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Equilibriums of extremely magnetized compact stars
with force-free magnetotunnels
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We present numerical solutions for stationary and axisymmetric equilibriums of compact stars associated
with extremely strong magnetic fields. The interior of the compact stars is assumed to satisfy ideal
magnetohydrodynamic (MHD) conditions, while in the region of negligible mass density the force-free
conditions or electromagnetic vacuum are assumed. Solving all components of Einstein’s equations,
Maxwell’s equations, ideal MHD equations, and force-free conditions, equilibriums of rotating compact stars
associated with mixed poloidal and toroidal magnetic fields are obtained. It is found that in the extreme cases
the strong mixed magnetic fields concentrating in a toroidal region near the equatorial surface expel the matter
and form a force-free toroidal magnetotunnel. We also introduce a new differential rotation law for computing
solutions associated with force-free magnetosphere, and present other extreme models without the

magnetotunnel.
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I. INTRODUCTION

Models for magnetars or hypermassive remnants of
binary neutron star mergers are considered to be associated
with strong magnetic fields around 10'4-10" G at their
surfaces [1,2]. Such strong magnetic fields play essential
roles in generating the signals arriving from the soft gamma
repeater and anomalous x-ray pulsar, as well as the jet of
the merger remnants. These magnetic fields are stronger
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than any other observed objects, and their interior magnetic
fields could be 1 or 2 orders of magnitude stronger. It is,
however, far too weak to modify the equilibrium structure
of the compact stars. Therefore in a theoretical modeling
of such compact stars, the electromagnetic fields may be
treated as a perturbation, and hence separately from the
hydrostatic equilibriums of the stars (see, e.g., [3,4]).

Although it may be astrophysically unrealistic in the
present Universe, it is theoretically interesting to further
investigate the compact stars associated with extremely
strong magnetic fields—strong enough to modify the
configuration of equilibrium structure and to dominate as
a source of gravity. It is also interesting theoretically to
study the strongest limit of magnetic fields of the compact
star. Such solutions may be of use for initial datasets for
simulations [5] from which the behavior of magnetic fields
of compact stars would be elucidated within a relatively
short simulation time [6].
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In our previous papers [7,8], we have developed a
numerical code for stationary and axisymmetric equilibri-
ums of relativistic rotating stars associated with extremely
strong electromagnetic fields based on our versatile code
library, cocAL (Compact Object CALculator), for calculat-
ing equilibriums and quasiequilibrium initial data [9]. In
this code, a full set of Einstein-Maxwell equations accom-
panied with ideal magnetohydrodynamic (MHD) equations
are solved under assumptions of stationarity and axisym-
metry consistently for the first time. In the paper [8]
(hereafter Paper 1), we have obtained solutions with mixed
poloidal and toroidal magnetic fields whose exteriors are
electromagnetic vacuum. We demonstrated that in the
extreme cases the matter in a toroidal region near the
equatorial surface was partly expelled by the extremely
strong magnetic fields. Such solutions have been used as
initial data for fully numerical relativity simulations in [6].

In this paper, we introduce two new extensions to our
previous works [7,8], one is the force-free magnetic fields,
and the other is the differential rotation. In Paper I, we
assumed electromagnetic vacuum in the region where the
energy density of the matter (or the rest mass density)
became negligible following the idea of [10]. The former
extension is introduced to replace the electromagnetic
vacuum with the force-free electromagnetic plasma region.
Such low density regions appear not only at the exterior of
the surface of a compact star, but also are expected to
appear in the interior of it when the magnetic fields are
stronger than the above mentioned solutions obtained in
the previous Paper I. To realize this, we follow a pre-
scription for computing such compact stars associated
with the magnetosphere proposed by the Southampton
group [11]. This prescription has been also investigated by
the Florence group [12] for computing relativistic non-
rotating stars under a simplified spatially conformal flat
metric for the strong gravity (for numerical computations of
magnetized relativistic stars, see also [10,13]). As we will see
below, in the newly calculated solutions, it is found that the
mixed poloidal and toroidal magnetic fields concentrate near,
but well inside of, the equatorial surface, and that the fields
totally expel the matter there, when the field strength
becomes of the order of 10'7 G or higher for typical neutron
stars, that is, a toroidal force-free magnetotunnel is formed in
such a solution. We also calculated the solutions replacing
the electromagnetic vacuum exterior with the force-free
magnetosphere. The latter extension for introducing the
differential rotation is used to compute rotating magnetized
compact stars surrounded by the magnetosphere. For a
comparison, differentially rotating models with electromag-
netic vacuum exterior are also obtained.

This paper is organized as follows. In Sec. II, we
formulate the force-free fields in terms of variables used
in our previous works [7,8], and then introduce details of
the formulation adapted to the numerical method. In
Sec. III, new numerical solutions combining the force-free

fields, differential rotations, as well as the electromagnetic
vacuum as in the previous paper are presented.

II. FORMULATION AND NUMERICAL
METHOD FOR THE FORCE-FREE
ELECTROMAGNETIC FIELDS

In Paper I, we have detailed the formulation and numerical
method for computing stationary and axisymmetric equilib-
riums of strongly magnetized relativistic rotating stars. A set
of equations to be solved includes the rest mass conservation
equation, ideal MHD conditions, MHD-Euler equations
associated with the barotropic equation of state, and the
magnetic and gravitational field equations. From the con-
sistency of the set of ideal MHD equations under the
stationarity and axisymmetry, a set of integrability conditions
and first integrals are derived. In particular, it requires an
existence of a master potential Y that several quantities
(as well as combinations of quantities), for example, the ¢
and ¢ components of the electromagnetic 1-form A, are the
function of T, A, = A,(T), A, = Ay(T).

To obtain solutions in Paper I, we assumed that the star is
ideal MHD fluid, and furthermore that the outside of the
star is electromagnetic vacuum. Because the above depend-
ences A, = A,(T) and A, = A,(Y) are valid only on the
support of ideal MHD fluid, the A, and A, components
should be solved independently from Maxwell’s equations
in the electromagnetic vacuum region, although the latter
assumption may not be astrophysically realistic.

In this work, we introduce an option to replace the
assumption for the electromagnetic vacuum with the force-
free electromagnetic fields in the low density region out of
the ideal MHD region. We introduce below the formulation
for the force-free electromagnetic fields which is adapted to
our formulation for magnetized compact stars in Paper L.
It turns out that only a minor modification is necessary to
implement the force-free formulation into our previously
developed code [8].

Hereafter, we use abstract index notation for tensors;
the Greek letters a, 3,7, ... stand for 4D objects, the Latin
lowercase letters a, b, c, ... for spatial 3D objects, and
the Latin uppercase letters A, B, C, ... for meridional 2D
objects. Also, we sometimes express the two forms, F, dA,
and d(hu) omitting indices. Such index-free notation may
be used, with caution, for calculations involving forms
and vectors. A dot denotes an inner product, that is, a
contraction between adjacent indices. For example, a vector
v and a p form w have inner product

V0 =000 p WV =Wy 07 (1)

We introduce the 3 + 1 form of the spacetime metric

with conformally decomposed spatial metric,

ds® = —a?d® + y*7a(dx + pdr) (dx” + pPdr) - (2)

103016-2



EQUILIBRIUMS OF EXTREMELY MAGNETIZED COMPACT ...

PHYS. REV. D 107, 103016 (2023)

where «a, f% w, and 7, are the lapse, the shift, the
conformal factor, and the conformally related spatial
metric, respectively. The 7,, is further decomposed with
the reference 3D flat metric f,;, as 7., = fap + hap», and the
conformal decomposition is constrained by a condition
7 = f where 7 and f are the determinant of 7,, and f,,
respectively. We further assume the spacetime is asymp-
totically flat and impose the Dirac gauge and the maximal
slicing conditions as coordinate conditions.

Further details in notations and a common part of
formulations are found in Paper I.

A. Force-free condition

We assume stationarity and axisymmetry associated,
respectively, with the timelike and spacelike Killing vectors
t* and ¢“. These vectors are used as the basis of vector and
tensor quantities, for example, the current vector j* may be
written as

JO= 71 j A+ e (3)
where ¢4 are the coordinate basis of the other two spatial
coordinates x?, such as r and 6.

We assume that in the exterior of the ideal MHD fluid,
the force-free electromagnetic field is carried by a certain
plasma current whose density is negligible Each compo-
nent of the force-free conditions F - j = F j# =0 in the
stationary and axisymmetric system becomes as follows:
{ component:

t(Fj) =t (F-e)j* = *Fy = —j*0,4, = 0, (4)

¢ component:
G- (F-j)=¢-(F-en)j* = j Fya=—j"0444,=0, (5)
x4 components:
ex-(F-j)=eq-(F-1)j'+es-(F-$)j? + e (F-ep)j”
=FaJ' 4+ Fagj? + Fagj®
= J'0sA; + jP05A + (dA) 4p® = 0. (6)

The x* components of Maxwell’s equations are written,

4”jA\/—9 = a15'(1"#“3\/—9) = €AB@B(\/—!JB), (7)
where B is defined as FAZ = ¢APB (see Sec. ILE.3 of
Paper I).

Substituting Eq. (7) to t and ¢ components of the force-
free conditions Egs. (4) and (5), we have

*89,A,05(y/~5B) = 0. (8)

B0, A,05(y/—gB) = 0. (9)

Hence, similarly to the case with ideal MHD fluid, the
integrability conditions for the region of force-free electro-
magnetic fields can be written in terms of the master
potential Y,

A =A(T), Ay =A,7),
and /=gB = [\/=gB](Y). (10)

Substituting the meridional component of the current (x*
component of the Maxwell’s equations) (7) and a definition
Fap = €apBy, the x4 component of the force-free con-
dition (6) becomes

. , 1
J'N/=90sA; + j?\/=gosA, — 1, Bo0alv=gB] = 0. (11)

The conditions (10) imply

. . 1
(AQJ’\/—9+A§,5]¢\/— —E[\/—QB]/B(;&) 0, =0, (12)

where the primes A}, A, and [,/=gB]’ stand for a derivative
with respect to the master potential Y. Therefore, we have a
consistency relation, which we also call first integral, for
the stationary and axisymmetric force-free fields to satisfy

. . 1
ALJ'=g+ AL /=g —E[\/_—gB]’qu =0. (13)

The t and ¢ components of Maxwell’s equations are
written, respectively, as

4mj'\/=g = I (F™\/=9), (14)
drj?\/=g = 0,(F"/=g). (15)

Substituting either (14) or (15) in Eq. (13), we have a
relation for j% or j' to be used as a source term for an
equation to determine the master potential, which is related
to either A, (') or A,(Y), respectively. So far in our actual
numerical computations, we have been always choosing the
master potential to be T = A, and hence ¢ component of
Maxwell’s equations is used to determine the potential A
(see Paper I).

B. A model of force-free field around
an ideal MHD region

In our formulation of ideal MHD presented in Paper I,
we explicitly use the current j* as an intermediate variable.
Analogously, we have written down in the previous
section II A the force-free conditions as Egs. (10) and (13),
whose forms are similar to the ideal MHD conditions,
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F.u = 0. In actual computations, we choose A as a master
potential, T = A,. Then, the integrability conditions and
relations involving the current are written as

A= AI(A¢) and \/—gB = [\/—_gB](A¢), (16)
VT = VB (1)
G A = VGBIBy (19)

where B is defined by d,A;, = —e,®Bp, and 5% is the
Kronecker delta.

The corresponding expressions for the components of
the current for ideal MHD fluid are [see Eqgs. (135) and
(136) of Paper I]

V=9 = ([V=9%]"huy + [\/=gAy]")5'" By

- [m]’éABwB, (19)
=g+ Alj'/=g
= ([V=9®)"huy + [\/=gNy]' ) By — [/=9F] @y
— (Afhug + N)pu'\/=g — s'Tp/=g, (20)

where arbitrary functions ,/—gA, and A, the stream
function ,/—g¥, and the entropy per baryon mass s are
functions of the master potential A,

V=90 = [V/=90](Ay),
V=9¥ = [\/=g¥](4,),

In Egs. (19) and (20), the terms including the stream
functions ,/—g'¥ are related to the meridional flow fields, p
is the rest mass density, and 7" the temperature. Since near
the surface of compact stars, p — 0, and [,/—g¥] —
constant, terms related to the fluid approach to zero, and
hence the remaining terms are

A =A(Ay).
and s =s(A,). (21)

V=9 = [V=97)'8'" By (22)
=g+ ALY=9 = [V=9A]'By. (23)

Therefore, comparing (17), (18) and (22), (23), we can
smoothly connect the expressions of the current in the ideal
MHD fluid region and in the force-free magnetosphere with
the negligible density by choosing a common arbitrary
function satisfying

+- Va8l = [y=anl. (24)

in the whole domain of computation, and therefore connect
the electromagnetic fields smoothly.

C. Construction of magnetized star with
magnetosphere/magnetotunnel

As mentioned earlier, in the previous Paper I following
[10], a region outside of the compact star was assumed to
be the electromagnetic vacuum where the electric current
vanishes. Therefore, a component of vector potential A,
was a function of Ay on the ideal MHD fluid support,
but was independent of A, otherwise. Assuming A, to be
smooth across the stellar surface, we introduced (implicitly)
the surface charge for A, to be continuous, but its normal
derivative at the surface to be discontinuous. Such a
solution can be computed by adding a homogeneous
function in solving A, to satisfy the above conditions at
the surface.

In our formulation for the force-free magnetosphere/
magnetotunnel, we assume that the component A, is a
function of A in the whole domain and that a conducting
current flows continuously and smoothly across the stellar
surface. Therefore, A, is no longer solved independently in
the outside of the ideal MHD region. As it has been found
in Paper I, when the toroidal magnetic field becomes
extremely strong, the mixed poloidal and toroidal magnetic
fields concentrate near the equatorial surface, and they
expel the high density matter of compact stars. It was, and,
so far, it is not possible for the COCAL code to compute a
toroidal vacuum tunnel inside of the compact star, because
a method to impose a boundary condition to compute A, for
such a toroidal region has not been developed yet. On the
other hand, if we assume a force-free field in such a toroidal
region, the force-free magnetotunnel where the matter is
expelled totally can be calculated straightforwardly under
the above mentioned assumption in the same manner as
computing the magnetosphere outside of the compact star.
In the latter sections, we will present such compact stars of
which the magnetotunnel is formed inside.

1. Formulation for the fluid variables in equilibrium

An equilibrium solution of the magnetized compact
star can be calculated from a system of first integrals
and integrability conditions derived in Paper 1. For choices
with T = A, and without meridional flows [,/=g¥](T) =
constant, the following relations obtained from the nor-
malization condition of four velocity u-u = —1, ideal
MHD condition, and MHD-Euler equation (see Paper I,
Sec. 1II.C),

. 1
S~ S g ey poy AN
M¢ ;-
? =-A,=Q, (26)
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A
h=— 27
u, — Aluy (27)

where the angular velocity of the matter Q is also an
arbitrary function of A, (Ferraro’s law),

Q=Q(4,). (28)
and the four velocity is written as
u® = u'(1* + v*) = u'(1* + Q%) (29)

A

because the meridional components u#” is assumed to

vanish u? = u'v? = 0.

2. Choice for arbitrary functions

Further assuming the homentropic flow s = constant,
five arbitrary functions of A,

A(Ay), Q(Ay), A(Ay),
[V=9M4](Ay), and  [\/=gB|(A), (30)

appear in the above formulation for the matter (25)—(27)
and the current (17)—(20). Because of the assumption (24),
four arbitrary functions remain to be specified.

For some arbitrary functions above, we choose, as in
Paper I, a two parameter sigmoid function E'(x; b, c¢) that
varies from O to 1 in an interval 0 < x < 1:

= (x;b, c) :% {tanh <%—c) +1}, (31)

where b (0 < b < 1) is a parameter for the transition width,
and ¢ (0 < ¢ < 1) for the transition center. Also, its integral
E(x; b, ¢) becomes

X

1
E(x;b,c) = 3 {b In cosh (Z — c> + x} + constant.  (32)

In actual computations, functions Z'(A,) and Z(A) are
defined by

=/(Ay) = = |anh 14y =4 +1l, (33)
L) bAL —AY ’

and

- 1 144 = Aj
E(A,) = > [b(A;S —Ag)lncosh (bAglb —Ag - c> +A4,}

-+ constant, (34)

where the constant of Eq. (34) is set to be E(—o0) = 0.
The function E'(A;) varies from 0 to 1 in between

Aj <A, <Ay We always set the value of A, at the
rotation axis (z axis) to be zero.

3. Models

Using the function Z'(A,) and its integral Z(A,), we
model the forms of arbitrary functions (31). For the
electromagnetic vacuum outside and with the force-free
magnetotunnel (hereafter referred to as EV-MT type
solutions), we choose the same as Paper I, namely,

A =—NE(Ay) — MA, - E, (35)
A =-QA,+C,, (36)
V=9, = AjE(A), (37)
V/=9B = 4rA4E(A,), (38)

where Ay, Ay, €, Q., C,, and Ay are constant. Values of
Ay, A;, and Ay, are prescribed to control the strength
of electromagnetic fields, while those of £, ., and C, are
calculated from conditions to specify the mass, total
angular momentum, and charge of a solution.

For computing solutions with the EV-MT type solutions,
we choose, as in Paper I, the parameters Aés and Af}) of the
sigmoid functions Z(A,) that appear in Egs. (35), (37),
and (38) as A;; = Aga" where Aga" is the maximum value of
A, on the stellar support, and Af}) =AY where AYS is the
maximum value of A, on the stellar surface. The choice
Af}) = AJS is necessary for the toroidal component of the
magnetic fields to be confined inside of the star.

For computing solutions with the force-free magneto-
sphere the above choices for Ag and A(}) are not necessary.
In our calculation for the solutions with the force-free
magnetosphere and the magnetotunnel (hereafter MS-MT
type solutions), we choose A and Aj to be the same as
above. We also present the solutions whose A ;5 is set larger
than Ay and Ag smaller than Ay (see Table II below). In
any case, note that A?ax > Agﬂa‘s" > 0.

The relation (36) implies that the star is uniformly
rotating, Q(A,) = Q.. Equation (38) is an integral of
Eq. (24), where a constant of integration does not affect a
solution. The value of C, is determined to set the net electric
charge to vanish.

For the differentially rotating solutions, we modify
Eq. (36),

Ar = _QCE(A(/)) + Ce» (39)
and hence the rotation law becomes

Q=Q.F(A,). (40)
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This is a differential rotation law whose angular velocity Q
varies from 0 to € as the A, from A} = 0 to Aj. We will

explain this choice of differential rotation law and its
parameters in the later section.

D. Numerical computation

1. Setups for coordinate grids and multipoles

The solutions presented below are associated with
extremely strong mixed poloidal and toroidal magnetic
fields. As in Paper I, our models produce mixed poloidal
and toroidal fields concentrated near the equatorial surface.
Hence, it is necessary to resolve such configurations with a
large number of grid points in € coordinate, and accord-
ingly, a large number of multipoles.

The numbers of grid points and other grid parameters
used in actual computations shown in the later sections are
the same as the highest resolution used in Paper I, which is
reproduced in Table I marked as SE3tp. A system of
equations is discretized on spherical coordinates (r, 0, ¢) €
[Fa. 1p] X [0, 7] x [0, 27] where r, = 0 is the center of the
star, and r, = 10°R,, where R is the equatorial radius of
the star. To resolve a toroidal region of extremely strong
magnetic fields concentrated near the equatorial surface,
we include the multipoles up to L = 60. Details of
convergence tests can be also found in Paper L.

2. Model parameters

Configuration and intensity of electromagnetic fields
inside and outside of the compact stars are determined by
the forms of arbitrary functions presented in Sec. I C 3, and
parameters associated with them. The parameters used in
the present computations, that is, the parameters » and ¢
defined in Egs. (35), (37), and (38), and those for differ-
ential rotation in (39) and (40) are all listed in Table II.
These functions and parameters produce extremely strong
mixed poloidal and toroidal magnetic fields. In particular,

TABLE 1. Grid parameters used for computing magnetized
rotating compact stars. Normalized radial coordinates r,, r;,, and
r. are in the unit of equatorial radius R in the coordinate length.

Type Tq Tp re N£ IVIrn
SE3tp 0.0 10° 1.1 160

N, Ny N, L
176 384 384 72 60

r,: Radial coordinate where the radial grids start.

rp:  Radial coordinate where the radial grids end.

r.: Radial coordinate between r, and r, where the radial grid
spacing changes.

N,: Number of intervals Ar; in r € [r,, ).

Nt: Number of intervals Ar; in r € [r,, 1].

N™: Number of intervals Ar; in r € [ry, r].

Ny: Number of intervals Af; in 6 € [0, z].

N,: Number of intervals A¢y in ¢ € [0, 2x].

L:  Order of included multipoles.

TABLE II. Parameters related to arbitrary functions in the
integrability conditions (35)-(40), used in computing solutions
presented in Sec. III. The parameters (b, ¢) are those used in the
sigmoid function Z'(A,) for Egs. (35), (37), and (38), while
DR:(b,c) are used for the differential rotation in Egs. (39)
and (40). The values ong and A;, in Egs. (35), (37), and (38) are
set as below, and for DR models in Egs. (39) and (40), we set A (1p
to be the same as the other Z/(A,), but set A) = 0.

AO Al
Models Ao Ay Ag (bic) DR:i(bc) amE
EV-MT-UR —4.8 0.3 3.2 (0.2, 0.5) 1.0 1.0
MS-MT-DR —6.0 0.3 3.8 (0.2,0.5) (0.05,0.25) 1.0 1.0
EV-MT-DR —6.0 03 3.8 (0.2,0.5) (0.1,03) 1.0 1.0
MS-DR-1 48 03 12 (02,0.5) (0.02,0.1) 03 1.7
MS-DR-2 —13 03 L1 (02,0.5) (0.02,0.1) 03 1.7

the values of parameters are close but changed from
those of Paper I such that the electromagnetic fields
become stronger enough to form a toroidal force-free
magnetotunnel.

For the equations of states (EOS), we choose a poly-
tropic EOS,

p=Kp", (41)

for simplicity. This introduces two more parameters, a
polytropic constant K and index I', whose values are set as
in Table III.

In addition, we have three parameters {&,Q.,C,} in
Egs. (35) and (36) [or (39) for differentially rotating model]
and one augmented parameter R,. The parameter C, does
not change the solution when the star is surrounded by the
magnetosphere, and so C, may be set to zero in this case.
For the case with electromagnetic vacuum outside, C, is set
for an asymptotic electric charge,

1
0= / FPdS . (42)

T

TABLE III.  Quantities at the maximum mass model of Tolman-
Oppenheimer-Volkoff (TOV) solutions with the polytropic
EOS (41)in G = ¢ = Mg = 1 units. p,. and p, are the pressure
and the rest mass density at the center, M, is the rest mass, M the
gravitational mass, and M/R the compactness (a ratio of
the gravitational mass to the circumferential radius). The poly-
tropic constant K is chosen so that the value of M, becomes
M, = 1.5 at the compactness M/R = 0.2. To convert a unit
of p. to cgs, multiply the values by My(GMy/c*) ™~
6.176393 x 107 gecm™.

r  (p/p). Pe M, M
2 0318244 0.00448412 1.51524 1.37931

M/R
0.214440
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to be zero. The other three parameters are calculated from
three conditions, setting the value of the rest mass density at
the center p,., the normalization of the equatorial radius, rey,
as req/Ro = 1, and the value of the radius along the rotation
axis r,/req. Further details can be found in Paper I.

III. RESULTS

From the formulation and numerical method described in
Sec. II, compact star solutions associated with extremely
strong electromagnetic fields are obtained. Overall con-
figurations of the magnetic fields generated from this
formulation are typically the strong poloidal (dipolelike)
magnetic fields extending from the core of the star to the
outside, and the poloidal and toroidal magnetic fields
concentrated in a toroidal region near the equatorial sur-
face. In Paper I, we have observed that the latter’s very
strong mixed magnetic fields expel the matter near the
equatorial surface. As mentioned above, we introduce the
force-free magnetic fields when the matter is totally
expelled such that the mass density becomes negligible
in the toroidal region, so the force-free magnetotunnel is
formed inside of the compact star.

Combining the electromagnetic vacuum or magneto-
sphere, and the uniform or differential rotations, we present
four types of such extremely magnetized solutions in
this article where three of them are associated with the
magnetotunnel:

(1) EV-MT-UR type—those associated with the electro-
magnetic vacuum outside of the star, magnetotunnel,
and uniform rotation.

(2) MS-MT-DR type—those associated with the mag-
netosphere, magnetotunnel, and differential rotation.

(3) EV-MT-DR type—those associated with the electro-
magnetic vacuum outside, magnetotunnel, and differ-
ential rotation.

(4) MS-DR type—those associated with the magneto-
sphere, and differential rotation whose toroidal
magnetic field is distributed across the star and the
magnetosphere.

A. Overall feature of solutions with magnetotunnel

1. Uniformly rotating models with electromagnetic
vacuum outside

In Fig. 1, EV-MT-UR models with rapid and slow
rotations are shown. These are straightforward extensions
of solutions presented in Paper I, in particular changing the
parameters {Ag, Ay} of the model P1 systematically to
achieve stronger electromagnetic fields. The boundaries of
the force-free magnetotunnel, where the toroidal regions
where the matter is totally expelled by the magnetic fields,
are indicated with green circles in the left panel of the first
and the second rows for rapidly and slowly rotating models,
respectively. The expelled regions can be also seen clearly

in the rest mass density profile p/p. (red curves) along the
equatorial radius x/R,, plotted in the middle panels of the
first and the second row.

The right panel of the first and the second rows in Fig. 1
are the plots of the poloidal, B, = F',, and the toroidal,
By, = —F,,, components of magnetic fields along the
equatorial radius x/Ry. The maximum of B, is at the
center of the star, while that of B, is near the equatorial
surface. It can be seen that the poloidal component By,
takes a large value also around this toroidal region near the
equatorial surface.' It is also noticeable that, for the slowly
rotating EV-MT-UR-2 model, the maximum value of By, is
greater than that of B.

In the second and fourth panels in the third row, the
contours of the components of electromagnetic one form A,
and A are drawn. Because A, is assumed to be a function
of Ay in the ideal MHD region of the stellar support
satisfying the relation (36), their contours are homologous
there, while they are not in the electromagnetic vacuum
outside of the star.

2. Differentially rotating models with magnetosphere

In Fig. 2, MS-MT-DR models with rapid and slow
rotations are shown. The same as the EV-MT-UR model
in Fig. 1, the strong concentration of the magnetic fields
expels the matter near the equatorial surface and forms the
magnetotunnel, which can be seen in the corresponding
panels in Fig. 2.

Differences between the MS-MT-DR model and the
previous EV-MT-UR model are the magnetosphere being
outside of the star instead of electromagnetic vacuum, and
the differential rotation instead of the uniform rotation. As
discussed in Sec. II, arbitrary functions in the force-free
magnetosphere/magnetotunnel region are chosen to be the
same as those in the ideal MHD region as Eq. (24) as the
electromagnetic potentials are smoothly connected across
the boundaries of these regions. This can be seen in the
second and the fourth panels of the third row in Fig. 2 for
the contours of A, and A, which are homologous not only
on the stellar support (ideal MHD region) but also in the
force-free region outside of the star (as well as in the
magnetotunnel region).

We also introduce the differential rotation as prescribed
in Eq. (40) in this model. As shown in the middle panels of
the first and the second row of Fig. 2, the profiles of Q/Q.
are increasing along the equatorial radius x/R,. These are
rather uncommon profiles for differential rotation laws,
that is, in most of numerical computations of relativistic
rotating stars, differential rotation laws with decreasing Q
along x/R, have been considered [14], except for a few

'This structure is referred to as the twisted torus magnetic
fields.
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FIG. 1. Solutions for uniformly rotating extremely magnetized compact stars associated with an electromagnetic vacuum outside and
magnetotunnel (EV-MT-UR type). The panels in the first row correspond to the rapidly rotating model EV-MT-UR-1. The left panel:
contours of p/p (black closed curves), the poloidal magnetic field (orange arrows), color density map for the toroidal magnetic fields
(red and blue), and the boundary of the magnetotunnel (green circles) are shown. The contours of p/p are drawn at p/p = 0.001, 0.002,
0.005, 0.01, 0.02, 0.05, 0.1. The middle panel: the rest mass density p/p,. (red curve) and the angular velocity 2/Q, are plotted along the
equatorial radius (x axis). Inset: enlargement of p/p, near the surface. The right panel: components of the magnetic fields, By, = F,,
(dashed purple curve) and B,,, = —F,, (dark green curve) are plotted along the equatorial radius (x axis). The panels in the second row
are the same as the first row but for the slowly rotating model EV-MT-UR-2. In the third row, the first panel from the left, the metric
potentials are shown, which are the contours of y (green closed curves), the color density map for ﬁy (red and blue), the contours of &,
(red and blue curves), and the surface of the star (black closed curve). In the second panel from the left, the components of
electromagnetic one form are shown, which are the contours of A, (green curves), the contours of A, [dashed red (positive), purple
(zero), blue (negative)], and the surface of the star (black closed curve) for the model EV-MT-UR-1. The third and fourth panels of the
third row are the same as the first and the second panels, respectively, but for the model EV-MT-UR-2.

works [15]. There are two motivations for us to choose this
new differential rotation law (40).

In computing solutions with a force-free magnetosphere
outside, we found that the # component of electromagnetic
one form A, diverges asymptotically if we assume uniform
rotation. It may be understood that in our assumptions,
namely the stationary and axisymmetric force-free mag-
netosphere, the magnetic field lines attached to the stellar
surface have to rotate with the same Q even if they are
extended to the region outside of the light cylinder. In terms
of our formulation, it appears that the current j* coupled
with the ¢ component j¢ as in Eq. (18) does not fall off

asymptotically fast enough to have a regular asymptotic
behavior in A,. Since the magnetic field lines extended
toward the region of larger r are attached to the surface
of the star closer to the axis of rotation (z axis), setting
A} = Q(A,) to vanish near the rotation axis decouples the
j? and j' in the large r region. This is the first reason that
we choose the differential rotation law (40), which is
nonrotating near the axis of symmetry. Also for this reason,
it seems it is not possible to obtain uniformly rotating
relativistic solutions with the force-free magnetosphere
using our formulation. In the literature, only the nonrotating
solutions are calculated for such strongly magnetized
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FIG. 2. Same as Fig. 1 but for differentially rotating and extremely magnetized compact stars associated with a magnetosphere and a
magnetotunnel, MS-MT-DR-1 (rapidly rotating model) and MS-MT-DR-2 (slowly rotating model).

relativistic stars associated with the force-free magneto-
sphere in general relativity [12]. The second reason for
this differential rotation law is motivated by the results of
simulations [6] and a semianalytic argument [16] that such
rotation profiles may, although transiently, appear during
the evolution of highly magnetized rotating stars.

Because of the differential rotation, the rotation period of
the field lines in the magnetosphere differs with latitude.
The fastest ones are those attached near the equatorial
surface. The smallest cylindrical radius of the light cylinder
becomes around w = rsin€ ~2x/Q.~24R, (100R)
for the rapidly (slowly) rotating model MS-MT-DR-1
(2, respectively), so the rotating field lines do not reach
to the light cylinder in our models.

3. Differentially rotating models
with electromagnetic vacuum outside

In Fig. 3, EV-MT-DR models with rapid and slow
rotations are shown. This is to demonstrate that it is
possible to calculate solutions combining the electromag-
netic vacuum region outside and the differential rotation.
Because of the magnetic vacuum, the field lines outside are

not dragged around. Although in principle, one can freely
specify the differential rotation law for these models,
we only modify the values of parameters slightly from
MS-MT-DR models. It appears that interior magnetic fields
of EV-MT-DR models are similar to those of MS-MT-DR
models rather than EV-MT-UR models.

B. Solutions with toroidal fields distributed across
the star and the magnetosphere

Because of our previous choices of parameter, in
particular Ag for the function (33) (see Table II), the
function varies when the potential Aj, becomes larger
than its value at the equatorial surface, A¢ > Ag = A%".
Because of this, the toroidal component of the magnetic
field is confined interior of the compact star. This choice
was necessary for the EV models since the toroidal
magnetic field cannot exist in the vacuum region. Also
because of this, the extremely strong magnetic fields
develop near the equatorial surface, which is strong enough
to expel the matter as shown in Sec. III A.

For the MS models, however, the toroidal component
of the magnetic fields is allowed to exist in the region of
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Same as Fig. 1 but for differentially rotating and extremely magnetized compact stars associated with an electromagnetic

vacuum outside and a magnetotunnel, EV-MT-DR-1 (rapidly rotating model) and EV-MT-DR-2 (slowly rotating model).

force-free magnetosphere outside of the star. In Fig. 4, we
successfully computed such strongly magnetized solutions
whose toroidal component of magnetic fields is distributed
across the star and the magnetosphere. For these solutions
with the magnetosphere, the parameter Ag is chosen to be

Ag = 0.3A5%, and Aqlb is also modified as AL = 1745
(see Table II).

As seen in Fig. 4, the peak of the toroidal component near
the equatorial surface becomes broader and less concentrated
compared with the other magnetotunnel models in the
previous section, Sec. III A. For these MS-DR models,
we could not find a solution with a magnetotunnel. As
shown in Fig. 4, for the largely deformed model MS-DR-1,
the matter is expelled in a wider region, but not totally. For
the less deformed model MS-DR-2, on the other hand, we
could not compute a solution with the same parameter, but
obtained a solution with a smaller and broader peak of the
toroidal component. The maximum of the toroidal compo-
nent of this model is close to the stellar surface.

C. Physical quantities of solutions

In Tables IV and V, physical quantities of solutions
presented in Figs. 1-4 are listed. For all models (for both
rapidly and slowly rotating cases), we choose the same central
(maximum) rest mass density p.. As shown in the tables, for
the solutions with the magnetotunnel, the rest mass M, is
around 1.5M 5 and 1.3M, for the rapidly and slowly rotating
models, respectively. Hence, in our unit (choice of the
polytropic constant K), corresponding nonrotating and non-
magnetized solutions, that is spherically symmetric TOV
solutions, with the same rest mass have the compactness
around M/R ~ 0.2 and M /R ~ 0.15, respectively. Therefore,
these solutions are mildly compact models. On the other hand,
the MS-DR-1 is a supramassive model associated with the
strongest electromagnetic fields among other models.

From the virial relation with an equality M spy = My [17],

Iy =2T +3I+M+W =0, (43)
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FIG. 4. Same as Fig. 1 but for differentially rotating and extremely magnetized compact stars associated with a magnetosphere,
MS-DR-1 (supramassive model) and MS-DR-2 (normal mass model), whose toroidal magnetic fields are distributed across the stellar
support and magnetosphere.

TABLE IV. Physical quantities of solutions presented in Figs. 1-3. All solutions are calculated by fixing the ratio of the maximum
values of the pressure to the rest mass density (p/p). =0.12322, which corresponds to the rest mass density
pe = 1.0717 x 101 [g/cm?]. Listed quantities are the ratio of the equatorial to polar radii in the coordinate length R./R,, the
equatorial and polar radii in proper length R, and R_, the angular velocity Q, (see Sec. I C 3), the Arnowitt-Deser-Misner (ADM) mass
M ppm, the rest mass My, the angular momentum J, and a residual of the equality of the Komar mass Mg and the ADM mass M spy-
Units of listed quantities are explained in Table IIl. To convert a unit of length from G =c = Mg =1 to [km], multiply
GMy/c? = 1.477 [km). Details of the definitions for these quantities are found in Appendix F of Paper I.

Model R./Ry Ry R./Ry Q. M apm M, J/Miom |1 — My /M spm|
EV-MT-UR-1 0.6 12.496 0.62293 2.9503 x 102 1.4262 1.5356 0.61783 43864 x 10~
EV-MT-UR-2 0.9 9.5086 0.90536 9.6580 x 1073 1.2097 1.2986 0.17625 1.0482 x 1076
MS-MT-DR-1 0.6 12.601 0.62341 2.8048 x 1072 1.4323 1.5460 0.51691 3.9883 x 1073
MS-MT-DR-2 0.9 9.5293 0.90550 8.4512 x 1073 1.2066 1.2954 0.12268 2.7386 x 10~
EV-MT-DR-1 0.6 12.972 0.62549 2.6918 x 1072 1.3874 1.4978 0.42490 5.8742 x 1073
EV-MT-DR-2 0.9 9.5423 0.90571 8.2012 x 1073 1.2054 1.2940 0.10204 3.4697 x 10~
MS-DR-1 0.6 12.301 0.62111 1.6336 x 1072 1.5327 1.6301 0.36932 1.1060 x 1073
MS-DR-2 0.9 9.4817 0.90481 1.4901 x 1072 1.2189 1.3100 0.26448 1.0416 x 104
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TABLE V. Continued from Table IV, listed quantities are the maximum values of poloidal and toroidal magnetic fields,

Bmax and Bm?lX .

pol tor »

the ratios of poloidal and toroidal magnetic field energies, M, and M, and electric field energy, M, to the total electromagnetic
field energy M; the ratios of the kinetic, internal, and electromagnetic field energies to the gravitational energy, 7 /|WV|, I1/|W)|, and
M /|W]|, respectively; and the virial constant /.;,; and the electric charge contribution from the volume integral of the star Q,,. Details of

the definitions are found in Appendix F in Paper I. The maximums of magnetic field components B

max
pol

and B are defined by those of

spatial Faraday tensor F;, in Cartesian coordinates, By, := Fy, and By = —F ..

Bgﬁx [G] B{](;?X[G] MPOI/M Mlor/M Mele/M T/‘W‘ H/‘Wl M/‘W‘ Ivir/|W| QM
6.1604 x 10'7 59686 x 10'7 0.92731 0.036274 0.036413 0.061677 0.28602 0.019016 4.2789 x 10~* 5.5363 x 102
6.3763 x 107 8.4596 x 107 0.95783 0.039465 0.0027073 0.0052941 0.32319 0.020126 2.9462 x 10~* 9.2879 x 1073
6.0341 x 10'7 5.8367 x 10'7 0.93139 0.031169 0.037446 0.052395 0.28570 0.019147 1.8954 x 1072 5.3731 x 1072
6.3494 x 10'7  8.6731 x 10'7 0.96193 0.035946 0.0021234 0.0033736 0.32376 0.020848 1.1172x 1073 7.9114 x 1073
5.4290 x 107 5.3893 x 10'7 0.93710 0.035454 0.027449 0.038567 0.29213 0.017490 2.8983 x 10™2 5.0486 x 1072
6.3568 x 107 9.1621 x 10'7  0.96044 0.037997 0.0015662 0.0025140 0.32399 0.021508 1.4947 x 10~3 7.5440 x 1073
1.1258 x 10'® 7.8558 x 10'7 0.91411 0.070139 0.015746 0.019785 0.26756 0.15293 4.8131 x 1073 8.9732 x 1072
5.3348 x 107 9.8917 x 10'® 0.92365 0.070049 0.0062992 0.012604 0.32182 0.0090924 2.4980 x 10~* 2.7732 x 1073

one can roughly understand the contribution of the kinetic
term 7 and electromagnetic term M to the deformation of the
compact stars. For the solutions with the magnetotunnel, 27°
are around 46 times of M for the rapidly rotating models,
while for the slowly rotating models M is dominating about
2-3.5 times over 27. The ratios of (27 + M)/3I1 which
roughly measure contribution of nonspherical deformation to
the equilibriums are about 3% for the slowly rotating models,
and 15% for the rapidly rotating models. For the MS-DR-1
model, on the other hand, M is dominating over 27, where
M is about 4 times larger than 27°. The value of M /W] is
about 7 times larger than the other models.

It is also noted that, for the models with the magneto-
tunnel, the maximum values of the toroidal components of
magnetic fields are comparable or even larger than that of
poloidal magnetic fields, and overall integrals of toroidal
fields M, are only 3.5-4% of those of poloidal fields
Mo The integrals of electric part M. are about the
same as M, for the rapidly rotating models, but it is less
than 10% of M, for the slowly rotating models. This
seems to be reasonable considering that the higher multi-
pole contributions are less dominating in the slowly
rotating models. For the MS-DR models, the toroidal
component of the magnetic field is distributed in a broader
region, and hence the fraction of M./ M is about twice
of the other models, although it is still more than an order
smaller than the contribution from the poloidal compo-
nent M,/ M.

IV. DISCUSSION

Results of simulations by Braithwaite and coworkers
[18] suggest that stable equilibriums of strongly magnet-
ized stars may be achieved when the energies of the
poloidal and the toroidal components of magnetic fields
become comparable [18]. One of the motivations to
investigate the solutions of such mixed poloidal and
toroidal magnetic fields presented in this paper is to obtain

such stable models of magnetized compact stars. However,
so far, the energy carried by the toroidal field is far smaller
than that of the poloidal field in our models. Recently we
have performed numerical simulations of such extremely
magnetized compact stars starting from the initial data
calculated in Paper I (and with varied parameters) which
are close to the EV-MT-UR models but with Bj¢* around
30-40% smaller [6]. We found that the kink instability
develops and destroys the axisymmetry of the solutions,
although in a certain case the instability develops slower
than the alfvén time. We also found that the magnetorota-
tional effect carries away the angular momentum of the
stellar core; hence the rotation of the core slows down, and
a differential rotation develops. It is totally unclear, but is
interesting to investigate, how the stronger toroidal mag-
netic field, and/or a differential rotation as in the present
models modify the evolutions of such compact stars.

The magnetic field strength of the solutions presented in
this paper may be too strong for astrophysically realistic
compact objects. From a theoretical stand point, however, it
is of interest to investigate the extreme cases where the
electromagnetic fields affect the stellar equilibrium or even
become a source of gravity. In the above solutions, it is
observed that the magnetic fields locally dominate over the
hydrostatic equilibriums, but the metric is affected only
slightly. As seen in the contours of metric components in
Figs. 1-4, in the toroidal region near the equatorial surface
where the strong magnetic fields are concentrated, the
contour for y and the density map of ﬁy appears to be
unaffected, while some structure is observed in the contours
of h,, in this region. Hence, the limit of the strength of the
magnetic field is not reached in a sense that it is not a
dominant source of gravity. Since our numerical method
solves the full set of Einstein’s and Maxwell’s equations for
equilibrium or quasiequilibrium initial data, we expect that
even more extreme magnetic fields may be obtained,
including an extremely strong magnetosphere surrounding
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a black hole. Such studies may be one of the future
extensions of the present work.
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