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Abstract—Neutron computed tomography (nCT) is a 3D char-
acterization technique used to image the internal morphology or
chemical composition of samples in biology and materials
sciences. A typical workflow involves placing the sample inthe
path of a neutron beam, acquiring projection data at a
predefined set of orientations, and processing the resulting data
using an analytic reconstruction algorithm. Typical nCT scans
require hours to days to complete and are then processed using
conventional filtered back-projection (FBP), which performs
poorly with sparse views or noisy data. Hence, the main methodsin
order to reduce overall acquisition time are the use of an
improved sampling strategy combined with the use of advanced
reconstruction methods such as model-based iterative reconstruc-
tion (MBIR). In this paper, we propose an adaptive orientation
selection method in which an M BIR reconstruction on previously-
acquired measurements is used to define an objective function
on orientations that balances a data-fitting term promoting
edge alignment and a regularization term promoting orientation
diversity. Using simulated and experimental data, we demonstrate
that our method produces high-quality reconstructions using
significantly fewer total measurements than the conventional
approach.

I. INTRODUCTION

Neutron computed tomography (nCT) is a 3D imaging tech-
nique used for the non-destructive characterization of samples
in biology [1], [2] and materials science [3], [4]. nCT proceeds
by placing a sample in the path of a neutron beam, usually
at a nuclear reactor or pulsed neutron source facility, and
making measurements of the transmitted projection images
(also known as views) at various sample orientations. Typical
nCT systems use a fixed angular step size to rotate the sample
about a single axis; the resulting measurements are processed
using the filtered back-projection (FBP) algorithm [5].

The conventional approach for nCT can be extremely time-
consuming due to the time required for each view and the
number of views required. Using conventional scanning and
reconstruction methods (such as FBP), each view can require
from a few minutes (at a reactor) to several hours (at a pulsed
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source) to obtain sufficient SNR, especially as is the case
for hyperspectral systems [6], [7]. These factors, plus high
operating costs and limited beam time at neutron facilities,
create a need for more efficient acquisition and reconstruction
methods to shorten nCT scan times.

To reduce the measurement time for nCT, model-based
iterative reconstruction (MBIR) methods have been developed
and applied to sparse-view interlaced scanning [8] or golden
ratio [9], [10] acquisition protocols. This approach can produce
high-quality reconstructions throughout the course of the scan,
even before all measurements have been obtained, and can
dramatically reduce overall scan time [11]. However, this
method is still inefficient because the sampling pattern is fixed
and does not take into account the geometry and morphology of
the samples that are being measured.

In the context of some computational imaging systems,
sample adaptive strategies in which the next measurement is
chosen based on previously measured data have been recently
proposed. Such methods can use either supervised learning
based on training data [12] or unsupervised methods based
on a model for the underlying objects to be measured [13]-
[15]. All of these approaches have been developed for scanning
microscopy or MRI systems, in which the time to measure is
significantly longer than the time to reorient and process the
measurements, but none of them are tuned for CT applications.
In contrast, existing dynamic sampling approaches for CT
[16], [17] select new samples using information from the
existing projection data rather than from the image domain,
which limits the information available for sample selection.

In this paper, we propose an adaptive orientation selection
method for nCT, in which an MBIR reconstruction performed
on previous measurements is used to define an objective
function on orientations. We formally define the orientation
selection criterion as a joint optimization problem between (a) a
data-fitting term promoting alignment between measurement
direction and dominant edges in the reconstruction and (b) a
regularization term promoting orientation diversity. Using
simulated and experimental data, we demonstrate that our
adaptive orientation selection method performs better than
MBIR with golden ratio sampling [10], [11] in terms of
the convergence speed of the normalized root mean square
error (NRMSE), thereby enabling a significant reduction in
measurement time for a given reconstruction quality.
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Il. METHODOLOGY

In tomographic imaging, radiograph measurements are se-
quentially collected from different view angles/orientations
during the scanning process. In order to design a method for
dynamic selection of new orientation, we make two key
observations:

1) Orientations aligned with the edges of the object of
interest contain more information.

2) An orientation contains less information if a similar
orientation has been scanned previously.

The proposed orientation selection method is designed to
select new view angles to balance these competing consid-
erations.

A. Optimization problem formulation
Let B, be the nth view angle to be selected, 9-1 =
6, e 6_1 be the set of previously selected view angles,
and x, be the preliminary reconstruction from CT projections
collected at angles G)_l. The angle selection problem is
formulated as a joint optimization problem:
8% = argmaxf(6n; xn) + vh(6,;0% ) , (1)
n 6nB[0,m) n-1
where f(0; x) is a data fitting term promoting edge alignment,
h(8, ®7) is a regularization term promoting angle diversity,
and y > 0 is a scalar weight controlling the importance of
regularization relative to data fitting.

B. Edge alignment function

Algorithm 1 Edge Alignment Function Calculation
Input: View angle: 6 & [0, i)
Input: Preliminary reconstruction: x @ RNz*NxxNy
Output: Edge alignment function: f(6; x) &[0, 1]
(Note that x[k] @RN**Nv is the kth slice of x.)
1: f(6;x) &0
2: fork < 0to N, - 1do
3: x[k] ¢ Canny(x[k])

Canny edge detection

4: {lo, ..., Im -1} < PPHT(X[K]) Hough feature
5: for m<&< 0to M- 1do

6: Calculate bm(0) Alignment mask from Eq. 2
7: f(0;x) & f(0;x)+ bm(8) - Xx[k]

8: f(08;x) & XMZ‘:;X) - Normalization

9: return f(8; x)

The edge alignment function f(0; x) (Algorithm 1) deter-
mines how well the view angle 8 is aligned with the edges of
the attenuation image x. First, we apply the Canny edge
detection algorithm [18] to each slice x[k] X to give a
binary edge image slice x[k], where 1 indicates an edge pixel
in the corresponding slice. Next, we apply the Progressive
Probabilistic Hough Transform (PPHT) [19] to X[k] to yield
a collection of line segments Ly = {Io,...,IMk_l}, each
representing a component of a the edge. For each line segment
I'm Lk, we evaluate how well it aligns with the view
angle 6 by defining a binary mask, byn(8), which is 1 in a
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Fig. 1: (a) llustration of an binary image of size 150x150
pixels to demonstrate the edge alignment terms in the cost
function. Red lines indicate the angles at which the edge
alignment function is maximized. (b) Edge alignment function
vs. view angle, showing angles for which the function is
maximized (i.e. best aligned with existing edges). Notice that
the function is maximum at the orientations that are aligned
with the dominant edges of the image.

conical neighborhood of I, and 0 elsewhere. More precisely,
let Cc(Im) be a double-sided cone with vertex at the center of
Im, direction-aligned with I, and with angle of opening e.

Then
(

b (O)i,j] = if pixel (i,]j) is in Ce(lm)

. (2)
0, otherwise.

The edge alignment function for x[k] is then the inner
product between X[k] and the binary masks bm(6), summed
over m= 0,..., Mg — 1. This is then summed over all slices
and normalized to give

-1 Mg-1
bm(8) - X[k], (3)

k=0 m=0

1

)

where K¢ (x) is chosen so that maxggpo,x) f(6; x) = 1.

Fig. 1a shows an example of a binary image, and Fig. 1b
shows the corresponding plot of the edge alignment function.
In this example f(8; x) takes on maximum values at 6 = 0°
and 95°, with a slightly smaller peak at 90°, corresponding to
the orientations of the dominant edges in the attenuation slice.

C. Angle spacing cost function
Given a view angle 6 and all previously selected view angles

o%= @),...,08,, , the angle spacing function is defined as
L
G 1 1
h(6; ©7) = expl-a g, (4)
Ka@e) P d e
where Kn(©?) is chosen so that maxe h(;®@%) = 1,

d(G,G) = min 0- B ,180°- B- 6 is angular dis-
tance, and a is a scaling parameter to control the importance
of proximity to previously measured angles.

Fig. 2 shows an example plot of h(8; ©%) with four existing
view angles. As 86 approaches an existing view angle, h
decreases quickly, while h is relatively constant for 6 values
reasonably spaced from all existing angles.
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Fig. 2: Normalized angle spacing cost function vs. view angles
showing existing view angles (red marks). We note that the
cost function strongly discourages the selection of angles that
are close to previously selected angles.

D. Parameter selection

One interpretation of the joint optimization problem in Eq.
1 is as an exploration-exploitation trade-off. Edge alignment,
promoted by f(6; x), encourages exploitation of existing edge
information, while angle spacing, promoted by h(8; ©%), en-
courages exploration of new orientations, and the relative
importance of each is governed by y. While the choice of
vy could be influenced by prior knowledge of the prevalence
of edges in a sample or by preliminary reconstructions, we
use y = 1 for simplicity and to establish a baseline for future
work. Likewise, we choose a = 1 in Eq. 4 for simplicity and
to establish a baseline for future work.

We solve Eg. 1 numerically using a discretized solution
space © = {0,AH,...,t - AB}. Algorithm 2 shows the pseu-
docode of the proposed orientation selection algorithm, which
first calculates a reconstruction x, using previous angles, then
evaluates the functions f and h over the discrete set ©, then
does the optimization. We obtain the reconstruction x, from
9-1 by using the previous reconstruction xn-1 as initial-
ization for the svMBIR reconstruction package [20], which
rapidly yields high-quality reconstructions with an automated
choice of regularization parameters. As a result, the angle
selection of Algorithm 2 completes quickly relative to the
long measurement time of each projection measurement in
nCT. Algorithm 3 describes the complete angle selection and
reconstruction workflow, in which an initial reconstruction is
performed, a view angle is selected, the corresponding
projection is measured, and the reconstruction is performed
with all measured projections.

NUMERICAL IMPLEMENTATION

IV. RESULTS

In this section, we present experimental results from both
synthetic and real nCT scans of various 3D objects. In each
case, we compare reconstructions using the proposed orien-
tation selection algorithm to reconstructions using MBIR in
conjunction with the golden ratio acquisition method.

For synthetic 3D data, we generated two binary ground
truth volumes composed of multiple geometric shapes such

Algorithm 2 Single-Step Orientation Selection Algorithm
Input: Previously measured angles: @2 _,
Input: Previous reconstruction: xn-1
Input: Discretized candidate angles: ©,
Output: Next view angle: 62
1: Calculate f(0; xn-1), B0 B © using Algorithm 1
2: Calculate h(6;©%_, ), B8 @ ©, using Eq. 4
3: 87 < argmaxgy o f(8;xn-1) + vh(8;07_,)
4: return 62

Algorithm 3 Proposed Neutron Imaging Workflow
Input: Tnitial view angles: Of
Input: Discretized view angle space: ©
Input: Initial measurement data: Yo
Input: Number of additional views to acquire: N
Output: Final Reconstruction: xn
1: xo < Recon(Yo, ©F)
2: forn< 1to N do
3: On < 0O\, Update candidate view angles
4: 8% < SelectAngle(xn-1,02_;,0n) B Algo. 2
5 yn < measurement of projection at angle 82
6 Yn €< {Yn-1,Yn} Update measurement data
7: O « {e%_,, 0%} Update existing view angles
3
9:

Initial reconstruction

Xn € Recon(Y,, ©,) Update reconstruction
return xn

as sphere, prism, cube, etc. Each ground truth volume has 50
axial slices, with 150x150 pixels per slice. We then scaled
the ground truth volume by a factor of 0.01 in order to
make the attenuation values physically realistic. For each
ground truth volume, we generated a synthetic data by first
forward projecting the volume at selected view angles using
svMBIR’s [20] parallel beam projector and then modeling the
measurement using Poisson counting with values similar to
typically observed real experiments.

The experimental data is from a sample of a volcanic rock
held on a metal ring, with densely sampled measurements
obtained at the imaging instrument High Flux Isotope Reactor
(HFIR) at Oak Ridge National Lab (ORNL). For the NRMSE
calculation, we used an MBIR reconstruction from 1200
projections to generate a reference volume with 5 axial slices
and 400x400 pixels per slice.

We compare the proposed algorithm to the golden ratio
method in Fig. 3 (simulated data) and Fig. 4 (real data). In
both cases, the proposed algorithm outperforms the golden
ratio method in terms of the convergence speed of NRMSE
between the reconstruction and the reference volume. This im-
provement is especially pronounced in the early stages of angle
selection in Fig. 3(e) and Fig. 4, in which there are prominent
edges that are better resolved by appropriate angle selection,
which in turn yields a significantly better reconstruction. In the
case of Fig. 3(f), the object has fewer clearly defined edges,
and the initial reconstruction from 3 view angles is better than
that in Fig. 3(e), so the improvement over the golden ratio

Authorized licensed use limited to: Purdue University. Downloaded on June 25,2024 at 19:03:37 UTC from IEEE Xplore. Restrictions apply.




(a) Ground truth (b) Ground truth

(c) Selected angles and recon- (d) Selected angles and recon-

struction struction
0.50 0.50
—*— NRMSEproposed —*— NRMSEproposed
0.45 NRMSE gorgen 0.45 NRMSE goiden
0.40 \ #  Initial Reconstruction 0.40 *  Initial Reconstruction
0.35 0.35
@ 7
=0.30 =0.30
4 a4
Z0.25 Z0.25
0.20 0.20
0.15 0.15
0.10 0.10
3 5 7 9 3 5 7 9

Number of views
(f) NRMSE vs #views

Number of views
(e) NRMSE vs #views

Fig. 3: Results using simulated data. (a) and (b) show rep-
resentative slices from ground truth volumes; (c) and (d)
show the angles selected by the proposed algorithm and the
corresponding reconstructions using MBIR; (e) and (f) show
the corresponding NRMSE as a function of the number of view
angles for each of the golden ratio method and the proposed
method. For both sample geometries, the NRMSE converges
faster when using the proposed method.

method is still apparent, but less pronounced.

V. CONCLUSION

In this paper, we introduced a sample adaptive measurement
strategy that can significantly reduce the measurement time of
neutron CT scans. Our method uses existing measurements
to perform an MBIR reconstruction, which is then used to
construct an edge image to locate prominent edges in the
object. The reconstruction and edge image are used to define
the orientation selection criterion as a joint optimization
problem between a data-fitting term promoting edge alignment
and a regularization term promoting angle spacing to ensure
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NRMSEgoigen
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(2}
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(a) Reference image (b) NRMSE vs #views

(c) Proposed method: Selected an- (d) Golden ratio: Selected angles
gles and reconstruction with 20 and reconstruction with 20 projec-

projections tions

Fig. 4: Results using experimental data. (a) shows the reference
image (MBIR from 1200 projections). (b) shows the NRMSE
as a function of number of view angles for the proposed
method and the golden ratio method. (c) and (d) respectively
show the first 20 angles selected by the proposed method and
the golden ratio method (after 6 evenly spaced initial angles)
and the corresponding reconstructions using MBIR. We note
that the proposed orientation selection method leads to a
faster convergence to the reference compared to the traditional
golden ratio method.

a diversity of views. Using simulated and experimental data,
we demonstrated that our orientation selection method per-
forms better than MBIR applied with the conventional golden
ratio sparse acquisition scheme in terms of the convergence
speed of NRMSE, thereby vyielding a significant reduction in
measurement time for a given quality of reconstruction.
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