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Abstract

The parametric nonlinear Schrodinger equation models a variety of parametrically
forced and damped dispersive waves. For the defocusing regime, we derive a normal
velocity for the evolution of curved dark-soliton fronts that represent a ;-phase shift
across a thin interface. We establish a simple mechanism through which the parametric
term transitions the normal velocity evolution from a curvature-driven flow to motion
against curvature regularized by surface diffusion of curvature. In the former case
interfacial length shrinks, while in the latter case interface length generically grows
until self-intersection followed by a transition to complex motion.

Keywords Curve lengthening - Surface diffusion - Normal velocity - Curvature
driven flow - Parametric nonlinear Schrodinger equation

Mathematics Subject Classification 35C20 - 35P15

1 Introduction

The parametric nonlinear Schrodinger (PNLS) equation is a general model for para-
metrically forced surface waves and for pattern formation. It has been derived in the
context of Faraday waves (Zhang and Vifials 1995) where increased driving force
drives transitions to zigzag patterns and complex behavior. The PNLS has also been
derived as a model of phase sensitive amplifiers (Alexander et al. 1997) and in the
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large detuning limit of optical parametric oscillator systems (Coulibaly et al. 2008;
Izus et al. 1999; Promislow and Kutz 2000; Taki et al. 2000; Trillo et al. 1997). More
recently it has been proposed as a model for dissipative self organization (Ropp et al.
2018) and as a template for second-order phase transitions between degenerate and
non-degenerate regimes (Roy et al. 2021), Coulibaly et al., (2014).

We present an analysis of the evolution of curved dark-soliton fronts in the 1+2D
PNLS equation. These fronts represent i -phase shifts in the optical field. We consider
interfaces that have bounded curvatures and derive a normal velocity that describes
the temporal evolution of the front. In particular if the parametric strength decreases
through a critical value the normal velocity transitions from a curvature-driven flow to
motion against curvature regularized by surface diffusion of curvature. Specifically in
the limit in which the ratio of dispersive length scale to domain size is small (¢ < 1) we
identify a bifurcation parameter p for which the normal velocity V of the dark-soliton
interface admits the expansion

V = —akg + €2 (vAgko + Ci3) + O(e*). 1)

Here «y is the curvature of the interface, Ay is the Laplace-Beltrami surface diffusion
operator, and «, v and ¢ are u-dependent real coefficients. The leading order coefficient
« has the same sign as u, its sign change encodes the transition between motion with
and against curvature. Crucially we establish the existence of . > 0, independent
of €, such that v > 0 if || < 4. This allows the surface diffusion to regularize
the motion against curvature that arises for © < 0. Moreover the transition flips
the system from one in which interface length shortens suggesting a convergence to
equilibrium, to one in which interface length grows without bound, with meandering
evolution that generically leads to self-intersection. Indeed numerical observations
provided in Section 4 show that after self-intersection the dark fronts form cells that
engage in a complex jostling motion. Such curvature flow transitions have been studied
in dissipative systems such as polymer melts, Chen and Promislow (2023) but their
presence in a dispersive system are here-to-fore unstudied. The analysis presented
here is formal but is complemented with a sharp characterization of the transverse
spectrum of the wave which shows that the curvature transition is not associated with
any transverse instability of the dark soliton.

The paper is organized as follows. In Sect. 2 the PNLS system and the analysis of the
1D transfer spectral problem are presented. In Sect. 3 the inner and outer asymptotic
formulations of the system are developed and normal velocity is resolved. Section 4
presents consequences of the bifurcation in the normal velocity and outlines the impact
on simulations of the full system.

2 PNLS and One-Dimensional Spectral Analysis

The PNLS system describes the evolution of a complex phase ® € H?(R),

2
i®,+%A®—|®|2®+(i+a)®—y@*=o, o)
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on a spatially periodic domain Q = [0, L]?. Here 0 < € < 1 is a small parameter
that characterizes the ratio of the dispersive lengthscale to domain size, a is a phase
rotation and y is the parametric pump strength. We rescale the complex phase ®, time
t

® = iu(f)ew
N ’ 3)
T =2t/B,

and space X = 2x/+/B where

4
Bim—— o,
a++yr-1

and the phase angle 6 as the solution of

ye 2 = — [y2 — 1 4i.

We drop the tilde’s and introduce the real vector function U = (Ru, Ju)’ which
satisfies
_ . 0 —(€2A =2IUP +1—p)

where the bifurcation parameter

_a=3/y*-1
oat i -1

lies in [—1, 3]. In what follows, a shift from . > 0to u < O will trigger the transition
in curvature motion.

Posed on the line R, in the scaled coordinate z = x /€, and the PNLS system has a
dark-soliton steady-state solution

Po(2) = (¢(()Z)) , )
where ¢ (z) = tanh(z), solves
3¢ — 207 +2¢ = 0. (6)

The linearization of the 1D PNLS system about @ yields the system
W =LW, (7
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where the 1D linear operator L is given by

0 D
L:(_C_IB>, ®)

C=-32-6y%+4,

with

D=—-07-2¢y%+pu+1, ®)
and ¥ (x) = sech(x). These operators have point spectrum-eigenfunction pairs
— /
0p(C) ={(0,9), 3, ¢¥)}, (10)

op(D) = {(, ¥)}.

The operators C and D may have other point spectrum in their respective gaps (3, 4)
and (u, 1 + p) between their largest point spectrum and the branch point of their
essential spectrum. The characterization of these ground state eigenvalues and the
essential spectrum show that C > 0 and D > 0if u > 0, while the dimension n(D) of
the negative space of D satisfies n(D) > 1 if u© < 0. A structural point of the analysis
arises from the generic fact that that ground states of the Sturmian operators C and D
are both nonzero with full support, and hence can not be orthogonal.

2.1 Essential Spectrum of L

To characterize the essential spectrum of L substitute W = ¢*¢!** V into (7) to obtain
an eigenvalue problem for V,

_ 0 s242(1+p
W—<_sz_4 o )v, (a1

which has nontrivial solutions for

_ —ﬂ:l:\/ﬂz—4(s2+1+u)(s2+4).

A 12
3 (12)
The maximum of NA occurs at s = 0, and hence all A € o (L) satisfy
— VB —1601
m,\g,\M:m< pt 52 (+”))<0. (13)

2.2 The Kernel of L

The operator C has a kernel and from Lemma 3.5 of Promislow and Kutz (2000) we
know that A = 0 is a simple eigenvalue of L, for all ;. For u # 0 the kernel of L and
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of its adjoint L are spanned by the vectors

’ —1 47
w=(%). w=(",") (14)

, respectively. Here and below T denotes the operators and associated eigenvectors
associated to the adjoint with respect to the L>($2) inner product. For s = 0 the
kernels remain simple and are spanned by

Wy = (‘g) v = <‘g> (15)

When scaled to have unit norm, the eigenfunctions are smooth functions of .
The inverse of L is given by

1 _ (-pC D7 —C!
L _( D1 o ) (16)

When C and D have kernels attention is required to insure that the inverses act on
their domain.

2.3 Point Spectrum of L

Theorem 3.6 of Promislow and Kutz (2000) establishes the existence of Aj; > 0 such
that

o(L) C {A|%r < =2y} U {0}
We provide an alternate proof that generalizes more readily from operators that act
on H 2(]R) to operators that act on the multidimensional space H 2(Q). The L? inner

product and norm on R are denoted (f, g) and || f|| for f, g : R+ R" forn > 1.
The point spectrum of L is comprised of eigenfunctions localized in x that solve

0 D
AP = <—c _ﬂ> P. (17)

As two equations for the two unknowns P = (P, P,)’ satisfies

AP = DP,,

(A +B)P, = —CP,. (18)

Assuming that A = Othen P L lIJg . For i # 0 we combine this with the first equation
of (14) and deduce that either A = —8 < 0 or

P, LD ¢ and P, L.
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For u # 0 the operator D > 0 is invertible and we may solve for Pj,
CP +1(+ 8D P =0.
Taking the complex-valued inner product with P; yields the relation

(CPy, Pr)

A(A =————=!p]. 19
Ot B) =~ i pry = A1 (19)
The quadratic formula shows that
—B £ /B2 —4p:
A= 5 . (20)

In particular we deduce that o, (L) resides in the range of the right-hand side over the
possible values of p;. In particular if p; > 0 then XA < —p1/B < 0. For u # 0 this
motivates the definition of X, (u) = {D™'¢'}* and the real number,

po() = min (CPy, Py)

_ 21
rex, (D-LPy, Pp) @

Lemma 1 There exists iy, d+ > O such that D’x > dy forall p € [—uy, 3]

Proof We apply Proposition 5.3.1 of Kapitula and Promislow (2013), see also Kapitula
and Promislow (2012), to the operator D constrained to act on X,. Taking us < 0
with || sufficiently small, then D has negative index n(D) < 1 forall u € [—pus, 3].
We deduce that

n<D|X*> = n(D) — n(A), (22)

where A = (D~1(D~1¢’), D~!¢') € R. Recalling that v is the ground state of D
with eigenvalue p, we write

/7 <¢/? 1/f) 1
EUAL 28 , 23
= emn” T (23

where - € Xp := (¥} 7+ satisfies ||| < [|¢’|l. In particular we have the relation

) W v
D 3 / — _x D 3 J_.
= e TPV

Since X p is a spectral subspace of D it follows that o (D} Xn) = o(D)\{u}. Hence

there exists i, > 0 and a constant c7+ > ( such that D‘XD > ch for u € [—pus, 3].
We deduce that

o', ¥)|* 1

— | <d eI
oIyl w3 = F
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Itfollowsthat A < Oif u € [—pux, 0) for u, > O sufficiently small. Moreover we have
the limit A — —o0 at ;1 — 0. The index relation (22) implies that (D[ ) = 0

for u € (—py, 0]. Since D > 0 for © > 0, the negative index of D is zero for
W € [—y, 3]. The lower bound of D| . 18 given by its ground state eigenvalue. The
ground state eigenvalue is continuous in p, and the existence of d; > 0 follows. O

Proposition 2 There exists 1, > 0 such that p,(1) > 0 for p € [—py, 3].

Proof The operator C has a simple kernel spanned by ¢’ and is strictly positive on
{¢'}. The operator C | . 1s strictly positive as long as

(D~ '¢’, ') #0.

Thisis obvious for u > 0 since D is positive there. For u < 0 we use the decomposition
(23) to write

- (@) 1] _ 5
D 1 /’ no_ o d / 2. 24
(D¢, ) ozl = +l¢l 24)

This implies the existence of s > 0 for which the inner product is not zero for all
W € [—y, 3]. That is there exists a constant c; > 0 such that C|X > ¢4 for all
values of i € [—4, 3]. For these i we deduce that for all P; € X,
(CPy, Py) = ci | Py,
(D~' Py, Py <d NP

It follows that p, > c1dy > 0 for these . O

Theorem 3 There exists s, Ayy > 0 such that for all u € [— s, 3] the spectrum of
L satisfies
o) C {OJU{RA < =y}, (25)

Moreover the kernel of L is simple.

Proof The essential spectrum of L lies strictly in the left-half complex plane. If A €
0, (L)\{0}, then the relation (20) holds with p; as defined in (19). By definition of o,
we have p; > p, > 0. From the Taylor expansion of the right-hand side of (20)

N < —&.

Defining Ay = p4/B completes the proof. O

3 Curvature Driven Flow

We consider a smooth, closed interface I' = {y (s) ]s € [0, L]} that breaks €2 into two
regions {24, _} and introduce the local Frenet coordinates

x =y (s) +n(s)z/e, (26)
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Fig. 1 Sketch of the Frenet coordinates associated to curve y (indicated by solid line) and the neighborhood
|z| < ¢£/€ bounded by the dotted lines. The region ., containing the set z > 0, is unshaded and Q_,
containing the set z < 0, is shaded. Four normal lines are sketched, and the decomposition (26) of a generic
point x within the neighborhood into a base point ys = y (s) and distance z along the normal n = n(s) is
illustrated

where n(s) is the unit outward normal to the curve I" at point y (s) and z is signed, €-
scaled distance to I', see Fig. 1. If the interface y has smooth, bounded curvatures and is
far from self-intersection then the change of variables fromx = (x, x2) to (s, z) is well
defined on a neighborhood of T". Indeed there exists £ > 0 such that the neighborhood
contains all points x € €2 for which the scaled distance to I satisfies z(x) < £/€. We
introduce ¢ which is a smooth function that agrees with ¢ for |z| < £/(2¢) and is
identically 1 for z > £/e and identically —1 for z < —¢/e. The truncated function ¢
induces a smooth function @ defined on €2,

O (x) = (azéx”) 12 < ¢/, 27)

and ®(x) = 1 if z > £/e or z < —£/e respectively. Since ¢ decays exponentially
to the constant values £1 at an O (1) rate in z, this modification induces exponentially
small perturbations that do not impact the analysis. The overbar on ¢ is dropped in the
sequel. The evolution of U is tracked via its interface map y = y (s, ) whose motion
is prescribed by the normal velocity which controls the evolution of the curvature
through the relation (49) given below. Knowledge of the curvatures is equivalent to
prescribing y up to rigid body motion.

3.1 Outer Expansion

The outer region is divided into inside z < 0 and outside z > 0 sets, 24. These
regions are described by Cartesian variables. We expand the ansatz as

U= (5) =ug+ €uy +e2u2 + 0(63),
where each term has a vector decomposition

ui=<”">, i=0,1,2,....
qi
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To match with the ansatz (27) we impose

Do Io, —Iq_
uonyn = = s
= ()= ("0™)
where [ denotes the indicator function of the set E. This yields an expansion of the
residual F(U) in the form

B 0 Qpf—1- E)ql)
F= (2(1 - P?))Po) e ( —Baq1 — 4pipi

2(@pE-1-eq + 4pop1q1> 3
+e€ + O(e”). 28
< —Bg2 — 4pop? + Lapo (€ (28)

Since pg = 1 in both domains this affords the reduction

A+ waqi ) 2( (14 g2 + 4pop1qi ) 3
F(U)=c¢ + € + O(€”).
) (—ﬁql —4p) —Bqx —4pt —4pr —2(p? +qP)po €

The leading order outer dynamics reduces to a family of uncoupled ODEs,
5. (Pr) = ( U+ mwa
\a —Bq1 —4p1)’
that induce exponential decay on the fast T = O (1) timescale. Setting #; = 0 yields
an equivalent system for u>. We assume that u; and higher order outer terms are zero

on the relevant time scales. Correspondingly all matching of the inner system fori > 1
is to the outer value 0.

3.2 Inner Expansion

The inner expansion uses the Frenet coordinates, for which in R” the scaled Laplacian
takes the form

€A =07 + eko(s)d; + € (zr1(); + Ay) + € (Ay 1 + 2°k2(5)0;) + O(€h).

Here Ay is the Laplace-Beltrami operator on the interface I' and kg = Z'I’;} kj is the
total curvature expressed in terms of the n — 1 curvatures {kj, ..., k,—1} of I". The
higher order curvatures satisfy

n—1
ki = (=D Y K
j=1

fori > 1 see Hayrapetyan and Promislow (2015, [eqn (6.37)]) and Dai and Promislow
(2013, [eqn (2.8)]) for details. In two space dimensions, with n = 2, these relations
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reduce to k; = (—1)‘7(6. The inner expansion of the vector field residual
F(U)=Fy+eF +?F + EF3+ 0(eY), (29)
requires an expansion of U,

U= U()—l—éﬁ] +62l~/2 + 0(63),

7 ¢
Up = .
Since the higher order outer expansion is uniformly zero, the matching conditions to

the outer solution devolve into requiring that each Ui(s, ) € L2(R) for all values of
s and all i > 1. The leading order residual has the form

~ 0
Fo = (Eo ¢) _o. (30)

where we have introduced the operator

where

Eo:= 8] —2¢* +2.

This leading order residual is zero since ¢ solves (6) which is equivalent to Eggp = 0.
For i > 1 the inner vector field residuals take the upper-triangular form

F;=LU; + R;, (31)

where L is given in (8). The lower order residuals R; depend only upon Uy for k =
0,...7i — 1, and are given by

i 0
R = -~ ), 32
: (Koazl’o) (32)
5 —Ei1gi )
R=1|~ . - -, 33
2 (Ezpo +Eip (33)
and _ _
= —E192 — E2q1 )
Ry=|~ . 5. 7% .|, 34)
(EIPZ + Ex2p1 +E3po (
where

1’—il = KOaZ - 4ﬁ0ﬁls
By = 219 + Ay — 210112,
B3 = A1 + 22K2(5)0, — 40, - Us.
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To extract the curvature dynamics we develop a quasi-steady manifold U parame-
terized by the interface I' through the scaled distance function z and the curvature .
These quantities evolve on the slow time 7 = €2t for which €297 = 9. The chain
rule gives

- U 9z AU
DU =——+ —. 35
™= %zer T AT )
The normal velocity V' of the curve is scaled as V := —e_laa—T. This affords the
reduction _ _
3.U =¢e’D 0——ev8U+ezaU (36)
U = TY = 3z 9T

This is further expanded in terms of the normal velocity
V=V+eVi+eVa+ 0(),
and the T partials of U,
arU = edr Uy + 23702 + O(€Y),

for which 87Uy = 0. Combining these expansions yields the inner expansion of the
left-hand side of (4),

8t0 = —6V08z00 — 62(V08Z01 + Vi 3100) - 63(Voazl72 +V 8101
+V»0,Uy — 37Uy + O (€Y (37)

Using (37) and (31) in (29) we match the O (¢) terms in (4). This yields the system

— (VO) ¢ = LU,. (38)

Ko

"l:his is an elliptic problem in z for the leading order normal velocity Vy = Vy(s) and
U;. The linear operator L has a kernel, so Fredholm’s solvability condition requires

Vo) g | i = (BP9
<K0)¢ L _( )
This holds if the leading order normal velocity satisfies
V = —aky, (39)

where the curvature coefficient « = a () € R satisfies

llg’I1?

“EED ) 0
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This coefficient satisfies « > 0 so long as u > 0, corresponding to motion by curva-
ture. It is instructive to expand « in powers of . From the relation (24) we find

AR )
-y 10 . 41
a=pg T (1*) (41)

We deduce that @ < 0 for u small and negative, which implies an ill-posed motion
against curvature. In the sequel we establish that the flow is regularized by higher
order terms in the normal velocity expansion.

3.3 Regularization of the Normal Velocity
The first step to identify higher order terms in the normal velocity is to solve the system

(38) for U;. The inversion formula (16) applies if i # 0, and the system can be solved
directly if « = 0. In either case the correction terms have a tensor-product structure

0165, 2) = k0()U1(2) = ko (g:) , @)

in terms of s-dependent curvature and z-dependent vector-valued function U which
satisfies

. C_l 1— D—l / _ C_IHJ',D_l /
U1=< (otD_ﬂla(]ﬁ/ )¢)=Ol( ﬁ D_l(l:p/ ¢>, ,U,#O,
Ly e , (43)
g (€= H5)) - e (—ﬂc—lnw) o
N lg’12 Bl ’ -
ALL pom\ v
Here we have introduced the L?(R) orthogonal projection
(f. 9"
M fi=f— 2" " 4, 44
o= e @

which maps onto the orthogonal complement of the kernel of C. The formulas are
smooth since

ll¢'1I%

D_1 N
S TR

v,

as u — 0. In particular the function U is uniformly bounded as u — 0 and has even
parity in z. Returning to (4), we use (37) and (29) at O(€?). The form (33) yields the
balance

5 - - Eig1 — Vod.p1 — V1d.p
LU = —Ry — (V93U + V19.Up) = (—llgllﬁl —011:22';; B Vloazg‘l)) L)
Z
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The solvabilty condition for Uz is the same as for U 1, however all the terms on the
right-hand side of (45) have odd parity about z = 0 except for 9, pg. This implies
that the system is solvable for V| = 0. In two space dimensions k| = —Kg so that E»
can be written in terms of Kg. Consequently the system for U» has the tensor-product

formulation
5o o1\ _ oo
LU, = <a)2> =% <52> ’

@) = 3.(q, +apy) — 46P,q,. (46)

where we have introduced

and
@y 1= 0,(aq, — Py) + 40P +2\01°¢ + 24

The functions w; and w; have odd parity about z = 0, in particular D~ '@ is well
defined and uniformly bounded as © — 0. Inverting L we determine that

~ _1 _1_ J—
(132> - (_C ™ “)2)) . 7)

N AN P2\ _ 27
V2= <éz> =) (azw) = kU2,

where U has odd parity in z. To determine V> we proceed to the O (e®) matching in
the inner expansion of (4). Equating (34) with the 0(€3) terms in (37) yields

(_ VOazﬁ2 - VZBZﬁO

N +drkoU; = LU3 + R;.
“Vod.dn ) TkoU1 3 3

The solvability conditions require that the terms without U3 are orthogonal to W
which has even parity about z = 0. This yields the system

<—V03zl52 — Va¢' + drkop; + E1da + 1:32671) IR (48)
_ ~ - ad ~ ad ~ _ ad ~ 07
V00,q2 + drkogy — E1p2 — Eap1 — E3po

to be solved for V,. From, Pismen (2006) in two space dimensions the co-moving
coordinates imply the relation between normal velocity and evolution of the curvature,

darko = —(Ay + 1)V = a(Asko + i5) + O(€”). (49)
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This allows the left-hand side of (48) to be expressed as a tensor product of Ao and
KS and vector valued functions W1 and W of z-only dependence,

(ASK()W] + Kng — Vzazﬁ0> J_\I'(;

These z-only vector-valued functions take the form

W oapr+4q
W, = il — ), 50
! <—P1 +OlCI1) (50)
and
Wy — ( o (0:P2 +P1) + :G> — 49P17> — 209, —2AUIPqy )
« (0:g2 +q1) — 0Py + 46D Py + 20:P) + 21U11*P) — 29/ +4U1 - U9
(5D

Solving for V, yields the higher order corrections to the normal velocity,
Vo = vAko + K- (52)

where the coefficients are defined by

7 +
- M’ (53)
BD19. )
and . ;
(WZ, ‘II())
= —_— 54
¢ =B g ¢) &9

Parity considerations imply that V3 = 0 as they did for V;, and hence the normal
velocity has no O (e?) terms and

V = —akp + €2 (msxo n g,cg) + 0(h. (55)

Moreover the O (e*) terms are bounded relative to 1 — Ay and hence reflect regular
perturbations.

The sign of v is essential to the wellposedness of the normal velocity system. In
particular wellposedness requires v > 0. Applying the formula for the adjoint kernel
W, (15), to (53) yields,

b (P + 71, D7) + (=P) + g, ¢/>’ (56)
(D¢, ¢')
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however p, L ¢’ so their inner product is zero. Using (43) to expand U we find

4 —lglp-1 1ln-1 _
L letpCTng DY MEDTY | g P gl
(D~lg/, ¢)3 B(D~1¢',¢")2 ~ BIHDl¢, )2
(57)
For || small the asymptotic inverse formula
_ (@' v) ¥
D¢ = == 0D, (58)
o Il
shows that the second term in (57) is dominant for small wu,
"I 1112
v=——"55—+4 0 (59)
(¥, ¢')?

which is positive for || < s, for uy > 0 sufficiently small, independent of €. This
establishes the main result (1).

Assuming that the curvatures are bounded uniformly with respect to €, the 62§K8
term in (55) is asymptotically small compared to axg unless ¢ is bounded away from
zero and @ = O(€2). This occurs when o = O (€2). Since ¢ = ¢ () is smooth in it
remains to approximate ¢ (0). The terms U and U are smooth in x and in particular
are bounded as ;& — 0. The denominator of ¢ scales like ="' as u — 0 so only the
terms (W1, BD~1¢’) can give a nonzero contribution to ¢ (0). That is, for |u| < 1
the inverse formula (58) yields

(Wa1,D~1¢/) (War, %)
=——4+ 0 =——4+0 .
C=Dig. gy TOW=" gy TOW

Since @ — 0 smoothly as u — 0 terms in Wy containing o are also O(u). We
introduce the z-only reductions of the operators E; and Ej,

E| =0, — 4¢P,
By = z0. — 2|U4 %,

and observe that (46) can be written as w; = Elﬁl + O (). This allows Wi to be
expanded in the symmetric form

— e
W =
SR

(EDT'EI +B2) ¥ + 0w,
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and hence

2
&= «!fﬁi)z ((D_IEH&,EJ{@[/) + <E2¢7 1/,)) L0,
”¢,”2 =17 7 1, = _ 1 _
= <¢/’ ,w)z <_(D llﬁ s ‘ﬁ > + 16(D 1(¢p11//),¢plw) _ 5HwHZ _ 2(|U1|2, w2>)
+ 0.

The coefficient ¢ at u = 0, is a sum of three negative and one positive term, and hence
is sign indefinite.

4 Numerical Confirmation and Discussion

The length of a closed interface I" evolving under a normal velocity V satisfies
or|T| :/F Vikods. (60)
For the system (55) following an integration by parts this reduces to
orIT| = - /F (alkol® + €201 Vko[2 = €% liol*) ds + 0. (6D

If the curvature is uniformly bounded by M > 0, then the interfacial length
decreases if @ > 62;' M?. In particular a circular interface I' with an O (1) radius
R = R, is an equilibrium if and only if o, ¢ > 0, o = 0(62) and

R, = 6\/3 (62)
o

Conversely if « < 0is O(1) and the curvature is not zero, then the length of a smooth
interface will grow. From (49) the normal velocity induces the complicated evolution
equation

Irko = (A + k) (ako — ve* Agkg — €2¢i) + O(eh),
in which surface diffusion acts as a singular perturbation. Generically a simple closed
interface will grow, buckle (meander), and self-intersect.
These results are supported by simulations of (2) shown in Fig.2. The modulus |®|

of the solution ® of the PNLS system is zero on the interface and tends to an identical
constant value in both 24 domains. Each simulation starts with the same initial data,

Oo(x) = Atanh((|x| —r(0))/e),
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Fig. 2 Contour plots of the modulus |®| over [—2m, 27r]2 simulated from (2) for (top row) © = —0.503
and B = 3.50, (middle row) © = —0.208 and B = 3.21, (bottom row) p = 0.0405 and B = 2.96. In all
simulations € = 0.3 and unscaled time 7 is as indicated, with common color bar indicated in last row (Color
figure online)

where A € C is the complex equilibrium of (2), € is the angle x makes to the x-axis,
and

r@) =3+ % (sin(30) - sin2(79)) ,

is a closed perturbation of a circular interface of radius 3. The function |®g| is depicted
in the left-most image in each row of Fig. 1. The dispersive ratio ¢ = 0.3 in all
simulations and the periodic domain Q = [—27, 27]? is discretized using 256 Fourier
modes. The top row shows the results for ux = —0.503 and g = 3.50 which is
well into the motion against curvature regime. The interface lengthens and buckles,
and self-intersects soon after the last # = 520 time depicted. Subsequent evolution
generates the complex motion of front-type cells discussed below. The second row
depicts the simulations for 4 = —0.208 and 8 = 3.21. This has weaker motion
against curvature, the maximum curvature attained is smaller and the interface growth
just yielded self-intersected (across the periodic boundary) at t = 1600, although
the interface has filled the domain. The third row corresponds to u = 0.0405 which
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T T

107"

ey,

10'4 1 1 1
0 0.5 1 1.5 2

Time x10*
Fig. 3 (Top) Contour plots of the modulus |®| over [—27, 271% simulated from Eq. (2) for p = —0.503,
B = 3.50,and ¢ = 0.3 at times A r = 5000, B 7 = 10,000, C t = 15,000, and D + = 20, 000. The
simulation used the same initial data and color bar as those presented in Fig. 2. (Bottom) Semi-log plot of
[|©¢ |2 verses time. The labeled points A—-B—C-D corresponding to the snapshots of the top row and the
vertical arrow indicates the last frame of the top row of Fig.2 roughly corresponding to the time of first
intersection of the interface

is positive but smaller than €> = 0.09. This is in the curvature-driven flow regime,
and the interface evolves into a circle with limiting radius R = 3.75. The computed
values ¢ = 0.576 and « = 0.0121 yield the equilibrium radius R, = 3.78, showing
good quantitative agreement between the asymptotic reduction and the numerical
simulation. Computations with positive & = 0.159 and 8 = 2.84 (not shown) yield
a circular interface that shrinks and approaches an O (¢) radius where it remains until
t = 3000 at which time the interface collapses and the function ® becomes spatially
constant. Circular interfaces of O (¢) radius are near self-intersection and their analysis
is outside the scope of this work.

Continuation of the flow subsequent to self-intersection brings the evolution out of
the regime of the front dynamics analyzed above. However we include simulations in
this regime to illustrate the impact of motion against curvature on system complexity.
For i < 0, numerical simulations beyond front self-intersection show that the flow
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enters a regime dominated by cells that exhibit a complex jostling motion. Extending
the flow depicted in the top row of Fig.2 corresponding to u = —0.503, to times
beyond the front self-intersection shows that front breaks into cells of positive or
negative phase demarcated by lines of zero intensity (|®| = 0). These cells experience
a strong jostling up to a time of order = 5000, and then settle into a regime of slower
but unsteady motion for times on the order € [10% 2 x 10*]. Snapshots of the
modulus || at times A) + = 0.5 x 10*, B)t = 1.0 x 10*, C) r = 1.5 x 10*
and D) r = 2.0 x 10* are depicted in the top row of Fig.3. The slight differences
between snapshots B and C (principally at the bottom of the two frames) might suggest
convergence to equilibrium. However the considerable differences between snapshot
C and D suggest that the configuration in C is a quasi-equilibrium or saddle point of
the flow.

The structure within the flow is better revealed by examining the time evolution
of the L? norm of the time derivative of ©: ||®;|>. As shown in Fig.3 (bottom),
the norm initially increases during the time period prior to the first self-intersection,
t = 520, marked by the vertical arrow. Subsequently the flow remains dominated
by motion against curvature until roughly # < 1000. During this period the time
derivative scales like ||©;]» ~ 10~!. The flow transitions to an active ‘jostling of
cells” motion for r € (0.2 x 10%, 0.8 x 10%) for which ||©; |2 ~ 10~2. This regime
is represented by snapshot A in the top row of Fig.3. On the longer time frame,
t > 0.8 x 10%, the evolution appears to relax, with ||®;||» decreasing below 1073.
This slow evolution generates the relative similarity of snapshots B and C. However
the subsequent excursion brings ||®; || back above 1073 and generates the significant
differences in the later configuration represented by snapshot D.

The analysis presented is the first to capture the transition from motion with curva-
ture to motion against curvature in a dispersive system. The analysis is formal, but is
qualitatively accurate in the regime in which || is sufficiently small. This is verified
by the accurate prediction of the limiting equilibrium radius R, as simulated numeri-
cally in the case u = 0.0405 in Fig.2 (bottom row). This work examines the role of
bifurcations in front dynamics that initiate interfacial growth as a broader trigger for
the development of complexity in forced-damped systems. We feel that the generality
of this mechanism merits further study.
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