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Abstract:

Recent neuroimaging studies have shown that the visual cortex plays an important role in
representing the affective significance of visual input. The origin of these affect-specific visual
representations is debated: they are intrinsic to the visual system versus they arise through reentry
from frontal emotion processing structures such as the amygdala. We examined this problem by
combining convolutional neural network (CNN) models of the human ventral visual cortex pre-
trained on ImageNet with two datasets of affective images. Our results show that (1) in all layers
of the CNN models, there were artificial neurons that responded consistently and selectively to
neutral, pleasant, or unpleasant images and (2) lesioning these neurons by setting their output to 0
or enhancing these neurons by increasing their gain led to decreased or increased emotion
recognition performance respectively. These results support the idea that the visual system may
have the intrinsic ability to represent the affective significance of visual input and suggest that
CNNs offer a fruitful platform for testing neuroscientific theories.

Author Summary:

What is the role played by sensory cortices in assessing the emotional significance of sensory input?
This question is attracting increasing research interest. Recent work has found affect-specific neural
representations in visual cortex. The origins of these representations are debated. According to the
reentry hypothesis, these representations result from reentrant feedback arising from anterior
emotion processing structures such as the amygdala. An alternative hypothesis holds that sensory
cortex may have the intrinsic capacity to represent the emotional qualities of sensory input. We
examined this problem by utilizing the convolutional neural networks (CNNs) trained to recognized
visual objects as computational models of the primate ventral visual system. Emotionally charged
images were divided into three broad categories (pleasant, neutral and unpleasant) and presented to
the CNNs. Responses of artificial neurons to these images were found to exhibit robust emotion
selectivity. Importantly, enhancing the neurons that were selective for a given emotion led to the
increased ability in recognizing that emotion, whereas lesioning these neurons led to the decrease
in that ability. This research lends support to the notion that emotional perception might be an
intrinsic property of the visual cortex. It also underscores the CNNs’ value in examining
neuroscientific theories.

Introduction
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Human emotions are complex and multifaceted and under the influence of many factors, including
individual differences, cultural backgrounds, and the context in which the emotion is experienced
(1-5). Still, a large number of people, across different cultures, different levels of education, and
different socioeconomic backgrounds, experience similar feelings when viewing images of varying
affective content (6—9). What fundamental principles in the functions of the human visual system
underlie such universality requires elucidation.

Previous studies of emotion perception have primarily relied on empirical cognitive experiments
(10—-12). Some of them have focused on capturing human behavioral valence or arousal judgment
on affective images (/3—16), while others have recorded brain activities to look for neural correlates
of affective stimuli processing (/7-21). Despite decades of effort, how the brain transforms visual
stimuli into subjective emotion judgments (e.g., happy, neutral, or unhappy) remains not well
understood. The advent of machine learning especially artificial neural networks (ANNs) opens the
possibility of addressing this problem using a modeling approach.

Artificial neural networks can project visual images to a feature space in which the activation
patterns of hidden layers are the features used for object classification and recognition. One type of
artificial neural network, convolutional neural networks (CNNs), owing to their hierarchical
organization resembling that of the visual system, are increasingly used as models of visual
processing in the primate brain (22-26). CNNs trained to recognize visual objects can achieve
performance levels rivaling or even exceeding that of humans. Interestingly, CNNs trained on
images from such databases as ImageNet (27) are found to demonstrate neural selectivity for a
variety of stimuli that are not included in the training data. For instance, (28) showed that neurons
in a CNN trained on ImageNet became selective for numbers without having been trained on any
"number" datasets. Similarly, (29) demonstrated that a CNN, when trained on non-face objects, can
develop a recognition performance for faces that significantly exceeds chance levels. These
instances demonstrate that CNNs may possess recognition capabilities beyond the primary task they
are trained on.

The role of the visual cortex in visual emotion processing is debated (30, 37). (32) argued that
emotion representation is an intrinsic property of the visual cortex. They used a CNN pre-trained
on ImageNet to show that the model can accurately predict the emotion categories of affective
images. (20), on the other hand, showed that the affective representations found in the visual cortex
during affective scene processing might arise as the result of reentry from anterior emotion-
modulating structures such as the amygdala. The goal of this study is to further examine this
question using CNN models.

CNN models are well suited for addressing questions related to the human visual system. Among
the many well-established CNN models, VGG-16 (33) has an intermediate level of complexity and
is shown to have superior object recognition performance (34). Using VGG-16, recent cognitive
neuroscience studies have explored how encoding and decoding of sensory information are
hierarchically processed in the brain (23, 33, 36). (23) used VGG-16 to quantitatively demonstrate
an explicit gradient of feature complexity encoded in the ventral visual pathway. (35) used VGG-
16 to model the visual cortical activity of human participants viewing images of objects and
demonstrated that activities in different layers of the model highly correlate with brain activities in
different visual areas. (36) investigated qualitative similarities and differences between VGG-16
and other feed-forward CNNs in the representation of the visual object and showed these CNNs
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exhibit multiple perceptual and neural phenomena such as the Thatcher effect (37) and Weber’s
law (38).

In this study, we mainly focused on VGG-16 pre-trained on ImageNet as the model of the human
visual system and used AlexNet (39), which is another well-established CNN model of visual
processing, to test whether the results can be replicated. Using two well-established affective image
datasets: International Affective Picture System (IAPS) (/5) and Nencki Affective Picture System
(NAPS) (16), we examined whether emotion selectivity can spontaneously emerge in such systems
and whether such emotion selectivity has functional significance. For each filter within a layer of
the model, the emotional selectivity for the resulting feature map was established by first computing
neural responses to three broad classes of images: pleasant, neutral, and unpleasant (tuning curves)
at the level of each unit and then averaging these responses across all the units within the feature
map. A feature map, also referred to as a neuron in what follows, is considered selective for a
particular emotion if its tuning responses are robust and exhibit the strongest responses to images
of that category from both datasets. To test whether these emotion-selective neurons have a
functional role, we replaced the last 1000-unit object-recognition layer of the VGG-16 with a two-
unit emotion-recognition layer and trained the connections to this layer to decode pleasant versus
non-pleasant, neutral vs. non-neutral, and unpleasant vs. non-unpleasant images. Two neural
manipulations were carried out: lesion and feature attention enhancements. Lesioning the neurons
selective for a specific emotion is expected to degrade the network’s performance in recognizing
that emotion, whereas applying attention enhancement to the neurons selective for the emotion is
expected to increase the network’s performance in recognizing that emotion.

Results

We tested whether emotion selectivity can naturally arise in a CNN model trained to recognize
visual objects. VGG-16 pre-trained on ImageNet data (27) was used for this purpose (see Fig 1).
Filters/channels within a layer were referred to as neurons and responses from the units within the
feature maps were averaged and treated as neuronal responses. Selectivity for pleasant, neutral, and
unpleasant emotions was defined for each neuron based on its response profiles to images from two
affective picture sets (IAPS and NAPS). The functional significance of these neurons was then
assessed using lesion and attention enhancement methods.

Neuronal responses to emotional images in different convolutional layers

The tuning curve for a neuron is defined as the normalized mean response (tuning value) to pleasant,
neutral, and unpleasant images in a given dataset plotted as a function of the emotion category. The
maximum of the tuning curve indicates the neuron’s preferred emotion category for that picture set.
Fig 2A (top) shows the tuning curves of three neurons from the Convolutional Layer 3 (an early
layer) for both IAPS and NAPS datasets. According to the definition above, these neurons are
selective for pleasant, neutral, and unpleasant categories, respectively. For the top 100 images from
IAPS and NAPS that elicited the strongest response in these neurons, Fig 2A (bottom) shows the
valence distribution of these images. As can be seen, for these early layer neurons, while the
pleasant neuron is more activated by images with high valence ratings (pleasant), for the neutral
and unpleasant neurons, the patterns are less clear. For the neurons in Convolutional Layer 6 (a
middle layer), however, as shown in Fig 2B, their emotion selectivity and the category of images
they prefer show greater agreement. Namely, the pleasant neuron prefers predominately images
with high valence (pleasant), the neural neuron prefers predominately images with intermediate
valence (neutral), and the unpleasant neuron prefers predominately images with low valence
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(unpleasant). The results for the three neurons from Convolutional Layer 13 (a deep layer) are
similar to those from Layer 6; see Fig 2C.

Emotion selectivity in different convolutional layers

Whereas tuning value and tuning curve characterize a neuron’s response to images from different
emotion categories, the selectivity index (SI), which highlights the difference between responses to
different emotion categories of images, is a better index for defining emotion selectivity. As shown
in Fig 3A, emotion selectivity became stronger as one ascended the layers from early to deep, an
effect that is especially noticeable for the IAPS datasets, supporting the notion that emotion
differentiability increases as we go from earlier to deeper layers. In light of the computational
principle that earlier layer neurons encode lower-level stimulus properties (e.g., shapes and edges)
and deeper layer neurons encode higher-level properties such as semantic meaning (e.g., object
identities) (40—42), the results in Fig 3A as well as Fig 2 suggest that from earlier to deeper layers,
emotion as a higher level cognitive construct becomes progressively better defined and better
differentiated.

To examine the role of the training to recognize objects in the foregoing observations, we performed
the same analysis in a VGG-16 with randomly initialized weights (i.e., not trained to recognize
objects). As seen in Fig 3A, emotion selectivity is generally low as evaluated by both datasets, and
there is no clear layer-dependence in emotion selectivity, suggesting that the increased ability to
represent and differentiate emotion in deeper network layers of the pre-trained VGG-16 is an ability
acquired through the training for object recognition.

Generalizability of emotion-selective neurons

Fig 2 shows that a neuron can be tuned for the same emotion for both IAPS and NAPS datasets. A
natural question is whether such neurons arise as the result of random chance or as an emergent
property of the trained network. Further, based on the value of SI, all neurons are selectivity for one
emotion or the other. Small Sls are likely subject to the influence of chance, and as such, neurons
with small SIs should be removed from further consideration. How to determine the threshold for
removal?

We performed two analyses to address the two questions. First, we rank-ordered neurons according
to their SI values, removed certain percentages of neurons with small SI values, and attention-
enhanced the remaining neurons (see next subsection) and observed the resulting performance
improvement. The results in Fig 3C suggest that removing neurons whose Sls fell in the lower 20%
(keeping 80%) is a reasonable threshold. Second, neurons determined to be emotion selective
according to IAPS and that according to NAPS were subjected to an overlap analysis. Fig 3B (top)
compares the number of neurons selective for the same emotion for both IAPS and NAPS datasets
against the number of neurons to be expected from the overlap of two random sets of neurons. The
former is consistently higher than the latter across all layers, with the effect becoming more
prominent in deeper layers, suggesting that emotion selectivity generalizes across the two datasets
and the generalizability is not due to chance.

What is the role of training to recognize visual objects in the generalizable emotion selectivity? To
answer this question, we compared the number of emotion-selective neurons from the overlap
analysis derived from pre-trained VGG-16 on ImageNet against that derived from randomly
initialized VGG-16. Fig 3B (bottom) shows that for all emotion categories—pleasant, neutral, and
unpleasant—the pre-trained network consistently demonstrated a higher number of emotion-
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selective neurons in the later layers, especially from Layer 5 onwards. These findings suggest that
emotion selectivity is an emergent property as the result of a neural network undergoing training
for object recognition.

The functionality of emotion-selective neurons

To test whether emotion-selective neurons have a functional role, we followed (43) and replaced
the last layer of the VGG-16, which originally contained 1,000 units for recognizing 1000 different
types of objects, with a fully connected layer containing two units for recognizing two types of
emotions. Three models were trained and tested for each of the two affective picture datasets: Model
1: pleasant versus non-pleasant, Model 2: neutral versus non-neutral, and Model 3: unpleasant
versus non-unpleasant. Once these models were shown to have adequate emotion recognition
performance (see Table 1), two neural manipulations were considered: feature attention
enhancement and lesion. For feature attention enhancement (44-46), the gain of the neurons
selective for a given emotion for both datasets is increased by increasing the slope of the ReLU
activation function (see Methods) (47—50), whereas for lesion, the output of the neurons selective
for a given emotion for both datasets was set to 0, which effectively removes the contribution of
these neurons, i.e., they are lesioned. We hypothesized that (1) with attention enhancement, the
network’s ability to recognize emotion is increased (2) with lesioning, the network’s ability to
recognize emotion is decreased, and (3) such effects are not observed for modulating randomly
selected neurons.

Feature attention enhancement: For IAPS images, Fig 4 compares performance changes after
enhancing the emotion-selective neurons as well as enhancing the same number of randomly
sampled neurons; see also Table 1. The optimal tuning strength for which we achieved the best
performance enhancement was chosen for each layer in the plot. As one can see, for pleasant versus
non-pleasant, neutral versus non-neutral, and unpleasant versus non-unpleasant emotions,
enhancing the gain of the neurons selective for a specific emotion can significantly improve the
emotion recognition performance of the CNN model for that emotion. Moreover, deeper layer
attention enhancement tends to yield greater performance improvements than earlier layer attention
enhancement. Increasing the gain in randomly selected neurons, however, shows either a marginal
performance improvement or a significant performance decline. The feature-attention performance
of emotion-selective neurons over random neurons is highly statistically significant in the middle
and deeper layers (p< 1.2e-02). Fig 4 (right) shows the performance changes across layers as the
tuning strength varied from 0 to 5.

We carried out the same analysis for the NAPS dataset in Fig 5. The results largely replicated that
in Fig 4 for the IAPS dataset.

Lesion _analysis: The functional importance of the emotion-selective neurons can be further
assessed through lesion analysis (5/—54). As shown in Fig 6 (see also Table 1), we compared the
emotion recognition performance changes by setting the output from emotion-selective neurons to
0 as well as by setting the output of an equal number of randomly chosen neurons to 0. As can be
seen, lesioning the emotion-selective neurons led to significant performance declines, especially
for the deeper layers; the performance decline can be as high as 80%. In contrast, lesioning
randomly selected neurons produces almost no performance changes. These results, replicated
across both datasets, further support the hypothesis that emotion-selective neurons are important
for emotion recognition, and the importance is higher in deeper layers than in earlier layers.

Discussion
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It has been argued that the human visual system has the intrinsic ability to recognize the
motivational significance of environmental inputs (55). We examined this problem using
convolutional neural networks (CNNs) as models of the human visual system (56—617). Selecting
the VGG16 pre-trained on images from the ImageNet as our model (62—64) and using two sets of
affective images (IAPS and NAPS) as test stimuli, we found the existence of emotion-selective
neurons in all layers of the model even though the model has never been explicitly trained to
recognize emotion. Additionally, emotion selectivity becomes stronger and more consistent in the
deeper layers, in agreement with prior literature suggesting that the deeper layers of CNNs encode
higher-level semantic information. For VGG-16 with randomly initialized weights (i.e., not trained
to recognize objects), however, no such effects were observed, suggesting that emotion selectivity
may be an emergent property through network training. Applying two manipulations: feature
attention enhancement and lesion, we can show further that the emotion-selective neurons are
functionally significant, specifically: (1) after increasing the gain of emotion-selective neurons
(e.g., feature attention enhancement), the network’s performance in emotion recognition is
enhanced relative to increasing the gain of randomly selected neurons and (2) in contrast, after
lesioning the emotion-selective neurons, the network’s performance in emotion recognition is
degraded relative to lesioning randomly selected neurons. These performance differences are
stronger and more noticeable in deeper layers than in earlier layers. In Fig F, Fig G, Fig H, and Fig
I in S1 Text, we reported similar findings on the AlexNet, which is a simpler CNN that has also
been used in numerous studies as a model of the ventral visual system (65—68). Together, our
findings indicate that emotion selectivity can spontaneously emerge in CNN models trained to
recognize visual objects, and these emotion-selective neurons play a significant role in recognizing
emotion in natural images, lending credence to the notion that the visual system’s ability to
represent affective information may be intrinsic.

Affective processing in the visual cortex

The perception of opportunities and threats in complex visual scenes represents one of the main
functions of the human visual system. The underlying neurophysiology is often studied by having
observers view pictures varying in affective content. (69) reported greater functional activity in the
visual cortex when subjects viewed pleasant and unpleasant pictures than neutral images. (70)
showed the visual cortex has differential sensitivities in response to emotional stimuli compared to
the amygdala. (7/) demonstrated that emotional significance (e.g., valence or arousal) could
modulate the perceptual encoding in the visual cortex. Two competing but not mutually exclusive
groups of hypotheses have been advanced to account for emotion-specific modulations of activity
in the visual cortex. The so-called reentry hypothesis states that the increased visual activation
evoked by affective pictures results from reentrant feedback, meaning that signals arising in
subcortical emotion processing structures such as the amygdala propagate to the visual cortex to
facilitate the processing of motivationally salient stimuli (72-74). Recent work (20) provides
support for this view. Using multivariate pattern analysis and functional connectivity, these authors
showed that (1) different emotion categories (e.g., pleasant versus neutral and unpleasant versus
neutral) are decodable based on the multivoxel patterns in the visual cortex and (2) the decoding
accuracy is positively associated with the strength of connectivity from anterior emotion-
modulating regions to ventral visual cortex. A second group of hypotheses states that the visual
cortex may itself have the ability to code for the emotional qualities of a stimulus, without the
necessity for recurrent processing (see (75) for a review). Evidence supporting this hypothesis
comes from empirical studies in experimental animals (76, 77) as well as in human observers (78),
in which the extensive pairing of simple sensory cues such as tilted lines or sinusoidal gratings with
emotionally relevant outcomes shapes early sensory responses (79). Beyond simple visual cues,
recent computational work using deep neural networks has also suggested that the visual cortex
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may intrinsically represent emotional value as contained in complex visual media such as video
clips of varying affective content (32). Our findings reveal that emotion-selective neurons are
present in all layers of two CNN models, which are computational representations of the visual
cortex. These neurons play a crucial role in emotion recognition. This contributes to the growing
computational evidence suggesting that the visual cortex may inherently possess the capability to
evaluate the emotional significance of visual stimuli.

Neural selectivity in ANNs and the brain

That CNNs, or more generally ANNSs, can be trained to recognize a large variety of visual objects
has long been recognized. Remarkably, recent studies note that ANNSs trained on recognizing visual
objects can spontaneously develop selectivity for other types of input, including visual numbers
and faces (80). The number sense is considered an inherent ability of the brain to estimate the
quantity of certain items in a visual set (81, §2). There is significant evidence demonstrating that
the number sense exists in both humans (e.g., adults and infants) (8§3—85) and non-human primates
(e.g., numerically naive monkeys) (8§6—88). (89) found that number-selective units spontaneously
emerged in a deep artificial neural network trained on ImageNet for object recognition. (90)
demonstrated that number selectivity can even arise spontaneously in randomly initialized deep
neural networks without any training. Both studies focused on the last convolutional layers, in
which the number-selective units were found, and they also demonstrated that the emergence of
number-selective units could result from the weighted sum of both decreasing and increasing the
activity of some units. In addition, it is well known that face-selective neurons exist in humans (97)
and non-human primates. (80) showed that neurons in a randomly initialized deep neural network
without training could selectively respond to faces, and the neurons in the deeper layers are more
selective. (92) demonstrated that brain-like functional segregation can emerge spontaneously in
deep neural networks trained on object recognition and face perception and proposed that the
development of functional segregation of face recognition in the brain is a result of computational
optimization in the cortex. Augmenting this rapidly growing literature, our study demonstrates that
emotion selectivity can emerge in deep artificial neural network models of the human visual system
trained to recognize objects.

Layer dependence

Like the biological brain, the CNN model has a layered structure which allows the processing of
information in a hierarchical fashion. Our layer-wise analysis showed that the extent and strength
of emotion selectivity are a function of the model layers. Compared to the early layers, the deeper
layers have larger portions of neurons that show emotion selectivity, and the selectivity is stronger,
consistent with the previous observations that deeper layers of CNN models encode more abstract
concepts. For example, (40, 93) examined the internal representations of different layers in a CNN
and found that deeper layers of the network tend to encode more abstract concepts, such as object
parts and textures. The layered processing of emotional information may have several functional
benefits. First, by processing visual information in hierarchical stages, the brain can quickly and
efficiently respond to stimuli without the need for a complete and detailed analysis of the entire
stimulus at once (94-96). This is especially important for the processing of emotionally salient
stimuli, as quick and accurate emotional responses can be crucial for survival. Second, it would
offer more flexibility for the processing of emotion at different levels of detail, which may depend
on the perception task and the environmental context. For example, if the stimulus is perceived as
significant or crucial for survival, it elicits a stronger and more widespread neural response,
engaging multiple regions and processing stages. On the other hand, if the stimulus is not
significant, it elicits a weaker and more limited neural response involving fewer regions or layers
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and processing stages (97-99). Third, the integration of information from different levels allows
for a more complete and nuanced representation of the visual stimulus and emotional response. This
allows for the creation of a final representation that takes into account not just the visual properties
of the stimulus but also its emotional significance and its impact on the individual (/00-102).
Lastly, by processing information in a layer-dependent manner, the brain can adapt and change the
processing of information based on experience and learning (/03). This allows the brain to refine
its processing strategies and improve its performance over time (/04).

Relation to prior literature

(32), to the best of our knowledge, is the first to examine emotion processing in deep neural
networks. Their model, which is a modified AlexNet called the EmoNet, was shown to have the
ability to classify affective images into 20 different emotion categories. Importantly, using a 20-
way linear decoder, they further showed that neural activities in different layers of the network
especially the deeper layers can differentiate different emotions in the input images, suggesting the
existence of emotion selectivity neurons in CNNs. Building on this work, our main contributions
are threefold: (1) confirming and characterizing emotion selectivity at the single filter (neuron)
level, (2) demonstrating the functional significance of emotion-selective neurons through the
application of lesion and attention enhancement methods, and (3) replicating the findings across
two CNN models (VGG-16 and AlexNet) and two affective image sets (IAPS and NAPS).

Limitations and other considerations

Several limitations of our study should be noted. Firstly, emotion was divided into three broad
categories: pleasant, unpleasant, and neutral. While this is in line with many neurophysiological
studies in humans, future work should examine finer differentiations of emotion, e.g., joy, sadness,
horror, disgust, and so on, and their neural representations in the brain. Secondly, there might be
other factors (e.g., low-level features) that drive the emotion selectivity of neurons. Since we used
grayscale images in this study, we can rule out color as a possible confounding low-level feature.
Applying the GIST algorithm (705) to extract low-level features from images and the support vector
machine (SVM) algorithm (/06), we found that images from different emotion categories cannot
be decoded from the low-level features; see Fig J in S1 Text. The impact of an image’s object
category and its emotion category on neural activation was examined by placing images in the IAPS
and NAPS datasets into object categories based on the descriptions of the images (Fig LA and Fig
MA in S1 Text) and applying Two-Way ANOVA tests to filter activations in the VGG-16 model.
We found that the neurons responded more strongly to emotion categories than object categories
and there were significant interactions between the two categories in deeper layers (Fig LB and Fig
MB in S1 Text ). We do note that, as the number of images in different object categories are
relatively small in both affective datasets, this analysis should be viewed as preliminary. The
influence of other factors such as the presence of faces and image animacy is more difficult to
ascertain. Thirdly, although the present study is motivated by neuroscience questions, to what extent
our results have a direct bearing on understanding brain function is unclear. Whereas previous work
did compare activities in VGG-16 and other deep neural networks with neural recordings during
object recognition (67, 107—109), there is no study to date comparing activities in deep neural
networks and neural recordings during emotion recognition. In this sense, this work’s neural
relevance should be considered speculative.

Materials and Methods

Affective picture sets
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Two sets of widely used affective images were used in this study. The IAPS library includes 1,182
images covering approximately 20 subclasses of emotions such as joy, surprise, entrancement,
sadness, romance, disgust, and fear. The NAPS library has 1,356 images that can be divided into
similar subclasses. For both libraries, each image has a normative valence rating, ranging from 1 to
9, indicating whether the image expresses unpleasant, neutral, or pleasant emotions; the
distributions of the valence rating from the two datasets were given in Fig AC(right) in S1 Text. In
this study, for simplicity and following the common practice in human imaging studies of emotion
(20, 110-112), we classified images into three main categories based on their valence scores:
"pleasant," "neutral," and "unpleasant." For images that fell near the boundary between categories,
we used soft thresholds of 4.3+0.5 and 6.0+0.5 to determine their classification as either
"unpleasant” or "neutral," or "neutral" or "pleasant." We also visually examined each image to
confirm its category. Finally, any images that we could not confidently classify were marked as
"unknown" and removed from the analysis. This process resulted in some differences in the number
of images in each category from the original datasets. After this categorization, IAPS images were
divided into 296 pleasant, 390 neutral, and 341 unpleasant images, and NAPS images into 352
pleasant, 477 neutral, and 281 unpleasant images (see Fig AB in S1 Text). These images were
transformed from the original color images to grayscale images prior to the commencement of the
study reported here. The goal was to remove color as a possible low-level visual feature
confounding the emotion selectivity analysis.

The convolutional neural network model

VGG-16, a well-tested deep convolutional neural network for natural image recognition, was used
in this study to evaluate emotion selectivity. It has 13 convolutional layers followed by three fully
connected layers, with the last fully connected layer containing 1000 units for recognizing 1000
different types of visual objects. Each layer of VGG-16 contains a large number of filters/channels,
the application of each of which results in a feature map consisting of a large number of units. For
convenience, and to stress neurobiological relevance, these filters/channels were often referred to
as artificial neurons or simply neurons in this paper. Each neuron is characterized by a ReLU
activation function (see Fig A in S1 Text). Through this function, neurons within a given layer,
upon receiving and processing the input from the previous layer, yield activation maps (i.e., feature
maps) which become the input for the next layer. Previous studies have compared the activation
patterns of the VGG-16 model with experimental recordings from both humans and non-human
primates and found that early layers of the model behave similarly to early visual areas such as V1,
whereas deeper layers of the model are more analogous to higher-order visual areas such as the
object-selective lateral occipital areas (22, 113—115).

In this study, VGG-16 was used in two ways. First, to examine whether emotional selectivity
emerges in neurons trained to recognize objects, we took the VGG-16 model pre-trained on 1.2
million natural images from the ImageNet, presented affective pictures from the two
aforementioned affective picture datasets to the model, and analyzed the activation profiles of
neurons from each layer. The emotional selectivity of each neuron was determined from these
activation profiles (see below). Second, to test the functionality of the emotion-selective neurons,
we replaced the last layer of the VGG-16 with a two-unit fully connected layer and trained the
connections to this two-unit layer to recognize two categories of emotion: pleasant versus non-
pleasant, neutral versus non-neutral, or unpleasant versus non-unpleasant. The training of the last
two-unit emotion recognition layer used cross-entropy as the objective function. It is worth noting
that, aside from the last emotion-recognition layer, the other layers’ weights in the VGG-16 network
remained the same as that trained on the ImageNet data; in other words, they were frozen.
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The training data and the testing data for the final 2-unit emotion recognition layer of our model
were separate for IAPS and NAPS to avoid overfitting. Specifically, for each emotion category, we
partitioned the images from both datasets into training, validation, and testing subsets at a ratio of
50%:25%:25%. We used a learning rate of 1e — 3, trained for 10 epochs, and set the batch size to
128. Finally, we employed the Fl-score to assess the performance of our model in emotion
recognition.

Emotion selectivity definition

We used two methods to evaluate the differential responses of a neuron to images from different
emotion categories (pleasant, neutral, or unpleasant). Tuning value emphasizes the normalized
response to images from the same category. It is used in Fig 2 to illustrate possible response
profiles or tuning curves of different neurons. The selective index (SI), in contrast, emphasizes the
difference between responses to images from one emotion category and those from other emotion
categories. It is thus more suitable for quantifying the emotion selectivity of a neuron. Results
reported in Figs 3 and 4 as well as in Fig F, Fig G, Fig H, and Fig I in S1 Text were done with the
SI.

Tuning value calculation: We followed the method in (43) for calculating the tuning value in Fig
2. The tuning v focuses on the strength or magnitude of a neuron’s response to a particular emotion,
relative to its average response. The details can be found below.

The output from each filter also referred to as a neuron in this study, see Fig A in S1 Text, can be
written as:

x* = (1 + o) max[0,w"* x x'71] (1)

where w'* indicates the weights of the k' filter in the [*" convolutional layer, and * indicates
mathematical convolution which applies matrix multiplication between w and the outputs X from
the (I — 1) layer. Of note in Eq. (1) is that the ReLU activation function typically has a slope of
1 (a = 0). Here in this work, the slope is a tunable parameter. By tuning the slope of the ReLU
function, we change the gain of the neuron, simulating the effect of feature-based attention control
(43, 53).

Let X, l”j (n) represents the response of the unit located at coordinates (i, ) in the k" filter in layer

[ to image n. Then
_ 1
P = = S xEm) @)
is the response to the image averaged across the entire filter. Here W and H represent the width and

height of the feature map. Thus, the mean activity of the filter k in layer [ in response to all images
in a dataset can be formulated as:

pik = XN p(n) (3)

where N represents the total number of images in a given set. The tuning value of the filter is
calculated according to
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where SI¥ represents the normalized activation of filter k in layer [ in response to all images of
emotion category e, where e € {pleasant,neutral, unpleasant}. A neuron is considered
selective for a specific emotion if the normalized activation for the images within that emotion
category is highest among the three possible values. For example, if S!K =pleasant—0-1 S tral =

0.2, and Se:unpleasant 0.3, the artificial neuron k is considered selective for “unpleasant images”.
Selectivity index calculation: Selectivity Index (SI) (/16) is defined as follows. First, consider

X Xneutral + Xunpleasant
pleasant ~— 2

d' (pleasant) =

J pleasant t+ o eutral t o npleasant
2

pleasant + Xunpleasant

neutral
(neutral) = 2
2
neutral t+ o pleasant + o npleasant (5)
2
_ Xpleasant + Xneutral
/ unpleasant
d (unpleasant) = 2
a? + o2 + o2
unpleasant pleasant neutral
2

where Xpieasant » Xneutrats and Xynpieasant represents the mean response to the pleasant, neutral,
and unpleasant categories, respectively; Ugleasant s O2outral » and sznpzeasant represents the
variance of the response to the pleasant, neutral, and unpleasant category, respectively. SI is the
largest d' and the emotion that gives rise to the largest d’ defines the emotion for which the neuron
is selective.

Identification of emotion-selective neurons: To guard against spurious identification of emotion
selectivity and ensure that neurons designated to be selective for an emotion do so for both datasets,
we applied two analyses. First, we rank-ordered neurons according to their SI values, eliminated
neurons with small SI values, and tested the emotion recognition performance under attention
enhancement of the remaining neurons (see below). Increasing the percentage of neurons
eliminated until we saw a significant change in performance. That percentage was then defined as
the threshold for defining emotion selectivity within a dataset (see Fig 3C for an example of finding
the threshold for the pleasant category on the IAPS dataset). Second, for neurons identified as
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selective for certain emotions based on IAPS and that based on NAPS, we overlapped the two sets
of neurons and considered the overlapped neurons to be the genuine emotion-selective neurons.

Testing the functionality of the emotion-selective neurons

Do the emotion-selective neurons defined above have a functional role? We applied two different
approaches to examine this question: lesion and attention enhancement.

Lesion. If the emotion-selective neurons are functionally important, then lesioning these neurons
should lead to degraded performance in recognizing the emotion of a given image. Here the lesion
of a specific neuron is achieved by setting its output to 0 (namely, setting « = —1 in Eq. (1)). In
our experiments, we lesioned the neurons selective for a given emotion as well as randomly selected
neurons in a particular layer and observed the changes in the emotion recognition performance of
the model.

Attention enhancement. We further tested whether enhancing the activity of an emotion-selective
neuron can lead to performance improvement in emotion recognition. Following (43), the strength
of a was increased from 0 to 5 with interval step size 0.1, where a = 0 is the conventional choice
and a > 0 represents increased neuronal gain (i.e., enhanced feature attention). According to the
feature similarity gain theory, increasing the gain of a neuron leads to enhanced performance of the
neuron in perceiving stimuli with the relevant features. In our experiments, we enhanced the
neurons selective for a given emotion as well as randomly selected neurons in a particular layer and
observed the changes in the emotion recognition performance of the model (43) (see Fig BA and
Fig BB in S1 Text).
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Fig 1. The architecture of the VGG-16 model. We used the VGG-16 pre-trained on
ImageNet to model the visual system. VGG-16 has 13 convolutional layers and three fully
connected (FC) layers. Each convolutional layer (light yellow color) is followed by a ReLU
activation layer (yellow color) and a max-pooling layer (red color). Each FC layer (light
purple color) is followed by a ReLU layer (purple color). The last FC layer is followed by
a ReLU and a SoftMax layer (dark purple color). In the original VGG-16, the last layer was
used to recognize 1000 different objects. In our model it was replaced by a two-unit layer
whose connections to the preceding layer were trained to recognize different emotions: (1)
pleasant vs. non-pleasant; (2) neutral vs. non-neutral; (3) unpleasant vs. non-unpleasant.
Affective images in grayscale from two datasets (IAPS and NAPS) were presented to the
model to define the emotion-selectivity of neurons in the convolutional layers. Lesion and
attention enhancement were applied to assess these neurons’ functional significance.
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Fig 2. Tuning curves and emotion selectivity. (A-C) Tuning curves of example neurons
from different convolutional layers (top panel) along with the valence distribution of the
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Fig 3. Emotion selectivity and its generalizability. (A) Emotion selectivity as a function of
layer for IAPS and NAPS. (B-top) Number of neurons determined to be selective for a given
emotion for both IAPS and NAPS datasets compared with the number of neurons in the
overlap of two random sets of neurons. (B-bottom) The number of neurons determined to be
selective for a given emotion for both IAPS and NAPS datasets in VGG-16 pretrained on
ImageNet and with randomly initialized weights. (C) Removing successively larger
percentages of neurons with small SI values and comparing the performance of attention-
enhancing the remaining neurons yielded a threshold of 80% for determining emotion

selectivity.
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Fig 4. Effects of enhancing emotion-selective neurons and randomly selected neurons on
IAPS dataset.
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Fig 5. Effects of enhancing emotion-selective neurons and randomly selected neurons on
NAPS dataset.
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Fig 6. Lesion Analysis. Performance changes were compared between lesioning emotion-
selective neurons and randomly selected neurons.

Table 1 Original and Enhanced and Lesioned Performance (F1-score) in VGG-16. The
maximum performance changes for both enhancing and lesioning selective neurons across different
layers are shown below.

Dataset | Emotion to | Original Enhanced Enh. Increased | Lesioned Les.
Recognize Performance | Performance | (%) Performance | Decreased

(%)

IAPS Pleasant 0.70 0.73 4.29% 0.56 20%

Neutral 0.63 0.69 9.52% 0.26 58%
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1111

Unpleasant 0.62 0.69 11.29% 0.13 80%
NAPS | Pleasant 0.70 0.72 2.86% 0.49 31%
Neutral 0.63 0.67 6.35% 0.25 61%
Unpleasant 0.67 0.71 5.97% 0.41 39%
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Supporting information Text

Eight topics related to the study reported in the main manuscript are addressed in this
Supplementary Materials.

Topic 1. Additional details of model developments, image datasets and methods

The structure of artificial neurons, the number of images in each dataset, and valence distribution
in each dataset are shown in Fig A. The information flow of applying convolution and ReLLU
function on an input, the details of how to enhance and lesion artificial neurons, and the datasets
and networks used in the study are illustrated in Fig B.
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Dataset Pleasant Neutral Unpleasant | Total
IAPS 296 390 341 1,027
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Fig A: Model development details and image datasets. (A) Each convolutional layer is followed
by one ReLU layer, the output of which reflects the responses of the artificial neurons the
convolutional layer. Thus, in this study, the output of the ReLU layer is our study target for
understanding the activity of the artificial neurons. (B) It shows the number of images of each
emotion category in the two datasets used in this study. Two datasets were treated equally for
defining emotion-selective neurons and related lesion and attention manipulations. (C) It shows
how the divided categorial images match the valence score originally rated by human subjects in
the two datasets. The C (left) shows the valence score distribution and the boundary score between
the pleasant and neutral category: 4.3+0.5 and between the neutral and unpleasant category:
6.01+0.5. The C (right) shows the number of images per valence score across two datasets.
Basically, this figure illustrates the details of the model development and the affective image
datasets.
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Fig B: Further methodological details. (A) It shows that the information flow of applying
convolution and ReLU operation to the input x in layer [, which represents all the feature maps
from the previous layer [ — 1. In this illustration, x is composed of two channels of feature maps.
Two filters (referred to as artificial neurons) in the following convolutional layer are applied to x
separately. Each filter convolution results in a channel of a new feature map, which then is passed
through an activation function, ReLU = max(0, x) . ReLU function indicates which features after
the convolutional operation is activated or inactivated. The active units are valued with positive
numbers, and the inactive units are valued with zeros by the ReLU. Fundamentally, this figure
indicates how an artificial neuron responds to a stimulus and how the response activations are
calculated in a CNN. (B) The bold black line represents the ReLU response (activation) values, and
dash lines in the middle and right sub-figures represent the normal activation value of the
ReLU. Three cases of activation behavior were investigated empirically. The normal excitation
(left) is applying the original ReLU; the attention enhanced excitation (middle) is applying a
positive weight a to the activation value x; the inhabited activation through lesion is setting the
activation values to be zeros instead, which performs like a lesion study. (C) It summarizes the
datasets and the models used in the study. The number of images in the binary model is balanced.
The non-* category images were randomly selected from another two categories.
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Topic 2. Additional analysis of the selective index

We examined the distribution and correlation of the selective index (SI) of selective neurons defined
on dataset IAPS and NAPS, separately, in each layer and the number of selective neurons across
layers by emotion category in IAPS and NAPS. The purpose is to answer the following questions:
how many selective neurons there are in the network, how they depend on layers, and how the
strength of selectivity depends on layers. The overall selective index is around 0.2 for IAPS and
0.15 for NAPS shown in Fig C. The correlation between IAPS-defined emotion SI and NAPS-
defined SI was computed and the result was shown in Fig D. The left scatter plot, where neurons
from all layers are combined, indicates a positive correlation (Pearson coefficient of 0.30) between
IAPS- and NAPS-defined SI. The right plot shows that the correlation between the two SI indices
increases as we move deeper into the network. This analysis further supports our claim that emotion

selectivity is generalizable across the two datasets.

Page 4 of 16



52
53
54
55
56
57
58
59
50
51
52
53
54
55
56
57
58
59
70
71
72
73
74
75
76
77
78
79
30
31

82
83
84
85
86

I pleasant [} N
06 3 neutral
| B unpleasant
*
0.5
>
(]
=
c
= 04
[
>
=
0
] 0.3
(2]
0.2
)
0.1
1
0 neutral
0.45{ EEE pleasant
I unpleasant
0.40 4
5 0.35 1
(]
o
£ 030
g
5 °
D 0254
K
(3}
U 0.20 -
0.15
0.10 4 =
1 9 10 1 2 13
;:)‘f‘\a:-‘l,l‘ljuh lbQEl%il:'Sﬁ . 04 Fit Line: r=0.87, p-value=1.08¢-04
. . * p-value < 0.05
. L ]
04 .
0.3
@
=
./;0.3 N B 0.2
¥ . =
2 . Z
= L <
0.2 £ o
B
g
@ 0.0
0.1
—0.1
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 1 2 3 4 5 6 7 8 9 10 11 12 13
Selective Index (IAPS) Layer

Fig C: Additional analysis of selective Index. (A) Distribution of selective indices across layers
by emotion category in dataset IAPS (Top) and NAPS (Bottom). (B) The correlation between [APS-
defined SI and NAPS-defined SI. (Left) Neurons from all layers are combined. (Right) The layer-
wise correlation was plotted.
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Topic 3. Generalizability of emotion selectivity
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We examined the functional generalization of selective neurons defined on IAPS and NAPS,
separately, in Fig E. The purpose is to further verify whether the emotion selectivity defined on one
dataset can be functionally generalized to another dataset. The result is consistent with other results
obtained by enchaining on selective neurons with their selective index defined on the same dataset
(either IAPS or NPAS). It further supports our claim that emotion selectivity shares a functional

property between the two datasets.
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Fig E: Functional generalization analysis. (Top) We analyzed the enhancement of emotion-
selective neurons (defined post-threshold) versus random neurons in each VGG-16 layer trained on
IAPS. The selective index was derived from NAPS and tested on IAPS. (Bottom) We analyzed the
enhancement of emotion-selective neurons (defined post-threshold) versus random neurons in each
VGG-16 layer trained on NAPS. The selective index was derived from IAPS and tested on NAPS.

Topic 4. Result replication in AlexNet

We replicated the results in another network, AlexNet, shown in Fig F, Fig G, and Fig H, and Fig
I. The purpose is to demonstrate that the emergence of emotion selectivity is not an idiosyncratic
property of a specific deep neural network. We summarized the parallel results produced with

VGG-16 and AlexNet in Table A and Table B.
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Fig F: Selective Index Quality (A) and Generalizability in AlexNet (B) of emotion selectivity
across two datasets. The comparison of number of overlapped neurons derived from selective
neurons and randomly selected neurons is plotted (B-top). The one of number of overlapped
neurons derived from pre-trained AlexNet on ImageNet and initialized AlexNet network with
random weights (B-bottom). The goal of this comparison is to demonstrate the significance of
learned features from ImageNet in developing neuron selectivity. However, merely counting the
overlapping neurons might not be adequate; we should also take into account the selectivity index
quality. This is particularly important when the total number of neurons in a layer is small.
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Figure 1. Effects of lesioning emotion-selective neurons and randomly selected neurons in
AlexNet. (A) IAPS dataset. (B) NAPS dataset.

Table A. Results comparison between VGG-16 and AlexNet.

Description VGG-16 | AlexNet
Selective Index Quality Fig 3A Fig C

Number of overlapped neurons Fig 3B Fig D

Enhance emotion- selective neurons | Fig 4 Fig G and Fig H
Lesion emotion-selective neurons Fig 5 Fig |

Page 11 of 16



50
51

52
53

54

55
56
57
58
59
50
51
52
53
54
55
56

57
58
59
70

71

72
73

Table B Original and Enhanced Performance (F1-score) in VGG-16 and AlexNet.

Network Dataset | Emotion to Original Enhanced Enh. Lesioned Les.
Recognize Performance | Performance | Improvement | Performance | Decreased
(%) (%)
VGG-16 | IAPS | Pleasant 0.70 0.73 4.29% 0.56 20%
Neutral 0.63 0.69 9.52% 0.26 58%
Unpleasant | 0.62 0.69 11.29% 0.13 80%
NAPS | Pleasant 0.70 0.72 2.86% 0.49 31%
Neutral 0.63 0.67 6.35% 0.25 61%
Unpleasant | 0.67 0.71 5.97% 041 39%
AlexNet | IAPS | Pleasant 0.65 0.70 7.69% 0.55 16%
Neutral 0.62 0.68 9.68% 0.22 64%
Unpleasant | 0.54 0.64 18.52% 0.37 32%
NAPS | Pleasant 0.62 0.65 4.84% 0.52 16%
Neutral 0.62 0.68 9.68% 0.22 65%
Unpleasant | 0.62 0.65 4.84% 0.40 35%

Topic 5. Low-level features as possible confounding factors

low-level features were extracted from the images by using GIST algorithm. Pairwise emotion
decoding was performed using (see Fig J) using SVM. The mean accuracy for both IAPS and NAPS
datasets approximates the chance level, suggesting that low-level GIST features are insufficient for
decoding emotion categories from images.

IAPS NAPS

o e e e
w = w =]

]

Decoding Accuracy (%)

Decoding Accuracy

0.1F

0.0

0.0 Neutral vs Unpleasant Pleasant vs Unpleasant Neutral vs Pleasant

Neutral vs Pleasant Neutral vs Unpleasant Pleasant vs Unpleasant

Fig J: Pairwise decoding results using low-level features (GIST). Dash line indicates the chance
level performance (50%). The dashed lines indicate chance-level performance and bars representing
the average accuracy across 10 iterations of 5-fold cross-validation.

Topic 6. Faces as possible confounding factors

The percentages of images involving faces in top 100 images (ranking based on neurons’ activation

to each image) that evoked the strongest response of selective neurons for each emotion category
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74 (see Fig K) are: 16%, 62%, and 30% for pleasant, neutral, and unpleasant, separately. The analysis
75  demonstrates that development of emotion selectivity in these neurons is unlikely affected by

76 potential facial encoding that might arise during the training of the network on ImageNet.

77
8 Tor Percentage of Images with Faces in Each Emotion Category
79
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g
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88 Lol
89
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I1
92

933 Fig K: Number of images involving faces in top 100 images that evoked the strongest response
)4 of emotion-selective neurons.
95

36 Topic 7. Animacy as possible confounding factors

37 Table C shows the mean valence and arousal of the top 100 images across selective neuron
98 categories. The purpose of this analysis is to estimate how much valence and arousal relevant to
99 the images evoked by the selective neurons are captured. The result shows the mean valence: 6.770,
00  5.180, and 2.898 and mean arousal: 5.055, 3.970, and 5.816 for top images that evoked the strongest
01  responses in neurons selective for pleasant, neutral, and unpleasant emotion. More importantly,
02 these images appear to contain both animate and inanimate content, suggesting that animacy might
03 not be a confounding factor.

4

35
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36  Table C Valence and Arousal of Top 100 Images Across Selective Neuron Categories. Note:
07 Image ranking is based on neurons’ activation to each image.

38
Neuron Mean Valence Interpretation Mean Interpretation
Selectivity Arousal
Pleasant 6.770 Images evoke relatively | 5.055 Emotions of moderate
positive or pleasant intensity.
emotions.
Neutral 5.180 Emotions neither 3.970 More subdued or calm
particularly positive nor emotions.
negative.
Unpleasant 2.898 Images evoke negative | 5.816 Intense negative
or unpleasant emotions. emotions (e.g., fear,
distress).
39
10

11 Topic 8. Effects of emotion, object category, and their interaction on neuronal responses

12 Asillustrated in Fig L-M, we examined, using a Two-Way ANOVA analyses, the impact of image
13 emotion, image category, and their interaction on neuronal response. Object categories were
14 identified based on the descriptions in the original datasets (refer to Fig LA and MA). Our findings
15 reveal that the emotion category markedly affects neuronal activity in layers subsequent to the fifth
16  (refer to Fig LB-top and MB-top), and the influence of the object category is increasing with layer
17 depth but not significant. The interaction is significant in some deeper layers (refer to Fig LB-
18 bottom and MB-bottom). It should be noted that this analysis should be viewed as preliminary,
19 because the number of images in each object category is rather small, which may impact the analysis
20 adversely. In addition, the selection of the images is also dataset-specific. For example, in the IAPS
21 dataset, 15 images of dogs predominantly express negative emotions, whereas in the NAPS dataset,
22 35 images of dogs represent a mix of negative and positive emotions (see Fig N). This variance
23 indicates the necessity for additional studies to comprehensively understand the interaction between

24 image emotion and category.
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Fig L: Effects of emotion and object category on filter activity using Z4PS images. A. The
number of images in each of the top 20 object categories. B. (top) The F-statistic (log scale) of the
effect of emotion and object category on filter activations across layers of the VGG-16 neural
network. The statistics are obtained from a Two-Way ANOVA test, where the dependent variable
is the filter activity in response to images. The plot reveals how each factor impacts the filter
responses and how this influence changes from the input to deeper layers of the network; (bottom)
The F-statistic (log scale) of the interaction between emotion dependent filter activation and object
category dependent filter activation. The statistics are obtained from a Two-Way ANOVA test. *
indicates the influence is statistically significant.
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Fig M: Effects of emotion and object category on filter activity using NAPS images. A. The
number of images in each of the top 23 object categories. B. (top) The F-statistic (log scale) of the
effect of emotion and object category in filter activations across layers of the VGG-16 neural
network. The statistics are obtained from a Two-Way ANOVA test, where the dependent variable
is the filter activity in response to images. The plot reveals how each factor impacts the filter
responses and how this influence changes from the input to deeper layers of the network; (bottom)
The F-statistic (log scale) of interaction between emotion and object category. The statistics are
obtained from a Two-Way ANOVA test. * indicates the influence is statistically significant.
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Fig N: Valence distributions of dog images in dataset IAPS (left) and NAPS (right).
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