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ABSTRACT: A gold-catalyzed method for N-alkenylation has been developed for NH-isoxazolines, which are challenging substrates
for alternative transition metal-catalyzed N-functionalization reactions. Generation of a vinyl gold intermediate from the addition of
NH-isoxazolines to gold-activated ynamides initiates a diastereoselective [3,3’]-sigmatropic rearrangement to give 2-amino-1-pyr-
rolines. Optimization of this transformation is described in addition to reaction scope, the use of chiral auxiliaries for the preparation
of chiral non-racemic 2-amino-1-pyrrolines, and mechanistic insight. This method prepares heterocycles that are difficult to access
through traditional approaches with an enabling gold-catalyzed disconnection.

Heterocycles with imbedded amidine functional groups are
common motifs in biologically active molecules.' As shown in
Scheme 1A, 2-amino-1-pyrrolines and 2-imino-pyrrolidines
have been shown to be active BACEI inhibitors in Alzheimer
disease studies, selective nitric oxide synthase (NOS) inhibitors
in therapeutic NOS regulation, and selective imidazoline recep-
tor ligands for the management of blood pressure, hypertension
and metabolic disorders.>* Traditional methods for the synthe-
sis of these small molecules primarily rely on reduction and cy-
clization of nitrile- and nitro-functionalized precursors and/or
substitution of y-lactams (Scheme 1B).>>® While proven to be
effective, these approaches require pre-installation of stereo-
centers and have limited tolerance of functional groups suscep-
tible to reduction or acyl substitution. As alternative routes to
2-amino-1-pyrrolines, conjugate additions of 2-aminoazirines,
cyclizations of ketenimine intermediates, and three-component
coupling reactions have been reported; however, while provid-
ing complementary disconnections from traditional methods
and greater structural complexity, these transformations can be
inhibited by competing reaction pathways for substrates with
reactive functional groups.**’'® Given the importance of 2-
amino-1-pyrrolines and the current synthetic limitations sur-
rounding these compounds, we wondered if construction of
these scaffolds from N-alkenylisoxazolines through a [3,3’]-
sigmatropic rearrangement could provide a milder functional
group compatible alternative with stereochemical control.
Achieving this transformation, necessitated the development of
an isoxazoline N-alkenylation reaction.

While palladium- and copper-catalyzed N-arylation reactions
of pyrrazoles and isoxazolidines have been reported, to the best
of our knowledge N-alkenylations of NH-isoxazolines are un-
known.!"""* Addition of an isoxazole to an ynamide to give a
vinyl gold intermediate followed by fragmentation and recom-
bination was proposed by Lu, Ye, and coworkers as a pathway
for pyrrole synthesis (Scheme 1C).!*** Similar transformations
have been reported to access other o-imino gold carbene inter-
mediates.'* We were curious if addition of NH-isoxazolines 1
to gold-activated ynamides 2 could access related N-alkenyl-

Scheme 1. Synthesis of 2-Amino-1-Pyrrolines and Comple-
mentary Routes to /V-Alkenylisoxazolines
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isoxazoline intermediates 3 and trigger a diastereoselective
[3,3°]-sigmatropic rearrangement to give 2-amino-1-pyrrolines
4 (Scheme 1E).'>!¢ In previous work, we reported that O-func-
tionalization of N-alkenylnitrones via dipolar cycloaddition can
generate analogous intermediates that undergo rearrangement
to give 1-pyrrolines (Scheme 1D).!” Unfortunately, enamine-
substituted nitrones such 5a are unavailable and this route can-
not be used for the synthesis of 2-amino-1-pyrrolines 4 (Scheme
1E, red). Considering an alternative disconnection, we envi-
sioned accessing 3a by gold-catalyzed N-alkenylation of 1a
(Scheme 1E, blue). Herein we describe the development of a
gold-catalyzed method for the synthesis of 2-amino-1-pyr-
rolines 4 from ynamides 2 and NH-isoxazolines 1 via formation
of vinyl gold complex 3 followed by rearrangement.'® This new
reaction overcomes limitations associated with established syn-
thetic routes for the synthesis of 2-amino-1-pyrrolines and
showcases the unique ability of gold-catalysis to access the in-
termediate needed to initiate C—C bond formation.

When initial investigations of copper- and palladium-cata-
lyzed methods for the N-alkenylation of NH-isoxazolines such
as la were unproductive (see Supporting Information), we
turned our attention to the development of a gold-catalyzed re-
action.!""!* As shown in Table 1, entry 1, when a mixture NH-
isoxazoline 1a and ynamide 2a were treated with
(Johnphos)AuCl and AgNTf,, pyrroline 4a was observed in
high yield. Removal of both the Au(I) catalyst and the Ag addi-
tive showed that there is no metal-free background reaction (Ta-
ble 1, entry 2). Treatment of a mixture of 1a and 2a with either
(JohnPhos)AuCl or AgNTH, indicated that both components of
the catalyst mixture are required to achieve high yield (Table 1,
entry 3 — 4). Consistent results between Table 1, entry 1 and
entry 5, where (JohnPhos)AuCl was pretreated with AgNTf,
and filtered through celite, supports the role of AgNTf, for
counterion exchange but indicates no additional silver effect.'
While a mixture of (JohnPhos)AuCl and AgNTf; in MeCN was
ultimately determined to be optimal for the conversion of 1a to
4a, the reaction was also shown to tolerate several other com-
mon Au(I) catalysts and Ag(I) additives in good yield (Table 1,
entries 6 — 8 and 11 — 12). Au(III) and Pt(IT) catalysts were also
effective, albeit in slightly lower yields (Table 1, entries 9 — 10).
Solvents such as toluene and DCE performed similarly to
MeCN (Table 1, entries 13 — 14). With the optimal conditions
shown in Table 1, entry 1 in hand, the scope of the synthesis of
pyrrolines 4 from isoxazolines 1 was explored.

Investigation of the scope of the gold-catalyzed addition of
isoxazolines to ynamides followed by rearrangement to 2-
amino-1-pyrrolines initially focused on the structure of the NH-
isoxazoline reagent 1 (Scheme 2). Isoxazolines with styrenyl
and related conjugated aromatic groups smoothly converted to
pyrrolines 4b — 4d. Linear alkyl- and cyclic alkyl-substituted
isoxazolines were also tolerated giving pyrroline 4e and spiro-
cycles 4a and 4f — 4h. Racemic isoxazolines with chiral quater-
nary carbon centers were shown to control the diastereoselec-
tivity of the rearrangement to give pyrrolines 4i and 4j as single
diastereomers. When isoxazolines generated from enynes via a
procedure developed by Zhang and coworkers were tested un-
der the reaction conditions, gem-dione products 4k — 40 were
isolated in good yield and high diastereoselectivity.?’ The rela-
tive configuration of 4 was determined by NMR spectroscopy
and confirmed by X-ray crystal structure analysis of 40 and 4t
(see reference 17b for X-ray crystal structure analysis of related
compounds generated from similar intermediates). The ob-
served cis- and trans-relationships of the substituents can be

explained by a boat transition state conformation (see TS1
Scheme 2) for the [3,3’]-sigmatropic rearrangement in analogy
to our previous work with related thermal rearrangements."”
Having established the generality of the gold-catalyzed reaction
for the synthesis of novel 1-pyrrolines 4 from isoxazolines 1
we next turned our attention to the ynamide reaction partner.

Table 1. Optimization of Au-Catalyzed N-Alkenylation and
Rearrangement
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Entry® [Au] (2 mol %) [Ag] 2 mol %) % Yield®
1 (JohnPhos)AuCl AgNTH, >95
2 -- -- 0
3 (JohnPhos)AuCl -- 58
4 -- AgNTf, 29
5¢ (JohnPhos)AuCl AgNTH, 93
6 (TPr)AuCl AgNTf, 89
74 (ArO)3;PAuCl AgNTf, 81
8 (-BuXPhos)AuCl AgNTf, 94
9 PicAuCl, -- 80
10% PtClo/P(OAr)3 -- 81
11 (JohnPhos)AuCl AgOTf 87
12 (JohnPhos)AuCl AgBF4 91
13¢ (JohnPhos)AuCl AgNTf, 88
14f (JohnPhos)AuCl AgNTf, 83

“Conditions: 1a (1 equiv), 2a (1.1 equiv), 0.025 M, 25 °C, 18 h.
’Determined by '"H NMR spectroscopy using CH,Br; as an inter-
nal standard. ‘{Au] and [Ag] mixed for 30 min in MeCN and fil-
tered through celite prior to mixing with 1a and 2a. Ar = 2,4-(¢-
Bu),CeHs. °DCE used as solvent. /Toluene used as solvent.

As shown in Scheme 2, ynamides and ynamines with mesyl,
carbamate, tosyl, and heterocyclic functionalities smoothly un-
derwent the gold-catalyzed addition and rearrangement reaction
with isoxazoline 1a to give pyrrolines 4p — 4t. Isoxazolines with
racemic quaternary chiral carbon centers continued to give the
corresponding pyrrolines in high diastereoselectivity as ob-
served for 4t. An X-ray crystal structure of 4t confirmed the
relative configuration to be consistent with 40. In contrast, isox-
azolines 1k — 1o required ynamides with sulfonamide substitu-
ents to undergo conversion to pyrrolines 4 and were unreactive
with ynamides and ynamines (2¢ — 2i). Due to the steric inter-
actions involved with nucleophilic attack, internal ynamides
were more challenging substrates for the gold-catalyzed addi-
tion and rearrangement reaction. Surprisingly, while carbamate-
and sulfonamide-substituted internal ynamides were unreactive
with isoxazoline 1a, a mixture of 1a and 2g gave 4u in moderate
yield and good diastereoselectivity at elevated temperature with
IPrAuCl as the catalyst. Use of a stronger electron-donating N-
functional group may be required to electronically-favor yna-
mide coordination to the gold catalyst for sterically-demanding
substrates.



Scheme 2. Scope of NH-Isoxazoline N-Alkenylation and Rearrangement.
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Investigation of ynamides with chiral auxiliaries under the
gold-catalyzed conditions for pyrroline synthesis described
above showed that remote stereocenters can be used to control
the approach of an NH-isoxazoline towards an activated yna-
mide and the diastereoselectivity of the subsequent sigmatropic
rearrangement (Scheme 2, 4v — 4aa). Ynamide 2h initially gave
pyrroline 4v as an 8:1 diastereomeric mixture. Changing the
size of the oxazolidinone substituent effected the selectivity of
the process with ¢-butyl-oxazolidinone ynamide 2i resulting in
a higher distereomeric ratio for pyrroline 4w. A complementary
change in catalyst structure to ~-BuXPhosAuCl further opti-
mized the transfer of the stereochemical information giving 4w
with dr = >20:1. Having established that oxazolidinone yna-
mide substituents could control the synthesis of pyrrolines 4
from 1, this diastereoselective synthesis was investigated with
other substrates. Compounds 4x — 4aa, with both acyclic and
spirocyclic quaternary carbon stereocenters, were isolated in
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good yield and high diastereoselectivity as enantioenriched
products. An X-ray crystal structure of 4w prepared from the S-
oxazolidinone-substituted ynamide 2i suggests that TS2 is the
preferred transition state minimizing steric interactions between
the chiral auxiliary and the gold-catalyst.

The gold-catalyzed N-alkenylation of 1 and rearrangement to
pyrroline 4 was initially proposed to proceed through either: 1)
[3,3’]-sigmatropic rearrangement of gold-coordinated addition
product 3 via transition state TS3,'® or 2) fragmentation of gold-
coordinated addition product 3 to gold carbene 7 and o,p-un-
saturated ketone 8, followed by recombination via cycloaddi-
tion (Scheme 3A)."* To determine whether fragmentation to a
carbene intermediate was occurring, vinyl ether 9 was added to
the reaction mixture of 1a and 2a (Scheme 3B).>' This reagent
has previously been reported to trap a-imino gold carbene in-
termediates to give pyrroles such as 10 but no evidence of trap-
ping was observed and pyrroline 4a was the only product. To



further probe the possibility of an a-imino gold carbene inter-
mediate, diazoester 11 was prepared and treated with o,p-un-
saturated ketone 12 under gold-catalyzed conditions previously
reported to convert 11 to an a-imino gold carbene, and with our
optimized reaction conditions, but no evidence of 13 was ob-
served and 12 was recovered (Scheme 3C).?! These experiments
are inconsistent with the proposed fragmentation pathway for
gold-catalyzed conversion of 1 and 2 to pyrrolines 4; however,
they do not rule out cyclization by C—H insertion of a potential
o-imino carbene intermediate.?? The relative configuration of 4i
—4o0 and 4t are consistent with the proposed boat-like rearrange-
ment of intermediate 3. This suggests that a pathway through
TS3, or an analogous transition state after protodeauration, is
likely for the synthesis of 4 and consistent with our previous
reports on the reactivity of related intermediates generated by
alternative routes.

Scheme 3. Proposed pathways and trapping experiments.
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A new method for the synthesis of 2-amino-1-pyrrolines has
been developed that provides access to novel examples of this
heterocycle, which is a common scaffold in a variety of biolog-
ically active molecules. Gold-catalysis conditions were devel-
oped to access N-alkenylisoxazoline intermediates 3 that rear-
range to form the desired pyrrolines 4. Studies towards access-
ing these rearrangement precursors identified the gold-cata-
lyzed addition of isoxazolines to ynamides to be uniquely pro-
ductive, while alternative transition metal-catalyzed N-alkenyl-
ation strategies were unsuccessful with NH-isoxazolines 1
Trapping studies support the proposed gold-catalyzed addition
and rearrangement pathway, indicating that o-imino gold car-
bene intermediates are unlikely to play a role in the reaction
mechanism. This study expands chemical space around known
privileged structures, showcases the utility of N-alkenylisoxa-
zolines as versatile intermediates for the synthesis of stereode-
fined 1-pyrrolines, and identifies gold-catalysis as distinctively
effective for the N-alkenylation of NH-isoxazolines.
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ABBREVIATIONS

BrettPhos Pd G3, [(2-di-cyclohexylphosphino-3,6-dimethoxy-
2'4',6'-triisopropyl-1,1'-biphenyl)-2-(2'-amino-1,1"-biphenyl)]
palladium(IT) methanesulfonate methanesulfonate; dba, dibenzyli-
deneacetone; XPhos, 2-dicyclohexylphosphino-2',4’,6"-triisopro-
pylbiphenyl; Johnphos, (2-biphenyl)di-z-butylphosphine; IPr, 1,3-
bis(2,6-diisopropylphenyl)imidazole-2-ylidene; +-BuXPhos = 2-di-
t-butylphosphine-2’,4°,6’-triisopropylbiphenyl; Pic, 2-picolyla-
mine.
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