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ABSTRACT: A gold-catalyzed method for N-alkenylation has been developed for NH-isoxazolines, which are challenging substrates 
for alternative transition metal-catalyzed N-functionalization reactions. Generation of a vinyl gold intermediate from the addition of 
NH-isoxazolines to gold-activated ynamides initiates a diastereoselective [3,3’]-sigmatropic rearrangement to give 2-amino-1-pyr-
rolines. Optimization of this transformation is described in addition to reaction scope, the use of chiral auxiliaries for the preparation 
of chiral non-racemic 2-amino-1-pyrrolines, and mechanistic insight. This method prepares heterocycles that are difficult to access 
through traditional approaches with an enabling gold-catalyzed disconnection.

Heterocycles with imbedded amidine functional groups are 
common motifs in biologically active molecules.1 As shown in 
Scheme 1A, 2-amino-1-pyrrolines and 2-imino-pyrrolidines 
have been shown to be active BACE1 inhibitors in Alzheimer 
disease studies, selective nitric oxide synthase (NOS) inhibitors 
in therapeutic NOS regulation, and selective imidazoline recep-
tor ligands for the management of blood pressure, hypertension 
and metabolic disorders.2-4 Traditional methods for the synthe-
sis of these small molecules primarily rely on reduction and cy-
clization of nitrile- and nitro-functionalized precursors and/or 
substitution of γ-lactams (Scheme 1B).3,5,6 While proven to be 
effective, these approaches require pre-installation of stereo-
centers and have limited tolerance of functional groups suscep-
tible to reduction or acyl substitution. As alternative routes to 
2-amino-1-pyrrolines, conjugate additions of 2-aminoazirines, 
cyclizations of ketenimine intermediates, and three-component 
coupling reactions have been reported; however, while provid-
ing complementary disconnections from traditional methods 
and greater structural complexity, these transformations can be 
inhibited by competing reaction pathways for substrates with 
reactive functional groups.5c,7-10 Given the importance of 2-
amino-1-pyrrolines and the current synthetic limitations sur-
rounding these compounds, we wondered if construction of 
these scaffolds from N-alkenylisoxazolines through a [3,3’]-
sigmatropic rearrangement could provide a milder functional 
group compatible alternative with stereochemical control. 
Achieving this transformation, necessitated the development of 
an isoxazoline N-alkenylation reaction.  
While palladium- and copper-catalyzed N-arylation reactions 

of pyrrazoles and isoxazolidines have been reported, to the best 
of our knowledge N-alkenylations of NH-isoxazolines are un-
known.11-13 Addition of an isoxazole to an ynamide to give a 
vinyl gold intermediate followed by fragmentation and recom-
bination was proposed by Lu, Ye, and coworkers as a pathway 
for pyrrole synthesis (Scheme 1C).14a,b Similar transformations 
have been reported to access other α-imino gold carbene inter-
mediates.14 We were curious if addition of NH-isoxazolines 1 
to gold-activated ynamides 2 could access related N-alkenyl- 

Scheme 1. Synthesis of 2-Amino-1-Pyrrolines and Comple-
mentary Routes to N-Alkenylisoxazolines 

 

 

B) Traditional and recent approaches to the synthesis of 2-amino-1-pyrrolines5-10
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isoxazoline intermediates 3 and trigger a diastereoselective 
[3,3’]-sigmatropic rearrangement to give 2-amino-1-pyrrolines 
4 (Scheme 1E).15,16 In previous work, we reported that O-func-
tionalization of N-alkenylnitrones via dipolar cycloaddition can 
generate analogous intermediates that undergo rearrangement 
to give 1-pyrrolines (Scheme 1D).17 Unfortunately, enamine-
substituted nitrones such 5a are unavailable and this route can-
not be used for the synthesis of 2-amino-1-pyrrolines 4 (Scheme 
1E, red). Considering an alternative disconnection, we envi-
sioned accessing 3a by gold-catalyzed N-alkenylation of 1a 
(Scheme 1E, blue). Herein we describe the development of a 
gold-catalyzed method for the synthesis of 2-amino-1-pyr-
rolines 4 from ynamides 2 and NH-isoxazolines 1 via formation 
of vinyl gold complex 3 followed by rearrangement.18 This new 
reaction overcomes limitations associated with established syn-
thetic routes for the synthesis of 2-amino-1-pyrrolines and 
showcases the unique ability of gold-catalysis to access the in-
termediate needed to initiate C–C bond formation. 
When initial investigations of copper- and palladium-cata-

lyzed methods for the N-alkenylation of NH-isoxazolines such 
as 1a were unproductive (see Supporting Information), we 
turned our attention to the development of a gold-catalyzed re-
action.11-13 As shown in Table 1, entry 1, when a mixture NH-
isoxazoline 1a and ynamide 2a were treated with 
(Johnphos)AuCl and AgNTf2, pyrroline 4a was observed in 
high yield. Removal of both the Au(I) catalyst and the Ag addi-
tive showed that there is no metal-free background reaction (Ta-
ble 1, entry 2). Treatment of a mixture of 1a and 2a with either 
(JohnPhos)AuCl or AgNTf2 indicated that both components of 
the catalyst mixture are required to achieve high yield (Table 1, 
entry 3 – 4). Consistent results between Table 1, entry 1 and 
entry 5, where (JohnPhos)AuCl was pretreated with AgNTf2 
and filtered through celite, supports the role of AgNTf2 for 
counterion exchange but indicates no additional silver effect.19 
While a mixture of (JohnPhos)AuCl and AgNTf2 in MeCN was 
ultimately determined to be optimal for the conversion of 1a to 
4a, the reaction was also shown to tolerate several other com-
mon Au(I) catalysts and Ag(I) additives in good yield (Table 1, 
entries 6 – 8 and 11 – 12). Au(III) and Pt(II) catalysts were also 
effective, albeit in slightly lower yields (Table 1, entries 9 – 10). 
Solvents such as toluene and DCE performed similarly to 
MeCN (Table 1, entries 13 – 14). With the optimal conditions 
shown in Table 1, entry 1 in hand, the scope of the synthesis of 
pyrrolines 4 from isoxazolines 1 was explored. 
Investigation of the scope of the gold-catalyzed addition of 

isoxazolines to ynamides followed by rearrangement to 2-
amino-1-pyrrolines initially focused on the structure of the NH-
isoxazoline reagent 1 (Scheme 2). Isoxazolines with styrenyl 
and related conjugated aromatic groups smoothly converted to 
pyrrolines 4b – 4d. Linear alkyl- and cyclic alkyl-substituted 
isoxazolines were also tolerated giving pyrroline 4e and spiro-
cycles 4a and 4f – 4h. Racemic isoxazolines with chiral quater-
nary carbon centers were shown to control the diastereoselec-
tivity of the rearrangement to give pyrrolines 4i and 4j as single 
diastereomers. When isoxazolines generated from enynes via a 
procedure developed by Zhang and coworkers were tested un-
der the reaction conditions, gem-dione products 4k – 4o were 
isolated in good yield and high diastereoselectivity.20 The rela-
tive configuration of 4 was determined by NMR spectroscopy 
and confirmed by X-ray crystal structure analysis of 4o and 4t 
(see reference 17b for X-ray crystal structure analysis of related 
compounds generated from similar intermediates). The ob-
served cis- and trans-relationships of the substituents can be 

explained by a boat transition state conformation (see TS1 
Scheme 2) for the [3,3’]-sigmatropic rearrangement in analogy 
to our previous work with related thermal rearrangements.17 
Having established the generality of the gold-catalyzed reaction 
for the synthesis of novel 1-pyrrolines 4 from isoxazolines 1, 
we next turned our attention to the ynamide reaction partner. 
 

Table 1. Optimization of Au-Catalyzed N-Alkenylation and 
Rearrangement 

 
Entrya [Au] (2 mol %) [Ag] (2 mol %) % Yieldb 

1 (JohnPhos)AuCl AgNTf2 >95 
2 -- -- 0 
3 (JohnPhos)AuCl -- 58 
4 -- AgNTf2 29 
5c (JohnPhos)AuCl AgNTf2 93 
6 (IPr)AuCl AgNTf2 89 
7d (ArO)3PAuCl AgNTf2 81 
8 (t-BuXPhos)AuCl AgNTf2 94 
9 PicAuCl2 -- 80 
10d,e PtCl2/P(OAr)3 -- 81 
11 (JohnPhos)AuCl AgOTf 87 
12 (JohnPhos)AuCl AgBF4 91 
13e (JohnPhos)AuCl AgNTf2 88 
14f (JohnPhos)AuCl AgNTf2 83 
aConditions: 1a (1 equiv), 2a (1.1 equiv), 0.025 M, 25 °C, 18 h. 
bDetermined by 1H NMR spectroscopy using CH2Br2 as an inter-
nal standard. c[Au] and [Ag] mixed for 30 min in MeCN and fil-
tered through celite prior to mixing with 1a and 2a. dAr = 2,4-(t-
Bu)2C6H3. eDCE used as solvent. fToluene used as solvent. 
 
As shown in Scheme 2, ynamides and ynamines with mesyl, 

carbamate, tosyl, and heterocyclic functionalities smoothly un-
derwent the gold-catalyzed addition and rearrangement reaction 
with isoxazoline 1a to give pyrrolines 4p – 4t. Isoxazolines with 
racemic quaternary chiral carbon centers continued to give the 
corresponding pyrrolines in high diastereoselectivity as ob-
served for 4t. An X-ray crystal structure of 4t confirmed the 
relative configuration to be consistent with 4o. In contrast, isox-
azolines 1k – 1o required ynamides with sulfonamide substitu-
ents to undergo conversion to pyrrolines 4 and were unreactive 
with ynamides and ynamines (2c – 2i). Due to the steric inter-
actions involved with nucleophilic attack, internal ynamides 
were more challenging substrates for the gold-catalyzed addi-
tion and rearrangement reaction. Surprisingly, while carbamate- 
and sulfonamide-substituted internal ynamides were unreactive 
with isoxazoline 1a, a mixture of 1a and 2g gave 4u in moderate 
yield and good diastereoselectivity at elevated temperature with 
IPrAuCl as the catalyst. Use of a stronger electron-donating N-
functional group may be required to electronically-favor yna-
mide coordination to the gold catalyst for sterically-demanding 
substrates. 
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Scheme 2. Scope of NH-Isoxazoline N-Alkenylation and Rearrangement. 

 
Investigation of ynamides with chiral auxiliaries under the 

gold-catalyzed conditions for pyrroline synthesis described 
above showed that remote stereocenters can be used to control 
the approach of an NH-isoxazoline towards an activated yna-
mide and the diastereoselectivity of the subsequent sigmatropic 
rearrangement (Scheme 2, 4v – 4aa). Ynamide 2h initially gave 
pyrroline 4v as an 8:1 diastereomeric mixture. Changing the 
size of the oxazolidinone substituent effected the selectivity of 
the process with t-butyl-oxazolidinone ynamide 2i resulting in 
a higher distereomeric ratio for pyrroline 4w. A complementary 
change in catalyst structure to t-BuXPhosAuCl further opti-
mized the transfer of the stereochemical information giving 4w 
with dr = >20:1. Having established that oxazolidinone yna-
mide substituents could control the synthesis of pyrrolines 4 
from 1, this diastereoselective synthesis was investigated with 
other substrates. Compounds 4x – 4aa, with both acyclic and 
spirocyclic quaternary carbon stereocenters, were isolated in 

good yield and high diastereoselectivity as enantioenriched 
products. An X-ray crystal structure of 4w prepared from the S-
oxazolidinone-substituted ynamide 2i suggests that TS2 is the 
preferred transition state minimizing steric interactions between 
the chiral auxiliary and the gold-catalyst. 
The gold-catalyzed N-alkenylation of 1 and rearrangement to 

pyrroline 4 was initially proposed to proceed through either: 1) 
[3,3’]-sigmatropic rearrangement of gold-coordinated addition 
product 3 via transition state TS3,16 or 2) fragmentation of gold-
coordinated addition product 3 to gold carbene 7 and α,β-un-
saturated ketone 8, followed by recombination via cycloaddi-
tion (Scheme 3A).14 To determine whether fragmentation to a 
carbene intermediate was occurring, vinyl ether 9 was added to 
the reaction mixture of 1a and 2a (Scheme 3B).21 This reagent 
has previously been reported to trap α-imino gold carbene in-
termediates to give pyrroles such as 10 but no evidence of trap-
ping was observed and pyrroline 4a was the only product. To 

NH
O LAuCl (2 mol %)

AgNTf2 (2 mol %)
MeCN, 25 °C

N
R6

R5

R3 R4

N

R1

R2

R3

R4
O

NR6

R5

+

4

R1

R2

1a - 1o 2a - 2i

NN

Et
Ph O

E
E

Ts

MeN E
E

O

NMe

Ts

4b, 92%, L14a, 98%, L1

NN

Me
Me O

E
E

Ts

Me

4e, 78%, L1 4g, 89%, L1

N E
E

NMe

Ts

4h, 85%, L1

4k, 88%, L1 4l, 74%, L1

E = CO2Me

N E
CF3O

NMe

Ts

4i, 82%, 60 °C, L1

N E
E

O

NMe

Ts

4f, 48%, L1 
from S-1f

NN E
Ar

Ts

Me

4j, 89%, L1

Ar = 4-Cl(C6H4)

O
Ph

NN

Cy
Ph O

E
E

Ts

Me

4c, 86%, L1

N E
E

O

N

O
O

Me

Ts

dr = >20:1

NN

O
Bn

Me

O

Ph
Me

Ts
NN

O
Ph

Me

Ts

OBn
O

NN

Me
O

E
E

Ts

Me

4d, 81%, L1

O
O

N E
E

O

NBn

CBz

4r, 81%, L1

N Ph
E

O

N

4t, 82%, L1

dr = >20:1

N E
E

O

NMe

Ms

4p, 84%, L1

N E
E

O

N

4s, 82%, L1

O

O
N E

E
O

N

4u, 60 °C, L2

38%, dr = 15:1

n-Bu

N E
E

O

NBn

Boc

4q, 78%, L1

N E
E

O

N

4v, 85%, L1

dr = 8:1

O
i-Pr

O
N E

E
O

N

4w, 82%, L1, dr = 15:1
93%, L3, dr = >20:1

O
t-Bu

O

NN

Et
Ph O

E
E

4x, 87%, L3

dr = >20:1

O O

t-Bu
NN

Me
Me O

E
E

4aa, 83%, L3

dr = >20:1

O O

t-Bu
N E

E
O

N

4y, 81%, L3

dr = >20:1
O

O
4z, 82%, L3

dr = >20:1

O O

t-Bu

NN

Et
O

E
E

O

O O

t-Bu

E
O

NHE

N
O[Au]

O

t-Bu

NH
O

N

E E
4w

O

O

t-Bu

cat.[Au]/cat.[Ag]
1a

2m

TS2

Proposed stereoselectivity model

4m, 84%, L1

NN

O
Bn

Me

O

Me

Ts
O

4n, 93%, L1

Ar = p-CF3(C6H4)

NN

O
Bn

Me

O

Ar
Me

Ts

P(t-Bu)2

N

N

i-Pr
i-Pr

i-Pr
i-Pr

P(t-Bu)2
i-Pri-Pr

i-Pr

L1 = Johnphos L2 = IPr L3 = t-BuXPhosR4
O

HN
R2

R1

N
[Au]

R3

R5

R6

3

NH
O

EE

Ph

Et

NH
O

EE

Ph

Cy

NH
O

EE
Et

O

NH
O

EE

Me

Me

N
H

O

BnO

Me

F3C

1b 1e1c 1d

1n

NH
O

EE1a

NH
O

EE

O

O
1g

N
H

O
Ph

BnO
O

1l
N
H

O

Bn
O

Me

O

1m

N
H

O

BnO

Me

MeO
1o

NH
O

PhE1p

Isoxazolines 1 and Ynamides 2:

Pyrrolines 4, isolated yields:

NH
O

EE1f

NPhth = phthalimide;

NHet

2g

n-Bu

N Me

Ts
N Me

Ms
N Bn

Boc
N Bn

BzC

NPhth NHet

N O

O

t-Bu 2i2h

2a 2b 2c 2d

2e 2f

N O

O

i-Pr

NH
O

EE

NH
O

CF3E

1h

1i

NH
O

E

Ph

1j
N
H

O
Ph

BnO

Me

1k

NHet = carbazole

Cl

X = NTf2

X

X = NTf2

4o, 86%, L1

Ar = p-OMe(C6H4)
Ar

O

HN
Me

Bn

N
[Au]

H O

Ts
Me

NN

O
Bn

Me

O

Ar
Me

Ts

TS1

=

consistent with boat transition state



 

further probe the possibility of an α-imino gold carbene inter-
mediate, diazoester 11 was prepared and treated with α,β-un-
saturated ketone 12 under gold-catalyzed conditions previously 
reported to convert 11 to an α-imino gold carbene, and with our 
optimized reaction conditions, but no evidence of 13 was ob-
served and 12 was recovered (Scheme 3C).21 These experiments 
are inconsistent with the proposed fragmentation pathway for 
gold-catalyzed conversion of 1 and 2 to pyrrolines 4; however, 
they do not rule out cyclization by C–H insertion of a potential 
α-imino carbene intermediate.22 The relative configuration of 4i 
– 4o and 4t are consistent with the proposed boat-like rearrange-
ment of intermediate 3. This suggests that a pathway through 
TS3, or an analogous transition state after protodeauration, is 
likely for the synthesis of 4 and consistent with our previous 
reports on the reactivity of related intermediates generated by 
alternative routes. 
Scheme 3. Proposed pathways and trapping experiments. 

 

A new method for the synthesis of 2-amino-1-pyrrolines has 
been developed that provides access to novel examples of this 
heterocycle, which is a common scaffold in a variety of biolog-
ically active molecules. Gold-catalysis conditions were devel-
oped to access N-alkenylisoxazoline intermediates 3 that rear-
range to form the desired pyrrolines 4. Studies towards access-
ing these rearrangement precursors identified the gold-cata-
lyzed addition of isoxazolines to ynamides to be uniquely pro-
ductive, while alternative transition metal-catalyzed N-alkenyl-
ation strategies were unsuccessful with NH-isoxazolines 1. 
Trapping studies support the proposed gold-catalyzed addition 
and rearrangement pathway, indicating that α-imino gold car-
bene intermediates are unlikely to play a role in the reaction 
mechanism. This study expands chemical space around known 
privileged structures, showcases the utility of N-alkenylisoxa-
zolines as versatile intermediates for the synthesis of stereode-
fined 1-pyrrolines, and identifies gold-catalysis as distinctively 
effective for the N-alkenylation of NH-isoxazolines. 
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2′,4′,6′-triisopropyl-1,1′-biphenyl)-2-(2′-amino-1,1′-biphenyl)] 
palladium(II) methanesulfonate methanesulfonate; dba, dibenzyli-
deneacetone; XPhos, 2-dicyclohexylphosphino-2′,4′,6′-triisopro-
pylbiphenyl; Johnphos, (2-biphenyl)di-t-butylphosphine; IPr, 1,3-
bis(2,6-diisopropylphenyl)imidazole-2-ylidene; t-BuXPhos = 2-di-
t-butylphosphine-2’,4’,6’-triisopropylbiphenyl; Pic, 2-picolyla-
mine.  
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