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Abstract:  14 

Recent neuroimaging studies have shown that the visual cortex plays an important role in 15 
representing the affective significance of visual input. The origin of these affect-specific visual 16 
representations is debated: they are intrinsic to the visual system versus they arise through reentry 17 
from frontal emotion processing structures such as the amygdala. We examined this problem by 18 
combining convolutional neural network (CNN) models of the human ventral visual cortex pre-19 
trained on ImageNet with two datasets of affective images. Our results show that (1) in all layers 20 
of the CNN models, there were artificial neurons that responded consistently and selectively to 21 
neutral, pleasant, or unpleasant images and (2) lesioning these neurons by setting their output to 0 22 
or enhancing these neurons by increasing their gain led to decreased or increased emotion 23 
recognition performance respectively. These results support the idea that the visual system may 24 
have the intrinsic ability to represent the affective significance of visual input and suggest that 25 
CNNs offer a fruitful platform for testing neuroscientific theories.  26 

 27 
Author Summary: 28 
 29 
What is the role played by sensory cortices in assessing the emotional significance of sensory input? 30 
This question is attracting increasing research interest. Recent work has found affect-specific neural 31 
representations in visual cortex. The origins of these representations are debated. According to the 32 
reentry hypothesis, these representations result from reentrant feedback arising from anterior 33 
emotion processing structures such as the amygdala. An alternative hypothesis holds that sensory 34 
cortex may have the intrinsic capacity to represent the emotional qualities of sensory input. We 35 
examined this problem by utilizing the convolutional neural networks (CNNs) trained to recognized 36 
visual objects as computational models of the primate ventral visual system. Emotionally charged 37 
images were divided into three broad categories (pleasant, neutral and unpleasant) and presented to 38 
the CNNs. Responses of artificial neurons to these images were found to exhibit robust emotion 39 
selectivity. Importantly, enhancing the neurons that were selective for a given emotion led to the 40 
increased ability in recognizing that emotion, whereas lesioning these neurons led to the decrease 41 
in that ability. This research lends support to the notion that emotional perception might be an 42 
intrinsic property of the visual cortex. It also underscores the CNNs’ value in examining 43 
neuroscientific theories. 44 
 45 
Introduction 46 
 47 
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Human emotions are complex and multifaceted and under the influence of many factors, including 48 
individual differences, cultural backgrounds, and the context in which the emotion is experienced 49 
(1–5). Still, a large number of people, across different cultures, different levels of education, and 50 
different socioeconomic backgrounds, experience similar feelings when viewing images of varying 51 
affective content (6–9). What fundamental principles in the functions of the human visual system 52 
underlie such universality requires elucidation.   53 
 54 
Previous studies of emotion perception have primarily relied on empirical cognitive experiments 55 
(10–12). Some of them have focused on capturing human behavioral valence or arousal judgment 56 
on affective images (13–16), while others have recorded brain activities to look for neural correlates 57 
of affective stimuli processing (17–21). Despite decades of effort, how the brain transforms visual 58 
stimuli into subjective emotion judgments (e.g., happy, neutral, or unhappy) remains not well 59 
understood. The advent of machine learning especially artificial neural networks (ANNs) opens the 60 
possibility of addressing this problem using a modeling approach.  61 
 62 
Artificial neural networks can project visual images to a feature space in which the activation 63 
patterns of hidden layers are the features used for object classification and recognition. One type of 64 
artificial neural network, convolutional neural networks (CNNs), owing to their hierarchical 65 
organization resembling that of the visual system, are increasingly used as models of visual 66 
processing in the primate brain (22–26). CNNs trained to recognize visual objects can achieve 67 
performance levels rivaling or even exceeding that of humans. Interestingly, CNNs trained on 68 
images from such databases as ImageNet (27) are found to demonstrate neural selectivity for a 69 
variety of stimuli that are not included in the training data. For instance, (28) showed that neurons 70 
in a CNN trained on ImageNet became selective for numbers without having been trained on any 71 
"number" datasets. Similarly, (29) demonstrated that a CNN, when trained on non-face objects, can 72 
develop a recognition performance for faces that significantly exceeds chance levels. These 73 
instances demonstrate that CNNs may possess recognition capabilities beyond the primary task they 74 
are trained on.  75 
 76 
The role of the visual cortex in visual emotion processing is debated (30, 31). (32) argued that 77 
emotion representation is an intrinsic property of the visual cortex. They used a CNN pre-trained 78 
on ImageNet to show that the model can accurately predict the emotion categories of affective 79 
images. (20), on the other hand, showed that the affective representations found in the visual cortex 80 
during affective scene processing might arise as the result of reentry from anterior emotion-81 
modulating structures such as the amygdala. The goal of this study is to further examine this 82 
question using CNN models. 83 
 84 
CNN models are well suited for addressing questions related to the human visual system. Among 85 
the many well-established CNN models, VGG-16 (33) has an intermediate level of complexity and 86 
is shown to have superior object recognition performance (34). Using VGG-16, recent cognitive 87 
neuroscience studies have explored how encoding and decoding of sensory information are 88 
hierarchically processed in the brain (23, 35, 36). (23) used VGG-16 to quantitatively demonstrate 89 
an explicit gradient of feature complexity encoded in the ventral visual pathway. (35) used VGG-90 
16 to model the visual cortical activity of human participants viewing images of objects and 91 
demonstrated that activities in different layers of the model highly correlate with brain activities in 92 
different visual areas. (36) investigated qualitative similarities and differences between VGG-16 93 
and other feed-forward CNNs in the representation of the visual object and showed these CNNs 94 
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exhibit multiple perceptual and neural phenomena such as the Thatcher effect (37) and Weber’s 95 
law (38).  96 
 97 
In this study, we mainly focused on VGG-16 pre-trained on ImageNet as the model of the human 98 
visual system and used AlexNet (39), which is another well-established CNN model of visual 99 
processing, to test whether the results can be replicated. Using two well-established affective image 100 
datasets: International Affective Picture System (IAPS) (15) and Nencki Affective Picture System 101 
(NAPS) (16), we examined whether emotion selectivity can spontaneously emerge in such systems 102 
and whether such emotion selectivity has functional significance. For each filter within a layer of 103 
the model, the emotional selectivity for the resulting feature map was established by first computing 104 
neural responses to three broad classes of images: pleasant, neutral, and unpleasant (tuning curves) 105 
at the level of each unit and then averaging these responses across all the units within the feature 106 
map. A feature map, also referred to as a neuron in what follows, is considered selective for a 107 
particular emotion if its tuning responses are robust and exhibit the strongest responses to images 108 
of that category from both datasets. To test whether these emotion-selective neurons have a 109 
functional role, we replaced the last 1000-unit object-recognition layer of the VGG-16 with a two-110 
unit emotion-recognition layer and trained the connections to this layer to decode pleasant versus 111 
non-pleasant, neutral vs. non-neutral, and unpleasant vs. non-unpleasant images. Two neural 112 
manipulations were carried out: lesion and feature attention enhancements. Lesioning the neurons 113 
selective for a specific emotion is expected to degrade the network’s performance in recognizing 114 
that emotion, whereas applying attention enhancement to the neurons selective for the emotion is 115 
expected to increase the network’s performance in recognizing that emotion.  116 
 117 
Results  118 
 119 
We tested whether emotion selectivity can naturally arise in a CNN model trained to recognize 120 
visual objects. VGG-16 pre-trained on ImageNet data (27) was used for this purpose (see Fig 1). 121 
Filters/channels within a layer were referred to as neurons and responses from the units within the 122 
feature maps were averaged and treated as neuronal responses. Selectivity for pleasant, neutral, and 123 
unpleasant emotions was defined for each neuron based on its response profiles to images from two 124 
affective picture sets (IAPS and NAPS). The functional significance of these neurons was then 125 
assessed using lesion and attention enhancement methods.  126 

Neuronal responses to emotional images in different convolutional layers 127 
 128 
The tuning curve for a neuron is defined as the normalized mean response (tuning value) to pleasant, 129 
neutral, and unpleasant images in a given dataset plotted as a function of the emotion category. The 130 
maximum of the tuning curve indicates the neuron’s preferred emotion category for that picture set. 131 
Fig 2A (top) shows the tuning curves of three neurons from the Convolutional Layer 3 (an early 132 
layer) for both IAPS and NAPS datasets. According to the definition above, these neurons are 133 
selective for pleasant, neutral, and unpleasant categories, respectively. For the top 100 images from 134 
IAPS and NAPS that elicited the strongest response in these neurons, Fig 2A (bottom) shows the 135 
valence distribution of these images. As can be seen, for these early layer neurons, while the 136 
pleasant neuron is more activated by images with high valence ratings (pleasant), for the neutral 137 
and unpleasant neurons, the patterns are less clear. For the neurons in Convolutional Layer 6 (a 138 
middle layer), however, as shown in Fig 2B, their emotion selectivity and the category of images 139 
they prefer show greater agreement. Namely, the pleasant neuron prefers predominately images 140 
with high valence (pleasant), the neural neuron prefers predominately images with intermediate 141 
valence (neutral), and the unpleasant neuron prefers predominately images with low valence 142 
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(unpleasant). The results for the three neurons from Convolutional Layer 13 (a deep layer) are 143 
similar to those from Layer 6; see Fig 2C. 144 
 145 
Emotion selectivity in different convolutional layers 146 
 147 
Whereas tuning value and tuning curve characterize a neuron’s response to images from different 148 
emotion categories, the selectivity index (SI), which highlights the difference between responses to 149 
different emotion categories of images, is a better index for defining emotion selectivity. As shown 150 
in Fig 3A, emotion selectivity became stronger as one ascended the layers from early to deep, an 151 
effect that is especially noticeable for the IAPS datasets, supporting the notion that emotion 152 
differentiability increases as we go from earlier to deeper layers. In light of the computational 153 
principle that earlier layer neurons encode lower-level stimulus properties (e.g., shapes and edges) 154 
and deeper layer neurons encode higher-level properties such as semantic meaning (e.g., object 155 
identities) (40–42), the results in Fig 3A as well as Fig 2 suggest that from earlier to deeper layers, 156 
emotion as a higher level cognitive construct becomes progressively better defined and better 157 
differentiated.  158 
 159 
To examine the role of the training to recognize objects in the foregoing observations, we performed 160 
the same analysis in a VGG-16 with randomly initialized weights (i.e., not trained to recognize 161 
objects). As seen in Fig 3A, emotion selectivity is generally low as evaluated by both datasets, and 162 
there is no clear layer-dependence in emotion selectivity, suggesting that the increased ability to 163 
represent and differentiate emotion in deeper network layers of the pre-trained VGG-16 is an ability 164 
acquired through the training for object recognition.  165 
 166 
Generalizability of emotion-selective neurons 167 
 168 
Fig 2 shows that a neuron can be tuned for the same emotion for both IAPS and NAPS datasets. A 169 
natural question is whether such neurons arise as the result of random chance or as an emergent 170 
property of the trained network. Further, based on the value of SI, all neurons are selectivity for one 171 
emotion or the other. Small SIs are likely subject to the influence of chance, and as such, neurons 172 
with small SIs should be removed from further consideration. How to determine the threshold for 173 
removal?  174 
 175 
We performed two analyses to address the two questions. First, we rank-ordered neurons according 176 
to their SI values, removed certain percentages of neurons with small SI values, and attention-177 
enhanced the remaining neurons (see next subsection) and observed the resulting performance 178 
improvement. The results in Fig 3C suggest that removing neurons whose SIs fell in the lower 20% 179 
(keeping 80%) is a reasonable threshold. Second, neurons determined to be emotion selective 180 
according to IAPS and that according to NAPS were subjected to an overlap analysis. Fig 3B (top) 181 
compares the number of neurons selective for the same emotion for both IAPS and NAPS datasets 182 
against the number of neurons to be expected from the overlap of two random sets of neurons. The 183 
former is consistently higher than the latter across all layers, with the effect becoming more 184 
prominent in deeper layers, suggesting that emotion selectivity generalizes across the two datasets 185 
and the generalizability is not due to chance.  186 
 187 
What is the role of training to recognize visual objects in the generalizable emotion selectivity? To 188 
answer this question, we compared the number of emotion-selective neurons from the overlap 189 
analysis derived from pre-trained VGG-16 on ImageNet against that derived from randomly 190 
initialized VGG-16. Fig 3B (bottom) shows that for all emotion categories—pleasant, neutral, and 191 
unpleasant—the pre-trained network consistently demonstrated a higher number of emotion-192 



                                                 Page 5 of 25 
 

selective neurons in the later layers, especially from Layer 5 onwards. These findings suggest that 193 
emotion selectivity is an emergent property as the result of a neural network undergoing training 194 
for object recognition.  195 
 196 
The functionality of emotion-selective neurons 197 
 198 
To test whether emotion-selective neurons have a functional role, we followed (43) and replaced 199 
the last layer of the VGG-16, which originally contained 1,000 units for recognizing 1000 different 200 
types of objects, with a fully connected layer containing two units for recognizing two types of 201 
emotions. Three models were trained and tested for each of the two affective picture datasets: Model 202 
1: pleasant versus non-pleasant, Model 2: neutral versus non-neutral, and Model 3: unpleasant 203 
versus non-unpleasant. Once these models were shown to have adequate emotion recognition 204 
performance (see Table 1), two neural manipulations were considered: feature attention 205 
enhancement and lesion. For feature attention enhancement (44–46), the gain of the neurons 206 
selective for a given emotion for both datasets is increased by increasing the slope of the ReLU 207 
activation function (see Methods) (47–50), whereas for lesion, the output of the neurons selective 208 
for a given emotion for both datasets was set to 0, which effectively removes the contribution of 209 
these neurons, i.e., they are lesioned. We hypothesized that (1) with attention enhancement, the 210 
network’s ability to recognize emotion is increased (2) with lesioning, the network’s ability to 211 
recognize emotion is decreased, and (3) such effects are not observed for modulating randomly 212 
selected neurons.  213 
 214 
Feature attention enhancement: For IAPS images, Fig 4 compares performance changes after 215 
enhancing the emotion-selective neurons as well as enhancing the same number of randomly 216 
sampled neurons; see also Table 1. The optimal tuning strength for which we achieved the best 217 
performance enhancement was chosen for each layer in the plot. As one can see, for pleasant versus 218 
non-pleasant, neutral versus non-neutral, and unpleasant versus non-unpleasant emotions, 219 
enhancing the gain of the neurons selective for a specific emotion can significantly improve the 220 
emotion recognition performance of the CNN model for that emotion. Moreover, deeper layer 221 
attention enhancement tends to yield greater performance improvements than earlier layer attention 222 
enhancement. Increasing the gain in randomly selected neurons, however, shows either a marginal 223 
performance improvement or a significant performance decline. The feature-attention performance 224 
of emotion-selective neurons over random neurons is highly statistically significant in the middle 225 
and deeper layers (p< 1.2e-02). Fig 4 (right) shows the performance changes across layers as the 226 
tuning strength varied from 0 to 5.  227 
 228 
We carried out the same analysis for the NAPS dataset in Fig 5. The results largely replicated that 229 
in Fig 4 for the IAPS dataset.   230 
 231 
Lesion analysis: The functional importance of the emotion-selective neurons can be further 232 
assessed through lesion analysis (51–54). As shown in Fig 6 (see also Table 1), we compared the 233 
emotion recognition performance changes by setting the output from emotion-selective neurons to 234 
0 as well as by setting the output of an equal number of randomly chosen neurons to 0. As can be 235 
seen, lesioning the emotion-selective neurons led to significant performance declines, especially 236 
for the deeper layers; the performance decline can be as high as 80%. In contrast, lesioning 237 
randomly selected neurons produces almost no performance changes. These results, replicated 238 
across both datasets, further support the hypothesis that emotion-selective neurons are important 239 
for emotion recognition, and the importance is higher in deeper layers than in earlier layers.    240 
 241 
Discussion  242 
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 243 
It has been argued that the human visual system has the intrinsic ability to recognize the 244 
motivational significance of environmental inputs (55). We examined this problem using 245 
convolutional neural networks (CNNs) as models of the human visual system (56–61). Selecting 246 
the VGG16 pre-trained on images from the ImageNet as our model (62–64) and using two sets of 247 
affective images (IAPS and NAPS) as test stimuli, we found the existence of emotion-selective 248 
neurons in all layers of the model even though the model has never been explicitly trained to 249 
recognize emotion. Additionally, emotion selectivity becomes stronger and more consistent in the 250 
deeper layers, in agreement with prior literature suggesting that the deeper layers of CNNs encode 251 
higher-level semantic information. For VGG-16 with randomly initialized weights (i.e., not trained 252 
to recognize objects), however, no such effects were observed, suggesting that emotion selectivity 253 
may be an emergent property through network training. Applying two manipulations: feature 254 
attention enhancement and lesion, we can show further that the emotion-selective neurons are 255 
functionally significant, specifically: (1) after increasing the gain of emotion-selective neurons 256 
(e.g., feature attention enhancement), the network’s performance in emotion recognition is 257 
enhanced relative to increasing the gain of randomly selected neurons and (2) in contrast, after 258 
lesioning the emotion-selective neurons, the network’s performance in emotion recognition is 259 
degraded relative to lesioning randomly selected neurons. These performance differences are 260 
stronger and more noticeable in deeper layers than in earlier layers. In Fig F, Fig G,  Fig H, and Fig 261 
I in S1 Text, we reported similar findings on the AlexNet, which is a simpler CNN that has also 262 
been used in numerous studies as a model of the ventral visual system (65–68). Together, our 263 
findings indicate that emotion selectivity can spontaneously emerge in CNN models trained to 264 
recognize visual objects, and these emotion-selective neurons play a significant role in recognizing 265 
emotion in natural images, lending credence to the notion that the visual system’s ability to 266 
represent affective information may be intrinsic.  267 
 268 
Affective processing in the visual cortex  269 
 270 
The perception of opportunities and threats in complex visual scenes represents one of the main 271 
functions of the human visual system. The underlying neurophysiology is often studied by having 272 
observers view pictures varying in affective content. (69) reported greater functional activity in the 273 
visual cortex when subjects viewed pleasant and unpleasant pictures than neutral images. (70) 274 
showed the visual cortex has differential sensitivities in response to emotional stimuli compared to 275 
the amygdala. (71) demonstrated that emotional significance (e.g., valence or arousal) could 276 
modulate the perceptual encoding in the visual cortex. Two competing but not mutually exclusive 277 
groups of hypotheses have been advanced to account for emotion-specific modulations of activity 278 
in the visual cortex. The so-called reentry hypothesis states that the increased visual activation 279 
evoked by affective pictures results from reentrant feedback, meaning that signals arising in 280 
subcortical emotion processing structures such as the amygdala propagate to the visual cortex to 281 
facilitate the processing of motivationally salient stimuli (72–74). Recent work (20) provides 282 
support for this view. Using multivariate pattern analysis and functional connectivity, these authors 283 
showed that (1) different emotion categories (e.g., pleasant versus neutral and unpleasant versus 284 
neutral) are decodable based on the multivoxel patterns in the visual cortex and (2) the decoding 285 
accuracy is positively associated with the strength of connectivity from anterior emotion-286 
modulating regions to ventral visual cortex. A second group of hypotheses states that the visual 287 
cortex may itself have the ability to code for the emotional qualities of a stimulus, without the 288 
necessity for recurrent processing (see (75) for a review). Evidence supporting this hypothesis 289 
comes from empirical studies in experimental animals (76, 77) as well as in human observers (78), 290 
in which the extensive pairing of simple sensory cues such as tilted lines or sinusoidal gratings with 291 
emotionally relevant outcomes shapes early sensory responses (79). Beyond simple visual cues, 292 
recent computational work using deep neural networks has also suggested that the visual cortex 293 
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may intrinsically represent emotional value as contained in complex visual media such as video 294 
clips of varying affective content (32). Our findings reveal that emotion-selective neurons are 295 
present in all layers of two CNN models, which are computational representations of the visual 296 
cortex. These neurons play a crucial role in emotion recognition. This contributes to the growing 297 
computational evidence suggesting that the visual cortex may inherently possess the capability to 298 
evaluate the emotional significance of visual stimuli. 299 
 300 
Neural selectivity in ANNs and the brain 301 
 302 
That CNNs, or more generally ANNs, can be trained to recognize a large variety of visual objects 303 
has long been recognized. Remarkably, recent studies note that ANNs trained on recognizing visual 304 
objects can spontaneously develop selectivity for other types of input, including visual numbers 305 
and faces (80). The number sense is considered an inherent ability of the brain to estimate the 306 
quantity of certain items in a visual set (81, 82). There is significant evidence demonstrating that 307 
the number sense exists in both humans (e.g., adults and infants) (83–85) and non-human primates 308 
(e.g., numerically naïve monkeys) (86–88). (89) found that number-selective units spontaneously 309 
emerged in a deep artificial neural network trained on ImageNet for object recognition. (90) 310 
demonstrated that number selectivity can even arise spontaneously in randomly initialized deep 311 
neural networks without any training. Both studies focused on the last convolutional layers, in 312 
which the number-selective units were found, and they also demonstrated that the emergence of 313 
number-selective units could result from the weighted sum of both decreasing and increasing the 314 
activity of some units. In addition, it is well known that face-selective neurons exist in humans (91) 315 
and non-human primates.  (80) showed that neurons in a randomly initialized deep neural network 316 
without training could selectively respond to faces, and the neurons in the deeper layers are more 317 
selective. (92) demonstrated that brain-like functional segregation can emerge spontaneously in 318 
deep neural networks trained on object recognition and face perception and proposed that the 319 
development of functional segregation of face recognition in the brain is a result of computational 320 
optimization in the cortex. Augmenting this rapidly growing literature, our study demonstrates that 321 
emotion selectivity can emerge in deep artificial neural network models of the human visual system 322 
trained to recognize objects.   323 
 324 
Layer dependence 325 
 326 
Like the biological brain, the CNN model has a layered structure which allows the processing of 327 
information in a hierarchical fashion. Our layer-wise analysis showed that the extent and strength 328 
of emotion selectivity are a function of the model layers. Compared to the early layers, the deeper 329 
layers have larger portions of neurons that show emotion selectivity, and the selectivity is stronger, 330 
consistent with the previous observations that deeper layers of CNN models encode more abstract 331 
concepts. For example, (40, 93) examined the internal representations of different layers in a CNN 332 
and found that deeper layers of the network tend to encode more abstract concepts, such as object 333 
parts and textures. The layered processing of emotional information may have several functional 334 
benefits. First, by processing visual information in hierarchical stages, the brain can quickly and 335 
efficiently respond to stimuli without the need for a complete and detailed analysis of the entire 336 
stimulus at once (94–96). This is especially important for the processing of emotionally salient 337 
stimuli, as quick and accurate emotional responses can be crucial for survival. Second, it would 338 
offer more flexibility for the processing of emotion at different levels of detail, which may depend 339 
on the perception task and the environmental context. For example, if the stimulus is perceived as 340 
significant or crucial for survival, it elicits a stronger and more widespread neural response, 341 
engaging multiple regions and processing stages. On the other hand, if the stimulus is not 342 
significant, it elicits a weaker and more limited neural response involving fewer regions or layers 343 
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and processing stages (97–99). Third, the integration of information from different levels allows 344 
for a more complete and nuanced representation of the visual stimulus and emotional response. This 345 
allows for the creation of a final representation that takes into account not just the visual properties 346 
of the stimulus but also its emotional significance and its impact on the individual (100–102). 347 
Lastly, by processing information in a layer-dependent manner, the brain can adapt and change the 348 
processing of information based on experience and learning (103). This allows the brain to refine 349 
its processing strategies and improve its performance over time (104).  350 
 351 
Relation to prior literature 352 
 353 
(32), to the best of our knowledge, is the first to examine emotion processing in deep neural 354 
networks. Their model, which is a modified AlexNet called the EmoNet, was shown to have the 355 
ability to classify affective images into 20 different emotion categories. Importantly, using a 20-356 
way linear decoder, they further showed that neural activities in different layers of the network 357 
especially the deeper layers can differentiate different emotions in the input images, suggesting the 358 
existence of emotion selectivity neurons in CNNs. Building on this work, our main contributions 359 
are threefold: (1) confirming and characterizing emotion selectivity at the single filter (neuron) 360 
level, (2) demonstrating the functional significance of emotion-selective neurons through the 361 
application of lesion and attention enhancement methods, and (3) replicating the findings across 362 
two CNN models (VGG-16 and AlexNet) and two affective image sets (IAPS and NAPS). 363 
 364 
Limitations and other considerations 365 
 366 
Several limitations of our study should be noted. Firstly, emotion was divided into three broad 367 
categories: pleasant, unpleasant, and neutral. While this is in line with many neurophysiological 368 
studies in humans, future work should examine finer differentiations of emotion, e.g., joy, sadness, 369 
horror, disgust, and so on, and their neural representations in the brain. Secondly, there might be 370 
other factors (e.g., low-level features) that drive the emotion selectivity of neurons. Since we used 371 
grayscale images in this study, we can rule out color as a possible confounding low-level feature. 372 
Applying the GIST algorithm (105) to extract low-level features from images and the support vector 373 
machine (SVM) algorithm (106), we found that images from different emotion categories cannot 374 
be decoded from the low-level features; see Fig J in S1 Text. The impact of an image’s object 375 
category and its emotion category on neural activation was examined by placing images in the IAPS 376 
and NAPS datasets into object categories based on the descriptions of the images (Fig LA and Fig 377 
MA in S1 Text) and applying Two-Way ANOVA tests to filter activations in the VGG-16 model. 378 
We found that the neurons responded more strongly to emotion categories than object categories 379 
and there were significant interactions between the two categories in deeper layers (Fig LB and Fig 380 
MB in S1 Text ). We do note that, as the number of images in different object categories are 381 
relatively small in both affective datasets, this analysis should be viewed as preliminary. The 382 
influence of other factors such as the presence of faces and image animacy is more difficult to 383 
ascertain. Thirdly, although the present study is motivated by neuroscience questions, to what extent 384 
our results have a direct bearing on understanding brain function is unclear. Whereas previous work 385 
did compare activities in VGG-16 and other deep neural networks with neural recordings during 386 
object recognition (67, 107–109), there is no study to date comparing activities in deep neural 387 
networks and neural recordings during emotion recognition. In this sense, this work’s neural 388 
relevance should be considered speculative.     389 
 390 
Materials and Methods 391 
 392 
Affective picture sets 393 
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 394 
Two sets of widely used affective images were used in this study. The IAPS library includes 1,182 395 
images covering approximately 20 subclasses of emotions such as joy, surprise, entrancement, 396 
sadness, romance, disgust, and fear. The NAPS library has 1,356 images that can be divided into 397 
similar subclasses. For both libraries, each image has a normative valence rating, ranging from 1 to 398 
9, indicating whether the image expresses unpleasant, neutral, or pleasant emotions; the 399 
distributions of the valence rating from the two datasets were given in Fig AC(right) in S1 Text. In 400 
this study, for simplicity and following the common practice in human imaging studies of emotion 401 
(20, 110–112), we classified images into three main categories based on their valence scores: 402 
"pleasant," "neutral," and "unpleasant." For images that fell near the boundary between categories, 403 
we used soft thresholds of 4.3±0.5 and 6.0±0.5 to determine their classification as either 404 
"unpleasant" or "neutral," or "neutral" or "pleasant." We also visually examined each image to 405 
confirm its category. Finally, any images that we could not confidently classify were marked as 406 
"unknown" and removed from the analysis. This process resulted in some differences in the number 407 
of images in each category from the original datasets. After this categorization, IAPS images were 408 
divided into 296 pleasant, 390 neutral, and 341 unpleasant images, and NAPS images into 352 409 
pleasant, 477 neutral, and 281 unpleasant images (see Fig AB in S1 Text). These images were 410 
transformed from the original color images to grayscale images prior to the commencement of the 411 
study reported here. The goal was to remove color as a possible low-level visual feature 412 
confounding the emotion selectivity analysis. 413 
 414 
The convolutional neural network model 415 
 416 
VGG-16, a well-tested deep convolutional neural network for natural image recognition, was used 417 
in this study to evaluate emotion selectivity. It has 13 convolutional layers followed by three fully 418 
connected layers, with the last fully connected layer containing 1000 units for recognizing 1000 419 
different types of visual objects. Each layer of VGG-16 contains a large number of filters/channels, 420 
the application of each of which results in a feature map consisting of a large number of units. For 421 
convenience, and to stress neurobiological relevance, these filters/channels were often referred to 422 
as artificial neurons or simply neurons in this paper. Each neuron is characterized by a ReLU 423 
activation function (see Fig A in S1 Text). Through this function, neurons within a given layer, 424 
upon receiving and processing the input from the previous layer, yield activation maps (i.e., feature 425 
maps) which become the input for the next layer. Previous studies have compared the activation 426 
patterns of the VGG-16 model with experimental recordings from both humans and non-human 427 
primates and found that early layers of the model behave similarly to early visual areas such as V1, 428 
whereas deeper layers of the model are more analogous to higher-order visual areas such as the 429 
object-selective lateral occipital areas (22, 113–115). 430 
 431 
In this study, VGG-16 was used in two ways. First, to examine whether emotional selectivity 432 
emerges in neurons trained to recognize objects, we took the VGG-16 model pre-trained on 1.2 433 
million natural images from the ImageNet, presented affective pictures from the two 434 
aforementioned affective picture datasets to the model, and analyzed the activation profiles of 435 
neurons from each layer. The emotional selectivity of each neuron was determined from these 436 
activation profiles (see below). Second, to test the functionality of the emotion-selective neurons, 437 
we replaced the last layer of the VGG-16 with a two-unit fully connected layer and trained the 438 
connections to this two-unit layer to recognize two categories of emotion: pleasant versus non-439 
pleasant, neutral versus non-neutral, or unpleasant versus non-unpleasant. The training of the last 440 
two-unit emotion recognition layer used cross-entropy as the objective function. It is worth noting 441 
that, aside from the last emotion-recognition layer, the other layers’ weights in the VGG-16 network 442 
remained the same as that trained on the ImageNet data; in other words, they were frozen.  443 
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 444 
The training data and the testing data for the final 2-unit emotion recognition layer of our model 445 
were separate for IAPS and NAPS to avoid overfitting. Specifically, for each emotion category, we 446 
partitioned the images from both datasets into training, validation, and testing subsets at a ratio of 447 
50%:25%:25%. We used a learning rate of 1𝑒 − 3, trained for 10 epochs, and set the batch size to 448 
128. Finally, we employed the F1-score to assess the performance of our model in emotion 449 
recognition. 450 
 451 
Emotion selectivity definition  452 
 453 
We used two methods to evaluate the differential responses of a neuron to images from different 454 
emotion categories (pleasant, neutral, or unpleasant). Tuning value emphasizes the normalized 455 
response to images from the same category. It is used in Fig 2 to illustrate possible response 456 
profiles or tuning curves of different neurons. The selective index (SI), in contrast, emphasizes the 457 
difference between responses to images from one emotion category and those from other emotion 458 
categories. It is thus more suitable for quantifying the emotion selectivity of a neuron. Results 459 
reported in Figs 3 and 4 as well as in Fig F, Fig G,  Fig H, and Fig I in S1 Text were done with the 460 
SI.  461 
 462 
Tuning value calculation: We followed the method in (43) for calculating the tuning value in Fig 463 
2. The tuning v focuses on the strength or magnitude of a neuron’s response to a particular emotion, 464 
relative to its average response. The details can be found below. 465 
 466 
The output from each filter also referred to as a neuron in this study, see Fig A in S1 Text, can be 467 
written as:  468 
 469 

𝑥𝑙𝑘 = (1 + α) max[0, 𝑤𝑙𝑘 × 𝑥𝑙−1]    (1) 470 
 471 
where 𝑤𝑙𝑘  indicates the weights of the 𝑘𝑡ℎ  filter in the  𝑙𝑡ℎ  convolutional layer, and ∗ indicates 472 
mathematical convolution which applies matrix multiplication between 𝑤 and the outputs 𝑋 from 473 
the  (𝑙 − 1)𝑡ℎ layer. Of note in Eq. (1) is that the ReLU activation function typically has a slope of 474 
1 (𝛼 = 0). Here in this work, the slope is a tunable parameter. By tuning the slope of the ReLU 475 
function, we change the gain of the neuron, simulating the effect of feature-based attention control 476 
(43, 53).  477 
 478 
Let 𝑋𝑖,𝑗

𝑙𝑘  (𝑛) represents the response of the unit located at coordinates (𝑖, 𝑗) in the 𝑘𝑡ℎ filter in layer 479 
𝑙 to image 𝑛. Then 480 
 481 

𝑝̅𝑙𝑘(𝑛) =
1

𝑊𝐻
∑ ∑ 𝑋𝑖,𝑗

𝑙𝑘(𝑛)𝐻
𝑗=1

𝑊
𝑖=1         (2) 483 

 484 
is the response to the image averaged across the entire filter. Here 𝑊 and 𝐻 represent the width and 485 
height of the feature map. Thus, the mean activity of the filter 𝑘 in layer 𝑙 in response to all images 486 
in a dataset can be formulated as: 487 

 488 

𝑝̂𝑙𝑘 =
1

𝑁
∑ 𝑝̅𝑙𝑘(𝑛)𝑁

𝑛=1                          (3) 489 

 490 
where 𝑁 represents the total number of images in a given set. The tuning value of the filter is 491 
calculated according to 492 
 493 
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 494 
 495 

 496 

𝑆𝑒
𝑙𝑘 =

1

𝑁𝑒
∑ 𝑝̅𝑙𝑘(𝑛)

𝑁𝑒
𝑛=1 −𝑝̂𝑙𝑘

√
1

𝑁
∑ (𝑝̅𝑙𝑘(𝑛)−𝑝̂𝑙𝑘)

2𝑁
𝑛=1

               (4) 497 

 498 
 499 
where 𝑆𝑒

𝑙𝑘 represents the normalized activation of filter 𝑘 in layer 𝑙 in response to all images of 500 
emotion category 𝑒 , where 𝑒 ∈ {𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡} . A neuron is considered 501 
selective for a specific emotion if the normalized activation for the images within that emotion 502 
category is highest among the three possible values. For example, if 𝑆𝑒=𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡

𝑙𝑘 =-0.1, 𝑆𝑒=𝑛𝑒𝑢𝑡𝑟𝑎𝑙
𝑙𝑘 =503 

0.2, and 𝑆𝑒=𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡
𝑙𝑘 =0.3, the artificial neuron 𝑘 is considered selective for “unpleasant images”.  504 

 505 
Selectivity index calculation: Selectivity Index (SI) (116) is defined as follows. First, consider 506 
 507 

𝑑′(𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡) =
𝑋ത𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡 −

𝑋ത𝑛𝑒𝑢𝑡𝑟𝑎𝑙 + 𝑋ത𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡

2

ඨ𝜎𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡
2 + 𝜎𝑛𝑒𝑢𝑡𝑟𝑎𝑙

2 + 𝜎𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡
2

2

 

𝑑′(𝑛𝑒𝑢𝑡𝑟𝑎𝑙)  =  
𝑋ത𝑛𝑒𝑢𝑡𝑟𝑎𝑙 −  

𝑋ത𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡   +  𝑋ത𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡

2

ඨ𝜎𝑛𝑒𝑢𝑡𝑟𝑎𝑙
2   +  𝜎𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡

2   +  𝜎𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡
2

2

 

𝒅′(𝒖𝒏𝒑𝒍𝒆𝒂𝒔𝒂𝒏𝒕) =
𝑿ഥ𝒖𝒏𝒑𝒍𝒆𝒂𝒔𝒂𝒏𝒕 −

𝑿ഥ𝒑𝒍𝒆𝒂𝒔𝒂𝒏𝒕 + 𝑿ഥ𝒏𝒆𝒖𝒕𝒓𝒂𝒍

𝟐

ඨ𝝈𝒖𝒏𝒑𝒍𝒆𝒂𝒔𝒂𝒏𝒕
𝟐 + 𝝈𝒑𝒍𝒆𝒂𝒔𝒂𝒏𝒕

𝟐 + 𝝈𝒏𝒆𝒖𝒕𝒓𝒂𝒍
𝟐

𝟐

 

 

(5) 

 508 
 509 

where 𝑋𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡  , 𝑋𝑛𝑒𝑢𝑡𝑟𝑎𝑙 ,  and 𝑋𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡   represents the mean response to the pleasant, neutral, 510 
and unpleasant categories, respectively;  𝜎𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡

2  , 𝜎𝑛𝑒𝑢𝑡𝑟𝑎𝑙
2 , and 𝜎𝑢𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡

2  represents the 511 
variance of the response to the pleasant, neutral, and unpleasant category, respectively. SI is the 512 
largest 𝑑′ and the emotion that gives rise to the largest 𝑑′ defines the emotion for which the neuron 513 
is selective. 514 
 515 
Identification of emotion-selective neurons: To guard against spurious identification of emotion 516 
selectivity and ensure that neurons designated to be selective for an emotion do so for both datasets, 517 
we applied two analyses. First, we rank-ordered neurons according to their SI values, eliminated 518 
neurons with small SI values, and tested the emotion recognition performance under attention 519 
enhancement of the remaining neurons (see below). Increasing the percentage of neurons 520 
eliminated until we saw a significant change in performance. That percentage was then defined as 521 
the threshold for defining emotion selectivity within a dataset (see Fig 3C for an example of finding 522 
the threshold for the pleasant category on the IAPS dataset). Second, for neurons identified as 523 
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selective for certain emotions based on IAPS and that based on NAPS, we overlapped the two sets 524 
of neurons and considered the overlapped neurons to be the genuine emotion-selective neurons.  525 
 526 
Testing the functionality of the emotion-selective neurons 527 
 528 
Do the emotion-selective neurons defined above have a functional role? We applied two different 529 
approaches to examine this question: lesion and attention enhancement.  530 
 531 
Lesion. If the emotion-selective neurons are functionally important, then lesioning these neurons 532 
should lead to degraded performance in recognizing the emotion of a given image. Here the lesion 533 
of a specific neuron is achieved by setting its output to 0 (namely, setting 𝛼 = −1 in Eq. (1)). In 534 
our experiments, we lesioned the neurons selective for a given emotion as well as randomly selected 535 
neurons in a particular layer and observed the changes in the emotion recognition performance of 536 
the model.  537 
 538 
Attention enhancement. We further tested whether enhancing the activity of an emotion-selective 539 
neuron can lead to performance improvement in emotion recognition. Following (43), the strength 540 
of α was increased from 0 to 5 with interval step size 0.1, where 𝛼 = 0 is the conventional choice 541 
and 𝛼 > 0 represents increased neuronal gain (i.e., enhanced feature attention). According to the 542 
feature similarity gain theory, increasing the gain of a neuron leads to enhanced performance of the 543 
neuron in perceiving stimuli with the relevant features. In our experiments, we enhanced the 544 
neurons selective for a given emotion as well as randomly selected neurons in a particular layer and 545 
observed the changes in the emotion recognition performance of the model (43) (see Fig BA and 546 
Fig BB in S1 Text). 547 
 548 
 549 
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 865 
 866 
Fig 1. The architecture of the VGG-16 model. We used the VGG-16 pre-trained on 867 
ImageNet to model the visual system. VGG-16 has 13 convolutional layers and three fully 868 
connected (FC) layers. Each convolutional layer (light yellow color) is followed by a ReLU 869 
activation layer (yellow color) and a max-pooling layer (red color).  Each FC layer (light 870 
purple color) is followed by a ReLU layer (purple color). The last FC layer is followed by 871 
a ReLU and a SoftMax layer (dark purple color). In the original VGG-16, the last layer was 872 
used to recognize 1000 different objects. In our model it was replaced by a two-unit layer 873 
whose connections to the preceding layer were trained to recognize different emotions:  (1) 874 
pleasant vs. non-pleasant; (2) neutral vs. non-neutral; (3) unpleasant vs. non-unpleasant. 875 
Affective images in grayscale from two datasets (IAPS and NAPS) were presented to the 876 
model to define the emotion-selectivity of neurons in the convolutional layers. Lesion and 877 
attention enhancement were applied to assess these neurons’ functional significance.   878 
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 915 
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 922 

 923 
 924 
 925 

Fig 2. Tuning curves and emotion selectivity. (A-C) Tuning curves of example neurons 926 
from different convolutional layers (top panel) along with the valence distribution of the 927 
top 100 images that elicited the strongest responses for a given neuron.  928 
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 965 
 966 
 967 

 968 
 969 
Fig 3. Emotion selectivity and its generalizability. (A) Emotion selectivity as a function of 970 
layer for IAPS and NAPS. (B-top) Number of neurons determined to be selective for a given 971 
emotion for both IAPS and NAPS datasets compared with the number of neurons in the 972 
overlap of two random sets of neurons. (B-bottom) The number of neurons determined to be 973 
selective for a given emotion for both IAPS and NAPS datasets in VGG-16 pretrained on 974 
ImageNet and with randomly initialized weights. (C) Removing successively larger 975 
percentages of neurons with small SI values and comparing the performance of attention-976 
enhancing the remaining neurons yielded a threshold of 80% for determining emotion 977 
selectivity.  978 
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 1022 
Fig 4. Effects of enhancing emotion-selective neurons and randomly selected neurons on 1023 
IAPS dataset.  1024 
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 1073 
Fig 5. Effects of enhancing emotion-selective neurons and randomly selected neurons on 1074 
NAPS dataset.  1075 
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Fig 6. Lesion Analysis. Performance changes were compared between lesioning emotion-1103 
selective neurons and randomly selected neurons.  1104 
 1105 
 1106 
Table 1 Original and Enhanced and Lesioned Performance (F1-score) in VGG-16. The 1107 
maximum performance changes for both enhancing and lesioning selective neurons across different 1108 
layers are shown below. 1109 
 1110 
Dataset Emotion to 

Recognize 

Original 

Performance  

Enhanced 

Performance 

Enh. Increased 

(%) 

Lesioned  

Performance  

Les. 

Decreased 

(%) 

IAPS Pleasant  0.70 0.73 4.29%  0.56 20% 

Neutral 0.63 0.69 9.52% 0.26 58% 
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Unpleasant 0.62 0.69 11.29% 0.13 80% 

NAPS Pleasant  0.70 0.72 2.86% 0.49 31% 

Neutral 0.63 0.67 6.35% 0.25 61% 

Unpleasant 0.67 0.71 5.97% 0.41 39% 

 1111 
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Supporting information Text 15 

Eight topics related to the study reported in the main manuscript are addressed in this 16 
Supplementary Materials.  17 

Topic 1. Additional details of model developments, image datasets and methods 18 

The structure of artificial neurons, the number of images in each dataset, and valence distribution 19 
in each dataset are shown in Fig A. The information flow of applying convolution and ReLU 20 
function on an input, the details of how to enhance and lesion artificial neurons, and the datasets 21 
and networks used in the study are illustrated in Fig B.  22 
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 43 

 44 

 45 

 46 

 47 
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 52 

 53 

 54 

 55 

 56 
 57 
Fig A: Model development details and image datasets. (A) Each convolutional layer is followed 58 
by one 𝑅𝑒𝐿𝑈  layer, the output of which reflects the responses of the artificial neurons the 59 
convolutional layer. Thus, in this study, the output of the 𝑅𝑒𝐿𝑈  layer is our study target for 60 
understanding the activity of the artificial neurons. (B) It shows the number of images of each 61 
emotion category in the two datasets used in this study. Two datasets were treated equally for 62 
defining emotion-selective neurons and related lesion and attention manipulations. (C) It shows 63 
how the divided categorial images match the valence score originally rated by human subjects in 64 
the two datasets. The C (left) shows the valence score distribution and the boundary score between 65 
the pleasant and neutral category: 4.3±0.5  and between the neutral and unpleasant category: 66 
6.0±0.5 . The C (right) shows the number of images per valence score across two datasets. 67 
Basically, this figure illustrates the details of the model development and the affective image 68 
datasets. 69 
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 99 

 100 
Fig B: Further methodological details. (A) It shows that the information flow of applying 101 
convolution and 𝑅𝑒𝐿𝑈 operation to the input 𝑥	in layer 𝑙,	which represents all the feature maps 102 
from the previous layer 𝑙 − 1. In this illustration, 𝑥 is composed of two channels of feature maps. 103 
Two filters (referred to as artificial neurons) in the following convolutional layer are applied to 𝑥 104 
separately. Each filter convolution results in a channel of a new feature map, which then is passed 105 
through an activation function, 𝑅𝑒𝐿𝑈 = 	max(0, 𝑥) . 𝑅𝑒𝐿𝑈 function indicates which features after 106 
the convolutional operation is activated or inactivated. The active units are valued with positive 107 
numbers, and the inactive units are valued with zeros by the 𝑅𝑒𝐿𝑈.	Fundamentally, this figure 108 
indicates how an artificial neuron responds to a stimulus and how the response activations are 109 
calculated in a CNN. (B) The bold black line represents the 𝑅𝑒𝐿𝑈	response (activation) values, and 110 
dash lines in the middle and right sub-figures represent the normal activation value of the 111 
𝑅𝑒𝐿𝑈. 	Three cases of activation behavior were investigated empirically. The normal excitation 112 
(left) is applying the original 𝑅𝑒𝐿𝑈;	 the attention enhanced excitation (middle) is applying a 113 
positive weight 𝛼 to the activation value 𝑥; the inhabited activation through lesion is setting the 114 
activation values to be zeros instead, which performs like a lesion study. (C) It summarizes the 115 
datasets and the models used in the study. The number of images in the binary model is balanced. 116 
The non-* category images were randomly selected from another two categories.   117 
 118 
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Topic 2. Additional analysis of the selective index 119 

We examined the distribution and correlation of the selective index (SI) of selective neurons defined 120 

on dataset IAPS and NAPS, separately, in each layer and the number of selective neurons across 121 

layers by emotion category in IAPS and NAPS. The purpose is to answer the following questions: 122 

how many selective neurons there are in the network, how they depend on layers, and how the 123 

strength of selectivity depends on layers.  The overall selective index is around 0.2 for IAPS and 124 

0.15 for NAPS shown in Fig C.  The correlation between IAPS-defined emotion SI and NAPS-125 

defined SI was computed and the result was shown in Fig D. The left scatter plot, where neurons 126 

from all layers are combined, indicates a positive correlation (Pearson coefficient of 0.30) between 127 

IAPS- and NAPS-defined SI. The right plot shows that the correlation between the two SI indices 128 

increases as we move deeper into the network. This analysis further supports our claim that emotion 129 

selectivity is generalizable across the two datasets. 130 
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 180 

 181 

Fig C: Additional analysis of selective Index. (A) Distribution of selective indices across layers 182 
by emotion category in dataset IAPS (Top) and NAPS (Bottom). (B) The correlation between IAPS-183 
defined SI and NAPS-defined SI. (Left) Neurons from all layers are combined. (Right) The layer-184 
wise correlation was plotted. 185 
 186 
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 203 

 204 

Fig D: Number of selective neurons across layers by emotion category in dataset IAPS (Top) 205 
and NAPS (Bottom). 206 
 207 

Topic 3. Generalizability of emotion selectivity 208 
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We examined the functional generalization of selective neurons defined on IAPS and NAPS, 209 

separately, in Fig E. The purpose is to further verify whether the emotion selectivity defined on one 210 

dataset can be functionally generalized to another dataset.  The result is consistent with other results 211 

obtained by enchaining on selective neurons with their selective index defined on the same dataset 212 

(either IAPS or NPAS). It further supports our claim that emotion selectivity shares a functional 213 

property between the two datasets.  214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 
Fig E: Functional generalization analysis. (Top) We analyzed the enhancement of emotion-231 
selective neurons (defined post-threshold) versus random neurons in each VGG-16 layer trained on 232 
IAPS. The selective index was derived from NAPS and tested on IAPS. (Bottom) We analyzed the 233 
enhancement of emotion-selective neurons (defined post-threshold) versus random neurons in each 234 
VGG-16 layer trained on NAPS. The selective index was derived from IAPS and tested on NAPS. 235 
 236 

Topic 4. Result replication in AlexNet 237 

We replicated the results in another network, AlexNet, shown in Fig F, Fig G, and Fig H, and Fig 238 

I. The purpose is to demonstrate that the emergence of emotion selectivity is not an idiosyncratic 239 

property of a specific deep neural network. We summarized the parallel results produced with 240 

VGG-16 and AlexNet in Table A and Table B. 241 

 242 
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 260 

 261 
Fig F: Selective Index Quality (A) and Generalizability in AlexNet (B) of emotion selectivity 262 
across two datasets. The comparison of number of overlapped neurons derived from selective 263 
neurons and randomly selected neurons is plotted (B-top). The one of number of overlapped 264 
neurons derived from pre-trained AlexNet on ImageNet and initialized AlexNet network with 265 
random weights (B-bottom). The goal of this comparison is to demonstrate the significance of 266 
learned features from ImageNet in developing neuron selectivity. However, merely counting the 267 
overlapping neurons might not be adequate; we should also take into account the selectivity index 268 
quality. This is particularly important when the total number of neurons in a layer is small. 269 
 270 
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 315 

 316 

Fig G: Effects of attention-enhancing emotion-selective neurons and randomly selected 317 
neurons in AlexNet on IAPS dataset. 318 
 319 

 320 
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 321 

 322 

Fig H: Effects of attention-enhancing emotion-selective neurons and randomly selected 323 
neurons in AlexNet on NAPS dataset.    324 
 325 

 326 
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 329 
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 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

Figure I. Effects of lesioning emotion-selective neurons and randomly selected neurons in 341 
AlexNet. (A) IAPS dataset. (B) NAPS dataset.  342 
 343 
 344 
Table A. Results comparison between VGG-16 and AlexNet. 345 
 346 

Description VGG-16 AlexNet 
Selective Index Quality  Fig 3A Fig C 
Number of overlapped neurons  Fig 3B Fig D 
Enhance emotion- selective neurons  Fig 4 Fig G and Fig H 
Lesion emotion-selective neurons Fig 5 Fig I 

 347 
 348 
  349 
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Table B Original and Enhanced Performance (F1-score) in VGG-16 and AlexNet. 350 
 351 

Network Dataset Emotion to 
Recognize 

Original 
Performance  

Enhanced 
Performance 

Enh. 
Improvement 
(%) 

Lesioned  
Performance  

Les. 
Decreased 
(%) 

VGG-16 IAPS Pleasant  0.70 0.73 4.29% 0.56 20% 
Neutral 0.63 0.69 9.52% 0.26 58% 
Unpleasant 0.62 0.69 11.29% 0.13 80% 

NAPS Pleasant  0.70 0.72 2.86% 0.49 31% 
Neutral 0.63 0.67 6.35% 0.25 61% 
Unpleasant 0.67 0.71 5.97% 0.41 39% 

AlexNet IAPS Pleasant  0.65 0.70 7.69% 0.55 16% 
Neutral 0.62 0.68 9.68% 0.22 64% 
Unpleasant 0.54 0.64 18.52% 0.37 32% 

NAPS Pleasant  0.62 0.65 4.84% 0.52 16% 
Neutral 0.62 0.68 9.68% 0.22 65% 
Unpleasant 0.62 0.65 4.84% 0.40 35% 

  352 
 353 

Topic 5. Low-level features as possible confounding factors 354 

low-level features were extracted from the images by using GIST algorithm. Pairwise emotion 355 

decoding was performed using (see Fig J) using SVM. The mean accuracy for both IAPS and NAPS 356 

datasets approximates the chance level, suggesting that low-level GIST features are insufficient for 357 

decoding emotion categories from images.  358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

Fig J: Pairwise decoding results using low-level features (GIST). Dash line indicates the chance 367 
level performance (50%). The dashed lines indicate chance-level performance and bars representing 368 
the average accuracy across 10 iterations of 5-fold cross-validation.  369 
 370 

Topic 6. Faces as possible confounding factors  371 

The percentages of images involving faces in top 100 images (ranking based on neurons’ activation 372 

to each image) that evoked the strongest response of selective neurons for each emotion category 373 
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(see Fig K) are: 16%, 62%, and 30% for pleasant, neutral, and unpleasant, separately.  The analysis 374 

demonstrates that development of emotion selectivity in these neurons is unlikely affected by 375 

potential facial encoding that might arise during the training of the network on ImageNet. 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

Fig K:  Number of images involving faces in top 100 images that evoked the strongest response 393 
of emotion-selective neurons. 394 
 395 

Topic 7. Animacy as possible confounding factors 396 

Table C shows the mean valence and arousal of the top 100 images across selective neuron 397 

categories.  The purpose of this analysis is to estimate how much valence and arousal relevant to 398 

the images evoked by the selective neurons are captured.  The result shows the mean valence: 6.770, 399 

5.180, and 2.898 and mean arousal: 5.055, 3.970, and 5.816 for top images that evoked the strongest 400 

responses in neurons selective for pleasant, neutral, and unpleasant emotion. More importantly, 401 

these images appear to contain both animate and inanimate content, suggesting that animacy might 402 

not be a confounding factor. 403 

 404 

 405 
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Table C Valence and Arousal of Top 100 Images Across Selective Neuron Categories. Note: 406 
Image ranking is based on neurons’ activation to each image. 407 
 408 
Neuron 
Selectivity 

Mean Valence Interpretation Mean 
Arousal 

Interpretation 

Pleasant 6.770 Images evoke relatively 
positive or pleasant 
emotions. 

5.055 Emotions of moderate 
intensity. 

Neutral 5.180 Emotions neither 
particularly positive nor 
negative. 

3.970 More subdued or calm 
emotions. 

Unpleasant 2.898 Images evoke negative 
or unpleasant emotions. 

5.816 Intense negative 
emotions (e.g., fear, 
distress). 

 409 
 410 

Topic 8. Effects of emotion, object category, and their interaction on neuronal responses 411 

As illustrated in Fig L-M, we examined, using a Two-Way ANOVA analyses, the impact of image 412 

emotion, image category, and their interaction on neuronal response. Object categories were 413 

identified based on the descriptions in the original datasets (refer to Fig LA and MA). Our findings 414 

reveal that the emotion category markedly affects neuronal activity in layers subsequent to the fifth 415 

(refer to Fig LB-top and MB-top), and the influence of the object category is increasing with layer 416 

depth but not significant. The interaction is significant in some deeper layers (refer to Fig LB-417 

bottom and MB-bottom). It should be noted that this analysis should be viewed as preliminary, 418 

because the number of images in each object category is rather small, which may impact the analysis 419 

adversely. In addition, the selection of the images is also dataset-specific. For example, in the IAPS 420 

dataset, 15 images of dogs predominantly express negative emotions, whereas in the NAPS dataset, 421 

35 images of dogs represent a mix of negative and positive emotions (see Fig N). This variance 422 

indicates the necessity for additional studies to comprehensively understand the interaction between 423 

image emotion and category. 424 

 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
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 437 
 438 
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 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
 458 
Fig L: Effects of emotion and object category on filter activity using IAPS images.  A. The 459 
number of images in each of the top 20 object categories. B. (top) The F-statistic (log scale) of the 460 
effect of emotion and object category on filter activations across layers of the VGG-16 neural 461 
network. The statistics are obtained from a Two-Way ANOVA test, where the dependent variable 462 
is the filter activity in response to images. The plot reveals how each factor impacts the filter 463 
responses and how this influence changes from the input to deeper layers of the network; (bottom) 464 
The F-statistic (log scale) of the interaction between emotion dependent filter activation and object 465 
category dependent filter activation. The statistics are obtained from a Two-Way ANOVA test. * 466 
indicates the influence is statistically significant.  467 
  468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
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 516 
 517 
Fig M: Effects of emotion and object category on filter activity using NAPS images.  A. The 518 
number of images in each of the top 23 object categories. B. (top) The F-statistic (log scale) of the 519 
effect of emotion and object category in filter activations across layers of the VGG-16 neural 520 
network. The statistics are obtained from a Two-Way ANOVA test, where the dependent variable 521 
is the filter activity in response to images. The plot reveals how each factor impacts the filter 522 
responses and how this influence changes from the input to deeper layers of the network; (bottom) 523 
The F-statistic (log scale) of interaction between emotion and object category. The statistics are 524 
obtained from a Two-Way ANOVA test. * indicates the influence is statistically significant. 525 
 526 
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
Fig N: Valence distributions of dog images in dataset IAPS (left) and NAPS (right). 541 
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