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We present numerical solutions for stationary and axisymmetric equilibriums of compact stars associated

with extremely strong magnetic fields. The interior of the compact stars is assumed to satisfy ideal

magnetohydrodynamic (MHD) conditions, while in the region of negligible mass density the force-free

conditions or electromagnetic vacuum are assumed. Solving all components of Einstein’s equations,

Maxwell’s equations, ideal MHD equations, and force-free conditions, equilibriums of rotating compact stars

associated with mixed poloidal and toroidal magnetic fields are obtained. It is found that in the extreme cases

the strong mixed magnetic fields concentrating in a toroidal region near the equatorial surface expel the matter

and form a force-free toroidal magnetotunnel. We also introduce a new differential rotation law for computing

solutions associated with force-free magnetosphere, and present other extreme models without the

magnetotunnel.

DOI: 10.1103/PhysRevD.107.103016

I. INTRODUCTION

Models for magnetars or hypermassive remnants of

binary neutron star mergers are considered to be associated

with strong magnetic fields around 1014–1015 G at their

surfaces [1,2]. Such strong magnetic fields play essential

roles in generating the signals arriving from the soft gamma

repeater and anomalous x-ray pulsar, as well as the jet of

the merger remnants. These magnetic fields are stronger

than any other observed objects, and their interior magnetic

fields could be 1 or 2 orders of magnitude stronger. It is,

however, far too weak to modify the equilibrium structure

of the compact stars. Therefore in a theoretical modeling

of such compact stars, the electromagnetic fields may be

treated as a perturbation, and hence separately from the

hydrostatic equilibriums of the stars (see, e.g., [3,4]).

Although it may be astrophysically unrealistic in the

present Universe, it is theoretically interesting to further

investigate the compact stars associated with extremely

strong magnetic fields—strong enough to modify the

configuration of equilibrium structure and to dominate as

a source of gravity. It is also interesting theoretically to

study the strongest limit of magnetic fields of the compact

star. Such solutions may be of use for initial datasets for

simulations [5] from which the behavior of magnetic fields

of compact stars would be elucidated within a relatively

short simulation time [6].
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In our previous papers [7,8], we have developed a

numerical code for stationary and axisymmetric equilibri-

ums of relativistic rotating stars associated with extremely

strong electromagnetic fields based on our versatile code

library, COCAL (Compact Object CALculator), for calculat-

ing equilibriums and quasiequilibrium initial data [9]. In

this code, a full set of Einstein-Maxwell equations accom-

panied with ideal magnetohydrodynamic (MHD) equations

are solved under assumptions of stationarity and axisym-

metry consistently for the first time. In the paper [8]

(hereafter Paper I), we have obtained solutions with mixed

poloidal and toroidal magnetic fields whose exteriors are

electromagnetic vacuum. We demonstrated that in the

extreme cases the matter in a toroidal region near the

equatorial surface was partly expelled by the extremely

strong magnetic fields. Such solutions have been used as

initial data for fully numerical relativity simulations in [6].

In this paper, we introduce two new extensions to our

previous works [7,8], one is the force-free magnetic fields,

and the other is the differential rotation. In Paper I, we

assumed electromagnetic vacuum in the region where the

energy density of the matter (or the rest mass density)

became negligible following the idea of [10]. The former

extension is introduced to replace the electromagnetic

vacuum with the force-free electromagnetic plasma region.

Such low density regions appear not only at the exterior of

the surface of a compact star, but also are expected to

appear in the interior of it when the magnetic fields are

stronger than the above mentioned solutions obtained in

the previous Paper I. To realize this, we follow a pre-

scription for computing such compact stars associated

with the magnetosphere proposed by the Southampton

group [11]. This prescription has been also investigated by

the Florence group [12] for computing relativistic non-

rotating stars under a simplified spatially conformal flat

metric for the strong gravity (for numerical computations of

magnetized relativistic stars, see also [10,13]). As wewill see

below, in the newly calculated solutions, it is found that the

mixed poloidal and toroidal magnetic fields concentrate near,

but well inside of, the equatorial surface, and that the fields

totally expel the matter there, when the field strength

becomes of the order of 1017 G or higher for typical neutron

stars, that is, a toroidal force-free magnetotunnel is formed in

such a solution. We also calculated the solutions replacing

the electromagnetic vacuum exterior with the force-free

magnetosphere. The latter extension for introducing the

differential rotation is used to compute rotating magnetized

compact stars surrounded by the magnetosphere. For a

comparison, differentially rotating models with electromag-

netic vacuum exterior are also obtained.

This paper is organized as follows. In Sec. II, we

formulate the force-free fields in terms of variables used

in our previous works [7,8], and then introduce details of

the formulation adapted to the numerical method. In

Sec. III, new numerical solutions combining the force-free

fields, differential rotations, as well as the electromagnetic

vacuum as in the previous paper are presented.

II. FORMULATION AND NUMERICAL

METHOD FOR THE FORCE-FREE

ELECTROMAGNETIC FIELDS

In Paper I, we have detailed the formulation and numerical

method for computing stationary and axisymmetric equilib-

riums of strongly magnetized relativistic rotating stars. A set

of equations to be solved includes the rest mass conservation

equation, ideal MHD conditions, MHD-Euler equations

associated with the barotropic equation of state, and the

magnetic and gravitational field equations. From the con-

sistency of the set of ideal MHD equations under the

stationarity and axisymmetry, a set of integrability conditions

and first integrals are derived. In particular, it requires an

existence of a master potential ϒ that several quantities

(as well as combinations of quantities), for example, the t
and ϕ components of the electromagnetic 1-form Aα are the

function of ϒ, At ¼ AtðϒÞ, Aϕ ¼ AϕðϒÞ.
To obtain solutions in Paper I, we assumed that the star is

ideal MHD fluid, and furthermore that the outside of the

star is electromagnetic vacuum. Because the above depend-

ences At ¼ AtðϒÞ and Aϕ ¼ AϕðϒÞ are valid only on the

support of ideal MHD fluid, the At and Aϕ components

should be solved independently from Maxwell’s equations

in the electromagnetic vacuum region, although the latter

assumption may not be astrophysically realistic.

In this work, we introduce an option to replace the

assumption for the electromagnetic vacuum with the force-

free electromagnetic fields in the low density region out of

the ideal MHD region. We introduce below the formulation

for the force-free electromagnetic fields which is adapted to

our formulation for magnetized compact stars in Paper I.

It turns out that only a minor modification is necessary to

implement the force-free formulation into our previously

developed code [8].

Hereafter, we use abstract index notation for tensors;

the Greek letters α; β; γ;… stand for 4D objects, the Latin

lowercase letters a; b; c;… for spatial 3D objects, and

the Latin uppercase letters A;B; C;… for meridional 2D

objects. Also, we sometimes express the two forms, F; dA,
and dðhuÞ omitting indices. Such index-free notation may

be used, with caution, for calculations involving forms

and vectors. A dot denotes an inner product, that is, a

contraction between adjacent indices. For example, a vector

v and a p form ω have inner product

v · ω ¼ vγωγα…β; ω · v ¼ ωα…βγv
γ: ð1Þ

We introduce the 3þ 1 form of the spacetime metric

with conformally decomposed spatial metric,

ds2 ¼ −α2dt2 þ ψ4γ̃abðdxa þ βadtÞðdxb þ βbdtÞ ð2Þ
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where α, βa, ψ , and γ̃ab are the lapse, the shift, the

conformal factor, and the conformally related spatial

metric, respectively. The γ̃ab is further decomposed with

the reference 3D flat metric fab as γ̃ab ¼ fab þ hab, and the
conformal decomposition is constrained by a condition

γ̃ ¼ f where γ̃ and f are the determinant of γ̃ab and fab,
respectively. We further assume the spacetime is asymp-

totically flat and impose the Dirac gauge and the maximal

slicing conditions as coordinate conditions.

Further details in notations and a common part of

formulations are found in Paper I.

A. Force-free condition

We assume stationarity and axisymmetry associated,

respectively, with the timelike and spacelike Killing vectors

tα and ϕα. These vectors are used as the basis of vector and

tensor quantities, for example, the current vector jα may be

written as

jα ¼ jttα þ jϕϕα þ jAeαA; ð3Þ

where eαA are the coordinate basis of the other two spatial

coordinates xA, such as r and θ.

We assume that in the exterior of the ideal MHD fluid,

the force-free electromagnetic field is carried by a certain

plasma current whose density is negligible. Each compo-

nent of the force-free conditions F · j ¼ Fαβj
β ¼ 0 in the

stationary and axisymmetric system becomes as follows:

t component:

t · ðF · jÞ ¼ t · ðF · eAÞjA ¼ jAFtA ¼ −jA∂AAt ¼ 0; ð4Þ

ϕ component:

ϕ ·ðF ·jÞ¼ϕ ·ðF ·eAÞjA¼ jAFϕA¼−jA∂AAϕ¼0; ð5Þ

xA components:

eA · ðF · jÞ ¼ eA · ðF · tÞjt þ eA · ðF · ϕÞjϕ þ eA · ðF · eBÞjB

¼ FAtj
t þFAϕj

ϕ þ FABj
B

¼ jt∂AAt þ jϕ∂AAϕ þ ðdAÞABjB ¼ 0: ð6Þ

The xA components of Maxwell’s equations are written,

4πjA
ffiffiffiffiffiffi

−g
p ¼ ∂BðFAB ffiffiffiffiffiffi

−g
p Þ ¼ ϵAB∂Bð

ffiffiffiffiffiffi

−g
p

BÞ; ð7Þ

where B is defined as FAB ¼ ϵABB (see Sec. II.F.3 of

Paper I).

Substituting Eq. (7) to t and ϕ components of the force-

free conditions Eqs. (4) and (5), we have

ϵAB∂AAt∂Bð
ffiffiffiffiffiffi

−g
p

BÞ ¼ 0; ð8Þ

ϵAB∂AAϕ∂Bð
ffiffiffiffiffiffi

−g
p

BÞ ¼ 0: ð9Þ

Hence, similarly to the case with ideal MHD fluid, the

integrability conditions for the region of force-free electro-

magnetic fields can be written in terms of the master

potential ϒ,

At ¼ AtðϒÞ; Aϕ ¼ AϕðϒÞ;
and

ffiffiffiffiffiffi

−g
p

B ¼ ½ ffiffiffiffiffiffi

−g
p

B�ðϒÞ: ð10Þ

Substituting the meridional component of the current (xA

component of the Maxwell’s equations) (7) and a definition

FAB ¼ ϵABBϕ, the xA component of the force-free con-

dition (6) becomes

jt
ffiffiffiffiffiffi

−g
p

∂AAt þ jϕ
ffiffiffiffiffiffi

−g
p

∂AAϕ −
1

4π
Bϕ∂A½

ffiffiffiffiffiffi

−g
p

B� ¼ 0: ð11Þ

The conditions (10) imply

�

A0
tj
t ffiffiffiffiffiffi

−g
p þA0

ϕj
ϕ

ffiffiffiffiffiffi

−g
p

−
1

4π
½ ffiffiffiffiffiffi

−g
p

B�0Bϕ

�

∂Aϒ¼0; ð12Þ

where the primes A0
t, A

0
ϕ, and ½

ffiffiffiffiffiffi

−g
p

B�0 stand for a derivative
with respect to the master potentialϒ. Therefore, we have a

consistency relation, which we also call first integral, for

the stationary and axisymmetric force-free fields to satisfy

A0
tj
t ffiffiffiffiffiffi

−g
p þ A0

ϕj
ϕ

ffiffiffiffiffiffi

−g
p

−
1

4π
½ ffiffiffiffiffiffi

−g
p

B�0Bϕ ¼ 0: ð13Þ

The t and ϕ components of Maxwell’s equations are

written, respectively, as

4πjt
ffiffiffiffiffiffi

−g
p ¼ ∂AðFtA ffiffiffiffiffiffi

−g
p Þ; ð14Þ

4πjϕ
ffiffiffiffiffiffi

−g
p ¼ ∂AðFϕA ffiffiffiffiffiffi

−g
p Þ: ð15Þ

Substituting either (14) or (15) in Eq. (13), we have a

relation for jϕ or jt to be used as a source term for an

equation to determine the master potential, which is related

to either AϕðϒÞ or AtðϒÞ, respectively. So far in our actual

numerical computations, we have been always choosing the

master potential to be ϒ ¼ Aϕ, and hence ϕ component of

Maxwell’s equations is used to determine the potential Aϕ

(see Paper I).

B. A model of force-free field around

an ideal MHD region

In our formulation of ideal MHD presented in Paper I,

we explicitly use the current jα as an intermediate variable.

Analogously, we have written down in the previous

section II A the force-free conditions as Eqs. (10) and (13),

whose forms are similar to the ideal MHD conditions,
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F:u ¼ 0. In actual computations, we choose Aϕ as a master

potential, ϒ ¼ Aϕ. Then, the integrability conditions and

relations involving the current are written as

At ¼ AtðAϕÞ and
ffiffiffiffiffiffi

−g
p

B ¼ ½ ffiffiffiffiffiffi

−g
p

B�ðAϕÞ; ð16Þ

jA
ffiffiffiffiffiffi

−g
p ¼ 1

4π
½ ffiffiffiffiffiffi

−g
p

B�0δABBB; ð17Þ

jϕ
ffiffiffiffiffiffi

−g
p þ A0

tj
t ffiffiffiffiffiffi

−g
p ¼ 1

4π
½ ffiffiffiffiffiffi

−g
p

B�0Bϕ; ð18Þ

where BA is defined by ∂AAϕ ¼ −ϵA
BBB, and δAB is the

Kronecker delta.

The corresponding expressions for the components of

the current for ideal MHD fluid are [see Eqs. (135) and

(136) of Paper I]

jA
ffiffiffiffiffiffi

−g
p ¼ ð½ ffiffiffiffiffiffi

−g
p

Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0ÞδABBB

− ½ ffiffiffiffiffiffi

−g
p

Ψ�0δABωB; ð19Þ

jϕ
ffiffiffiffiffiffi

−g
p þ A0

tj
t ffiffiffiffiffiffi

−g
p

¼ ð½ ffiffiffiffiffiffi

−g
p

Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0ÞBϕ − ½ ffiffiffiffiffiffi

−g
p

Ψ�0ωϕ

− ðA00
t huϕ þ Λ

0Þρut ffiffiffiffiffiffi

−g
p

− s0Tρ
ffiffiffiffiffiffi

−g
p

; ð20Þ

where arbitrary functions
ffiffiffiffiffiffi

−g
p

Λϕ and Λ, the stream

function
ffiffiffiffiffiffi

−g
p

Ψ, and the entropy per baryon mass s are

functions of the master potential Aϕ,

ffiffiffiffiffiffi

−g
p

Λϕ ¼ ½ ffiffiffiffiffiffi

−g
p

Λϕ�ðAϕÞ; Λ ¼ ΛðAϕÞ;
ffiffiffiffiffiffi

−g
p

Ψ ¼ ½ ffiffiffiffiffiffi

−g
p

Ψ�ðAϕÞ; and s ¼ sðAϕÞ: ð21Þ

In Eqs. (19) and (20), the terms including the stream

functions
ffiffiffiffiffiffi

−g
p

Ψ are related to the meridional flow fields, ρ

is the rest mass density, and T the temperature. Since near

the surface of compact stars, ρ → 0, and ½ ffiffiffiffiffiffi

−g
p

Ψ� →
constant, terms related to the fluid approach to zero, and

hence the remaining terms are

jA
ffiffiffiffiffiffi

−g
p

→ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0δABBB ð22Þ

jϕ
ffiffiffiffiffiffi

−g
p þ A0

tj
t ffiffiffiffiffiffi

−g
p

→ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0Bϕ: ð23Þ

Therefore, comparing (17), (18) and (22), (23), we can

smoothly connect the expressions of the current in the ideal

MHD fluid region and in the force-free magnetosphere with

the negligible density by choosing a common arbitrary

function satisfying

1

4π
½ ffiffiffiffiffiffi

−g
p

B�0 ¼ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0; ð24Þ

in the whole domain of computation, and therefore connect

the electromagnetic fields smoothly.

C. Construction of magnetized star with

magnetosphere/magnetotunnel

As mentioned earlier, in the previous Paper I following

[10], a region outside of the compact star was assumed to

be the electromagnetic vacuum where the electric current

vanishes. Therefore, a component of vector potential At

was a function of Aϕ on the ideal MHD fluid support,

but was independent of Aϕ otherwise. Assuming Aϕ to be

smooth across the stellar surface, we introduced (implicitly)

the surface charge for At to be continuous, but its normal

derivative at the surface to be discontinuous. Such a

solution can be computed by adding a homogeneous

function in solving At to satisfy the above conditions at

the surface.

In our formulation for the force-free magnetosphere/

magnetotunnel, we assume that the component At is a

function of Aϕ in the whole domain and that a conducting

current flows continuously and smoothly across the stellar

surface. Therefore, At is no longer solved independently in

the outside of the ideal MHD region. As it has been found

in Paper I, when the toroidal magnetic field becomes

extremely strong, the mixed poloidal and toroidal magnetic

fields concentrate near the equatorial surface, and they

expel the high density matter of compact stars. It was, and,

so far, it is not possible for the COCAL code to compute a

toroidal vacuum tunnel inside of the compact star, because

a method to impose a boundary condition to compute At for

such a toroidal region has not been developed yet. On the

other hand, if we assume a force-free field in such a toroidal

region, the force-free magnetotunnel where the matter is

expelled totally can be calculated straightforwardly under

the above mentioned assumption in the same manner as

computing the magnetosphere outside of the compact star.

In the latter sections, we will present such compact stars of

which the magnetotunnel is formed inside.

1. Formulation for the fluid variables in equilibrium

An equilibrium solution of the magnetized compact

star can be calculated from a system of first integrals

and integrability conditions derived in Paper I. For choices

with ϒ ¼ Aϕ, and without meridional flows ½ ffiffiffiffiffiffi

−g
p

Ψ�ðϒÞ ¼
constant, the following relations obtained from the nor-

malization condition of four velocity u · u ¼ −1, ideal

MHD condition, and MHD-Euler equation (see Paper I,

Sec. III.C),

ut ¼ 1

½α2 − ψ4γ̃abðva þ βaÞðvb þ βbÞ�1=2 ; ð25Þ

uϕ

ut
¼ −A0

t ¼ Ω; ð26Þ

KŌJI URYŪ et al. PHYS. REV. D 107, 103016 (2023)

103016-4



h ¼ Λ

ut − A0
tuϕ

; ð27Þ

where the angular velocity of the matter Ω is also an

arbitrary function of Aϕ (Ferraro’s law),

Ω ¼ ΩðAϕÞ; ð28Þ

and the four velocity is written as

uα ¼ utðtα þ vαÞ ¼ utðtα þ ΩϕαÞ; ð29Þ

because the meridional components uA is assumed to

vanish uA ¼ utvA ¼ 0.

2. Choice for arbitrary functions

Further assuming the homentropic flow s ¼ constant,

five arbitrary functions of Aϕ,

AtðAϕÞ; ΩðAϕÞ; ΛðAϕÞ;
½ ffiffiffiffiffiffi

−g
p

Λϕ�ðAϕÞ; and ½ ffiffiffiffiffiffi

−g
p

B�ðAϕÞ; ð30Þ

appear in the above formulation for the matter (25)–(27)

and the current (17)–(20). Because of the assumption (24),

four arbitrary functions remain to be specified.

For some arbitrary functions above, we choose, as in

Paper I, a two parameter sigmoid function Ξ
0ðx; b; cÞ that

varies from 0 to 1 in an interval 0 < x < 1:

Ξ
0ðx; b; cÞ ¼ 1

2

�

tanh

�

x

b
− c

�

þ 1

�

; ð31Þ

where b ð0 < b < 1Þ is a parameter for the transition width,

and c ð0 < c < 1Þ for the transition center. Also, its integral
Ξðx; b; cÞ becomes

Ξðx; b; cÞ ¼ 1

2

�

b ln cosh

�

x

b
− c

�

þ x

�

þ constant: ð32Þ

In actual computations, functions Ξ0ðAϕÞ and ΞðAϕÞ are
defined by

Ξ
0ðAϕÞ ¼

1

2

�

tanh

�

1

b

Aϕ − A0
ϕ

A1
ϕ − A0

ϕ

− c

�

þ 1

�

; ð33Þ

and

ΞðAϕÞ ¼
1

2

�

bðA1
ϕ − A0

ϕÞ ln cosh
�

1

b

Aϕ − A0
ϕ

A1
ϕ − A0

ϕ

− c

�

þ Aϕ

�

þ constant; ð34Þ

where the constant of Eq. (34) is set to be Ξð−∞Þ ¼ 0.

The function Ξ
0ðAϕÞ varies from 0 to 1 in between

A0
ϕ < Aϕ < A1

ϕ. We always set the value of Aϕ at the

rotation axis (z axis) to be zero.

3. Models

Using the function Ξ
0ðAϕÞ and its integral ΞðAϕÞ, we

model the forms of arbitrary functions (31). For the

electromagnetic vacuum outside and with the force-free

magnetotunnel (hereafter referred to as EV-MT type

solutions), we choose the same as Paper I, namely,

Λ ¼ −Λ0ΞðAϕÞ − Λ1Aϕ − E; ð35Þ

At ¼ −ΩcAϕ þ Ce; ð36Þ
ffiffiffiffiffiffi

−g
p

Λϕ ¼ Λϕ0ΞðAϕÞ; ð37Þ
ffiffiffiffiffiffi

−g
p

B ¼ 4πΛϕ0ΞðAϕÞ; ð38Þ

where Λ0, Λ1, E, Ωc, Ce, and Λϕ0 are constant. Values of

Λ0, Λ1, and Λϕ0 are prescribed to control the strength

of electromagnetic fields, while those of E, Ωc, and Ce are

calculated from conditions to specify the mass, total

angular momentum, and charge of a solution.

For computing solutions with the EV-MT type solutions,

we choose, as in Paper I, the parameters A1
ϕ and A0

ϕ of the

sigmoid functions ΞðAϕÞ that appear in Eqs. (35), (37),

and (38) as A1
ϕ ¼ Amax

ϕ where Amax
ϕ is the maximum value of

Aϕ on the stellar support, and A0
ϕ ¼ Amax

ϕ;S where Amax
ϕ;S is the

maximum value of Aϕ on the stellar surface. The choice

A0
ϕ ¼ Amax

ϕ;S is necessary for the toroidal component of the

magnetic fields to be confined inside of the star.

For computing solutions with the force-free magneto-

sphere the above choices for A0
ϕ and A1

ϕ are not necessary.

In our calculation for the solutions with the force-free

magnetosphere and the magnetotunnel (hereafter MS-MT

type solutions), we choose A0
ϕ and A1

ϕ to be the same as

above. We also present the solutions whose A1
ϕ is set larger

than Amax
ϕ and A0

ϕ smaller than Amax
ϕ;S (see Table II below). In

any case, note that Amax
ϕ > Amax

ϕ;S > 0.

The relation (36) implies that the star is uniformly

rotating, ΩðAϕÞ ¼ Ωc. Equation (38) is an integral of

Eq. (24), where a constant of integration does not affect a

solution. The value of Ce is determined to set the net electric

charge to vanish.

For the differentially rotating solutions, we modify

Eq. (36),

At ¼ −ΩcΞðAϕÞ þ Ce; ð39Þ

and hence the rotation law becomes

Ω ¼ ΩcΞ
0ðAϕÞ: ð40Þ
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This is a differential rotation law whose angular velocity Ω

varies from 0 to Ωc as the Aϕ from A0
ϕ ¼ 0 to A1

ϕ. We will

explain this choice of differential rotation law and its

parameters in the later section.

D. Numerical computation

1. Setups for coordinate grids and multipoles

The solutions presented below are associated with

extremely strong mixed poloidal and toroidal magnetic

fields. As in Paper I, our models produce mixed poloidal

and toroidal fields concentrated near the equatorial surface.

Hence, it is necessary to resolve such configurations with a

large number of grid points in θ coordinate, and accord-

ingly, a large number of multipoles.

The numbers of grid points and other grid parameters

used in actual computations shown in the later sections are

the same as the highest resolution used in Paper I, which is

reproduced in Table I marked as SE3tp. A system of

equations is discretized on spherical coordinates ðr; θ;ϕÞ ∈
½ra; rb� × ½0; π� × ½0; 2π� where ra ¼ 0 is the center of the

star, and rb ¼ 106R0, where R0 is the equatorial radius of

the star. To resolve a toroidal region of extremely strong

magnetic fields concentrated near the equatorial surface,

we include the multipoles up to L ¼ 60. Details of

convergence tests can be also found in Paper I.

2. Model parameters

Configuration and intensity of electromagnetic fields

inside and outside of the compact stars are determined by

the forms of arbitrary functions presented in Sec. II C 3, and

parameters associated with them. The parameters used in

the present computations, that is, the parameters b and c
defined in Eqs. (35), (37), and (38), and those for differ-

ential rotation in (39) and (40) are all listed in Table II.

These functions and parameters produce extremely strong

mixed poloidal and toroidal magnetic fields. In particular,

the values of parameters are close but changed from

those of Paper I such that the electromagnetic fields

become stronger enough to form a toroidal force-free

magnetotunnel.

For the equations of states (EOS), we choose a poly-

tropic EOS,

p ¼ KρΓ; ð41Þ

for simplicity. This introduces two more parameters, a

polytropic constant K and index Γ, whose values are set as

in Table III.

In addition, we have three parameters fE;Ωc; Ceg in

Eqs. (35) and (36) [or (39) for differentially rotating model]

and one augmented parameter R0. The parameter Ce does

not change the solution when the star is surrounded by the

magnetosphere, and so Ce may be set to zero in this case.

For the case with electromagnetic vacuum outside, Ce is set

for an asymptotic electric charge,

Q ¼ 1

4π

Z

∞

FαβdSαβ; ð42ÞTABLE I. Grid parameters used for computing magnetized

rotating compact stars. Normalized radial coordinates ra, rb, and
rc are in the unit of equatorial radius R0 in the coordinate length.

Type ra rb rc Nf
r Nm

r Nr Nθ Nϕ L

SE3tp 0.0 106 1.1 160 176 384 384 72 60

ra: Radial coordinate where the radial grids start.

rb: Radial coordinate where the radial grids end.

rc: Radial coordinate between ra and rb where the radial grid

spacing changes.

Nr: Number of intervals Δri in r ∈ ½ra; rb�.
Nf

r: Number of intervals Δri in r ∈ ½ra; 1�.
Nm

r : Number of intervals Δri in r ∈ ½ra; rc�.
Nθ: Number of intervals Δθj in θ ∈ ½0; π�.
Nϕ: Number of intervals Δϕk in ϕ ∈ ½0; 2π�.
L: Order of included multipoles.

TABLE II. Parameters related to arbitrary functions in the

integrability conditions (35)–(40), used in computing solutions

presented in Sec. III. The parameters ðb; cÞ are those used in the

sigmoid function Ξ
0ðAϕÞ for Eqs. (35), (37), and (38), while

DR∶ðb; cÞ are used for the differential rotation in Eqs. (39)

and (40). The values of A0
ϕ and A1

ϕ in Eqs. (35), (37), and (38) are

set as below, and for DR models in Eqs. (39) and (40), we set A1
ϕ

to be the same as the other Ξ0ðAϕÞ, but set A0
ϕ ¼ 0.

Models Λ0 Λ1 Λϕ0 ðb; cÞ DR∶ðb; cÞ
A0
ϕ

Amax
ϕ;S

A1
ϕ

Amax
ϕ

EV-MT-UR −4.8 0.3 3.2 (0.2, 0.5) � � � 1.0 1.0

MS-MT-DR −6.0 0.3 3.8 (0.2, 0.5) (0.05, 0.25) 1.0 1.0

EV-MT-DR −6.0 0.3 3.8 (0.2, 0.5) (0.1, 0.3) 1.0 1.0

MS-DR-1 4.8 0.3 1.2 (0.2, 0.5) (0.02, 0.1) 0.3 1.7

MS-DR-2 −1.3 0.3 1.1 (0.2, 0.5) (0.02, 0.1) 0.3 1.7

TABLE III. Quantities at the maximum mass model of Tolman-

Oppenheimer-Volkoff (TOV) solutions with the polytropic

EOS (41) in G ¼ c ¼ M⊙ ¼ 1 units. pc and ρc are the pressure

and the rest mass density at the center,M0 is the rest mass,M the

gravitational mass, and M=R the compactness (a ratio of

the gravitational mass to the circumferential radius). The poly-

tropic constant K is chosen so that the value of M0 becomes

M0 ¼ 1.5 at the compactness M=R ¼ 0.2. To convert a unit

of ρc to cgs, multiply the values by M⊙ðGM⊙=c
2Þ−3 ≈

6.176393 × 1017 g cm−3.

Γ ðp=ρÞc ρc M0 M M=R

2 0.318244 0.00448412 1.51524 1.37931 0.214440
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to be zero. The other three parameters are calculated from

three conditions, setting the value of the rest mass density at

the center ρc, the normalization of the equatorial radius, req,

as req=R0 ¼ 1, and the value of the radius along the rotation

axis rp=req. Further details can be found in Paper I.

III. RESULTS

From the formulation and numerical method described in

Sec. II, compact star solutions associated with extremely

strong electromagnetic fields are obtained. Overall con-

figurations of the magnetic fields generated from this

formulation are typically the strong poloidal (dipolelike)

magnetic fields extending from the core of the star to the

outside, and the poloidal and toroidal magnetic fields

concentrated in a toroidal region near the equatorial sur-

face. In Paper I, we have observed that the latter’s very

strong mixed magnetic fields expel the matter near the

equatorial surface. As mentioned above, we introduce the

force-free magnetic fields when the matter is totally

expelled such that the mass density becomes negligible

in the toroidal region, so the force-free magnetotunnel is

formed inside of the compact star.

Combining the electromagnetic vacuum or magneto-

sphere, and the uniform or differential rotations, we present

four types of such extremely magnetized solutions in

this article where three of them are associated with the

magnetotunnel:

(1) EV-MT-UR type—those associated with the electro-

magnetic vacuum outside of the star, magnetotunnel,

and uniform rotation.

(2) MS-MT-DR type—those associated with the mag-

netosphere, magnetotunnel, and differential rotation.

(3) EV-MT-DR type—those associated with the electro-

magnetic vacuum outside, magnetotunnel, and differ-

ential rotation.

(4) MS-DR type—those associated with the magneto-

sphere, and differential rotation whose toroidal

magnetic field is distributed across the star and the

magnetosphere.

A. Overall feature of solutions with magnetotunnel

1. Uniformly rotating models with electromagnetic

vacuum outside

In Fig. 1, EV-MT-UR models with rapid and slow

rotations are shown. These are straightforward extensions

of solutions presented in Paper I, in particular changing the

parameters fΛ0;Λϕ0g of the model P1 systematically to

achieve stronger electromagnetic fields. The boundaries of

the force-free magnetotunnel, where the toroidal regions

where the matter is totally expelled by the magnetic fields,

are indicated with green circles in the left panel of the first

and the second rows for rapidly and slowly rotating models,

respectively. The expelled regions can be also seen clearly

in the rest mass density profile ρ=ρc (red curves) along the

equatorial radius x=R0 plotted in the middle panels of the

first and the second row.

The right panel of the first and the second rows in Fig. 1

are the plots of the poloidal, Bpol ¼ Fxy, and the toroidal,

Btor ¼ −Fxz, components of magnetic fields along the

equatorial radius x=R0. The maximum of Bpol is at the

center of the star, while that of Btor is near the equatorial

surface. It can be seen that the poloidal component Bpol

takes a large value also around this toroidal region near the

equatorial surface.
1
It is also noticeable that, for the slowly

rotating EV-MT-UR-2 model, the maximum value of Btor is

greater than that of Bpol.

In the second and fourth panels in the third row, the

contours of the components of electromagnetic one form At

and Aϕ are drawn. Because At is assumed to be a function

of Aϕ in the ideal MHD region of the stellar support

satisfying the relation (36), their contours are homologous

there, while they are not in the electromagnetic vacuum

outside of the star.

2. Differentially rotating models with magnetosphere

In Fig. 2, MS-MT-DR models with rapid and slow

rotations are shown. The same as the EV-MT-UR model

in Fig. 1, the strong concentration of the magnetic fields

expels the matter near the equatorial surface and forms the

magnetotunnel, which can be seen in the corresponding

panels in Fig. 2.

Differences between the MS-MT-DR model and the

previous EV-MT-UR model are the magnetosphere being

outside of the star instead of electromagnetic vacuum, and

the differential rotation instead of the uniform rotation. As

discussed in Sec. II, arbitrary functions in the force-free

magnetosphere/magnetotunnel region are chosen to be the

same as those in the ideal MHD region as Eq. (24) as the

electromagnetic potentials are smoothly connected across

the boundaries of these regions. This can be seen in the

second and the fourth panels of the third row in Fig. 2 for

the contours of At and Aϕ, which are homologous not only

on the stellar support (ideal MHD region) but also in the

force-free region outside of the star (as well as in the

magnetotunnel region).

We also introduce the differential rotation as prescribed

in Eq. (40) in this model. As shown in the middle panels of

the first and the second row of Fig. 2, the profiles of Ω=Ωc

are increasing along the equatorial radius x=R0. These are

rather uncommon profiles for differential rotation laws,

that is, in most of numerical computations of relativistic

rotating stars, differential rotation laws with decreasing Ω

along x=R0 have been considered [14], except for a few

1
This structure is referred to as the twisted torus magnetic

fields.
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works [15]. There are two motivations for us to choose this

new differential rotation law (40).

In computing solutions with a force-free magnetosphere

outside, we found that the t component of electromagnetic

one form At diverges asymptotically if we assume uniform

rotation. It may be understood that in our assumptions,

namely the stationary and axisymmetric force-free mag-

netosphere, the magnetic field lines attached to the stellar

surface have to rotate with the same Ω even if they are

extended to the region outside of the light cylinder. In terms

of our formulation, it appears that the current jt coupled

with the ϕ component jϕ as in Eq. (18) does not fall off

asymptotically fast enough to have a regular asymptotic

behavior in At. Since the magnetic field lines extended

toward the region of larger r are attached to the surface

of the star closer to the axis of rotation (z axis), setting

A0
t ¼ ΩðAϕÞ to vanish near the rotation axis decouples the

jϕ and jt in the large r region. This is the first reason that

we choose the differential rotation law (40), which is

nonrotating near the axis of symmetry. Also for this reason,

it seems it is not possible to obtain uniformly rotating

relativistic solutions with the force-free magnetosphere

using our formulation. In the literature, only the nonrotating

solutions are calculated for such strongly magnetized
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FIG. 1. Solutions for uniformly rotating extremely magnetized compact stars associated with an electromagnetic vacuum outside and

magnetotunnel (EV-MT-UR type). The panels in the first row correspond to the rapidly rotating model EV-MT-UR-1. The left panel:

contours of p=ρ (black closed curves), the poloidal magnetic field (orange arrows), color density map for the toroidal magnetic fields

(red and blue), and the boundary of the magnetotunnel (green circles) are shown. The contours of p=ρ are drawn at p=ρ ¼ 0.001, 0.002,

0.005, 0.01, 0.02, 0.05, 0.1. The middle panel: the rest mass density ρ=ρc (red curve) and the angular velocityΩ=Ωc are plotted along the

equatorial radius (x axis). Inset: enlargement of ρ=ρc near the surface. The right panel: components of the magnetic fields, Bpol ¼ Fxy

(dashed purple curve) and Btor ¼ −Fxz (dark green curve) are plotted along the equatorial radius (x axis). The panels in the second row
are the same as the first row but for the slowly rotating model EV-MT-UR-2. In the third row, the first panel from the left, the metric

potentials are shown, which are the contours of ψ (green closed curves), the color density map for β̃y (red and blue), the contours of hxz
(red and blue curves), and the surface of the star (black closed curve). In the second panel from the left, the components of

electromagnetic one form are shown, which are the contours of Aϕ (green curves), the contours of At [dashed red (positive), purple

(zero), blue (negative)], and the surface of the star (black closed curve) for the model EV-MT-UR-1. The third and fourth panels of the

third row are the same as the first and the second panels, respectively, but for the model EV-MT-UR-2.
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relativistic stars associated with the force-free magneto-

sphere in general relativity [12]. The second reason for

this differential rotation law is motivated by the results of

simulations [6] and a semianalytic argument [16] that such

rotation profiles may, although transiently, appear during

the evolution of highly magnetized rotating stars.

Because of the differential rotation, the rotation period of

the field lines in the magnetosphere differs with latitude.

The fastest ones are those attached near the equatorial

surface. The smallest cylindrical radius of the light cylinder

becomes around ϖ ¼ r sin θ ∼ 2π=Ωc ∼ 24R0 ð100R0Þ
for the rapidly (slowly) rotating model MS-MT-DR-1

(2, respectively), so the rotating field lines do not reach

to the light cylinder in our models.

3. Differentially rotating models

with electromagnetic vacuum outside

In Fig. 3, EV-MT-DR models with rapid and slow

rotations are shown. This is to demonstrate that it is

possible to calculate solutions combining the electromag-

netic vacuum region outside and the differential rotation.

Because of the magnetic vacuum, the field lines outside are

not dragged around. Although in principle, one can freely

specify the differential rotation law for these models,

we only modify the values of parameters slightly from

MS-MT-DR models. It appears that interior magnetic fields

of EV-MT-DR models are similar to those of MS-MT-DR

models rather than EV-MT-UR models.

B. Solutions with toroidal fields distributed across

the star and the magnetosphere

Because of our previous choices of parameter, in

particular A0
ϕ for the function (33) (see Table II), the

function varies when the potential Aϕ becomes larger

than its value at the equatorial surface, Aϕ > A0
ϕ ¼ Amax

ϕ;S .

Because of this, the toroidal component of the magnetic

field is confined interior of the compact star. This choice

was necessary for the EV models since the toroidal

magnetic field cannot exist in the vacuum region. Also

because of this, the extremely strong magnetic fields

develop near the equatorial surface, which is strong enough

to expel the matter as shown in Sec. III A.

For the MS models, however, the toroidal component

of the magnetic fields is allowed to exist in the region of
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FIG. 2. Same as Fig. 1 but for differentially rotating and extremely magnetized compact stars associated with a magnetosphere and a

magnetotunnel, MS-MT-DR-1 (rapidly rotating model) and MS-MT-DR-2 (slowly rotating model).
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force-free magnetosphere outside of the star. In Fig. 4, we

successfully computed such strongly magnetized solutions

whose toroidal component of magnetic fields is distributed

across the star and the magnetosphere. For these solutions

with the magnetosphere, the parameter A0
ϕ is chosen to be

A0
ϕ ¼ 0.3Amax

ϕ;S , and A1
ϕ is also modified as A1

ϕ ¼ 1.7Amax
ϕ

(see Table II).

As seen in Fig. 4, the peak of the toroidal component near

the equatorial surface becomes broader and less concentrated

compared with the other magnetotunnel models in the

previous section, Sec. III A. For these MS-DR models,

we could not find a solution with a magnetotunnel. As

shown in Fig. 4, for the largely deformed model MS-DR-1,

the matter is expelled in a wider region, but not totally. For

the less deformed model MS-DR-2, on the other hand, we

could not compute a solution with the same parameter, but

obtained a solution with a smaller and broader peak of the

toroidal component. The maximum of the toroidal compo-

nent of this model is close to the stellar surface.

C. Physical quantities of solutions

In Tables IV and V, physical quantities of solutions

presented in Figs. 1–4 are listed. For all models (for both

rapidly and slowly rotating cases),we choose the same central

(maximum) rest mass density ρc. As shown in the tables, for

the solutions with the magnetotunnel, the rest mass M0 is

around 1.5M⊙ and 1.3M⊙ for the rapidly and slowly rotating

models, respectively. Hence, in our unit (choice of the

polytropic constant K), corresponding nonrotating and non-

magnetized solutions, that is spherically symmetric TOV

solutions, with the same rest mass have the compactness

aroundM=R ∼ 0.2 andM=R ∼ 0.15, respectively. Therefore,

these solutions aremildly compactmodels.On the other hand,

the MS-DR-1 is a supramassive model associated with the

strongest electromagnetic fields among other models.

From thevirial relationwith an equalityMADM ¼ MK [17],

Ivir ≔ 2T þ 3ΠþMþW ¼ 0; ð43Þ
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FIG. 3. Same as Fig. 1 but for differentially rotating and extremely magnetized compact stars associated with an electromagnetic

vacuum outside and a magnetotunnel, EV-MT-DR-1 (rapidly rotating model) and EV-MT-DR-2 (slowly rotating model).
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FIG. 4. Same as Fig. 1 but for differentially rotating and extremely magnetized compact stars associated with a magnetosphere,

MS-DR-1 (supramassive model) and MS-DR-2 (normal mass model), whose toroidal magnetic fields are distributed across the stellar

support and magnetosphere.

TABLE IV. Physical quantities of solutions presented in Figs. 1–3. All solutions are calculated by fixing the ratio of the maximum

values of the pressure to the rest mass density ðp=ρÞc ¼ 0.12322, which corresponds to the rest mass density

ρc ¼ 1.0717 × 1015 ½g=cm3�. Listed quantities are the ratio of the equatorial to polar radii in the coordinate length Rz=R0, the

equatorial and polar radii in proper length R̄0 and R̄z, the angular velocity Ωc (see Sec. II C 3), the Arnowitt-Deser-Misner (ADM) mass

MADM, the rest mass M0, the angular momentum J, and a residual of the equality of the Komar mass MK and the ADM mass MADM.

Units of listed quantities are explained in Table III. To convert a unit of length from G ¼ c ¼ M⊙ ¼ 1 to [km], multiply

GM⊙=c
2 ¼ 1.477 ½km�. Details of the definitions for these quantities are found in Appendix F of Paper I.

Model Rz=R0 R̄0 R̄z=R̄0 Ωc MADM M0 J=M2
ADM j1 −MK=MADMj

EV-MT-UR-1 0.6 12.496 0.62293 2.9503 × 10−2 1.4262 1.5356 0.61783 4.3864 × 10−5

EV-MT-UR-2 0.9 9.5086 0.90536 9.6580 × 10−3 1.2097 1.2986 0.17625 1.0482 × 10−6

MS-MT-DR-1 0.6 12.601 0.62341 2.8048 × 10−2 1.4323 1.5460 0.51691 3.9883 × 10−3

MS-MT-DR-2 0.9 9.5293 0.90550 8.4512 × 10−3 1.2066 1.2954 0.12268 2.7386 × 10−4

EV-MT-DR-1 0.6 12.972 0.62549 2.6918 × 10−2 1.3874 1.4978 0.42490 5.8742 × 10−3

EV-MT-DR-2 0.9 9.5423 0.90571 8.2012 × 10−3 1.2054 1.2940 0.10204 3.4697 × 10−4

MS-DR-1 0.6 12.301 0.62111 1.6336 × 10−2 1.5327 1.6301 0.36932 1.1060 × 10−3

MS-DR-2 0.9 9.4817 0.90481 1.4901 × 10−2 1.2189 1.3100 0.26448 1.0416 × 10−4
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one can roughly understand the contribution of the kinetic

termT and electromagnetic termM to the deformation of the

compact stars. For the solutions with the magnetotunnel, 2T

are around 4–6 times of M for the rapidly rotating models,

while for the slowly rotating modelsM is dominating about

2–3.5 times over 2T . The ratios of ð2T þMÞ=3Π which

roughly measure contribution of nonspherical deformation to

the equilibriums are about 3% for the slowly rotating models,

and 15% for the rapidly rotating models. For the MS-DR-1

model, on the other hand,M is dominating over 2T , where

M is about 4 times larger than 2T . The value of M=jWj is
about 7 times larger than the other models.

It is also noted that, for the models with the magneto-

tunnel, the maximum values of the toroidal components of

magnetic fields are comparable or even larger than that of

poloidal magnetic fields, and overall integrals of toroidal

fields Mtor are only 3.5–4% of those of poloidal fields

Mpol. The integrals of electric part Mele are about the

same as Mtor for the rapidly rotating models, but it is less

than 10% of Mtor for the slowly rotating models. This

seems to be reasonable considering that the higher multi-

pole contributions are less dominating in the slowly

rotating models. For the MS-DR models, the toroidal

component of the magnetic field is distributed in a broader

region, and hence the fraction of Mtor=M is about twice

of the other models, although it is still more than an order

smaller than the contribution from the poloidal compo-

nent Mpol=M.

IV. DISCUSSION

Results of simulations by Braithwaite and coworkers

[18] suggest that stable equilibriums of strongly magnet-

ized stars may be achieved when the energies of the

poloidal and the toroidal components of magnetic fields

become comparable [18]. One of the motivations to

investigate the solutions of such mixed poloidal and

toroidal magnetic fields presented in this paper is to obtain

such stable models of magnetized compact stars. However,

so far, the energy carried by the toroidal field is far smaller

than that of the poloidal field in our models. Recently we

have performed numerical simulations of such extremely

magnetized compact stars starting from the initial data

calculated in Paper I (and with varied parameters) which

are close to the EV-MT-UR models but with Bmax
tor around

30–40% smaller [6]. We found that the kink instability

develops and destroys the axisymmetry of the solutions,

although in a certain case the instability develops slower

than the alfvén time. We also found that the magnetorota-

tional effect carries away the angular momentum of the

stellar core; hence the rotation of the core slows down, and

a differential rotation develops. It is totally unclear, but is

interesting to investigate, how the stronger toroidal mag-

netic field, and/or a differential rotation as in the present

models modify the evolutions of such compact stars.

The magnetic field strength of the solutions presented in

this paper may be too strong for astrophysically realistic

compact objects. From a theoretical stand point, however, it

is of interest to investigate the extreme cases where the

electromagnetic fields affect the stellar equilibrium or even

become a source of gravity. In the above solutions, it is

observed that the magnetic fields locally dominate over the

hydrostatic equilibriums, but the metric is affected only

slightly. As seen in the contours of metric components in

Figs. 1–4, in the toroidal region near the equatorial surface

where the strong magnetic fields are concentrated, the

contour for ψ and the density map of β̃y appears to be

unaffected, while some structure is observed in the contours

of hxz in this region. Hence, the limit of the strength of the

magnetic field is not reached in a sense that it is not a

dominant source of gravity. Since our numerical method

solves the full set of Einstein’s and Maxwell’s equations for

equilibrium or quasiequilibrium initial data, we expect that

even more extreme magnetic fields may be obtained,

including an extremely strong magnetosphere surrounding

TABLE V. Continued from Table IV, listed quantities are the maximum values of poloidal and toroidal magnetic fields, Bmax
pol and Bmax

tor ;

the ratios of poloidal and toroidal magnetic field energies, Mpol and Mtor and electric field energy, Mele, to the total electromagnetic

field energy M; the ratios of the kinetic, internal, and electromagnetic field energies to the gravitational energy, T =jWj, Π=jWj, and
M=jWj, respectively; and the virial constant Ivir; and the electric charge contribution from the volume integral of the starQM. Details of

the definitions are found in Appendix F in Paper I. The maximums of magnetic field components Bmax
pol and Bmax

tor are defined by those of

spatial Faraday tensor Fab in Cartesian coordinates, Bpol ≔ Fxy and Btor ≔ −Fxz.

Bmax
pol ½G� Bmax

tor ½G� Mpol=M Mtor=M Mele=M T =jWj Π=jWj M=jWj Ivir=jWj QM

6.1604 × 1017 5.9686 × 1017 0.92731 0.036274 0.036413 0.061677 0.28602 0.019016 4.2789 × 10−4 5.5363 × 10−2

6.3763 × 1017 8.4596 × 1017 0.95783 0.039465 0.0027073 0.0052941 0.32319 0.020126 2.9462 × 10−4 9.2879 × 10−3

6.0341 × 1017 5.8367 × 1017 0.93139 0.031169 0.037446 0.052395 0.28570 0.019147 1.8954 × 10−2 5.3731 × 10−2

6.3494 × 1017 8.6731 × 1017 0.96193 0.035946 0.0021234 0.0033736 0.32376 0.020848 1.1172 × 10−3 7.9114 × 10−3

5.4290 × 1017 5.3893 × 1017 0.93710 0.035454 0.027449 0.038567 0.29213 0.017490 2.8983 × 10−2 5.0486 × 10−2

6.3568 × 1017 9.1621 × 1017 0.96044 0.037997 0.0015662 0.0025140 0.32399 0.021508 1.4947 × 10−3 7.5440 × 10−3

1.1258 × 1018 7.8558 × 1017 0.91411 0.070139 0.015746 0.019785 0.26756 0.15293 4.8131 × 10−3 8.9732 × 10−2

5.3348 × 1017 9.8917 × 1016 0.92365 0.070049 0.0062992 0.012604 0.32182 0.0090924 2.4980 × 10−4 2.7732 × 10−3
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a black hole. Such studies may be one of the future

extensions of the present work.

ACKNOWLEDGMENTS

This work was supported by JSPS Grants-in-Aid for

Scientific Research(C) No. 22K03636, No. 18K03624,

No. 21K03556, No. 18K03606, No. 17K05447,

and No. 20H04728; NSF Grant No. PHY-1662211;

NASA Grant No. 80NSSC17K0070; and the Marie

Sklodowska-Curie Grant Agreement No. 753115. A. T.

acknowledges support from the National Center for

Supercomputing Applications (NCSA) at the University

of Illinois at Urbana-Champaign through the NCSA

Fellows program.

[1] R. C. Duncan and C. Thompson, Astrophys. J. 392, L9

(1992); B. Paczynski, Acta Astron. 42, 145 (1992).

[2] For reviews, see e.g., V. M. Kaspi and A. Beloborodov,

Annu. Rev. Astron. Astrophys. 55, 261 (2017); R. Turolla,

S. Zane, and A. Watts, Rep. Prog. Phys. 78, 116901 (2015);

P. Esposito, N. Rea, and G. L. Israel, Astrophys. Space Sci.

Libr. 461, 97 (2020).

[3] K. Konno, T. Obata, and Y. Kojima, Astron. Astrophys. 352,

211 (1999); K. Ioka andM. Sasaki, Phys. Rev. D 67, 124026

(2003); Astrophys. J. 600, 296 (2004); R. Ciolfi, V. Ferrari,

L. Gualtieri, and J. A. Pons, Mon. Not. R. Astron. Soc. 397,

913 (2009); R. Ciolfi, V. Ferrari, and L. Gualtieri, Mon. Not.

R. Astron. Soc. 406, 2540 (2010); S. Yoshida, K. Kiuchi,

and M. Shibata, Phys. Rev. D 86, 044012 (2012); S.

Yoshida, Phys. Rev. D 99, 084034 (2019).

[4] A. Tsokaros and K. Uryū, arXiv:2112.05162.

[5] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, and M. Shibata, Phys.

Rev. D 97, 124039 (2018); R. Ciolfi, W. Kastaun, J. V.

Kalinani, and B. Giacomazzo, Phys. Rev. D 100, 023005

(2019); M. Ruiz, A. Tsokaros, V. Paschalidis, and S. L.

Shapiro, Phys. Rev. D 99, 084032 (2019); K. Kiuchi, K.

Kyutoku, and M. Shibata, Phys. Rev. D 86, 064008 (2012);

P. Mösta, S. Richers, C. D. Ott, R. Haas, A. L. Piro, K.

Boydstun, E. Abdikamalov, C. Reisswig, and E. Schnetter,

Astrophys. J. 785, L29 (2014); P. Mösta, C. D. Ott, D.

Radice, L. F. Roberts, E. Schnetter, and R. Haas, Nature

(London) 528, 376 (2015).

[6] A. Tsokaros, M. Ruiz, S. L. Shapiro, and K. Uryū, Phys.

Rev. Lett. 128, 061101 (2022).

[7] K. Uryū, E. Gourgoulhon, C. M. Markakis, K. Fujisawa, A.

Tsokaros, and Y. Eriguchi, Phys. Rev. D 90, 101501(R)

(2014).

[8] K. Uryū, S. Yoshida, E. Gourgoulhon, C. Markakis,

K. Fujisawa, A. Tsokaros, K. Taniguchi, and Y. Eriguchi,

Phys. Rev. D 100, 123019 (2019).

[9] X. Huang, C. Markakis, N. Sugiyama, and K. Uryū, Phys.

Rev. D 78, 124023 (2008); K. Uryū and A. Tsokaros, Phys.

Rev. D 85, 064014 (2012); K. Uryū, A. Tsokaros, and P.

Grandclement, Phys. Rev. D 86, 104001 (2012); A.

Tsokaros, K. Uryū, and L. Rezzolla, Phys. Rev. D 91,

104030 (2015).

[10] M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak,

Astron. Astrophys. 301, 757 (1995).

[11] K. Glampedakis, S. K. Lander, and N. Andersson, Mon.

Not. R. Astron. Soc. 437, 2 (2014).

[12] A. G. Pili, N. Bucciantini, and L. Del Zanna, Mon. Not. R.

Astron. Soc. 447, 2821 (2015).

[13] K. Kiuchi and S. Yoshida, Phys. Rev. D 78, 044045 (2008);

J. Frieben and L. Rezzolla, Mon. Not. R. Astron. Soc. 427,

3406 (2012); A. G. Pili, N. Bucciantini, and L. Del Zanna,

Mon. Not. R. Astron. Soc. 439, 3541 (2014); 470, 2469

(2017).

[14] H. Komatsu, Y. Eriguchi, and I. Hachisu, Mon. Not. R.

Astron. Soc. 239, 153 (1989); M. Ansorg, D. Gondek-

Rosinska, L. Villain, and M. Bejger, EAS Publ. Ser. 30, 373

(2008); D. Gondek-Rosinska, I. Kowalska, L. Villain, M.

Ansorg, and M. Kucaba, Astrophys. J. 837, 58 (2017);

A. M. Studzinska, M. Kucaba, D. Gondek-Rosinska, L.

Villain, and M. Ansorg, Mon. Not. R. Astron. Soc. 463,

2667 (2016); T. W. Baumgarte, S. L. Shapiro, and M.

Shibata, Astrophys. J. 528, L29 (2000); I. A. Morrison,

T. W. Baumgarte, and S. L. Shapiro, Astrophys. J. 610, 941

(2004); J. D. Kaplan, C. D. Ott, E. P. O’Connor, K. Kiuchi,

L. Roberts, and M. Duez, Astrophys. J. 790, 19 (2014); F.

Galeazzi, S. Yoshida, and Y. Eriguchi, Astron. Astrophys.

541, A156 (2012); A. Bauswein and N. Stergioulas, Mon.

Not. R. Astron. Soc. 471, 4956 (2017); G. Bozzola, N.

Stergioulas, and A. Bauswein, Mon. Not. R. Astron. Soc.

474, 3557 (2018); K. Uryū, A. Tsokaros, F. Galeazzi, H.

Hotta, M. Sugimura, K. Taniguchi, and S. Yoshida, Phys.

Rev. D 93, 044056 (2016); E. Zhou, A. Tsokaros, K. Uryū,

R. Xu, and M. Shibata, Phys. Rev. D 100, 043015 (2019);

M. Szkudlarek, D. Gondek-Rosińska, L. Villain, and M.

Ansorg, Astrophys. J. 879, 44 (2019); A. Tsokaros, M.

Ruiz, L. Sun, S. L. Shapiro, and K. Uryū, Phys. Rev. Lett.

123, 231103 (2019).

[15] K. Uryū, A. Tsokaros, L. Baiotti, F. Galeazzi, K. Taniguchi,

and S. Yoshida, Phys. Rev. D 96, 103011 (2017); A.

Passamonti and N. Andersson, Mon. Not. R. Astron. Soc.

498, 5904 (2020); X. Xie, I. Hawke, A. Passamonti, and N.

Andersson, Phys. Rev. D 102, 044040 (2020); P. Iosif and

N. Stergioulas, Mon. Not. R. Astron. Soc. 503, 850 (2021);

G. Camelio, T. Dietrich, S. Rosswog, and B. Haskell, Phys.

Rev. D 103, 063014 (2021); P. Iosif and N. Stergioulas,

Mon. Not. R. Astron. Soc. 510, 2948 (2022); K.

Franceschetti, L. Del Zanna, J. Soldateschi, and N.

Bucciantini, Universe 8, 172 (2022).

EQUILIBRIUMS OF EXTREMELY MAGNETIZED COMPACT … PHYS. REV. D 107, 103016 (2023)

103016-13



[16] S. L. Shapiro, Astrophys. J. 544, 397 (2000).

[17] E. Gourgoulhon and S. Bonazzola, Classical Quantum

Gravity 11, 443 (1994); R. Beig, Phys. Lett. A 69, 153

(1978); M. Shibata, K. Uryū, and J. L. Friedman, Phys. Rev.

D 70, 044044 (2004); 70, 129901(E) (2004).

[18] J. Braithwaite and H. C. Spruit, Nature (London) 431, 819

(2004); Astron. Astrophys. 450, 1097 (2006); J.

Braithwaite and A. Nordlund, Astron. Astrophys. 450,

1077 (2006); J. Braithwaite, Mon. Not. R. Astron. Soc.

397, 763 (2009).

KŌJI URYŪ et al. PHYS. REV. D 107, 103016 (2023)

103016-14


