d
2 +sc
1,1

is small,

‖u‖
L

p+1
1−sc
t Lp+1

x (R×Rd)

� ‖u0‖Ḣsc � ‖u0‖
B

d
2 +sc
1,1

. (6.3)

So it suffices to consider ‖u0‖
B

d
2 +sc
1,1

� 1.

Proof of Theorem 6. If v solves (5.17) on [1, ∞) with w = 0, 0 < sc < 1, and E(1) < ∞,

where E(t) is given by (5.19), then by direct computation,

d

dt
E(t) = − 4

p + 1
t‖v‖p+1

Lp+1 < 0, (6.4)
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19956 B. Dodson

which implies

‖v‖p+1
Lp+1 � 1

t2 . (6.5)

Equation (6.5) implies that the left hand side of (6.2) is finite, which implies scattering.

Now compute d
dtE(t) when w need not be zero, but w solves (5.18) with u0 ∈ B

d
2 +sc

1,1 ,

radially symmetric. Then by direct computation,

d

dt
E(t) = − 4

p + 1
t‖v‖p+1

Lp+1 − 2〈(x + 2it∇)v, i(x + 2it∇)(|v + w|p−1(v + w) − |v|p−1v)〉

−8t2〈|v|p−1v, i(|v + w|p−1(v + w) − |v|p−1v)〉.
(6.6)

Doing some linear algebra,

〈(x + 2it∇)f , (x + 2it∇)g〉 = 〈(x + 2it∇)f , xg〉 + 〈2it∇f , 2it∇g〉 + 〈xf , 2it∇g〉. (6.7)

Apply the linear algebra in (6.7) to (6.6) and compute term by term. First, when
1
2 ≤ sc < 1, by the radial Sobolev embedding theorem, since p−1

2 < 1,

−2〈(x + 2it∇)v, ix(|v + w|p−1(v + w) − |v|p−1v)〉

� ‖(x + 2it∇)v‖L2‖x
2

p−1 w‖
p−1

2
L∞ ‖w‖1− p−1

2
Lp+1 (‖v‖p−1

Lp+1 + ‖w‖p−1
Lp+1)

� E(t)1/2‖u0‖
p−1

2

B
d
2 +sc
1,1

‖w‖1− p−1
2

Lp+1 (‖v‖p−1
Lp+1 + ‖w‖p−1

Lp+1).

(6.8)

When 0 < sc < 1
2 , split

xw = (x + 2it∇)w − 2it∇w. (6.9)

Again by (3.12) and the radial Sobolev embedding theorem, for sc < d
2 − 1, ‖yu0‖Ḣsc+1 �

‖u0‖
B

d
2 +sc
1,1

, so interpolating the Strichartz estimate,

‖eit�u0‖
L

p+1
1−sc
t Lp+1

x

� ‖u0‖Ḣsc , (6.10)

with the Littlewood–Paley projection estimate

‖Pje
it�u0‖L∞

t,x
� ‖Pju0‖Ḣd/2 , (6.11)
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Scattering for the Schrödinger Equation 19957

implies that

‖(x + 2it∇)w‖
L

2(p+1)
3−p

1
1−sc

t L
2(p+1)

3−p
x

� ‖u0‖
B

d
2 +sc
1,1

. (6.12)

Now take 1
q = sc. By the Sobolev embedding theorem, dispersive estimates, sc = d

2 − 2
p−1 ,

and 2
p−1 < d

2 ,

‖|∇| 2
p−1 eit�u0‖L∞

x
� ‖eit�u0‖

B
d
2
1,q

� 1

t
2

p−1

‖u0‖
B

d
2
1,q′

� 1

t
2

p−1

‖u0‖
B

d
2 +sc
1,1

. (6.13)

Therefore,

‖t
2

p−1 |∇| 2
p−1 w‖

p−1
2

L∞ � ‖u0‖
p−1

2

B
d
2 +sc
1,1

. (6.14)

Interpolating (6.10) and (6.14),

‖2it∇w‖
L

2(p+1)
3−p · 1

1−sc
t L

2(p+1)
3−p

x

� ‖t
2

p−1 |∇| 2
p−1 w‖

p−1
2

L∞
t,x

‖w‖
3−p

2

L
p+1
1−sc
t Lp+1

x

� ‖u0‖
B

d
2 +sc
1,1

. (6.15)

Therefore, we have proved

‖xw‖
L

2(p+1)
3−p

1
1−sc

t L
2(p+1)

3−p
x

� ‖u0‖
B

d
2 +sc
1,1

. (6.16)

Next, integrating by parts,

−2〈(2it∇)v, i(2it∇)(|v+w|p−1(v+w)−|v|p−1v)〉 = −8t2〈∇v, i∇(|v+w|p−1(v+w)−|v|p−1v)〉
= 8t2〈�v, i(|v + w|p−1(v + w) − |v|p−1v)〉.

(6.17)

Summing, by (5.17),

8t2〈�v, i(|v + w|p−1(v + w) − |v|p−1v)〉 − 8t2〈|v|p−1v, i(|v + w|p−1(v + w) − |v|p−1v)〉
= 8t2〈−ivt, i(|v + w|p−1(v + w) − |v|p−1v)〉

−8t2〈(|v + w|p−1(v + w) − |v|p−1v), i(|v + w|p−1(v + w) − |v|p−1v)〉
= −8t2〈vt, (|v + w|p−1(v + w) − |v|p−1v)〉.

(6.18)
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19958 B. Dodson

Next, integrating by parts,

−2〈xv, i(2it∇)(|v + w|p−1(v + w) − |v|p−1v)〉 = 4t〈xv, ∇(|v + w|p−1(v + w) − |v|p−1v)〉
= −4td〈v, (|v + w|p−1(v + w) − |v|p−1v)〉 − 4t〈x · ∇v, (|v + w|p−1(v + w) − |v|p−1v)〉.

(6.19)

Integrating the second term in (6.19) by parts again,

− 4t〈x · ∇v, (|v + w|p−1(v + w) − |v|p−1v)〉 = 4dt

p + 1
(‖v + w‖p+1

Lp+1 − ‖v‖p+1
Lp+1)

+ 4t〈x · ∇w, |v + w|p−1(v + w)〉. (6.20)

Now then, summing,

4t〈x · ∇w, |v + w|p−1(v + w)〉 = 4t〈(x + 2it∇) · ∇w, |v + w|p−1(v + w)〉
− 8t2〈i�w, |v + w|p−1(v + w)〉. (6.21)

Summing (6.18) and (6.21), since wt = i�w,

(6.18) + (6.21) = 4t〈(x + 2it∇) · ∇w, |v + w|p−1(v + w)〉 − 8t2〈vt + wt, |v + w|p−1(v + w)〉
+ 8t2〈vt, |v|p−1v〉. (6.22)

By the radial Sobolev embedding theorem, (3.12), and the fact that d
2 > 1,

‖(x + 2it∇) · ∇w‖
L

p+1
1−sc
t Lp+1

x

� ‖u0‖
B

d
2 +sc
1,1

. (6.23)

Therefore, plugging these computations back into (6.6),

d

dt
E(t) � − 4

p + 1
t‖v‖p+1

Lp+1 − 8t2

p + 1

d

dt
‖v + w‖p+1

Lp+1 + 8t2

p + 1

d

dt
‖v‖p+1

Lp+1

+t‖(x + 2it∇) · ∇w‖Lp+1‖v + w‖p
Lp+1

+t‖v‖Lp+1‖w‖Lp+1(‖v‖p−1
Lp+1 + ‖w‖p−1

Lp+1) + t‖w‖p+1
Lp+1

+E(t)1/2‖(x + 2it∇)w‖
L

2(p+1)
3−p

(‖v‖p−1
Lp+1 + ‖w‖p−1

Lp+1)

+E(t)1/2‖u0‖
p−1

2

B
d
2 +sc
1,1

‖w‖1− p−1
2

Lp+1 (‖v‖p−1
Lp+1 + ‖w‖p−1

Lp+1).

(6.24)
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Scattering for the Schrödinger Equation 19959

Then by the product rule,

d

dt
[E(t) + 8t2

p + 1
‖v + w‖p+1

Lp+1 − 8t2

p + 1
‖v‖Lp+1 ]

� − 4

p + 1
t‖v‖p+1

Lp+1 + t‖(x + 2it∇) · ∇w‖Lp+1‖v + w‖p
Lp+1 + t‖v‖p

Lp+1‖w‖Lp+1 + t‖w‖p+1
Lp+1

+E(t)1/2‖(x+2it∇)w‖
L

2(p+1)
3−p

(‖v‖p−1
Lp+1+‖w‖p−1

Lp+1)+E(t)1/2‖u0‖
p−1

2

B
d
2 +sc
1,1

‖w‖1− p−1
2

Lp+1 (‖v‖p−1
Lp+1+‖w‖p−1

Lp+1).

(6.25)

Since ‖v(1)‖Lp+1 � 1,E(1) � 1, and dispersive estimates imply that ‖w(1)‖Lp+1 � 1,

the Cauchy–Schwartz inequality and (6.25) imply that

1

t2 E(t) � 1

t2 + ‖w(t)‖Lp+1(‖v(t)‖p
Lp+1 + ‖w(t)‖p

Lp+1) + 1

t2

∫ t

1
τ‖(x + 2it∇) · ∇w‖p+1

Lp+1dτ

+ 1

t2

∫ t

1
τ‖w‖p+1

Lp+1 + 1

t2

∫ t

1

E(t)1/2

τ
· τ‖(x + 2it∇)w‖

L
2(p+1)

3−p
(‖v‖p−1

Lp+1 + ‖w‖p−1
Lp+1)dτ

+ 1

t2

∫ t

1

E(τ )1/2

τ
· τ‖u0‖

p−1
2

B
d
2 +sc
1,1

‖w‖1− p−1
2

Lp+1 (‖v‖p−1
Lp+1 + ‖w‖p−1

Lp+1)dτ ,

(6.26)

with implicit constants depending only on p and d. Then choosing 0 < δ(p, d) � 1

sufficiently small, by the Cauchy–Schwartz inequality,

1

t2 E(t) � 1

t2 + ‖w(t)‖Lp+1(‖v(t)‖p
Lp+1 + ‖w(t)‖p

Lp+1) + 1

t2

∫ t

1
τ‖(x + 2it∇) · ∇w‖p+1

Lp+1dτ

+ 1

t2

∫ t

1
τ‖w‖p+1

Lp+1 + δ

t2

∫ t

1

E(t)

τ2 τdτ + 1

δt2

∫ t

1
τ‖(x + 2it∇)w‖2

L
2(p+1)

3−p
(‖v‖2(p−1)

Lp+1 + ‖w‖2(p−1)

Lp+1 )dτ

+ 1

δt2

∫ t

1
τ‖u0‖p−1

B
d
2 +sc
1,1

‖w‖3−p
Lp+1(‖v‖2(p−1)

Lp+1 + ‖w‖2(p−1)

Lp+1 )dτ .

(6.27)
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19960 B. Dodson

Therefore, by Young’s inequality,

‖ 1

t2 E(t)‖
L

1
1−sc
t ([1,∞))

� 1 + ‖‖v(t)‖p+1
Lp+1‖

p
p+1

L
1

1−sc
t ([1,∞))

‖‖w(t)‖p+1
Lp+1‖

1
p+1

L
1

1−sc
t ([1,∞))

+ ‖‖w(t)‖p+1
Lp+1‖

L
1

1−sc
t ([1,∞))

+‖‖(x + 2it∇) · ∇w‖p+1
Lp+1‖

L
1

1−sc
t ([1,∞))

+ 1

δ
‖u0‖p−1

B
d
2 +sc
1,1

‖‖w(t)‖p+1
Lp+1‖

L
1

1−sc
t ([1,∞))

+1

δ
‖u0‖p−1

B
d
2 +sc
1,1

‖‖w(t)‖p+1
Lp+1‖

3−p
p+1

L
1

1−sc
t ([1,∞))

‖‖v(t)‖p+1
Lp+1‖

2(p−1)
p+1

L
1

1−sc
t ([1,∞))

+1

δ
‖(x + 2it∇)w‖2

L
2(p+1)

3−p
1

1−sc
t L

2(p+1)
3−p

x

‖‖v(t)‖p+1
Lp+1‖

2(p−1)
p+1

L
1

1−sc
t ([1,∞))

+1

δ
‖(x + 2it∇)w‖2

L
2(p+1)

3−p
1

1−sc
t L

2(p+1)
3−p

x

‖‖w(t)‖p+1
Lp+1‖

2(p−1)
p+1

L
1

1−sc
t ([1,∞))

.

(6.28)

Then combining ‖v(t)‖p+1
Lp+1 � 1

t2 E(t), Strichartz estimates, (6.8)–(6.16), and (6.23),

‖ 1

t2 E(t)‖
L

1
1−sc
t ([1,∞))

�p,d 1 + ‖u0‖p+1

B
d
2 +sc
1,1

+ ‖u0‖2p

B
d
2 +sc
1,1

+ ‖u0‖
2(p+1)

3−p

B
d
2 +sc
1,1

. (6.29)

This proves the theorem. �
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