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Abstract

The parametric nonlinear Schrödinger equation models a variety of parametrically

forced and damped dispersive waves. For the defocusing regime, we derive a normal

velocity for the evolution of curved dark-soliton fronts that represent a π -phase shift

across a thin interface. We establish a simple mechanism through which the parametric

term transitions the normal velocity evolution from a curvature-driven flow to motion

against curvature regularized by surface diffusion of curvature. In the former case

interfacial length shrinks, while in the latter case interface length generically grows

until self-intersection followed by a transition to complex motion.

Keywords Curve lengthening · Surface diffusion · Normal velocity · Curvature

driven flow · Parametric nonlinear Schrödinger equation

Mathematics Subject Classification 35C20 · 35P15

1 Introduction

The parametric nonlinear Schrödinger (PNLS) equation is a general model for para-

metrically forced surface waves and for pattern formation. It has been derived in the

context of Faraday waves (Zhang and Viñals 1995) where increased driving force

drives transitions to zigzag patterns and complex behavior. The PNLS has also been

derived as a model of phase sensitive amplifiers (Alexander et al. 1997) and in the
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large detuning limit of optical parametric oscillator systems (Coulibaly et al. 2008;

Izús et al. 1999; Promislow and Kutz 2000; Taki et al. 2000; Trillo et al. 1997). More

recently it has been proposed as a model for dissipative self organization (Ropp et al.

2018) and as a template for second-order phase transitions between degenerate and

non-degenerate regimes (Roy et al. 2021), Coulibaly et al., (2014).

We present an analysis of the evolution of curved dark-soliton fronts in the 1+2D

PNLS equation. These fronts represent π -phase shifts in the optical field. We consider

interfaces that have bounded curvatures and derive a normal velocity that describes

the temporal evolution of the front. In particular if the parametric strength decreases

through a critical value the normal velocity transitions from a curvature-driven flow to

motion against curvature regularized by surface diffusion of curvature. Specifically in

the limit in which the ratio of dispersive length scale to domain size is small (ε � 1) we

identify a bifurcation parameter μ for which the normal velocity V of the dark-soliton

interface admits the expansion

V = −ακ0 + ε2(ν�sκ0 + ζκ3
0 ) + O(ε4). (1)

Here κ0 is the curvature of the interface, �s is the Laplace-Beltrami surface diffusion

operator, and α, ν and ζ are μ-dependent real coefficients. The leading order coefficient

α has the same sign as μ, its sign change encodes the transition between motion with

and against curvature. Crucially we establish the existence of μ∗ > 0, independent

of ε, such that ν > 0 if |μ| < μ∗. This allows the surface diffusion to regularize

the motion against curvature that arises for μ < 0. Moreover the transition flips

the system from one in which interface length shortens suggesting a convergence to

equilibrium, to one in which interface length grows without bound, with meandering

evolution that generically leads to self-intersection. Indeed numerical observations

provided in Section 4 show that after self-intersection the dark fronts form cells that

engage in a complex jostling motion. Such curvature flow transitions have been studied

in dissipative systems such as polymer melts, Chen and Promislow (2023) but their

presence in a dispersive system are here-to-fore unstudied. The analysis presented

here is formal but is complemented with a sharp characterization of the transverse

spectrum of the wave which shows that the curvature transition is not associated with

any transverse instability of the dark soliton.

The paper is organized as follows. In Sect. 2 the PNLS system and the analysis of the

1D transfer spectral problem are presented. In Sect. 3 the inner and outer asymptotic

formulations of the system are developed and normal velocity is resolved. Section 4

presents consequences of the bifurcation in the normal velocity and outlines the impact

on simulations of the full system.

2 PNLS and One-Dimensional Spectral Analysis

The PNLS system describes the evolution of a complex phase 	 ∈ H2(
),

i	t +
ε2

2
�	 − |	|2	 + (i + a)	 − γ	∗ = 0, (2)
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on a spatially periodic domain 
 = [0, L]2. Here 0 < ε � 1 is a small parameter

that characterizes the ratio of the dispersive lengthscale to domain size, a is a phase

rotation and γ is the parametric pump strength. We rescale the complex phase 	, time

t

	 =
2

√
β

u(x̃)eiθ ,

τ = 2t/β,

(3)

and space x̃ = 2x/
√

β where

β :=
4

a +
√

γ 2 − 1
> 0,

and the phase angle θ as the solution of

γ e−2iθ = −
√

γ 2 − 1 + i .

We drop the tilde’s and introduce the real vector function U = (�u,�u)t which

satisfies

Uτ = F(U ) :=
(

0 −(ε2� − 2|U |2 + 1 − μ)

(ε2� − 2|U |2 + 2) −β

)

U , (4)

where the bifurcation parameter

μ := −
a − 3

√

γ 2 − 1

a +
√

γ 2 − 1
,

lies in [−1, 3]. In what follows, a shift from μ > 0 to μ < 0 will trigger the transition

in curvature motion.

Posed on the line R, in the scaled coordinate z = x/ε, and the PNLS system has a

dark-soliton steady-state solution

�0(z) =
(

φ(z)

0

)

, (5)

where φ(z) = tanh(z), solves

∂2
z φ − 2φ3 + 2φ = 0. (6)

The linearization of the 1D PNLS system about �0 yields the system

Wτ = LW , (7)
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where the 1D linear operator L is given by

L =
(

0 D

−C −β

)

, (8)

with
C = −∂2

z − 6ψ2 + 4,

D = −∂2
z − 2ψ2 + μ + 1,

(9)

and ψ(x) = sech(x). These operators have point spectrum-eigenfunction pairs

σp(C) = {(0, φ′), (3, φψ)},
σp(D) = {(μ,ψ)}. (10)

The operators C and D may have other point spectrum in their respective gaps (3, 4)

and (μ, 1 + μ) between their largest point spectrum and the branch point of their

essential spectrum. The characterization of these ground state eigenvalues and the

essential spectrum show that C ≥ 0 and D > 0 if μ > 0, while the dimension n(D) of

the negative space of D satisfies n(D) ≥ 1 if μ < 0. A structural point of the analysis

arises from the generic fact that that ground states of the Sturmian operators C and D

are both nonzero with full support, and hence can not be orthogonal.

2.1 Essential Spectrum of L

To characterize the essential spectrum of L substitute W = eλτ eisx V into (7) to obtain

an eigenvalue problem for V ,

λV =
(

0 s2 + 2(1 + μ)

−s2 − 4 −β

)

V , (11)

which has nontrivial solutions for

λ =
−β ±

√

β2 − 4(s2 + 1 + μ)(s2 + 4)

2
. (12)

The maximum of �λ occurs at s = 0, and hence all λ ∈ σess(L) satisfy

�λ ≤ λM := �
(

−β +
√

β2 − 16(1 + μ)

2

)

< 0. (13)

2.2 The Kernel of L

The operator C has a kernel and from Lemma 3.5 of Promislow and Kutz (2000) we

know that λ = 0 is a simple eigenvalue of L, for all μ. For μ �= 0 the kernel of L and
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of its adjoint L† are spanned by the vectors

�0 =
(

φ′

0

)

, �
†
0 =

(

βD−1φ′

φ′

)

(14)

, respectively. Here and below † denotes the operators and associated eigenvectors

associated to the adjoint with respect to the L2(
) inner product. For μ = 0 the

kernels remain simple and are spanned by

�0 =
(

φ′

0

)

, �
†
0 =

(

ψ

0

)

. (15)

When scaled to have unit norm, the eigenfunctions are smooth functions of μ.

The inverse of L is given by

L−1 =
(

−βC−1D−1 −C−1

D−1 0

)

. (16)

When C and D have kernels attention is required to insure that the inverses act on

their domain.

2.3 Point Spectrum of L

Theorem 3.6 of Promislow and Kutz (2000) establishes the existence of λM > 0 such

that

σ(L) ⊂ {λ
∣

∣�λ < −λM } ∪ {0}.

We provide an alternate proof that generalizes more readily from operators that act

on H2(R) to operators that act on the multidimensional space H2(
). The L2 inner

product and norm on R are denoted 〈 f , g〉 and ‖ f ‖ for f , g : R �→ R
n for n ≥ 1.

The point spectrum of L is comprised of eigenfunctions localized in x that solve

λP =
(

0 D

−C −β

)

P. (17)

As two equations for the two unknowns P = (P1, P2)
t satisfies

λP1 = D P2,

(λ + β)P2 = −CP1.
(18)

Assuming that λ �= 0 then P ⊥ �
†
0 . For μ �= 0 we combine this with the first equation

of (14) and deduce that either λ = −β < 0 or

P1 ⊥ D−1φ′ and P2 ⊥ φ′.

123



   40 Page 6 of 20 Journal of Nonlinear Science            (2024) 34:40 

For μ �= 0 the operator D > 0 is invertible and we may solve for P1,

CP1 + λ(λ + β)D−1 P1 = 0.

Taking the complex-valued inner product with P1 yields the relation

λ(λ + β) = −
〈CP1, P1〉

〈D−1 P1, P1〉
=: ρ1. (19)

The quadratic formula shows that

λ =
−β ±

√

β2 − 4ρ1

2
. (20)

In particular we deduce that σp(L) resides in the range of the right-hand side over the

possible values of ρ1. In particular if ρ1 > 0 then �λ < −ρ1/β < 0. For μ �= 0 this

motivates the definition of X∗(μ) = {D−1φ′}⊥ and the real number,

ρ∗(μ) := min
P1∈X∗

〈CP1, P1〉
〈D−1 P1, P1〉

. (21)

Lemma 1 There exists μ∗, d+ > 0 such that D
∣

∣

X∗
> d+ for all μ ∈ [−μ∗, 3].

Proof We apply Proposition 5.3.1 of Kapitula and Promislow (2013), see also Kapitula

and Promislow (2012), to the operator D constrained to act on X∗. Taking μ∗ < 0

with |μ∗| sufficiently small, then D has negative index n(D) ≤ 1 for all μ ∈ [−μ∗, 3].
We deduce that

n
(

D
∣

∣

X∗

)

= n(D) − n(A), (22)

where A = 〈D−1(D−1φ′), D−1φ′〉 ∈ R. Recalling that ψ is the ground state of D

with eigenvalue μ, we write

φ′ =
〈φ′, ψ〉

‖φ′‖‖ψ‖
ψ + ψ⊥, (23)

where ψ⊥ ∈ X D := {ψ}⊥ satisfies ‖ψ⊥‖ ≤ ‖φ′‖. In particular we have the relation

D−3φ′ =
〈φ′, ψ〉

‖φ′‖‖ψ‖
ψ

μ3
+ D−3ψ⊥.

Since X D is a spectral subspace of D it follows that σ

(

D
∣

∣

X D

)

= σ(D)\{μ}. Hence

there exists μ∗ > 0 and a constant d̃+ > 0 such that D
∣

∣

X D
≥ d̃+ for μ ∈ [−μ∗, 3].

We deduce that

∣

∣

∣

∣

A −
|〈φ′, ψ〉|2

‖φ′‖‖ψ‖
1

μ3

∣

∣

∣

∣

≤ d̃−3
+ ‖φ′‖2.
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It follows that A < 0 if μ ∈ [−μ∗, 0) for μ∗ > 0 sufficiently small. Moreover we have

the limit A → −∞ at μ → 0−. The index relation (22) implies that n
(

D
∣

∣

X∗

)

= 0

for μ ∈ (−μ∗, 0]. Since D > 0 for μ > 0, the negative index of D is zero for

μ ∈ [−μ∗, 3]. The lower bound of D
∣

∣

X∗
is given by its ground state eigenvalue. The

ground state eigenvalue is continuous in μ, and the existence of d+ > 0 follows. ��

Proposition 2 There exists μ∗ > 0 such that ρ∗(μ) > 0 for μ ∈ [−μ∗, 3].

Proof The operator C has a simple kernel spanned by φ′ and is strictly positive on

{φ′}⊥. The operator C
∣

∣

X∗
is strictly positive as long as

〈D−1φ′, φ′〉 �= 0.

This is obvious forμ > 0 since D is positive there. Forμ < 0 we use the decomposition

(23) to write
∣

∣

∣

∣

〈D−1φ′, φ′〉 −
〈φ′, ψ〉2

‖φ′‖‖ψ‖
1

μ

∣

∣

∣

∣

≤ d̃+‖φ′‖2. (24)

This implies the existence of μ∗ > 0 for which the inner product is not zero for all

μ ∈ [−μ∗, 3]. That is there exists a constant c+ > 0 such that C
∣

∣

X∗
≥ c+ for all

values of μ ∈ [−μ∗, 3]. For these μ we deduce that for all P1 ∈ X∗

〈CP1, P1〉 ≥ c+‖P1‖2,

〈D−1 P1, P1〉 ≤ d−1
+ ‖P1‖2.

It follows that ρ∗ > c+d+ > 0 for these μ. ��

Theorem 3 There exists μ∗, λM > 0 such that for all μ ∈ [−μ∗, 3] the spectrum of

L satisfies

σ(L) ⊂ {0} ∪ {�λ < −λM }. (25)

Moreover the kernel of L is simple.

Proof The essential spectrum of L lies strictly in the left-half complex plane. If λ ∈
σp(L)\{0}, then the relation (20) holds with ρ1 as defined in (19). By definition of ρ∗
we have ρ1 > ρ∗ > 0. From the Taylor expansion of the right-hand side of (20)

�λ < −
ρ∗
β

.

Defining λM = ρ∗/β completes the proof. ��

3 Curvature Driven Flow

We consider a smooth, closed interface � = {γ (s)
∣

∣s ∈ [0, L]} that breaks 
 into two

regions {
+,
−} and introduce the local Frenet coordinates

x = γ (s) + n(s)z/ε, (26)
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Fig. 1 Sketch of the Frenet coordinates associated to curve γ (indicated by solid line) and the neighborhood

|z| < �/ε bounded by the dotted lines. The region 
+, containing the set z > 0, is unshaded and 
−,

containing the set z < 0, is shaded. Four normal lines are sketched, and the decomposition (26) of a generic

point x within the neighborhood into a base point γs = γ (s) and distance z along the normal n = n(s) is

illustrated

where n(s) is the unit outward normal to the curve � at point γ (s) and z is signed, ε-

scaled distance to �, see Fig. 1. If the interface γ has smooth, bounded curvatures and is

far from self-intersection then the change of variables from x = (x1, x2) to (s, z) is well

defined on a neighborhood of �. Indeed there exists � > 0 such that the neighborhood

contains all points x ∈ 
 for which the scaled distance to � satisfies z(x) < �/ε. We

introduce φ which is a smooth function that agrees with φ for |z| < �/(2ε) and is

identically 1 for z > �/ε and identically −1 for z < −�/ε. The truncated function φ

induces a smooth function � defined on 
,

�(x) :=
(

φ(z(x))

0

)

|z| < �/ε, (27)

and �(x) = ±1 if z > �/ε or z < −�/ε respectively. Since φ decays exponentially

to the constant values ±1 at an O(1) rate in z, this modification induces exponentially

small perturbations that do not impact the analysis. The overbar on φ is dropped in the

sequel. The evolution of U is tracked via its interface map γ = γ (s, τ ) whose motion

is prescribed by the normal velocity which controls the evolution of the curvature

through the relation (49) given below. Knowledge of the curvatures is equivalent to

prescribing γ up to rigid body motion.

3.1 Outer Expansion

The outer region is divided into inside z < 0 and outside z > 0 sets, 
±. These

regions are described by Cartesian variables. We expand the ansatz as

U =
(

p

q

)

= u0 + εu1 + ε2u2 + O(ε3),

where each term has a vector decomposition

ui =
(

pi

qi

)

, i = 0, 1, 2, . . . .
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To match with the ansatz (27) we impose

u0 =
(

p0

q0

)

=
(

I
+ − I
−
0

)

,

where IE denotes the indicator function of the set E . This yields an expansion of the

residual F(U ) in the form

F(U ) =
(

0

2(1 − p2
0)p0

)

+ ε

(

(2p2
0 − 1 − ε)q1

−βq1 − 4p2
0 p1

)

+ε2

(

(2p2
0 − 1 − ε)q2 + 4p0 p1q1

−βq2 − 4p0 p2
1 + L2 p0

)

+ O(ε3). (28)

Since p2
0 = 1 in both domains this affords the reduction

F(U ) = ε

(

(1 + μ)q1

−βq1 − 4p1

)

+ ε2

(

(1 + μ)q2 + 4p0 p1q1

−βq2 − 4p2
1 − 4p2 − 2(p2

1 + q2
1 )p0

)

+ O(ε3).

The leading order outer dynamics reduces to a family of uncoupled ODEs,

∂τ

(

p1

q1

)

=
(

(1 + μ)q1

−βq1 − 4p1

)

,

that induce exponential decay on the fast τ = O(1) timescale. Setting u1 = 0 yields

an equivalent system for u2. We assume that u1 and higher order outer terms are zero

on the relevant time scales. Correspondingly all matching of the inner system for i ≥ 1

is to the outer value 0.

3.2 Inner Expansion

The inner expansion uses the Frenet coordinates, for which in R
n the scaled Laplacian

takes the form

ε2� = ∂2
z + εκ0(s)∂z + ε2(zκ1(s)∂z + �s) + ε3(�s,1 + z2κ2(s)∂z) + O(ε4).

Here �s is the Laplace-Beltrami operator on the interface � and κ0 =
∑n−1

j=1 k j is the

total curvature expressed in terms of the n − 1 curvatures {k1, . . . , kn−1} of �. The

higher order curvatures satisfy

κi = (−1)i

n−1
∑

j=1

ki
j ,

for i ≥ 1 see Hayrapetyan and Promislow (2015, [eqn (6.37)]) and Dai and Promislow

(2013, [eqn (2.8)]) for details. In two space dimensions, with n = 2, these relations
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reduce to κi = (−1)iκ i
0. The inner expansion of the vector field residual

F̃(Ũ ) = F̃0 + ε F̃1 + ε2 F̃2 + ε3 F̃3 + O(ε4), (29)

requires an expansion of Ũ ,

Ũ = Ũ0 + εŨ1 + ε2Ũ2 + O(ε3),

where

Ũ0 =
(

φ

0

)

.

Since the higher order outer expansion is uniformly zero, the matching conditions to

the outer solution devolve into requiring that each Ũi (s, ·) ∈ L2(R) for all values of

s and all i ≥ 1. The leading order residual has the form

F̃0 =
(

0

Ẽ0φ

)

= 0, (30)

where we have introduced the operator

Ẽ0 := ∂3
z − 2φ2 + 2.

This leading order residual is zero since φ solves (6) which is equivalent to Ẽ0φ = 0.

For i ≥ 1 the inner vector field residuals take the upper-triangular form

F̃i = LŨi + R̃i , (31)

where L is given in (8). The lower order residuals R̃i depend only upon Ũk for k =
0, . . . i − 1, and are given by

R̃1 =
(

0

κ0∂z p̃0

)

, (32)

R̃2 =
(

−Ẽ1q̃1

Ẽ2 p̃0 + Ẽ1 p̃1

)

, (33)

and

R̃3 =
(

−Ẽ1q̃2 − Ẽ2q̃1

Ẽ1 p̃2 + Ẽ2 p̃1 + Ẽ3 p̃0

)

, (34)

where

Ẽ1 = κ0∂z − 4 p̃0 p̃1,

Ẽ2 = zκ1∂z + �s − 2|Ũ1|2,
Ẽ3 = �s,1 + z2κ2(s)∂z − 4Ũ1 · Ũ2.
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To extract the curvature dynamics we develop a quasi-steady manifold U parame-

terized by the interface � through the scaled distance function z and the curvature κ0.

These quantities evolve on the slow time T = ε2τ for which ε2∂T = ∂τ . The chain

rule gives

DT Ũ =
∂Ũ

∂z

∂z

∂T
+

∂Ũ

∂T
. (35)

The normal velocity V of the curve is scaled as V := −ε−1 ∂z
∂T

. This affords the

reduction

∂τ Ũ = ε2 DT Ũ = −εV
∂Ũ

∂z
+ ε2 ∂Ũ

∂T
. (36)

This is further expanded in terms of the normal velocity

V = V0 + εV1 + ε2V2 + O(ε3),

and the T partials of Ũ ,

∂T Ũ = ε∂T Ũ1 + ε2∂T Ũ2 + O(ε3),

for which ∂T Ũ0 = 0. Combining these expansions yields the inner expansion of the

left-hand side of (4),

∂τ Ũ = −εV0∂zŨ0 − ε2(V0∂zŨ1 + V1∂zŨ0) − ε3(V0∂zŨ2 + V1∂zŨ1

+V2∂zŨ0 − ∂T Ũ1) + O(ε4) (37)

Using (37) and (31) in (29) we match the O(ε) terms in (4). This yields the system

−
(

V0

κ0

)

φ′ = LŨ1. (38)

This is an elliptic problem in z for the leading order normal velocity V0 = V0(s) and

Ũ1. The linear operator L has a kernel, so Fredholm’s solvability condition requires

(

V0

κ0

)

φ′ ⊥ �
†
0 =

(

βD−1φ′

φ′

)

.

This holds if the leading order normal velocity satisfies

V = −ακ0, (39)

where the curvature coefficient α = α(μ) ∈ R satisfies

α :=
‖φ′‖2

β〈D−1φ′, φ′〉
. (40)
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This coefficient satisfies α > 0 so long as μ > 0, corresponding to motion by curva-

ture. It is instructive to expand α in powers of μ. From the relation (24) we find

α = μ
‖φ′‖3‖ψ‖
β〈φ′, ψ〉2

+ O(μ2). (41)

We deduce that α < 0 for μ small and negative, which implies an ill-posed motion

against curvature. In the sequel we establish that the flow is regularized by higher

order terms in the normal velocity expansion.

3.3 Regularization of the Normal Velocity

The first step to identify higher order terms in the normal velocity is to solve the system

(38) for Ũ1. The inversion formula (16) applies if μ �= 0, and the system can be solved

directly if μ = 0. In either case the correction terms have a tensor-product structure

Ũ1(s, z) = κ0(s)U 1(z) = κ0

(

p1

q1

)

, (42)

in terms of s-dependent curvature and z-dependent vector-valued function U 1 which

satisfies

U 1 =
(

C−1
(

1 − βαD−1
)

φ′

αD−1φ′

)

= α

(

−βC−1�⊥
φ′D

−1φ′

D−1φ′

)

, μ �= 0,

U 1 =

⎛

⎝

C−1
(

φ′ − ‖φ′‖2

〈φ′,ψ〉

)

‖φ′‖2

β〈φ′,ψ〉ψ

⎞

⎠ =
‖φ′‖2

β〈φ′, ψ〉

(

−βC−1�⊥
φ′ψ

ψ

)

, μ = 0.

(43)

Here we have introduced the L2(R) orthogonal projection

�⊥
φ′ f := f −

〈 f , φ′〉
‖ f ‖‖φ′‖

φ′, (44)

which maps onto the orthogonal complement of the kernel of C . The formulas are

smooth since

αD−1φ′ →
‖φ′‖2

β〈φ′, ψ〉
ψ,

as μ → 0. In particular the function U 1 is uniformly bounded as μ → 0 and has even

parity in z. Returning to (4), we use (37) and (29) at O(ε2). The form (33) yields the

balance

LŨ2 = −R̃2 − (V0∂zŨ1 + V1∂zŨ0) =
(

Ẽ1q̃1 − V0∂z p̃1 − V1∂z p̃0

−Ẽ1 p̃1 − Ẽ2 p̃0 − V0∂z q̃1

)

. (45)
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The solvabilty condition for Ũ2 is the same as for Ũ1, however all the terms on the

right-hand side of (45) have odd parity about z = 0 except for ∂z p̃0. This implies

that the system is solvable for V1 = 0. In two space dimensions κ1 = −κ2
0 so that Ẽ2

can be written in terms of κ2
0 . Consequently the system for Ũ2 has the tensor-product

formulation

LŨ2 =
(

ω1

ω2

)

= κ2
0

(

ω1

ω2

)

,

where we have introduced

ω1 := ∂z(q1 + α p1) − 4φ p1q1, (46)

and

ω2 := ∂z(αq1 − p1) + 4φ p2
1 + 2|Ũ1|2φ + zφ′.

The functions ω1 and ω2 have odd parity about z = 0, in particular D−1ω1 is well

defined and uniformly bounded as μ → 0. Inverting L we determine that

(

p̃2

q̃2

)

= κ2
0

(

−C−1(βD−1ω1 + ω2)

D−1ω1

)

. (47)

This allows us to write

Ũ2 =
(

p̃2

q̃2

)

= κ2
0 (s)

(

p2(z)

q2(z)

)

= κ2
0 U 2,

where U 2 has odd parity in z. To determine V2 we proceed to the O(ε3) matching in

the inner expansion of (4). Equating (34) with the O(ε3) terms in (37) yields

(

−V0∂z p̃2 − V2∂z p̃0

−V0∂z q̃2

)

+ ∂T κ0U 1 = LŨ3 + R̃3.

The solvability conditions require that the terms without Ũ3 are orthogonal to �
†
0 ,

which has even parity about z = 0. This yields the system

(

−V0∂z p̃2 − V2φ
′ + ∂T κ0 p1 + Ẽ1q̃2 + Ẽ2q̃1

−V0∂z q̃2 + ∂T κ0q1 − Ẽ1 p̃2 − Ẽ2 p̃1 − Ẽ3 p̃0

)

⊥ �
†
0 , (48)

to be solved for V2. From, Pismen (2006) in two space dimensions the co-moving

coordinates imply the relation between normal velocity and evolution of the curvature,

∂T κ0 = −(�s + κ2
0 )V = α(�sκ0 + κ3

0 ) + O(ε2). (49)
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This allows the left-hand side of (48) to be expressed as a tensor product of �sκ0 and

κ3
0 and vector valued functions W 1 and W 2 of z-only dependence,

(

�sκ0W 1 + κ3
0 W 2 − V2∂zU 0

)

⊥�
†
0 .

These z-only vector-valued functions take the form

W 1 =
(

α p1 + q1

−p1 + αq1

)

, (50)

and

W 2 =
(

α
(

∂z p2 + p1

)

+ ∂zq2 − 4φ p1q2 − z∂zq1 − 2|U 1|2q1

α
(

∂zq2 + q1

)

− ∂z p2 + 4φ p1 p2 + z∂z p1 + 2|U 1|2 p1 − zφ′ + 4U 1 · U 2φ

)

.

(51)

Solving for V2 yields the higher order corrections to the normal velocity,

V2 = ν�sκ0 + ζκ3
0 . (52)

where the coefficients are defined by

ν :=
〈W 1, �

†
0 〉

β〈D−1φ′, φ′〉
, (53)

and

ζ :=
〈W 2, �

†
0 〉

β〈D−1φ′, φ′〉
. (54)

Parity considerations imply that V3 = 0 as they did for V1, and hence the normal

velocity has no O(ε3) terms and

V = −ακ0 + ε2
(

ν�sκ0 + ζκ3
0

)

+ O(ε4). (55)

Moreover the O(ε4) terms are bounded relative to 1 − �s and hence reflect regular

perturbations.

The sign of ν is essential to the wellposedness of the normal velocity system. In

particular wellposedness requires ν > 0. Applying the formula for the adjoint kernel

�
†
0 , (15), to (53) yields,

ν =
〈α p1 + q1, βD−1φ′〉 + 〈−p1 + αq1, φ

′〉
β〈D−1φ′, φ′〉

, (56)
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however p1⊥φ′ so their inner product is zero. Using (43) to expand U 1 we find

ν = −
‖φ′‖4β〈C−1�⊥

φ′D
−1φ′,�⊥

φ′D
−1φ′〉

〈D−1φ′, φ′〉3
+

‖φ′‖2‖D−1φ′‖2

β〈D−1φ′, φ′〉2
+

‖φ′‖4

β3〈D−1φ′, φ′〉2
.

(57)

For |μ| small the asymptotic inverse formula

D−1φ′ =
〈φ′, ψ〉

‖φ′‖‖ψ‖
ψ

μ
+ O(1), (58)

shows that the second term in (57) is dominant for small μ,

ν =
‖φ′‖2‖ψ‖2

〈ψ, φ′〉2
+ O(μ) (59)

which is positive for |μ| < μ∗, for μ∗ > 0 sufficiently small, independent of ε. This

establishes the main result (1).

Assuming that the curvatures are bounded uniformly with respect to ε, the ε2ζκ3
0

term in (55) is asymptotically small compared to ακ0 unless ζ is bounded away from

zero and α = O(ε2). This occurs when μ = O(ε2). Since ζ = ζ(μ) is smooth in μ it

remains to approximate ζ(0). The terms U 1 and U 2 are smooth in μ and in particular

are bounded as μ → 0. The denominator of ζ scales like μ−1 as μ → 0 so only the

terms 〈W 21, βD−1φ′〉 can give a nonzero contribution to ζ(0). That is, for |μ| � 1

the inverse formula (58) yields

ζ =
〈W 21, D−1φ′〉
〈D−1φ′, φ′〉

+ O(μ) =
〈W 21, ψ〉
〈ψ, φ′〉

+ O(μ).

Since α → 0 smoothly as μ → 0 terms in W 21 containing α are also O(μ). We

introduce the z-only reductions of the operators Ẽ1 and Ẽ2,

E1 := ∂z − 4φ p1,

E2 := z∂z − 2|U 1|2,

and observe that (46) can be written as ω1 = E1q1 + O(μ). This allows W 21 to be

expanded in the symmetric form

W 21 =
‖φ′‖2

〈φ′, ψ〉

(

E1D−1E1 + E2

)

ψ + O(μ),
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and hence

ζ =
‖φ′‖2

〈φ′, ψ〉2

(

〈D−1E1ψ, E
†

1ψ〉 + 〈E2ψ,ψ〉
)

+ O(μ),

=
‖φ′‖2

〈φ′, ψ〉2

(

−〈D−1ψ ′, ψ ′〉 + 16〈D−1(φ p1ψ), φ p1ψ〉 −
1

2
‖ψ‖2 − 2〈|U 1|2, ψ2〉

)

+ O(μ).

The coefficient ζ at μ = 0, is a sum of three negative and one positive term, and hence

is sign indefinite.

4 Numerical Confirmation and Discussion

The length of a closed interface � evolving under a normal velocity V satisfies

∂T |�| =
∫

�

V κ0 ds. (60)

For the system (55) following an integration by parts this reduces to

∂T |�| = −
∫

�

(

α|κ0|2 + ε2ν|∇sκ0|2 − ε2ζ |κ0|4
)

ds + O(ε4). (61)

If the curvature is uniformly bounded by M > 0, then the interfacial length

decreases if α > ε2ζ M2. In particular a circular interface � with an O(1) radius

R = R∗ is an equilibrium if and only if α, ζ > 0, α = O(ε2) and

R∗ = ε

√

ζ

α
. (62)

Conversely if α < 0 is O(1) and the curvature is not zero, then the length of a smooth

interface will grow. From (49) the normal velocity induces the complicated evolution

equation

∂T κ0 = (�s + κ2
0 )(ακ0 − νε2�sκ0 − ε2ζκ3

0 ) + O(ε4),

in which surface diffusion acts as a singular perturbation. Generically a simple closed

interface will grow, buckle (meander), and self-intersect.

These results are supported by simulations of (2) shown in Fig. 2. The modulus |	|
of the solution 	 of the PNLS system is zero on the interface and tends to an identical

constant value in both 
± domains. Each simulation starts with the same initial data,

	0(x) = A tanh((|x | − r(θ))/ε),
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Fig. 2 Contour plots of the modulus |	| over [−2π, 2π ]2 simulated from (2) for (top row) μ = −0.503

and β = 3.50, (middle row) μ = −0.208 and β = 3.21, (bottom row) μ = 0.0405 and β = 2.96. In all

simulations ε = 0.3 and unscaled time t is as indicated, with common color bar indicated in last row (Color

figure online)

where A ∈ C is the complex equilibrium of (2), θ is the angle x makes to the x1-axis,

and

r(θ) = 3 +
1

10

(

sin(3θ) − sin2(7θ)

)

,

is a closed perturbation of a circular interface of radius 3. The function |	0| is depicted

in the left-most image in each row of Fig. 1. The dispersive ratio ε = 0.3 in all

simulations and the periodic domain
 = [−2π, 2π ]2 is discretized using 2562 Fourier

modes. The top row shows the results for μ = −0.503 and β = 3.50 which is

well into the motion against curvature regime. The interface lengthens and buckles,

and self-intersects soon after the last t = 520 time depicted. Subsequent evolution

generates the complex motion of front-type cells discussed below. The second row

depicts the simulations for μ = −0.208 and β = 3.21. This has weaker motion

against curvature, the maximum curvature attained is smaller and the interface growth

just yielded self-intersected (across the periodic boundary) at t = 1600, although

the interface has filled the domain. The third row corresponds to μ = 0.0405 which
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Fig. 3 (Top) Contour plots of the modulus |	| over [−2π, 2π ]2 simulated from Eq. (2) for μ = −0.503,

β = 3.50, and ε = 0.3 at times A t = 5000, B T = 10, 000, C t = 15, 000, and D t = 20, 000. The

simulation used the same initial data and color bar as those presented in Fig. 2. (Bottom) Semi-log plot of

‖	t ‖2 verses time. The labeled points A–B–C–D corresponding to the snapshots of the top row and the

vertical arrow indicates the last frame of the top row of Fig. 2 roughly corresponding to the time of first

intersection of the interface

is positive but smaller than ε2 = 0.09. This is in the curvature-driven flow regime,

and the interface evolves into a circle with limiting radius R = 3.75. The computed

values ζ = 0.576 and α = 0.0121 yield the equilibrium radius R∗ = 3.78, showing

good quantitative agreement between the asymptotic reduction and the numerical

simulation. Computations with positive μ = 0.159 and β = 2.84 (not shown) yield

a circular interface that shrinks and approaches an O(ε) radius where it remains until

t = 3000 at which time the interface collapses and the function 	 becomes spatially

constant. Circular interfaces of O(ε) radius are near self-intersection and their analysis

is outside the scope of this work.

Continuation of the flow subsequent to self-intersection brings the evolution out of

the regime of the front dynamics analyzed above. However we include simulations in

this regime to illustrate the impact of motion against curvature on system complexity.

For μ < 0, numerical simulations beyond front self-intersection show that the flow
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enters a regime dominated by cells that exhibit a complex jostling motion. Extending

the flow depicted in the top row of Fig. 2 corresponding to μ = −0.503, to times

beyond the front self-intersection shows that front breaks into cells of positive or

negative phase demarcated by lines of zero intensity (|	| = 0). These cells experience

a strong jostling up to a time of order t = 5000, and then settle into a regime of slower

but unsteady motion for times on the order t ∈ [104, 2 × 104]. Snapshots of the

modulus |	| at times A) t = 0.5 × 104, B) t = 1.0 × 104, C) t = 1.5 × 104

and D) t = 2.0 × 104 are depicted in the top row of Fig. 3. The slight differences

between snapshots B and C (principally at the bottom of the two frames) might suggest

convergence to equilibrium. However the considerable differences between snapshot

C and D suggest that the configuration in C is a quasi-equilibrium or saddle point of

the flow.

The structure within the flow is better revealed by examining the time evolution

of the L2 norm of the time derivative of 	: ‖	t‖2. As shown in Fig. 3 (bottom),

the norm initially increases during the time period prior to the first self-intersection,

t = 520, marked by the vertical arrow. Subsequently the flow remains dominated

by motion against curvature until roughly t < 1000. During this period the time

derivative scales like ‖	t‖2 ≈ 10−1. The flow transitions to an active ‘jostling of

cells’ motion for t ∈ (0.2 × 104, 0.8 × 104) for which ‖	t‖2 ≈ 10−2. This regime

is represented by snapshot A in the top row of Fig. 3. On the longer time frame,

t > 0.8 × 104, the evolution appears to relax, with ‖	t‖2 decreasing below 10−3.

This slow evolution generates the relative similarity of snapshots B and C. However

the subsequent excursion brings ‖	t‖2 back above 10−3 and generates the significant

differences in the later configuration represented by snapshot D.

The analysis presented is the first to capture the transition from motion with curva-

ture to motion against curvature in a dispersive system. The analysis is formal, but is

qualitatively accurate in the regime in which |μ| is sufficiently small. This is verified

by the accurate prediction of the limiting equilibrium radius R∗ as simulated numeri-

cally in the case μ = 0.0405 in Fig. 2 (bottom row). This work examines the role of

bifurcations in front dynamics that initiate interfacial growth as a broader trigger for

the development of complexity in forced-damped systems. We feel that the generality

of this mechanism merits further study.
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