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In this note, we prove scattering for a defocusing nonlinear Schrédinger equation with
initial data lying in a critical Besov space. In addition, we obtain polynomial bounds on

the scattering size as a function of the critical Besov norm.

1 Introduction

The qualitative long time behavior for the defocusing, nonlinear Schrodinger equation
iu, +Au= lulP~lu, u(0,x) = uy, (1.1)

is completely worked out in the mass-critical (p = % +1) and energy-critical (p = % +1)

cases. In general, the critical L?%-based Sobolev space for (1.1) is ESe (]Rd), where
S, == — ——. (1.2)

The critical exponent (1.2) arises from the fact that if u(¢,x) solves (1.1), then for any
A >0,

2

u(t, x) — Ap-Tu(r’t, 1x), (1.3)
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Scattering for the Schrodinger Equation 19933

also solves (1.1), and the H% norm of the initial data is invariant under (1.3). On the other
hand, well-posedness fails for s < s, see [2]. Global well-posed and scattering has been
established for any initial data u, € ESe (Rd) in the mass-critical ([4], [5], [6], [7], [26], [16],
[18]) and energy-critical cases ([1], [3], [23], [27], [17], [24]).

Definition 1 (Global well-posedness and scattering). In this paper, global well-
posedness refers to the existence of a global strong solution, that is, a solution that

satisfies Duhamel’s principle
. t .
u(t) = e®ug — i/ I8 y()P u(r)dz, (1.4)
0

that is continuous in time, and depends continuously on the initial data. Scattering refers

to the existence of u, , u_ ¢ HS¢(R%) such that

. itA , _
B 10— 60 ey =0, 1
and
lim |u(t) — e*®u_||zsemay = O. 1.6
A lu(®) _Nigse ra) (1.6)

See Chapter three of [25] for a detailed treatment of global well-posedness and scattering

for dispersive partial differential equations in general.

The case when p = % +1, (s, = 0), is called mass-critical because a solution to

(1.1) preserves the mass, or L? norm of a solution,
M(u(t) = / lu(t, x)|>dx = M(u(0)). (1.7)

Likewise, the case when p = % +1, (s, = 1) is called energy critical because a solution

to (1.1) preserves the energy,

1
p+1

1
E(u(t)) = /[EIVu(t,X)I2 + lu(t, x)[PTdx = E(u(0)). (1.8)
The conserved quantities (1.7) and (1.8) imply that the H%(R%) norm is uniformly
bounded for the entire time of existence of the solution to (1.1) in the mass-critical

and energy-critical cases. Thus, in the mass-critical and energy-critical cases, the proof
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of global well-posedness and scattering reduces to proving global well-posedness and
scattering for a solution to (1.1) with uniformly bounded A% (R%) norm, which has been

done.

Remark 1. In the energy-critical case, the Sobolev embedding theorem implies that
E(u(0)) < oo when uy € H (R%).

It is conjectured that global well-posedness and scattering also hold for (1.1)
when 0 < s, < 1. In this case, there is no known conserved quantity that gives uniform
bounds on the A% (R%) norm of a solution to (1.1). Therefore, there are two possible ways
in which a solution to (1.1) might fail to scatter, which are called type one blowup and
type two blowup. A solution to (1.1) is called a type one blowup solution to (1.1) if the
H5 (R%) norm is not uniformly bounded. Since 2 is a unitary operator, an unbounded
H%¢(R%) norm automatically precludes (1.5) or (1.6) from occurring. A blowup solution to
(1.1) is called a type two blowup solution if the solution fails to scatter, but the H5 (R%)
norm is uniformly bounded for the entire time of its existence.

Type one blowup is known to occur for solutions to (1.1) for some d and s, > 1,
see [19]. Interestingly, the solutions obtained in [19] have good regularity and good
decay. Specifically, they would belong to the critical Besov spaces considered here. By
comparison, when 0 < s, < 1, if u, € H.(R?), where H} is an inhomogeneous Sobolev
space, then (1.7), (1.8), and interpolation imply a uniform bound on the H5¢(R%) norm
when 0 < s, < 1.1In fact, global well-posedness and scattering is known for a solution to
(1.1) when uy € HL(R%) and 0 < s, < 1, see [12] and [11].

Type two blowup has been precluded in many cases for (1.1) when 0 < s, < 1.
One particularly important case is the cubic nonlinear Schrodinger equation in three

dimensions (see [10]),
iu, + Au = |ul*u, u:RxR3 = C, u(0,%) = u,. (1.9)

In this case, s, = % — % = % In a breakthrough result, [14] proved that any solution to (1.9)
with [[u(®) g2 ®3) uniformly bounded on its entire interval of existence must be globally
well-posed and scattering. Thus, the obstacle to proving scattering for (1.9) with generic
initial data in H'/2(R3) is the absence of a conservation law that controls the H!/2 norm

of a solution to (1.9) with initial data in H'/2. Observe that the momentum

P(u(t)) =/Im[u(t,X)Vu(t,X)]dX, (1.10)
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is conserved and scales like the H'/2 norm, but does not control the H!/2 norm of a
solution to (1.1).

The papers [1],[13], and [3] were key in developing the concentration compactness
method for the nonlinear Schrodinger equation in the energy-critical case. Type two
blowup was later precluded for a great many cases of (1.1) when 0 < s, < 1, see [22],
[21], and [20]. Since the mass-critical and energy-critical problems reduce to type two
blowup questions, the same techniques are useful for both problems.

In this paper, we continue the study of (1.1), 0 < s, < 1, with initial data lying in

a subspace of the critical Sobolev space. Previously, in [9], we proved the following:

Theorem 1. The cubic nonlinear Schrédinger equation, (1.1) with p = 3 and d = 3, is
7 11

globally well-posed for initial data u, € We'7 (R%). No symmetry assumption is made

on the initial data, but we did not prove scattering.

Here we prove scattering for the cubic problem with initial data in B% 1(]R‘?).

Observe that by the Sobolev embedding theorem,
. .71 - 1/9
B R%) c We'7 (R®) c HY2(RY). (1.11)

Remark 2. Throughout this paper, a Besov space always refers to a homogeneous Besov
space, and a W5P Sobolev space always refers to a homogeneous Sobolev space when
p # 2. Therefore, for those cases (but not for an L2-based Sobolev space), the dot will be
dropped. Thus, we understand that B;yq refers to Bf,,q and WSP refers to WSP when p # 2.

Theorem 2. The initial value problem
iu, + Au = lul?u, u(0,x) = ug, (1.12)

with radially symmetric initial data u, < B%II(RS) has a global solution that scatters.
That is,

lullzers@xms) < 00 (1.13)

Sketch of proof of Theorem 2. Previously, in [9], we proved global well-posedness for

the cubic problem in three dimensions, (1.1) with d = 3 and p = 3 with initial data
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711
ug e wg'’,

—

1
V17 ugllg7e < oo. (1.14)

By the Sobolev embedding theorem, Bil C W%'%, so global well-posedness follows from

Theorem 1. Moreover, the solution to the cubic problem for ¢t > 1 is of the form

u(t) = ei(tfl)Au(l) + v(t), ||V||L§OH1([LOO)X]R3) < Q. (1.15)

Remark 3. It is possible to prove similar results for all equations described in

Theorem 3. No radial symmetry assumptions are needed to prove global well-posedness.

|
The proof of scattering in the cubic case uses the conformal energy of v,
E() = (x + 2itV)v|Z, + 263 ||v] 1. (1.16)
where v is obtained by localizing u(1) in frequency and space.
Rewriting,
iv, + Av = [u*u = [v]?v + ([ulPu — [v]*v) = v’V + N, (1.17)
d . . s 2 2 .
2,50 = —2((x + 2itV)v,i(x + 2itV)N) — 8t2(|v|?v, iN). (1.18)
Then we prove
> 1
/ —E(t)2dt < oo, (1.19)
1 tt

which implies ||V||L§L§([1'00)XR3) < 00. The proof of this fact strongly utilizes the radial
symmetry. By the radial Sobolev embedding theorem, ||xw|;~ < oo, where w =
ett=DAy(1). Thus,

((x+2itV)v, xlw*w) S w2, E@) 2. (1.20)
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By Fubini's theorem, the contribution of (1.20) to (1.19) is bounded by

1 [t 1 [t
/ a( /1 lw(s)[12,E(s)/2ds)dt < / = /1 lw(s)lI72€(s)ds

o0 1 1 1
- /1 ()1 4E(5) / 54t 5 [ WOl 580 < ([ Iwe ka2 [ Zewan!
(1.21)

Since w is a solution to the linear equation with initial data in H'/2, w € L8L%, so the
contribution of this term to (1.19) is fine.
We prove similar bounds for the other terms in (1.18), as well as proving similar

integral bounds for all equations in Theorem 3.
We also prove Theorem 2 in a more general context, namely for (1.1) when 0 <

S < 1,1 < p < 3, and the initial data are radially symmetric and in the critical Besov

d
space Bfllﬂc (R%).

Theorem 3. The initial value problem (1.1) is globally well-posed and scattering for
radially symmetric initial data in the Besov space Bf IFS” (R%).In addition,when1 < p < 3,

the scattering size,

lull pn , (1.22)
175 I (RxRY)

is bounded by a polynomial function of [ul| e
Bl,l

2 Preliminaries

In this section, we discuss some preliminary information that will be needed in the rest

of the paper. Nothing in this section is new.

Definition 2 (Besov space). The Besov space B;q(Rd) is given by the norm

uollps ey = O 2P IPuglie) /P, (2.1)
J

when 1 < p < oo, with the usual modification when p = oc. Here, Pj is the usual

Littlewood-Paley projection operator. The Sobolev embedding theorem implies that

d . a
Blz’;rse (R c H(R%). The Bf;sc (R%) norm is invariant under the scaling symmetry (1.3).
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The fact that the bound (1.22) implies scattering is a consequence of Strichartz

estimates.

Theorem 4. If u is a solution to (1.1), the bound |u| p+: < oo implies
L5 IR (RxRE)

scattering.

Proof. For the Schrédinger equation in dimensions d > 3,
iu, + Au=F, u(0,x) = ug, u:lxRE C, (2.2)
we have the Strichartz estimate

lull  2d S lluglzz + IF 2d . (2.3)
121372 L L2 (T xRE) LU24121.842 (1xRE)

See [25] and the references therein for a detailed treatment of this topic.
In particular, when F = 0, (2.3) implies a bound on ||u||L€Lg, when (p, g) is an

admissible pair, that is,

2 1 1
Z=d(=-2), > 2. (2.4)
p- 27 q P

Then by the Sobolev embedding theorem, if F = 0,

, (r, 9 is admissible. (2.5)

Qlw»

1
lwlipry < gl for ~=

Q|

p+1
I—s;

The pair (p,r) is then said to be s-admissible. Doing some algebra, ( ,p+ 1) is

s.-admissible. Since f’fslc < 00, a bound on (1.22) on R x R4 implies scattering for
(1.1). Indeed, since pfl < 00, it is possible to partition R into finitely many intervals I;
1-s¢ J

such that
lull ps1 <e, for some € K 1. (2.6)

L5 X (IjxRe)

Now use the Strichartz space,

lullgse rxray = NVIeull  2a . (2.7)
121,372 NLPI2(IxRY)
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By (2.3), lfIJ = [CZ]', bj]'

-1
||u||35c(1jXRd) < ||u(aj)||HSc(R3) + ||u||gsC(1jXRd)||u||pﬂ . (2.8)

= +1
L, IR (IjxRd)

Therefore, by (2.6),
||u||SSc(1j><Rd) N ||u(aj)||HSC(R3)‘ (2.9)
In particular,

||u(bj)||H5c(R3) s ”u(aj)”HSc(R3)- (2.10)

Since there are finitely many intervals I;, we have ||l g (RxR3) < OO and thus scattering,

by taking
o .
U, =ug— i/ e A ulP~ludt, (2.11)
0
and
o
u_=ug— i/ e 1A |y P udt. (2.12)
0
|

Finally, we conclude with the pseudoconformal conservation law.

Theorem 5 (Pseudoconformal conservation law). If u solves (1.1) on R x R¢,

8t2 t 4—d(p-1)
x+2itV)u(t)||? +—/ u(t, )P dx = || xuq||? +/ 43/— u(s, x)|PHdx)ds.
I[¢ u®li72 il lu(t, x)| llxugllz2 0 ( PR [u(s, x)| )
(2.13)
Proof. See, for example, Section 1.4 in [7]. [ |

3 Scattering for the Cubic NLS in Three Dimensions

We begin by proving scattering for the cubic equation (1.3) with u, € B%II(Rs), before
moving on to the general problem. In this section, we do not prove any quantitative

bounds on the scattering size as a function of the B | norm of the initial data.
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Proof of Theorem 2. By time reversal symmetry, it suffices to prove scattering on [0, c0).
In [9], we proved that the cubic nonlinear Schrédinger equation is globally well-posed
for initial data u, € W7 (R3). By the Sobolev embedding theorem, B (R®) C W7 (R3),
so global well-posedness follows.

Furthermore, after rescaling the initial data, suppose that the global solution has

the form
||u||L§X([o,1]xR3) <34, which implies lwllg1/2 o, 11xr3) < O (3.1)
Then for 1 <t < oo, decompose
u(t) = w(t) + vt), where  w(t) = eimu(()l), (3.2)

and uy = ugl) + uéz) is some decomposition of u, that will be specified later.

Let £(t) denote the conformal energy of v,
E@) = ||(x + 20tV)V|2, + 26%| v}y = lIxv]Z, + 2(xv, 2itVV) 2 + 8t°E(2), (3.3)

where E(t) is the energy in (1.8),

1 1
Et) = S1IVviiz. + ZIIvilg. (3.4)
When w = 0,
d 4
ac‘f(t) = —2t||v|}a, (3.5)
which implies ||V||§4(R3) < tiz Therefore,
1wl 2822 11,00y xR3) = NVIIL8LA (11,00) xRE) < OO (3.6)

For a general u{" € H'/2(R3), Strichartz estimates imply that

||W||L?L§(R><R3) S ”uo”Hl/z(Ra), (3.7)

so to prove scattering, it suffices to prove

/ tl45(t)2dt < o0. (3.8)
1
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Indeed, by (3.3),

o0 s o0 1 )
/1 Ivi2,de < /1 SR (3.9)

By Duhamel’s principle,
1 , )
v(l) = —i/ 1708 1y 2udr + ellAué ), (3.10)
0
By direct computation,

1 1 1
(x+ 2iV)/ e1 9% u)?udr =/ (X+2i(l—t)V)el(l”)A|u|2udt+/ 2itve' D8 1y 2udr.
0 0 0

(3.11)
By examining the kernel,
itA C oy o itA itA
et f = a2 | € i f(y)dy, (x + 2itV)e'*>f = " xf, (3.12)

so using the radial Sobolev embedding theorem and the computations in [9],

1
. (1—7)A 2 2 2
I (x+2i1 — )V)e D% uudr |2 S IxlulPulge S lxulps lull?s,.
0 tLix t,x Lth

2 3
S llullepzliulz. S Iollze -

L?OBI,Z S1/2 ~

(3.13)
Next, recall from [9] that forany 0 <t < 1,
u=u, +u,  where |[[Vu| <t V4, IVu,lle < 7374, (3.14)
with constant independent of t. Therefore, by Strichartz estimates,

2 . <
Lt N\Iuol\Bgl

1
. i(1—-7)A 2 2
|| /0 2t Ve' A wPudellgz S 1TV lepz lulays + 1TVl s llul 1.

(3.15)
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Now decompose the initial data. Let x € CSO(R3), XxXx) = 1lon x| <1, x(x) is

supported on |x| < 2, and let R(¢, uy) < oo be a constant sufficiently large so that

. X : X
2 2P0~ x (Pl <€, and D120~ x()Puolp <€ (3.16)
j j

By Holder's inequality and the Sobolev embedding theorem,

X X .
V(1 - X(E))Pjuo)lle S IPugllgns and V2 - X(E))Pjuo)”[,l < 22]||Pju0”[,1-
(3.17)
Then,
S = X ENPugl 21 = x (ENPiugllHE < P ugll (3.18)
R e S S |
Therefore, by the radial Sobolev embedding theorem, if € < ||u0||];22 ,
1,1
itA X < 1/4
IHx1e™" A = X (Ul S €7 (3.19)
Also, by Hoélder's inequality,
b
lxx (Z)uolz < B2l (3.20)
so (3.12) implies
I+ 20V)v(Dllz S R lluglgs - (3.21)
The computations in [9] also imply
lv(DIfs S 1, (3.22)

and therefore,

) Sl\uo\lg%lﬂ L. (3.23)
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To obtain the bound (3.8), observe that v solves

v, + Av = |u|?u, v(1,x) = (3.10), (3.24)
and w solves
iw,+Aw =0,  w(l,x) =el*ul’, (3.25)

on [1,00).

Rearranging (3.24),

— AV + vV = iv, — F, F = 2lv*w + v?W + 2|w|?v + w27 + |w|?w = F, +F,+F;.
(3.26)

Integrating by parts,

d . . .
aé‘(t) = 16tE(v) + 8t2(vt, —AV + |V|?V) + 4(xv, iVV) + 4t(xv,;,1VV) 4+ 4t{xv,1VV,)

+2(ixAv, xv) — 2(ixF, xv) = —2t|v| 1, + 8t*(v;, F) — 4t(xF, Vv) + 4t(xv, VF) — 2(ixF, xv).
(3.27)

Integrating by parts and plugging in (3.26), with F; = |w|?w,

8t%(v,, F3) — 4t(xF3, V) + 4t(xv, VF,) — 2(ixFy, xv)
= 2((x + 2itV)|w|*w, i(x + 2itV)v);2 + O3 (|[v]® + [w |3, (w]®))

S & + 20tV 2 lxw | oo [l wliZs + 11(x + 2itV)V | 2 [[EV W] o w124 (3.28)
+E VI W e lwlife + 2w D

SEDYA W (xw g + [EVW ] 0) 4+ t3BE @3 * Wiz + /2| .
Also, integrating by parts and plugging in (3.26) with F, = 2|w|?v + w?7,

8t%(v,, F,) — 4t(xF,, VVv) + 4t(xv, VF,) — 2(ixF,, xv)
= 2((x + 2itV)F,, i(x + 2itV)v);2 + O ([v]® + w3, [w|?|v]))

S I+ 20tV vz lxwll g W2 Ivilzs + |(X + 2itV) V2 [EVW | o [W 4l VI 24 (3.29)
G + 20V W Foe + EIVITa W + w5

S ZEDY Wl + 2wl + E@ W
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Finally, take
8t%(v,, F) — 4t(xF;, VVv) + 4t(xv, VF,) — 2(ixF}, xv), (3.30)

with F; = 2|v|?w + v?w. This term will be handled slightly differently from (3.28) and
(3.29). By (3.19),

1/4

— 4t(xF;, Vv)—2(ixF|, xv)= —2(ixF;, (x+2itV)v) < | (x+2itV)v|| ;2 ||V||§4 IxW | fo0 S ETcﬁ'(t).
(3.31)
Next, integrating by parts,
4t(xv, VF,|) = —4t(xVv,F}) — 12t(v, F;) = —4t(XW,V(|V|2V)) — 12¢(v, Fy)
(3.32)

S twllalvid, +4t(Vw, x|vI?v) < 2w + 4t(Vw, x|v|?v).
Then by the product rule, integrating by parts, and (3.17),
4t(Vw, x|v|?v) = 8t(Vw, |v|?(x + 2itV)v) — 4t*(Vw, v2(x — 2itV)¥) — 8t(Vw, iV (|v|*V))

S VW | (x + 2itV) V] 2 vI12s — 882 (iAW, [v]?v)

SNVW & @) + I AW |10 VI2E@® Y2 S IVW Iz E@) + 2| VII2E()Y2.
(3.33)

Meanwhile, integrating by parts in ¢,

T

T T
/ 8t2<vt,F1)dt=8t2<|v|3,|w|>|1T—/ 8t2(|V|2V,wt)—/ 16t(|v|®v, w)dt. (3.34)
1 1 1

First observe that
8t (|lvi®, (w1 < t/2|lwll €)%/ ] (3.35)
Also compute

8t2(IvI?v, w,) S tlAW I e IVI2E@Y? S V2| vIRE®) Y2, .36
and  16t(|v|®v, w) < t7V2E@)%* |w| .
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Therefore,

t
OB / (£ 2 lwlZ, + 83| wlfe + s* 2wk + E(8) Wi
1

+§5<s> + IVW i eE(8) +sTV2E) 2| Vig2 + s72E(9)% | wigalds + t1/2 | w4 E)** + R.
(3.37)

By Fubini’'s theorem and Hoélder's inequality

ool t ool t e’} ool
/ —(/ £(5)!/2 w2, ds)?dt < / —3</ £(s) w4, ds)dt = / £ w4, / . dtds
1t 1 1 s t

5/1 S—Zg(s)||w||§4ds5 (/1 S—4€(s)2ds)1/2(/1 lwlFsds)"/2.
(3.38)

Next, interpolating (3.16) and (3.17),

: X
IV (1 — x(Z) Pt

S (/227 2T (1= () Brug) I3 IVA A= X () Bruo) 3, 21 VA~ () Brug)l ),
(3.39)
which by (3.18) implies that for e < ||u,|| ;,;1 )
/0 " IVwllgeds < e”“nuonzg S e, (3.40)
Similar computations also show that
Iwlpzre S €8, and  (wip S Sf% (3.41)
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Therefore,

/oo l,s‘(z:)zdt</00 R—zdt—l-/oo lf:(t)3/2||w||2 dt—i—/ool(/té’(s)l/zllwnz ds)?d¢
1t ~hot 1 13 Lt 1t Lt
o0 1 t
+/1 t—4(/1 s3/88(5)3/ 4 |w |2 + 22| W2 + sV4E(5) Y2 ||W|| oo ds)?dt
© 1 [t 9 € 1/20001/2 —1/2 0 \3/4 2
+/1 t—4(/1 8(s)||w||Loo+E€(s)+s ES) Cviige +s7 7€) lwllpads)“de
2 > 1 2 1.13/4 * 8 1/4 > 1 2101/2 * 8 1/2
SR +(/1 Fg(t) de) (/ lwi;.dt) +(/1 3—45(3) ds) (/1 [wll;sds)
1
o0 1 o0 0
o /1 SE@ YA /1 S w18 ds) /4 + ( /1 Slwld ds)
* 1 2301/2 > 4 1/2
+(/1 8—45(3) ds) (/1 [wllz=ds)
5/16 <1 2 > 1 2301/2 * 1 4 1/2
+e (/ 3—45(5) dS)+(/ 3—45(5) ds) (/ S—ZIIV(S)IIdeS) .
1 1 1

(3.42)

Therefore,

Ooig(t)zdt<R2+ oo||w||8 dt + oo||w||2 dt + ( oolf:(t)zdt)l/z( Ool||v(t)||4 de)l/?
p tt ~ 1 L 1 ol 1 tt 1 t? 12 )

(3.43)
Now since v solves (3.24),
d 2 2 2 2 2 <
allVlle S IWleeIVIZallvlize + 1wl Iw 7 llvigz, vz < R. (3.44)
Therefore, by Hélder's inequality,
4 2 ! 2 2 2
vl S R+ (/ Wl IVIZallVilgz + 1Wll oo Wl 4 IV 2 d2)
' (3.45)

¢
2 2 4 2 4 012
SR+ ||W||L§L§o(/ IVIzallvlize + IWlzallvIiizz)-
1
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Therefore, by Fubini's theorem,

*1 4 2, 2,7 8 12, [T 1 4 1/2
) t—zllV(t)lledtSR +e“( ) Ivi;sdt) (1 t—zllV(t)lledt)

o
1
2 4 4 1/2
+e IIWIILtsL;‘;(/1 2 VO l2do)

(3.46)
SR+ ez(/oo lS(t)zdt)”2</oo v @%,do1?
~ 1 th 1 t2 12
2 4 > 1 4 3,1/2
W[ VO
Therefore,
*1 4 2, 2, (71 2 2 [ 8
/1 t—2||v(t)||det <R°+e (/l t—48(t) dt) + € /1 wl;.dt. (3.47)
Plugging (3.47) into (3.43),
o o0 1 o o
/ lv()|8.de < / Fg(t)zdt < R? +/ w8, de +/ w2 dt. (3.48)
1 1 1 1
Therefore, scattering follows. [ |
4 Concentration Compactness in the Cubic Case
The proof of Theorem 4 implies that for a solution u to (1.9),
lullzers@mxmrs) < 00 is equivalent to lullzs @mxms) < o0 (4.1)

Thus, Theorem 2 implies that for u, € B%l, (1.9) has a global solution satisfying
||u||L§X(RxR3) < co. However, since R depends on ¢ > 0 and u, not just the norm ||u0||Bi1,

(3.48) does not directly give a uniform bound on
||u||L?'X(RXR3), when ||u0||Bi1 <A < oo. (4.2)

Such a bound follows from a concentration compactness argument, as in [8] for the
nonlinear wave equation.
Following by now standard concentration compactness techniques, see for

example [15],
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Lemma 1. Let u, be a bounded sequence in H'/2,

sup Uy llg/2gs) <A < 00,
n

which is radially symmetric. After passing to a subsequence, assume that

lim |lu,|g =A.
Jm luy llg2 s

(4.4)

Then passing to a further subsequence, for any 1 < J < oo, there exist ¢!,..., ¢/ € H'/?

such that
I VAV TNR ¢
Up = Zew]"()\") ATW(T) +wy,
o eV A
where
J
12 : 2 2
D N1, + lim (il = A%,
j=1
: : itA _
Jm lim sup €4 w3l s cps) = O
and forj # k,

¥ .
lim [In(=2)| + |8, — th| = oo
n—oo )“YL

Now let u,, be a sequence in Bil (R3) with the uniform bound
||un||3§’1 <A.
Then by the Sobolev embedding theorem,
lupllnegs) S A

so apply Lemma 1, and observe that for any J,

J
Joaivaa 1 X
= 3 L X
j=1 An An

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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Next, observe that Lemma 1 implies that for any fixed j,
e mAGIu (0d) ~ ¢/, weaklyin  HY2(R3). (4.12)

Using dispersive estimates, for any t € R, since B%l is invariant under the scaling
symmetry (1.3),

||eitA€7it]"A()\.J;:Lun()»{L'))||Loo (4.13)

S ———u,llgz
S el

in particular, if t’,; — =oo along a subsequence, interpolating (4.13) and the Sobolev

embedding theorem H'/? «— L3,
||€itA€_itI"A()LJnun()“Jn'))||L?’X([7T,T]><R3) =0 4.14)

for any fixed 0 < T < oc. Since u,, — ¢ weakly in H'/? implies

itA itA : 5
e u, — e''g, weakly in L7,

(4.15)
(4.14) implies that ¢/ = 0 if t’,.l — +o00 along a subsequence.

Remark 4. The fact that weak convergence implies (4.15) follows from Strichartz

5/4

estimates and approximating a function in L;%

with a smooth, compactly supported

function and a small remainder.

Therefore, the t],'l's must be uniformly bounded for any j, and after passing to a

subsequence, t’,; — t/ € R for any j. Since

doivea l i X 1 ia g X
e‘tjn(”n)ZAsz’(T) — T(ew’nAqy)(T), (4.16)
n )\n

n n

replacing ¢/ with eitjA¢>j and absorbing the remainder into w7, it is possible to set th =0
for all j in (4.11). Therefore,

J
1 . x
U, = —¢ (=) +wl. (4.17)
j:zlkfn oS

By Theorem 2, for any j, let w/ be the solution to (1.12) with initial data ¢/. Since
Mu,(Whx) — ¢/ weakly in H'/2, the Sobolev embedding theorem implies that
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Ju, (hx) — ¢/ weakly in L3. Compactly supported distributions are dense in H1/2,

and since L3 ¢ L! on a compact set, A} un(knx) converges weakly in L! on a compact set.

Therefore, for any k € Z,
I1Pe¢ 1 < 00, (4.18)

where P, is the usual Littlewood-Paley projection operator, and

D 2% IPg I < sup luyllge - (4.19)
k " '

Therefore, for any j, by Theorem 2,

W5 @xray < 0© (4.20)

Furthermore, (4.6), (4.7), (4.8), and small data arguments imply that if u™ (¢, x) is
the solution to (1.12) with initial data u,(x),

o0
hm u™ < w)° < oo. 4.21
1™ 15s s, _21” I7s. (4.21)

J:

For all but finitely many j's, say all but jj, W] Loz < €, 80 by small data arguments
and (4.6),

2 W sy S (4.22)
J=Jo

Therefore, there exists a function f : [0,00) — [0, 0) such that if ||u0||B%1 < A is radial,
then (1.12) has a global solution that satisfies the bound

IullLs (exmrs) = f(A) < oo (4.23)

Observe that (4.23) gives no explicit bound on the scattering size. In general,
the bounds obtained from a concentration compactness argument are likely far from

optimal. For example, in [24],

lull 2@s2 < Cexp(CE®), (4.24)
L, 972 (RxR4)

t.x
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where C(d) is a large constant, E is the energy (1.8), and u is a solution to the energy-
critical problem (s, = 1) with radially symmetric initial data. In the next two sections, we

will do much better with data in a subspace of the critical Sobolev space when 1 < p < 3.

5 A Local Result for (1.1) When 1 < p < 3

In the second part of the paper, we will prove explicit bounds on the scattering size of
a solution to (1.1) with radially symmetric initial data in B?jsc, when 0 < s, < 1 and
1 < p < 3. Note that the restrictions on s, and p require d > 3.

As in the cubic case, the first step is to rescale and obtain good bounds on the

(d+2)(p—1)

interval [0, 1]. The space L, , * (R x R%) is also invariant under the rescaling (1.3), so

rescale the initial data so that

lull @+2p-1 <34, (5.1)
L, 2 ([0,11xR4)

X

for some § <« 1.

d
Lemma 2. If uis a solution to (1.1) on [0, 1] with initial data ug € B ;rsc, and u satisfies

(5.1), then forany j € Z_,,

-sc—1
IVl 2a ST gl gy, (5.2)
120,372 (127, 27+1]xR9) BZ U (RY)
Proof. The local solution may be obtained by showing that the operator
. t .
O (u(t)) = e®uy —i / eIy P tu(r)dr, (5.3)
0
has a unique fixed point in $%([0, 1] x R%).
Interpolating the Sobolev embedding theorem,
; 2 _2
1P ug o < 255712597570 1P |1, (5.4)
with the dispersive estimate,
- Ck(d— 2. __2_
||.PkeltA uO ||Loo S.; t_d/zz k(d p-1 )Zk(d p-1 ) ||Pku0 ||L1 ’ (55)
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where P, is the usual Littlewood—-Paley projection operator for any k € Z,

: _ 1
€A ugllpee <t P T Ul i (5.6)
Bl,l
and
; _1 1
Ve ugllzee St P17 2yl Gise: (5.7)
1,1
Interpolating (5.5) with the Sobolev embedding theorem,
. da
VP ugll 2 < 2K1=5) 2k 450 Py |11, (5.8)
and
; 1 _,.4
VP ugll 2a < 27%e—2K&+s) 1Py, (5.9)
Ld-2 t
Interpolating this bound with
itA k(2—s5¢) ok(S+
IVPe! Uoll 24, 52 (2=50) k(3 +50) || P 1y || 1, (5.10)
we obtain
itA R
Ve U«OIILdLg2 St IIUOIIBlgIHC- (5.11)
Therefore, for any j € Z_g,
. :sc—1
IVe™ ugll  2a ST Nyl g, (5.12)
121,872 ([21,21+1]xR4) BE,

By Strichartz estimates, for any t € [2/,2/11], let Js be the integer closest to

log, (82). By Strichartz estimates, the chain rule, and (5.1),

t
.1—s .
27|V / Oy P lumde]
2s 121,372 ([27,2711]1xR9) (5.13)
- 1—s, sc—1
<8227 | Vul <5z §%log(8) sup |[Vul 24 .

120,372 (25,271 xRd) j<0 120,972 ([2,27+1]xRd)

20z 2unp gz uo Jasn AjsiaAlun supdoH suyor Ad 6296.L9/2€66L/EZ/EZ0Z/aI10IE/UIIW0o dNo olWapese/:Sd)Y WOl POpeojumod



Scattering for the Schrodinger Equation 19953

Meanwhile, the dispersive estimate combined with the Sobolev embedding theorem

lul  ag < ol g, and
LPLy % ([0,1]xR9) B
2Js )
i(t—7)A -1 —j -
Iv / e u@ P umdrl g <27l g IVull 2a .
0 Le- LPL, 2 ([0,1]xRd) LILE%(10,25]xRD)
(5.14)

Therefore, by dispersive estimates and Hoélder’s inequality, forany 0 < s, < 1,

2Js

.1—sc .

277V / eIy P u(ndell e
0 121,32 ([2,2/+1))

5o 2s )
<227F sup |V / eI u(n) P u(r)dr |
0 L

2d_
tel2/,27+1] - (5.15)
_jisc -1
S22 ulP T 4, IVull  2a
LPL, 2 (10,1]xRd) LILE % (0,271 RY)
-1 i1-sc
S8ul?™ 4 sup2 2 |Vull a0 :
LPLy 2 (10,1]xRd) j<0 121,872 (21,2111 xR%)
Therefore, for 0 < € <« 1, for §(|lu, |l %Hc,e) > 0 sufficiently small,
Bl,l
-1—5 - 1—s,
sup2 2 [VOW)| 24 Slugll gy, +€-sup2 2 [Vul 20 ,
j<0 121,372 ([27,2711]xR9) B j<0 121,372 ([27, 2711 1xR9)
(5.16)
for some ¢ > 0. Thus, (5.2) holds. [ |

Now suppose (1.1) with initial data u, has a solution on the maximal interval

[0, T), where 1 < T < oco. Again decompose u = v + w, where v and w solve
v, + Av = v+ wP (v +w), v(0) =0, (5.17)
and

iw, + Aw =0, w(0) = uy, (5.18)
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on [0, 00). Let £(t) denote the pseudoconformal energy of v,

, 8
E(t) = l(x + 2itV)v|Z, + mtznvuiﬁl = |xv|?, + 2(xv, 2itVv) + 8t*E(%). (5.19)

d
Lemma 3. Ifuge Bl2 ;rsc is radially symmetric, and (1.1) has a local solution satisfying
(5.1), then £(1) < 1 for 8(||u0|| 4. s) > 0 sufficiently small.

11

Proof. Observe that the proof of Lemma 2 also implies

[Vv(D)| i Se- supZJ 2| Vu 24 (5.20)
L2+ j<0 L2032 (12, 27+1]xRd)

Interpolating (5.20) with the bound

v llgse S ||u0|| dyser (5.21)
11

implies [[v(1)|;p+1 < 1 for § > 0 sufficiently small, since € = e(||u0||B oo D1 A1 0).

1,1
Using the computations in (3.11),

1 .
Il (x + 2i1V)/ D8 P~ ydr |,
0 'X

) (5.22)
< ||X|u|p_1uIIL%ng([oyude) TlevVull - 2a Il ez oy :
BZLI2@01xRY L T2 ((011xRY)
Then by Lemma 2,
_ il-sc
LIL{T2(01xRY) [ 2 (j0,1]xRd) j<0 121,972 (121, 21+1]xR%)

t.x

To handle the first term in (5.22), consider the cases % <s,<land0 < s, < %
separately. When % < s, < 1, the radial Sobolev embedding theorem implies
p-1 < T’z p21+(1 ul€ < p=c sc
llx|ul u”L 2R ||Xp u”Loo lwll e el @ine-n S Mgl %+sc5 , (5.24)
L?OLX t,x 2 1,1

wherec\Oass, 7 1.
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When0<sc<l

5. using the radial Strichartz estimates,

19955

2 2
1 d-1 a7 p—1+(1—-z%5)—c¢ p—c
llx|wlP ull;172 0,1]xR4 Slxzul“, llwel| d,. ||u||c(d+2)(p—1) N lugll d s8¢,
+ L% ([0,1]xR%) T g -1 T 2 tse
1 g L°L L, *Z

where c > 0forall 0 < s, < % and d > 3, with appropriate p.

This proves the Lemma.

6 Scattering for (1.1) When 1 <p <3and0<s, <1

(5.25)

Having obtained good bounds on the interval [0, 1], we can use the pseudoconformal

conservation of energy to extend these bounds to [1, c0).

Theorem 6. The initial value problem

. -1 $+sc . md d
iu,+ Au=[ufPu, u(0,x) = ug 6312,1 (RY, u:R xR - C,

is globally well-posed and scattering when v is radially symmetric. Moreover,

lull p+1 =CA +lupll 4
B

r

d,o)

1— 1 2
LS 1B (RxRY)

1,1

for some C that does not depend on |u|| d s and r(d, s,;) < oo.
Bl,l

Remark 5. When |luyl| ¢, is small,
Bz
1,1

lull p+1 ) Sllugllgse S lugll Dysce
L7 BT (RxRY) BZ,

So it suffices to consider ||ugyll 4., 2 1.
B2

+sc ~
1,1

(6.3)

Proof of Theorem 6. If v solves (5.17) on [1,00) with w =0,0 <5, < 1,and £(1) < oo,

where £(¢) is given by (5.19), then by direct computation,

d 4
_ p+1
Gf® =~ tvigh <o,
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which implies

1

1

VT S = (6.5)

Equation (6.5) implies that the left hand side of (6.2) is finite, which implies scattergng
Now compute dté’(t) when w need not be zero, but w solves (5.18) with ug € B} z +SC,

radially symmetric. Then by direct computation,

d 4
—E) = ——tllvllfﬁl — 2((x + 2itV)V, i(x + 2itV)(Jv + WP~ (v + w) — |[v]P" L))
@ pi (6.6)
—8t%(|vP v, i(|v + wiP T (v + w) — [vIP M),
Doing some linear algebra,
((x + 2itV)f, (x + 2itV)g) = ((x + 2itV)f, xg) + (2itVf, 2itVg) + (xf, 2itVg). (6.7)

Apply the linear algebra in (6.7) to (6.6) and compute term by term. First, when

% <s, < 1, by the radial Sobolev embedding theorem, since p%l <1,

~2((x + 2itV)v, ix(jv + WP (v + w) — [vP I v)

2Pl pl
Tl Iwl? (VIS + Iwl?h) (6.8)

S &+ 2itV)v|| 2|l xP

p—

—1
1/2 -
S 0 2 ugl? Wl (VIES + Iwifh.
2
1

1

When 0 < s, < % split
= (x + 2itV)w — 2itVw. (6.9)

Again by (3.12) and the radial Sobolev embedding theorem, for s, < % — 1, lyugllgserr S

~

lugll 401 SO interpolating the Strichartz estimate,
1,1

€ ugl Pl S gl gse s (6.10)
L§+l

Lt

with the Littlewood-Paley projection estimate

itA
1B A ugll e S I1Pjglare, (6.11)
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implies that

(x + 2itV)w|| 2p+D) 1 2(p+1) < lugll dyse (6.12)
L, 3=p lI=sep Bll
Now take é = 5. By the Sobolev embedding theorem, dispersive estimates, s, = % — 1%’
2 d
and Iﬁ < o
2 itA 1 1
IVIFTe  uglle S e ugll ¢ S —lluoll ¢ S —luoll g, (6.13)
Bl,q tp-1 Bl,q’ tp-1 B1 1
Therefore,
2 p-1 p-1
IItp TVIFTw 4 S llugll 2@ (6.14)
312,1 e
Interpolating (6.10) and (6.14),
2 p_1 3TP
[2itVw || 2p4b 1 2t N IItP 1[v|p 1W||Loo Wi %+ < gl e (6.15)
Lt 3-p —SCL Ltl sch+1 Bl,l
Therefore, we have proved
lxwl 2041 1 2ty S llugll 4 s (6.16)

Lt “3-p I-sc¢ L Bl 1
Next, integrating by parts,

—2((2itV)v, i2itV) (jv+w P~ (v4w) - [v[P1v)) = —862(Vv, iV ([v+w P (v w) —[vP 1))

= 8t (AV,i(lv+ WP~ (v +w) — [vIP ).

(6.17)
Summing, by (5.17),

8t2(AV,i(lv + WP~ (v + w) — [vIP1v)) — 8t3([vP v, i(lv + wiP (v + w) — [vP~1v))
= 8t*(—iv,, i([v + WP (v + w) — |[v]P~1v))
—8t2((lv+ wP (v +w) — |[vP~ ), i(lv + wiP (v + w) — [vP~1y))

= —8t*(v,, ([v + wP (v + w) — [v[P"1v)).

(6.18)
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Next, integrating by parts,

—2(xv,i2itV)(|[v+ WP~ (v + w) — [v]P~ v)) = 4t(xv, V(v + wP~ (v + w) — [v]P~1v))

= —4td(v, v+ wlP L (v +w) — [vP"Iv)) — 4t(x - Vv, (v + wP L (v + w) — [vIP ).

(6.19)
Integrating the second term in (6.19) by parts again,
—4t(x- Vv, (v + WP w + w) — [vPlv)) = tl (v +wiZfy = 1P
+4t(x - Vw, v+ wP~ (v + w)). (6.20)
Now then, summing,
4t(x - Vw, |v + wiP~ (v + w)) = 4t{((x + 2itV) - Vw, [v + wP~ (v + w))
—8t2(iAw, |v + wP~L(v + w)). (6.21)

Summing (6.18) and (6.21), since w; = iAw,

(6.18) + (6.21) = 4t((x + 2itV) - Vw, |v + wP~ (v + w)) — 8t%(v, + w,, [V + WP~ (v + w))

+ 8t%(v,, [v[P~1v). (6.22)
By the radial Sobolev embedding theorem, (3.12), and the fact that % > 1,

I +2itV) - VWl pir S ugll g, (6.23)
1-sc ;p+1 c’

L, Ly 1 1
Therefore, plugging these computations back into (6.6),

d 4 1 8t2 d 1
® < 1 vl lv+wl o+ —

T 2 iz

Lp+l

dt p+1dt

+t|(x + 2itV) - VWl i v+ wib.,

+tlviip+ IIWIILp+1(||V||Lp+1 + IIWIILpH) + tIIWIILpH (6.24)

+EM 2| (x + 2itV)wi| zpen AVIZ + Wl

p—

p-1
+E®Y 1| d Wl (VI + ).
1

1
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Then by the product rule,

ety + 0y wi 1Vl o]

—_ 174 w - — ||V

dt p+1 et oy
1 . 1

< -2 I + G+ 2089 - VWl [V + WP,y + 611y (Wl + el P

~ p+1 Lp+1

p—1
+E® 2 (x+2itV)w| 2<p+1>(||V||Lp+1+||W||Lp+1)+5(t)1/2||uo|| 2% 7

1

p-1
(vIE W iEs.

H

(6.25)

Since [[v(D)|lzp+1 S 1,€(1) S 1,and dispersive estimates imply that [w(1)[;p+1 S 1,
the Cauchy-Schwartz inequality and (6.25) imply that

1 1 [t . 1
t_zg(t) < + ||W(t)||Lp+1(||V(t)||Lp+1 + ||W(t)||€p+1) + t_z/l T||(x + 2itV) - VW||I£;+1dT

1 [t p+1 5(t)1/2
ta TIWll pi + T|(x + 2lifV)Wll zptn (||V||Lp+1 + ||W||Lp+1)df
1
1 [t EE)Y/? p-1 1_pzL
2 Tyl 2% ||W||Lp+12 (||V||Lp+1 + ||W||Lp+1)df,
Bl,l
(6.26)

with implicit constants depending only on p and d. Then choosing 0 < §(p,d) K 1
sufficiently small, by the Cauchy-Schwartz inequality,

1 1 1 [t } 1
t—zé’(t) < ) + IIW(t)IILpH(IIV(t)IprH + IIW(t)IIIf,,,H) + t_2/1 T||(x + 2itV) - VWll’f;ll dr

1 [t 1 LE) t . 2(p—1 2(p—1
+ /1 r||w||§;l+ s +m r||<x+2th>w||22gM)<||v||Lp<€1 " wlPEPyde
L °—p

1 [t 1 2(p—1 1
t5 / r||uo||" w35 AviZETY + wiiEY)dr.

+
1,1

(6.27)

20z 2unp gz uo Jasn AjsiaAlun supdoH suyor Ad 6296.L9/2€66L/EZ/EZ0Z/aI10IE/UIIW0o dNo olWapese/:Sd)Y WOl POpeojumod



19960 B. Dodson

Therefore, by Young's inequality,

I 5(t>||1
7% ([1,00))
1, P 41, T +1
ST+ vy B 17T Hw @ IP 17 + w0 || o
L85 (11,00)) Ll % (1,000 % ([1,00)
. +1 1 ~1 +1
Hl & +2V) - Vw a1 + <lluel?y . Mw® 17y || .
A I A % (11,00))
1 1 +1 o 1, g (6.28)
- 1
+5 ol MW@l 17 Hv@ Pyl ™
BZ I‘SC (11,00)) L7 ([1,00))
+1 2(10711)
+
—||(x+2ntV)w|| zpeny 1 zpen IIVOIZ 2
L, °P 1-Sep 5P L5 ([1,00))
41 2o
1
—||(x+2th)w|| 2pen 1 2qen W@ P51 P
Lt 3—p 1- SCLX37p Ltlfsc ([l,OO))

Then combining ||V(t)||p 0 S tzé’(t) Strichartz estimates, (6.8)—(6.16), and (6.23),

2(p+1)
+1 3p
Iz E(t)u Spa L IuolPh +lugl®  + Iyl 57 (6.29)
*Sc 1, +s +sc 7 tSc
( )) Bl 1 Bl 1 Bl,l
This proves the theorem. n
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