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Abstract—The concept of a digital twin (DT) plays a pivotal
role in the ongoing digital transformation and has achieved
significant strides for various wireless applications in recent years.
In particular, the field of autonomous vehicles is a domain that
is ripe for exploiting the concept of DT. Nevertheless, there are
many challenges that include holistic consideration and integration
of hardware, software, communication methods, and collaboration
of edge/cloud computing. In this paper, an end-to-end (E2E) real-
world smart mobility DT is designed and implemented for the
purpose of autonomous driving. The proposed system utilizes
roadside units (RSUs) and edge computing to capture real-world
traffic information, which is then processed in the cloud to create
a DT model. This DT model is then exploited to enable route
planning services for the autonomous vehicle to avoid heavy traffic.
Real-world experimental results show that the system reliability
can reach 99.53% while achieving a latency that is 3.36% below
the 3GPP recommended value of 100 ms for autonomous driving.
These results clearly validate the effectiveness of the system
according to practical 3GPP standards for sensor and state map
sharing (SSMS) and information sharing.

Index Terms—Digital twin, autonomous driving, roadside unit,
route planning, implementation.

I. INTRODUCTION

The realm of the Internet of Things (IoT) is rapidly ex-
panding beyond the conventional frameworks, branching out to
encapsulate a broader spectrum of digital connectivity [1]. This
emerging paradigm facilitates intelligent data sharing among
entities, thereby advancing our ability to monitor, control, and
optimize the physical world. As a prominent manifestation
of IoT, digital twin (DT) technology has begun to establish
its foothold across different industries [2]. The potential of
DTs lies in their capabilities to construct comprehensive digital
representations, thereby enabling bidirectional interaction be-
tween the physical space and cyber space [3]. Henceforth, DTs
empower real-time decision-making and enhance efficiency,
productivity, and adaptability in a multitude of applications [4].

With the rapid advancement in autonomous driving technolo-
gies, the convergence of DTs and autonomous vehicles presents
an exciting new frontier. The implementation of DTs within
the autonomous driving ecosystem creates vast possibilities for
improved safety, efficiency, and robustness of the system [5]. As
such, leveraging real-time synchronization between the digital
and physical worlds, autonomous vehicles can access global
information to “see more and see further”’, enhancing their
awareness and understanding of the traffic environment [6].
Furthermore, a DT allows for effective testing and validation of

autonomous driving algorithms in a controllable and scalable
virtual environment, accelerating the development and deploy-
ment of autonomous driving [7].

Hence, there has been a growing interest in introducing the
concept of DTs in smart mobility [8]-[16]. The mainstream
roles of vehicular DTs are discussed and summarized in [8].
The authors in [9] proposed a DT-enabled scheduling archi-
tecture to help multiple vehicle users fulfill their personalized
requirements for path planning. Nevertheless, this prior work
[9] was only conducted and evaluated based on simulation
results, without realizing path planning for vehicles in a real-
world setting. Recent works in [10]-[12] investigated the
generation of highly accurate DT models by using various
onboard and infrastructure sensors with edge computing to
collect and process real-time information from the physical
space. However, the decision feedback from cyber space to
entities in physical space is not properly captured. In [13]-
[15], the implementation of DT systems was done in order to
provide situational awareness and cooperative driving services
for human drivers, which fails to consider the autonomy of
vehicles. To the best of our knowledge, there is a lack of
the holistic integration of DTs with autonomous vehicles, as
well as an absence of any practical end-to-end (E2E) system
designs and implementation of such a system. Hence, in our
previous work [16], we proposed a system architecture for
the smart mobility DT and conducted a preliminary proof-of-
concept (PoC) test. Our PoC provides a route planning service
that allows a vehicle to avoid overcrowded traffic. However, this
fundamental work in [16] only considered offline collection of
sensor data and overlooked the route planning decisions and
actions that were to be executed at the vehicle level.

In contrast to these prior works, the main contribution of
this paper is a real-time smart mobility DT framework for
autonomous driving, as well as a comprehensive real-world
implementation of this system. The proposed system requires a
realistic virtual representation of real-life traffic in autonomous
driving scenarios as well as the establishment of an effective
and stable request-feedback loop for the autonomous vehicle
to obtain cloud-based decisions. Thus, from a system design
perspective, the challenge lies in holistic consideration and
integration of hardware, software, communication methods,
and collaboration of edge/cloud computing. In addition, it is
important to implement and test the whole system in real-time
traffic conditions, which allows us to evaluate and validate the
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Fig. 1. System architecture of smart mobility DT.

performance of the designed DT. Hence, the system testing
is carried out in different scenarios to provide a thorough
analysis on the impact of various factors. In summary, our key
contributions include:

o We design a smart mobility DT that reflects objects of
interest in the context of road driving scenarios, e.g., roads,
infrastructures, vehicles, and pedestrians.

« We implement the DT platform for autonomous driving by
employing the roadside units (RSUs) and the autonomous
vehicle equipped with sensors, communication modules,
and edge computing capabilities.

e We design a cloud-based route planning service for the
autonomous vehicle based on real-time traffic information.

e Our results show the realization of the DT modeling and
demonstrate the effectiveness of the route planning service,
whereby the planned routes are successfully transmitted to
the vehicle for real-time execution.

o We validate the system performance in terms of reliability
and latency based on 3GPP standards for sensor and state
map sharing (SSMS) and information sharing.

The rest of the paper is organized as follows. Section II
provides a concise overview of the system design. Details about
hardware deployment, software installation, and route planning
are shown in Section III. Section IV discusses the experimental
evaluation. Section V concludes the paper.

II. DESIGN FOR SMART MOBILITY DT

We first develop and propose our DT system architecture
that is tailored for implementation in a specific but general-

izable environment. The proposed smart mobility DT system
is essentially based on our work in [16], [17]. This proposed
system enables real-time DT modeling and real-time feedback
services to the autonomous vehicle.

Fig. 1 gives the system architecture, consisting of au-
tonomous vehicles and RSUs in the physical world and a DT
system maintained within the cloud server. We exploit the
computing capabilities of the edge and cloud by distributing
various functions and services on these two planes. The edge,
referring to RSUs and autonomous vehicles, provides better
real-time operation in order to address delay-sensitive tasks
such as environmental perception and vehicle maneuvering.
Meanwhile, the cloud offers robust data processing capabilities
with higher latency, making it suitable for handling large-scale
and computation-intensive tasks that need global information,
such as DT modeling and deriving cloud-based services. Thus,
our system design incorporates edge and cloud computing to
enhance efficiency and safety for autonomous driving.

In the physical world, diverse sensors on the vehicle and
RSUs capture real-time data from their surroundings. Then the
vehicle can achieve a high level of autonomy, incorporating
functional modules such as navigation, perception, localization,
motion planning, and control. Similarly, RSUs use sensors for
object detection, tracking, and prediction, upload the perception
data to the cloud, and share it with nearby vehicles to enhance
their safety during the driving process.

The smart mobility DT within the cloud plane is dynamically
updated using real-time perception data from the physical
system, thereby accurately mirroring the current state of the
real-world traffic. After receiving the real-time perception data
from RSU edges, the cloud server synchronizes incoming edge
channels and locates detected objects based on their relative
coordinates to different edge sensors. By integrating with static
HD maps and 3D models, we can realize the generation of a vir-
tual representation from the physical space to cyber space. By
utilizing the smart mobility DT, we can facilitate the provision
of a variety of derivative services for autonomous vehicles that
include route planning, risk prediction, and congestion alerting.
Since these services are predicated on the comprehensive global
information from the DT, they can assist vehicles in evading
high-risk and congested areas outside onboard sensing horizons
and improving their overall commuting efficiency.

It is important to note that the communication within this sys-
tem is based on a heterogeneous vehicle-to-everything (V2X)
network [18], which includes vehicle-to-infrastructure (V2I),
vehicle-to-cloud (V2C), and infrastructure-to-cloud (I2C) com-
munications. Considering the large communication distance be-
tween vehicles and the cloud, the cellular network is applied for
V2C communication. Depending on the application scenario,
RSUs may send data of different levels to the cloud server and
nearby vehicles, such as raw data or processed data, which
have distinct requirements on communication coverage and
bandwidth. Hence, we use wired networks for 12C communi-
cation and employ both dedicated short-range communications
(DSRC) and millimeter wave (mmWave) technologies for V2I.



TABLE I
COMMUNICATION REQUIREMENTS AND PERFORMANCES

Function Requirements Message contents Methods Performances
VaC Speed: > 80 Mbps Upload: vehicle position and motion states. WiMAX > 120 Mbps
Coverage: > 1 km Download: cloud-based decisions > 50 km
Speed: > 1 Mbps Cooperative perception (processed data, Wi-Fi router > 10 Mbps
V2I Coverage: > 50 m e.g., detection and tracking result) > 200 m
Speed: > 1 Gbps Cooperative perception (raw sensor data, e.g. WiGi > 1 Gbps
Coverage: > 20 m LiDAR point cloud and camera images) & > 120 m
12C Speed: > 1 Gbps Environmental perception (both raw data and processed data) Ethernet > 1 Gbps
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Fig. 2. Hardware components and Tokyo Tech. smart mobility field.

III. IMPLEMENTATION FOR SMART MOBILITY DT

In this section, we will discuss the implementation of our
system in the Tokyo Tech smart mobility field, as well as the
route planning workflow involved.

A. Hardware Deployment

Our testing field in Tokyo Tech Ookayama campus, as well
as our hardware devices, are shown in Fig. 2. In the field
setting, we have three RSUs and one autonomous vehicle.
The three RSUs are located at the corners of a square road
section within the campus. Each RSU is equipped with an
80-layer LiDAR. These sensors collect raw data from the
physical world, capturing information about dynamic objects
in the traffic environment. Additionally, each RSU is also
outfitted with edge computing devices, i.e., NVIDIA Jetson
AGX Orin, where we launch functional modules for functions
like object detection, tracking, and prediction, among others.
The communication between RSUs and the cloud server relies
on the campus Ethernet network. To cater to the requirements
of different application scenarios, we upload varying levels of
perception data, such as raw point cloud data, detection and
tracking results to cloud.

The autonomous vehicle is equipped with a 32-layer LIDAR
sensor positioned on the rooftop to sense its surroundings. A
dedicated Autoware PC is utilized for processing the LiDAR
data and performing environmental perception, localization,
motion planning, and motion control. The control signals are
then transmitted to the vehicle’s onboard unit (OBU) to enable

autonomous driving. Additionally, the vehicle is equipped with
communication modules, including worldwide interoperability
for microwave access (WiMAX) for V2C communication, a
Wi-Fi router as a replacement for dedicated short-range com-
munications (DSRC), and a WiGig antenna for millimeter wave
(mmWave) communication. The selection of communication
equipment is based on specific requirements and functions.
Table I shows the required communication speeds and coverage
in our experiment field, as well as the performance of selected
communication methods. These devices effectively facilitate
information sharing among edge and cloud planes.

The cloud server works as the central hub for data aggrega-
tion and storage, global information processing, and providing
feedback services to the autonomous vehicle. Therefore, the
performance requirements for the cloud server are very high,
which encompass scalability, processing power, and reliability
to efficiently and securely handle large volumes of real-time
data. Hence, we opted for a computer equipped with a GeForce
RTX 5000 GPU, ensuring ample memory and storage capacity
to meet the demanding computational requirements.

B. Software Installation

The software in our platform is centered around two key
open-source software, i.e., Autoware [19] and Robot Operating
System (ROS).

In the RSU edges and cloud server, we deploy Autoware
Universe and version 2 of the ROS (ROS2). Autoware Universe
serves as the primary software framework for our system. It
provides comprehensive functionality for the development of
autonomous driving systems, making it well-suited for DT
modeling. Autoware facilitates the detection and tracking of
traffic participants within the RSU sensor range. The detection
module applies the CenterPoint framework [20], which can
detect, identify, and visualize 3D objects from the LiDAR point
clouds in real-time. Then, a tracking algorithm, named Multi-
object Tracker [21], is responsible for assigning the detected
objects with IDs and estimating their velocities. Moreover,
Autoware Universe is built on ROS2, which enables easy
deployment and seamless communication among distributed
computers. In our case, both the cloud server and the RSU
edge computing devices are connected to the campus Ethernet
network and assigned IP addresses within a local area network
(LAN). Hence, we can subscribe to all the ROS2 topics on
the cloud server. The utilization of ROS2 greatly facilitates the
modeling of the DT and further enhances the interoperability
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Fig. 3. Sequence diagram of route planning service.

and scalability of the DT system. After acquiring object track-
ing data from three RSUs, the cloud server utilizes objects’
positions to align them with the corresponding road segments,
which facilitates traffic monitoring and the computation of
congestion level on each road section.

The Autoware PC onboard the autonomous vehicle is in-
stalled with an Ubuntu 16.04 operating system, enabling the im-
plementation of autonomous driving functionalities using Auto-
ware Al based on ROS. Autoware Al is responsible for driving
the vehicle’s LiDAR sensor and utilizes the normal distributions
transform (NDT) algorithm for LiDAR scan matching with the
3D point cloud map, which enables real-time localization with
centimeter-level accuracy. The route from origin to destination
is in the form of a prerecorded waypoint file, consisted of
a set of route points with position, velocity, and orientation
information. The automated vehicle can sequentially track these
waypoints to follow any given route. To perform local motion
planning and motion control, a velocity planner adjusts the
velocity plan based on the waypoints to decelerate or accelerate
in response to nearby objects and road characteristics, including
stop lines and traffic lights. Then, a pure pursuit algorithm is
employed to generate coordinated sets of velocities and steering
angles that guide the ego vehicle to follow the target waypoints.

C. Route Planning Scenario and Workflow

Based on the hardware and software implementation, we
design the workflow of the route planning service, as shown in
Fig. 3. There are two main sequences in the workflow, i.e., DT
modeling and route requisition. The DT modeling sequence is
a loop fragment for real-time edge sensing, detection, tracking,
and data acquisition on the cloud plane. Three RSUs run the
LiDAR driver, object detection, and tracking. The detection and
tracking results are transmitted from the RSUs to the cloud.
Then the cloud computing will help the ego vehicle choose the
optimal path to circumvent traffic congestion and to improve
its efficiency, using the shortest-paths algorithm like Dijkstra’s
algorithm and A* algorithm. Since the specific route planning
is not the primary focus of this paper, it is not elaborated upon
in detail here.

The route requisition sequence is an alternative combination
fragment, obeying the “if then else” logic. During the vehicle’s
movement from the starting point to the destination, it utilizes
LiDAR-based localization and the road vector map to calculate
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Fig. 4. Real-time DT modeling: (a) Scenario #A: no congestion in the road
network, (b) Scenario #B: congestion occurs on the straight route

the distance between itself and upcoming intersections. When
the vehicle approaches an intersection, within a predetermined
threshold Dy, it initiates a path request to the cloud server
via the hypertext transfer protocol (HTTP). The HTTP server
running on the cloud receives the request and sends the uniform
resource locator (URL) of the optimal path to the vehicle. Then
the autonomous vehicle downloads the route and tracks it for
vehicle navigation.

IV. EXPERIMENTAL DEMONSTRATION

In this section, we will show the outdoor test results and the
evaluation from the aspects of functionality and reliability.

A. Field Experiment Results

The real-time DT modeling results on the cloud plane are
illustrated in Fig. 4. As discussed in Section III.A, we up-
load diverse types of perception data in different application
scenarios. In this case, we only transmit object-tracking data
to alleviate communication loads. The tracking result has a
significantly lower data rate, ranging from 50 to 300 Kb/s,
depending on the number of detected objects, compared to
the raw point cloud data (approximately 46 Mb/s). Within the
LiDAR detection range of the RSU, various entities are iden-
tified and visualized using different colored bounding boxes,
indicating their categories, positions, and approximate shapes.
In the figure, pink boxes represent pedestrians, while blue boxes
represent vehicles. The tracking frequency can achieve a rate
of 30 Hz. The cloud server performs fusion and processing
of these recognized objects to choose the best global route
for the vehicle. We also mark the origin and destination of
the autonomous vehicle in this figure, i.e., the vehicle drives
from the bottom-left road segment to the bottom-right road
segment. In scenario #A, where no congestion is observed on
any road segment, the cloud server selects the straight route
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Fig. 5. Autonomous driving operation results: (a) Result #A: driving on default route, (b) Result #B: driving on alternative route

indicated by the blue dashed line. In scenario #B, congestion
occurs within the straight-line segment due to the presence of
pedestrians and vehicles. In such cases, the route planner selects
the path represented by the yellow dashed line, which has a
longer distance but effectively helps the autonomous vehicle
avoid heavily congested road segments, enabling an efficient
and smooth driving process.

The results of the autonomous driving operation, from real-
world images and Autoware visualization tool Rviz, are shown
in Fig. 5. During the initialization phase, the vehicle follows
the default straight route in the road network, so in both results,
the vehicle initially tracks the straight trajectory. When the ego
vehicle arrives at the predetermined threshold distance Diye
from the intersection area, it will send a route planning request
to the cloud. Result #A corresponds to scenario #A, where the
vehicle downloads the same default path from the cloud and
successfully traverses the intersections in a straight manner.
Result #B corresponds to scenario #B, where congestion is
observed on the straight-line segment. In this case, the vehicle
downloads the alternative path from the cloud. The vehicle
makes a left turn and proceeds along the alternative route.

In our experiment setting, the threshold distance from the ego
vehicle to the intersection is determined with the consideration
of safety and comfort issues. The ego vehicle should have
enough time to process the planned route before reaching the
intersection. Given the presence of pedestrians crossing at inter-
sections, it is necessary for the vehicle to comfortably decelerate

and stop before reaching the intersection. In our system, the
ego vehicle’s free-flow speed vf is set to 15 km/h. Braking
can be classified into emergency and comfortable types. In
the presence of unexpected objects, the majority of emergency
braking deceleration is more than 4.5 m/s? [22]. According to
Institute of Transportation Engineers (ITE) recommendations,
a comfortable deceleration rate acomsy should be less than 10
ft/s?, equivalent to 3.048 m/s? [23]. Thus the threshold distance
is determined as Dypre = 0.039 X 02 /dcomty = 2.9 m.

B. Evaluation

The proposed platform is evaluated from reliability and
latency. In DT modeling progress, congestion caused by heavy
traffic flow is not a typical concern in the campus environment.
Instead, congestion may arise during specific periods due to
high pedestrian volumes or gatherings. In our demonstration,
the frequency of changes in the path selection does not exceed
0.92 changes per minute. Hence, real-time route planning
decisions exhibit low sensitivity to time variations. On the
other hand, reliability, i.e., the packet delivery rate (PDR) in
communication from RSUs to the cloud server, is critical as
severe packet loss of tracking results could lead to incorrect
planning decisions. If only the tracking results are uploaded
from the RSUs, the PDR approaches 100%. When simultane-
ously uploading other levels of data, such as raw LiDAR point
clouds, the PDR is around 99.53%, which meets the reliability
requirement for SSMS, i.e., higher than 95% [24].
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Fig. 6 shows the latency in the route request process,
including delays caused by localization and position check
Tiocal, path execution Ty on Autoware PC, and communication
Teomm With cloud server. The maximum total latency Tpax i
96.61 ms, which is 3.39% below the threshold of the max E2E
latency requirements for information sharing (less than 100 ms)
proposed by 3GPP [24]. Assuming the autonomous vehicle
maintains the constant free-flow speed during this period, it
is still approximately 2.4 m away from the intersection. This
distance provides sufficient room for the vehicle to smoothly
maneuver through the intersection without deceleration or,
in the presence of pedestrians, to appropriately decelerate
(3.62 m/s*> on average, smaller than the emergency braking
deceleration 4.5 m/s? [22]) and stop in front of the intersection.

V. CONCLUSION

In this paper, we have designed a smart mobility DT for
autonomous driving. Our system utilizes RSUs to capture real-
world traffic information, which is processed in the cloud to
create a real-time DT model, enabling route planning services
for the autonomous vehicle. We have implemented and demon-
strated the proposed system in the Tokyo Tech smart mobility
field. Test results show that the PDR of DT modeling can reach
99.53% and the latency of route planning service is smaller
than 96.61 ms, which validates the effectiveness of the system
in terms of reliability and latency. The latency performance
currently leaves room for improvement, indicating that future
work should focus on optimizing the communication system.
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