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Abstract

With clustered data, such as where students are nested within schools or employees are nested
within organizations, it is often of interest to estimate and compare associations among variables
separately for each level. While researchers routinely estimate between-cluster effects using the
sample cluster means of a predictor, previous research has shown that such practice leads to biased
estimates of coefficients at the between level, and recent research has recommended the use of latent
cluster means with the multilevel structural equation modeling framework. However, the latent
cluster mean approach may not always be the best choice as it (a) relies on the assumption that the
population cluster sizes are close to infinite, (b) requires a relatively large number of clusters, and
(c) is currently only implemented in specialized software such as Mplus. In this paper, we show how
using empirical Bayes estimates of the cluster means can also lead to consistent estimates of
between-level coefficients, and illustrate how the empirical Bayes estimate can incorporate finite
population corrections when information on population cluster sizes is available. Through a series
of Monte Carlo simulation studies, we show that the empirical Bayes cluster-mean approach
performs similarly to the latent cluster mean approach for estimating the between-cluster
coefficients in most conditions when the infinite-population assumption holds, and applying the
finite population correction provides reasonable point and interval estimates when the population is
finite. The performance of EBM can be further improved with restricted maximum likelihood
estimation and likelihood-based confidence intervals. We also provide an R function that
implements the empirical Bayes cluster-mean approach, and illustrate it using data from the classic

High School and Beyond Study.

Keywords: Multilevel modeling, contextual effect, centering, empirical Bayes estimates,
finite population correction

Word count: 5,052
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Correcting for sampling error in between-cluster effects: An empirical Bayes

cluster-mean approach with finite population corrections

Multilevel modeling (MLM) is a popular approach to analyzing clustered data in social and
behavioral sciences, such as data with students nested within schools or repeated measures nested
within participants (Snijders & Bosker, 2012). However, modeling the effect of a within-cluster level
predictor is not a trivial task, as only including the raw predictor variable may result in an
estimated coefficient that conflates the effects at the within-cluster level and the between-cluster
level. A standard approach to disentangle the between and the within effects is to compute the
mean value of the within-cluster predictor for each cluster and include this cluster mean variable as
a predictor (e.g., Enders & Tofighi, 2007; Kreft et al., 1995). The model should also include either
the original within-level predictor, resulting in the so-called contextual model, or the
cluster-mean-centered predictor from which the cluster means have been subtracted, resulting in

the so-called between-within model.

As shown in Ludtke et al. (2008), however, using the observed cluster mean variable—the
sample mean predictor value of each cluster—may result in biases in the parameter estimates. This
bias happens when the observed cluster mean is not a perfectly reliable measure of the true cluster
mean, and has the most impact when the cluster sample size is small and is only a small fraction of
the population cluster size (Asparouhov & Muthén, 2019; Shin & Raudenbush, 2010). For example,
if a researcher computes the school-level achievement based on the mean score of five students in
the sample, that sample mean likely contains much sampling error and is unreliable, and using this
unreliable predictor leads to biased parameter estimation just like classical measurement error (e.g.,
Cole & Preacher, 2014). To adjust for such bias, Liidtke et al. (2008) proposed using the latent
cluster means, referred to as the latent-means-as-covariate (LMC) approach, by modeling the
between-level cluster means as a latent variable under the multilevel structural equation modeling

(MSEM) framework.

Although the LMC approach can remove the measurement-error-induced bias in estimating
between-level coefficients, it has three major limitations. First, as shown in Liidtke et al. (2008),

LMC requires a relatively large sample size (with at least 100 clusters), and it results in less
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efficient estimates (in terms of root mean squared error [RMSE]) than using the observed means in
small samples. Second, as LMC is based on the MSEM framework, it has added complexity in

model specification (Hoffman, 2019) and requires specialized software (e.g., Mplus), which may not
be familiar to researchers who regularly use MLM software. Third, the LMC approach assumes that
the sample units in a cluster are drawn from an infinitely large population cluster; however, in some
applications, such an assumption may not hold, like when researchers have surveyed all students in
a classroom, in which case Liidtke et al. has shown that using the observed cluster means results in

less bias.

Given the bias produced by the observed cluster-mean approach (CM) and the limitations
of LMC, in this paper, we aim to introduce researchers to the less well-known Empirical Bayes
cluster-mean (EBM) approach for consistent estimation of between-level effects. While EBM was
discussed in Shin and Raudenbush (2010), it has not been systematically evaluated and compared
to LMC, to our knowledge. The contribution of the current paper is three-fold. First, we derive a
bias-corrected estimator for the random intercept variance based on EBM, in addition to the
fixed-effect coefficients. Second, using two simulation studies, we provide empirical evidence on how
EBM compares to LMC, including conditions with finite population cluster sizes. Third, as EBM
has not been implemented in commonly used software programs for multilevel modeling—a
potential reason for its low usage in applied research—we provide an R function that uses EBM for
corrected fixed and random effects.! The R function also allows researchers to specify the
population cluster size(s) when the infinite population assumption in LMC is not tenable, as
illustrated later using the classic High School and Beyond Survey data set (Raudenbush & Bryk,
2002).

Model Notations

Let X be a within-level predictor, and px be a random variable of true cluster means.
Following Ludtke et al. (2008), we assume that px is an error-free variable that is likely different

from the observed cluster means, X . Let npop, ;j be the population size of the jth cluster and n; is

the sample cluster size. To the extent that the sample units in a cluster are considered a random

1 The R function and the supplemental results can be found at https://anonymous.4open.science/r/ebm-supp-B7ED/
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sample of all the units in that cluster, the sampling error of X as a representation of px has

variance
] 62
Var(X ; — px;lpx;) = —fpc;,
n. T
J
where 62 is the within-cluster variance of X, which is assumed constant across clusters, and

X

n T

pop.j — 1j
fpc; = ———
Npop,j — 1

is the finite population correction factor (FPC; e.g., Lai et al., 2018), which approaches one when
Npop,j is large relative to n;. When fpc; = 1, the measurement error variance becomes 0}2(/ nj as

discussed in Liidtke et al. (2008). However, in the case where all units in a cluster are included in
the sample such that npep, j = nj, the sampling error variance is 0, and Liidtke et al. (2008) showed

that one should use CM in this case.

In the general case where X and px relate to an outcome variable Y differently, and the

within-cluster slopes between Y and X vary across clusters, we have the following multilevel model:
Yij = yoo + v10(Xij — Bx;j) + Yorux; + uoj + u1;(Xij — px;) + eij, (1)

where ygp is the grand intercept, yig is the average within-cluster slope, yo1 is the between-level
slope, ug; and uy; are the cluster-specific deviations in the intercept and the slope, and e;; is the
within-cluster level error term. We apply the standard assumptions that ug;, u1;, and e;; all have
means zero, and that e;; is independent to up; and u;. In addition, we assume that the random

effects and errors are normally distributed and independent to X and pyx.

For simplicity, we first consider the case where the sample and population cluster sizes are
constant such that n; = n and npep, j = npop for all js. As shown in Liidtke et al. (2008) and Grilli
and Rampichini (2011), in CM, when the sample cluster mean X_ is used in place of the unobserved
wx, the estimator for yig is still consistent, but the estimator for yp; has a bias of magnitude

(v10 — Yo1)(1 — Ax), where
2
T
Ay = —— X 9
X 1}2( + G}Q(fpcg/n (2)
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is the reliability of X, with 1)2( = Var(px). When n; and/or npep,; are not constant, the bias is

approximately (y10 — Yo01)(1 — Ax), where

is the average reliability of the cluster means.
Latent Means as a Covariate

The LMC approach is based on the MSEM framework, available in software such as Mplus
and the R package OpenMz.2 For models without random slopes, it estimates parameters of
equation (1) directly by treating px as a latent variable and performs latent decomposition of X
into the between-cluster and the within-cluster components (Asparouhov & Muthén, 2019). Ludtke
et al. (2008)’s simulation showed that, in terms of bias, LMC yielded unbiased contextual effect
estimates (i.e., Y10 — yo1) for conditions with sampling fraction (i.e., n;/nyop, ;) close to zero, 50
clusters or above, nj > 15, and ICCx > .10. However, in terms of efficiency (as measured by
RMSE), estimates from LMC were less efficient than those from CM for conditions with 50 clusters
(and ICCyx < .20). Similarly, Aydin et al. (2016) compared CM and LMC for two-level

cluster-randomized trials with a covariate, and found that CM yielded better power and coverage

rates for the between-level treatment effect while maintaining good Type I error rates.

Handling models with random slopes is more complex in MSEM. Before version 8.1, Mplus
implemented LMC using the so-called “hybrid” method (Asparouhov & Muthén, 2019) with the

model

Yij = Yoo + Y10Xij + Yorpxj + uo; +ui;Xij + eij, (3)

which includes the latent py and the uncentered X in the fixed effects, and the uncentered X for
the random slope component. With the uncentered X in the model, yg, corresponds to the
contextual effect, while the between-cluster effect can be obtained as yj, + yo1. As pointed out in
Asparouhov and Muthén (2019), this method conflates the level-1 and level-2 coefficients and may

lead to biased estimates. More recently, Asparouhov and Muthén (2019) and the Mplus team

2 Another popular R package for SEM, lavaan, currently only supports models without random slopes.
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suggested directly estimating the model in equation (1) with px treated as a latent variable, which
was the same as the latent cluster-mean approach discussed in Shin and Raudenbush (2010).
Bayesian estimation is needed, however, as the model involves the latent product term uq;px.
Asparouhov and Muthén (2019) found that Bayesian LCM had negligible bias with 500 clusters,

but the coverage of the 95% interval was below the nominal level for some model parameters.

There are several advantages of the MSEM framework compared to standard MLM analysis
(e.g., Preacher et al., 2010). First, unlike MLM, which requires the outcome variable to be at level
1, MSEM can incorporate outcome variables at upper levels. Second, while MLM assumes
predictors to be perfectly reliable, MSEM incorporates measurement models for error-prone
predictors (and outcomes) so that coefficients are adjusted. Third, MSEM is a multivariate
technique that allows specifying a path model, such as a mediation model, with multiple outcome
variables, whereas standard MLM only allows one outcome variable and requires burdensome steps

to specify multivariate models (see e.g., Raudenbush & Bryk, 2002).

On the other hand, one limitation of MSEM, as compared to MLM, is that most MSEM
software implementation uses maximum likelihood (ML) estimation, which gives biased estimates of
random effect variances when the sample size is small relative to the number of predictors
(McCulloch & Searle, 2001). This is in contrast to the ease of using restricted maximum likelihood
(REML) estimation in MLM, which is theoretically unbiased with a correctly specified model
(Snijders & Bosker, 2012).> Many MLM software programs also provide asymmetric profile
likelihood CIs and small-sample adjustments (e.g., Kenward & Roger, 1997) that improve the
accuracy of estimations and inferences, which may not be available in MSEM software. Although
Bayesian MSEM, currently only implemented in Mplus among general-purpose software, can give
more numerically stable parameter estimates and fewer estimation convergence problems in small
samples (Depaoli & Clifton, 2015; Zitzmann et al., 2016), researchers more familiar with the MLM
framework may find it a hurdle switching to MSEM software just to account for the unreliability of

observed cluster means. Therefore, in what follows, we introduce an alternative that (a) gives

3 Cheung (2013) discussed ways to implement REML in the SEM framework using a transformation matrix or a
modified fitting function.
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between-cluster effect estimates comparable to LMC and (b) can be easily implemented in standard

MLM software.

Empirical Bayes Cluster-Mean Method (EBM) With Finite Population Correction
As demonstrated in Shin and Raudenbush (2010), an alternative method that avoids the

bias in the between-level coefficient is to include in the model the empirical Bayes (EB) estimates of

the cluster means of X, also called the best linear unbiased predictors.* When the model predicting

Y contains no other between-level covariates, the EB cluster mean can be computed as
Ax? = hx; X+ (1= hxj)Foox

where Ygox is the sample grand mean of X. For models assuming normally distributed random
effects and errors, the EB estimate discussed in Shin and Raudenbush (2010) can be obtained using
standard MLM software, but it does not adjust for finite population cluster sizes. However, finite

population correction can be incorporated by defining (Grilli & Rampichini, 2011, equation 32,

p. 12)

) = @
Xj = 29  ~90c
/ 1:}2(+G}2(fpcj/nj

so that when fpc; — 0 or when n; is large, the EB cluster means will be the same as the observed

cluster means.

When the model predicting ¥ contains between-level covariates C = (Cy, Ca, .. .), including
cluster means of level-1 covariates other than X, the EB means could be obtained by fitting the

multilevel model

Xij = voox + Cyx +ugjx + eijx, (5)

where yy is a column vector of fixed effect coefficients of the covariates predicting X. An additional
requirement, not discussed in Shin and Raudenbush (2010), is to also include random slope

components of level-1 covariates W = (Wy, W, ...) to obtain the EB means, if those components

4 Essentially the same procedure was proposed by Croon and van Veldhoven (2007), but in the context of predicting a
between-level outcome.
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will appear in the final model predicting Y. The model for obtaining the EB means thus becomes

q
Xij = yO0X+CyX+u0J~X+ZustWj+ein. (6)
s=1
The conditional reliability Ax ; can be obtained using equation (4) but with the £% and 6%

estimates from the model in (5), and

A} = M X+ (1= Axj) (Joox + CTy), "

with Yoox and ¥y being the sample estimates.

One can either use ﬁ)E(B in combination with X to estimate the contextual and the
within-cluster effects, or ﬁEB in combination with X — ﬂ)E()B to estimate the between- and
within-cluster effects. The former has been demonstrated in a large data set to give very similar
fixed effect estimates as LMC by Shin and Raudenbush (2010) without any finite population
adjustment. Liidtke et al. (2008) also conducted a simulation to compare EBM and LMC for
estimating the between- and within-cluster effects without any random slopes and covariates, and
found the two methods performed similarly in most conditions, but they implemented EBM under
the MSEM framework with ML estimation, while we expect EBM using REML and

likelihood-based CI will have better small sample performance.

Gottfredson (2019) proposed an alternative correction approach for obtaining point
estimates of the between-level coefficients, using the reliability information discussed above. We
expect EBM and Gottfredson (2019)’s approach would give similar results for models without other
between-level coefficients. On the other hand, EBM is more general as it can also correct for the
unreliability of cluster means of other between-level covariates, and automatically provides

corrected standard errors and confidence intervals (CIs).
Correcting for Bias in Estimated Random Intercept Variance

Although EBM corrects for the bias in the estimated between-cluster coefficient due to

measurement error in the observed cluster means, like CM, it overestimates 178. The reason is that
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ﬂ)EgB, being a shrinkage estimate, has a variance that is systematically smaller than that of px.
Indeed, one can show that the naive estimate of 178 under EBM is the same as that under CM. As

shown in the Appendix, a consistent estimate of 1(2) can be obtained as
5 =15 - (1 - M) (Jor - 710)°2%,

A - . . 2 . ~EB 5.
where 75" is the naive estimate of t§ when using fiy” as a proxy of py, and A is the average

estimated reliability of cluster means.

Despite the simplicity of EBM compared to LMC and its improvement over conventional
CM, CM remains the dominant method in MLM.® The implication is that, when estimating
between-level or contextual effects, researchers have to assume either (a) no sampling error in the

observed cluster means as in CM, which only happens when the within-cluster units are completely

2 _
X =

homogeneous (i.e., 63 = 0) or when all units in a cluster have been sampled (i.e., npop = n), or (b)
infinitely large population cluster sizes as in LMC, which does not hold when clusters have finite
sizes (e.g., students in schools or classrooms). On the other hand, using EBM with FPC allows one
to incorporate information on population cluster sizes, which conceptually subsumes LMC

(fpcy = 1) and CM (fpcy = 0) as special cases.

Current Studies

In this paper, we present the designs and results of two simulation studies to examine the
performance of EBM. The main manipulated factors are sampling fraction within clusters, random
effect variances of X (t3), and average cluster size. We expect LMC, which assumes an infinite
population, to have the best performance when the sampling fraction is 0, but have increasingly
biased estimates of the between-cluster effects when the sampling fraction increases. On the other

hand, we expect EBM with FPC to maintain similar performance across different sampling

2

% and average cluster size correspond to lower

fractions. As shown in equation (2), smaller ©
reliability of cluster means, so we expect all methods to perform worst in those conditions, and the

bias would be enlarged for LMC and EBM without FPC when the assumption of an infinite

5 For example, a quick survey of recent MLM textbooks used in social and behavioral sciences (Heck & Thomas, 2020;
Hox et al., 2018; Luke, 2020; Snijders & Bosker, 2012) found only discussions of CM, but not EBM.
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population does not hold.

To increase the generalizability of our simulation results, we also vary the number of
clusters, random intercept variance of Y ('cg), and imbalance of cluster sizes. We expect estimation
with EBM and other methods to be more challenging for conditions with fewer clusters and
unbalanced cluster sizes, as well as when 'cg is small as it means limited information in the

between-cluster level.

In Study 1, we compare CM, EBM, and LMC using a model with one level-1 (within-cluster)
predictor with its cluster means; the level-1 coefficients vary across clusters (i.e., random slopes),
and the sample units are drawn from clusters with finite sizes so that we can evaluate the
incorporation of FPC into EBM. In Study 2, to imitate the model complexity in typical MLMs, we
add one within-cluster and one between-cluster covariates into the model, and evaluate how EBM

recovers the parameters associated with the predictors and the cross-level interaction.
Study 1

In Study 1, we compare CM, EBM, and LMC approaches in terms of parameter bias, the
accuracy of statistical inference, and efficiency for estimating the between-level effect. As suggested
by an anonymous reviewer, in order to isolate the impact of using different approaches for cluster
means, we should compare the methods using the same estimation methods and CI procedures as
much as possible. Given that different software programs are used for CM and EBM (Ime4 in R)
and for LMC (Mplus), and REML and likelihood-based CIs are not implemented in Mplus, we use
ML estimation and Wald confidence intervals for all three approaches.® We discuss how the use of

REML and likelihood-based Cls can improve upon these simulation results later in the paper.

We simulate data with both infinite and finite population cluster sizes with varying
sampling fractions (i.e., the ratio of sample cluster size to population cluster size). Previously, for
models without random slopes, Liidtke et al. (2008) and Grilli and Rampichini (2011) showed that
CM outperformed LMC when the sampling fraction is large, so we expect similar results here with

random slopes.

6 However, this does not control for different software using different numerical algorithms and convergence criteria to
find ML solutions.
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The simulation data are generated using equation (1). For all conditions, we set the mean
of X to 1, ygo = 0 and 0)2( = 02 = 1 without loss of generality. We set yg; = -0.3 and y19 = 0.7 for
a large discrepancy between the two coefficients, which is similar to the well-studied
big-fish-little-pond effect (Marsh & Parker, 1984). We also simulate cluster sizes to be unbalanced:
the J clusters are divided into five strata, each with J/5 clusters, and the cluster sizes are n/5, 31n/5,
n, Tn/5, 9n/5, respectively, so that the ratio of the largest to the smallest cluster sizes is 9 to 1. For
example, when J = 100 and 7 = 25, the cluster sizes are n = 5, 15, 25, 35, 45, each for 20 clusters.

The other design factors for data generation are described below.
Design Conditions
Random Intercept Variance of Y (z2) and Random Slope Variance (t3)

The conditional random intercept variance of Y is set to either 0.10 or 0.40. Thus, the
conditional intraclass correlation (ICC) is either .09 or .28, which are on the low and high ends of
values typically seen in cross-sectional data (Hedges & Hedberg, 2007). The random slope variance

2 = Tg /4, similar to some other simulation studies (e.g., Kwok et al., 2007).

1S ’Cl—

Random Intercept Variance of X (1)2( )

The random intercept variance of X is set to 0.05, 0.25, and 1.0, so the corresponding ICCs
for X are .05, .20, .50. Note that ICCx = .50 is larger than the maximum value (.30) used in Liidtke
et al. (2008), and we expect that the between-level effect estimates will be more stable when the

predictor has more variance at the between level.
Number of Clusters (J)

Previous simulations on LMC have relied on large numbers of clusters, with J between 50
and 500 in Lidtke et al. (2008) and J = 500 in Asparouhov and Muthén (2019). Liudtke et al.
(2008) found that LMC showed biases generally for conditions with J = 50, which could be due to
the sample size requirement for LMC (see also Kelcey et al., 2021). We expect that EBM will yield
more stable estimates in small J conditions common in MLM. Thus, we simulate data with J = 20,
50, or 100. With frequentist analyses, we expect to see downward biases in estimates of ’L'(Q) when

J =20, based on previous literature (e.g., Maas & Hox, 2005).
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Average Cluster Size (n)

We set 71 to either 5 or 25, which covers a similar range used in Liidtke et al. (2008).
Sampling Fraction (SF)

We assume that the population size is constant across clusters, so with unbalanced cluster

sizes, the sampling fraction is not constant across clusters. Instead, we define SF as the ratio of i to

the population cluster size. The conditions are 0 (infinite population), .2, and .5.
Data Generation and Analyses

The Monte Carlo simulation is structured using the R package SimDesign (Chalmers &
Adkins, 2020). For all conditions, we simulated the between- and the within-level components of X
and all error terms from independent normal distributions. For conditions with SF > 0, we first
simulated 20 sets of finite populations; the finite population size was 11/SF for each cluster. The
sample units in the simulated data were drawn without replacement. Therefore, at the cluster level,
the sampling fractions ranged from SF/5 (when n; =n / 5) to 9 x SF/5 (when n; =9 n / 5). For
each finite population, we simulated 100 replication data sets, so the number of replications was

2,000 per condition.

We analyzed each simulated data set using CM, EBM, EBM-FP (i.e., EBM with FPC), and
LMC. Including EBM without FPC allows us to evaluate the impact of incorporating FPC. For
CM, EBM, and EBM-FP, we used the R package Ime/ (Bates et al., 2015) to obtain ML estimates
for yo1, Y10, and 1:3, as well as the corresponding Wald Cls. For LMC, we used Mplus 8.8 to fit a
two-level multilevel SEM model with ML estimation using the “hybrid” approach, and obtained
95% Wald CIs (i.e., estimate + 1.96 SE) for the same three parameters. We used the MODEL
CONSTRAINT routine to obtain estimates of the between-level coefficient (yp1) by adding together

the estimated contextual effect and the estimated within-level effect.

For each method in each replication, we computed (empirical) bias, root mean squared error
(RMSE), and the coverage rates of 95% Cls. However, from an initial summary of the results, we
found that the parameter estimates were highly unstable for conditions with small 1:[2) or 1)2(, and

reporting the mean across 2,000 replications may result in biases of > 10,000 for some conditions
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due to a few extreme outliers. To avoid the influence of extreme outliers, we instead computed
robust versions of bias and RMSE using 20% trimmed means (Wilcox, 2017), which was a good
compromise between the arithmetic mean (or 0% trimmed mean, which is highly sensitive to
outliers) and the median (or 100% trimmed mean, which is robust but inefficient for normally

distributed data).

For a sample estimate 0 estimating parameter 0, the bias was computed as 6 — 0, where 0 is

the 20% trimmed mean of the 0 estimates across replications. The robust RMSE was computed as

_— 9 ~ ~
\/ Bias + [MAD(0)]?, where MAD(0) was the sample median absolute deviation (from the median
with a scale factor of 1.4826) of the 2,000 0 estimates. The RMSE indicated the typical distance of

6 from the generated value of 0, and methods that yield smaller RMSEs should be preferred.

To evaluate the performance of the Cls, we computed the coverage rate as the proportion of

replications where 6 was inside the sample CI.
Results

We first consider the proportion of outliers when estimating yo; (the between-cluster
coefficient) as an indicator of the numerical stability of the three methods. Outliers were identified
based on the boxplot method (Chambers et al., 1983/2018). The proportions of outlying yo1
estimates were 0.98% for CM, 3.53% for EBM, 3.10% for EBM-FP, and 2.83% for LMC,
respectively. Extreme estimates were more common with EBM and LMC when the reliability of the
cluster means, Xxj, was small (i.e., when 1)2( = .05 and n = 5), in which case the proportion of

outliers were up to 9.55% to 10.15% for EBM, EBM-FP, and LMC, compared to 1.90% for CM.

For LMC, EBM, and EBM-FP, estimation was more challenging for conditions with n = 5
and 1)2( = 0.05, where the reliability of the cluster means was low. Therefore, we present results for
these conditions first in Table 1. When the EB cluster means could not be computed due to the
REML/ML estimates of 1:)2( being zero, results are inadmissible for EBM and EBM-ML.
Proportions of inadmissible results were especially high (> 80%) for conditions with few clusters
and large SF. When considering only the admissible results, when SF = 0, EBM-FP had slightly

smaller bias than LMC when J = 20; all methods gave severely biased estimated between-level
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coefficients in other conditions, and CM was the most stable when SF = 0.5.

Figure 1 compares the parameter bias (o1, 'E(Z), and 'E%) from all four methods for the
remaining conditions. As expected, CM yielded biased estimates of Y91 when the reliability of the
cluster means was small, with magnitudes close to the analytic results (i.e., [y10 — yOl]XX j).7 When
SF = 0, EBM (bias between -0.18 and 0.01; RMSE < 1.34) and LMC (bias between -0.2 and 0.01;
RMSE < 1.40) showed smaller biases than CM for most conditions. Consistent with the results by
Liidtke et al. (2008), when SF > 0, LMC and EBM, which assumed infinte population cluster sizes,
underestimated yo1 especially when Ax ; was small (with magnitudes up to 1); EBM-FP, which used
finite population corrections, showed much less bias (magnitudes up to 0.24). Also, EBM showed

better estimates of 'Eg and ff than LMC.

For coverage, as shown in Figure 2, EBM-FP generally gave Cls closed to nominal coverage
for yp1 for conditions with either n = 25 or 1)2( > (0.25, but it had suboptimal coverage rates of
around 80 to 90% for 1:(2) and T% in smaller samples (i.e., J < 50 or n = 5), which is likely due to the
use of Wald CIs and can be improved with likelihood-based Cls as shown later in the paper. LMC
showed suboptimal coverage for yg; with nonzero SF due to the parameter bias, but had better

coverage rates than EBM-FP when SF = 0.
Study 2
In Study 2, we compare the performance of CM, EBM, and LMC when the data-generating

model also contains a between-level covariate and a within-level covariate (Z and W, respectively),

and a cross-level interaction between px and W. The data-generating model is

Yij = voo + Y10(Xij — Bx;) + YorBx;j + Yo2Z; + YaoWij + vorpx;Wij + uoj + uz;jWij + eij,

where Var(ug;) = 178 =04- ygl and Var(ug;) = ’C% =.05. We manipulated {y19, yo1} to be either
{0.4,-0.2} or {0.1,0.3}. The other manipulated variables were J and 7, each with the same levels as
in Study 1. In addition, we also simulated data to have balanced or unbalanced cluster sizes as in

Study 1. For all conditions we set yg2 to 0.5, yo0 to 0.3, and y21 to 0.2. Both W and Z had variance

7 For example, when 1)2( = 0.05 and 71 = 25, Ax; = 0.56, so the expected bias is 0.56.
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of 1.0. We also allowed X™) = X — ux to covary with W and px to covary with Z by simulating

Hxj = 0.5+ 0.3Zj + Uxoj,

X2 = 0.5W; + exi,

where the conditional variances of uxo; and ex;; were .911:§ and .75, so that the total variances of

px; and Xl.(jw) were the same as in Study 1.

The added complexity makes the data-generating model better resemble the multilevel
models used in applied research, compared to the models used in Liidtke et al. (2008) and Liidtke
et al. (2011), which contained only the between- and within- components of X with no other

covariates.
Results

Like in Study 1, all methods run into issues in conditions with small cluster mean reliability
(i.e., n =5 and 1}2( = 0.05), so we first presented parameter bias for those conditions in Figure 3.
We only presented results for conditions with {yi0, Y01} = {0.4, -0.2} in the main text, as the bias
pattern was similar (but in the opposite direction) for conditions with {y10, yo1} = {0.1, 0.3},
which can be found in the supplemental material. The parameters include the between-cluster effect
of X (Yo1), the coefficient of the level-2 covariate (fo2), the cross-level interaction (J21), and the
variance components ('Eg and ff) As shown in the figure, CM produced biased estimates for the
fixed-effect coefficients; while EBM and LMC gave less biased estimates, the bias was still

substantial. Also, like in Study 1, LMC provided biased estimates of 'cg and Tf.

Figure 4 shows the bias of parameter estimates for conditions with either n = 25 or 1')2( >

0.05. In summary, EBM and LMC gave mostly unbiased estimates except for a few conditions with
a small population 178 . Figure 5 further shows that EBM and LMC generally yielded reasonable CI
coverage for the fixed effect parameters, but similar to Study 1, the coverage rates for EBM with 1:(2)
and 'cf were suboptimal, which could again be due to the use of Wald Cls. We investigated this in

the supplemental simulations, as described in the next section.
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Better Estimation and ClIs with EBM and LMC

As noted before, the EBM and LMC results might be improved by using different
estimation and/or CI construction methods. In the case of EBM, switching from ML to REML
estimation likely reduces bias in small samples (Hox et al., 2018), and using likelihood-based (LB)
CIs instead of Wald CIs likely improves coverage rates (Bates et al., 2015). For LMC, the sandwich
estimator for the standard errors is used by default in Mplus (with “ESTIMATOR=MLR”), which
might improve CI coverage when normality does not hold. More recently, Asparouhov and Muthén
(2019) suggested using Bayesian estimation with LMC to improve estimation when random slopes

are present.
Boundary-Avoiding EBM

As shown in the results, an issue of EBM is that ﬁEB depends on @2{, which is often
estimated to be 0 in situations with small sample sizes (e.g., Snijders & Bosker, 2012). When

'Eg =0, Ax; becomes 0, ﬁ)]??

becomes linearly dependent on C (or becomes a constant if there are no
C in the model), and the model is not estimable. One solution, suggested by Chung et al. (2013), is
to use a penalized likelihood estimator for the variance components to avoid a zero estimate. This
estimator is equivalent to one using the Bayesian posterior mode of 'cg with a weakly informative
gamma prior distribution, and is implemented in the R package blme (Chung et al., 2013). Given
that the penalized likelihood estimator has not been widely studied in the MLM literature but is

useful for the EBM approach, in our simulation studies, we include a version of EBM that estimates

ﬁg? with penalized likelihood, and label this approach boundary-avoiding EBM (EBM-BA).
Additional Results

To examine whether using alternative estimation CI construction methods improves EBM
and LMC, we also compared four additional methods: (a) EBM-REML-FP, EBM with REML, LB
CI, and finite population correction, (b) EBM-BA-FP, same as (a) but with boundary-avoiding
priors when obtaining EB cluster means, (c) LMC-MLR, and (d) LMC-BAYES, using the same
conditions as in Studies 1 and 2. As expected, results showed that EBM-REML-FP improved over
EBM with ML and Wald CIs in terms of parameter bias and CI coverage rates, although it had

similar convergence issues in conditions with low cluster-mean reliability. The coverage rates with
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EBM-REML-FP were close to 95% for most conditions and parameters, except for yp; and 1:3 in
conditions with 1)2( = 0.05. On the other hand, EBM-BA-FP had 100% convergence rates in all
conditions and performed similarly to EBM-REML-FP in conditions with large samples and high
cluster-mean reliability. More importantly, it showed less bias than other EBM and LMC methods,
including LMC-BAYES, for estimating the yo; (between-cluster effects) in conditions with low
cluster-mean reliability when SF > 0.2. We also found EBM-BAYES generally had less bias than
LMC-ML and LMC-MLR in estimating yg1, but it generally overestimated 1:(2) and 'cf. The
exception for the improved performance of EBM-BA-FP and LMC-BAYES is in conditions with 7 =

5, 1}2( = 0.05, J = 20, and SF = 0, as they showed more bias than other methods for estimating yo1.

Overall, the supplemental results showed that using EBM with REML estimation, LB CI,
and FPC generally gave satisfactory results. When there are convergence problems, we suggest
computing the EB means using boundary-avoiding priors, which is also available in the R function

discussed below.
Empirical Illustration

To demonstrate EBM, we revisit the classic example from Raudenbush and Bryk (2002)
based on a subset of the High School and Beyond Study of 1980. The data, which has 7,185
students from 160 schools, was also used for demonstration in Shin and Raudenbush (2010).

Specifically, we consider the following model:

MATH;; = yo0 + Y10(SES;; — SES;) + y01SES; + y02SECTOR;

+Lt0j +u1j(SESij —m]‘) +eij,

where SECTOR was the school sector (0 = public, 1 = Catholic) and SES was a standardized
composite variable representing students’ socioeconomic status. The data set also contains a SIZE
variable that indicates school enrollment. Therefore, the data of each school can be considered a
sample from a finite population. The sample school sizes ranged between 14 and 67 with a mean of
44.90, while the school enrollment ranged between 100 and 2713; the sampling fractions ranged
between 0.01 and 0.41 across clusters, with an overall sampling fraction of 0.04, so the need for finite

population corrections is small. A snapshot of the data is shown in Figure 6. Because the cluster



442

443

444

445

446

447

448

449

450

451

452

454

455

456

457

458

459

461

462

463

464

465

EMPIRICAL BAYES MEANS WITH FPC 20

sizes were relatively large, the reliability of the cluster means of SES was high (median reliability =

.94, range = .81 to .95), so the observed cluster means were similar to the EB cluster means.

We first fit a CM model with observed cluster means of SES (for between-level prediction)
and cluster-mean centered SES (for within-level prediction) with the R package Ime/, and then
compared the results to those using EBM (with and without finite population corrections) and
LMC with Mplus. To run EBM, researchers can use the lmer_ebm() R function in the

supplemental material, with the following sample syntax:

lmer_ebm(MATHACH ~ SES ebm + SES _ebmc + SECTOR + (SES_ebmc | ID),
data = hsb, formulax = SES ~ SECTOR + (1 | ID),

pop_clus_size = hsb$SIZE)

where the variables SES_ebm and SES_ebmc are not in the original data but are EB estimates of
cluster means and the EB mean-centered variables created by the function. In the input for
formulax, we specified SES as the variable to have the EB cluster means computed across clusters
(the membership of which is named ID in the data set), with any cluster-level covariates included
(SECTOR in this case). Therefore, if researchers are interested in the between-level effect of a level-1
predictor named pred in the data, they can specify pred_ebm and pred_ebmc in the model formula.
The function also returns a corrected estimate of the intercept variance (’cg). Based on the
simulation results, we expect EBM and LMC to give similar results and CM to give slightly biased
results. As shown in Table 2, CM gave the smallest estimate for the between-level coefficient for
SES (y01), which also led to the largest estimate for the coefficient of SECTOR (yo2). It also
resulted in the largest estimate of ‘cg due to the downward bias in the between-level coefficient for
SES. Such results are consistent with our simulations showing CM to be biased. On the other hand,
EBM gave a larger estimate of yp1 as it corrected for the measurement error in the cluster means of
SES, but a smaller estimate of yp2. With FPC, the estimate of yg; was slightly smaller while that
of yo2 was slightly larger. LMC also gave a larger yo; estimate, and consistent with our simulation

results, the estimates of 1(2) and ’c% with LMC were smaller and likely underestimates.

While the difference between CM and EBM was relatively small in this example, as
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demonstrated in our simulations and in Liidtke et al. (2008), the difference could be substantial
when the cluster sizes are small. Similarly, the effect of correcting for finite population sizes would
be more prominent when the sampling fraction is relatively large, such as when a majority of
students in a school are sampled. Indeed, if all units in a cluster are sampled, CM is a better choice

as the sample cluster means are also the population cluster means.
Discussion

As multilevel modeling (MLM) has become a standard technique in researchers’ toolboxes,
it is important to ensure that researchers are aware of different analytic issues, including the best
practices for separating between and within effects and estimating contextual effects. However, a
recent review of research in organizational science and applied psychology (Antonakis et al., 2021)
showed that only about half (106 out of 204) of the reviewed articles included the cluster means of
level-1 predictors in a multilevel analysis. While recent research has proposed using latent cluster
means (e.g., Asparouhov & Muthén, 2019; Liidtke et al., 2008) with a multilevel structural equation
modeling framework—as opposed to the observed group means traditionally used in MLM, there
have been limited empirical studies on the performance of using latent cluster means in small
samples and in models with random slopes and covariates. Also, researchers may not be aware of
the assumption underlying the latent cluster mean approach, namely that the sampled units of a
cluster represent a small fraction of the population units of that cluster, which may not always be

appropriate in applied research.

Drawing from the existing methodological literature, we propose the use of empirical Bayes
cluster means (EBM) with finite population corrections to obtain consistent estimates of
between-level effects (with centering of the level-1 predictor) and contextual effects (without
centering). A correction on the estimated level-2 variance is also discussed. The EBM approach
takes into account the population cluster sizes and thus subsumes both the case of negligible (as in
latent cluster means) and non-negligible (as in observed group means) sampling fractions. In a
series of simulation studies, it is shown that EBM, like the latent cluster-mean approach, gives
consistent estimates (with respect to increasing numbers of clusters) of between-level effects when

the ratio of sample cluster size to the population cluster size is large. The estimation and inferences
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with EBM can be improved by using restricted maximum likelihood and likelihood-based confidence
intervals. It is also found that for models with random slopes, when cluster size is five or fewer and
the ICC of the predictor is < .05, all approaches examined in this paper lead to highly unstable and
biased parameter estimates. While the boundary-avoiding EBM approach helped mitigate the bias,
the bias was still substantial. Future research can explore multilevel bootstrap methods (Lai, 2020;

van der Leeden et al., 2008) as alternatives for correcting biases in coefficients.

It is shown that the need for finite-population correction is highest when the population
cluster size is small and the sampling fraction is high. To facilitate the use of the proposed method,
we also provide an R function lmer_ebm() that automates the computational steps for using EBM,
and provide a real-data example using the classic High School and Beyond survey data set. While
the provided function only works with the R package Ime4, one can obtain EBM using equation (7)

with any multilevel software.

There are several limitations of the current study that deserve attention in future studies.
First, while we dealt with the basic case where only one between-level effect or contextual effect is
of interest, which is fairly common in practice, future research can explore how the proposed
method can be extended to handle multiple such effects. Second, the present paper only concerns
the error due to approximating the population cluster means with the sample means, which
happens in standard multilevel modeling applications. However, as shown in Liidtke et al. (2011),
the latent means approach with multilevel structural equation modeling can also handle
measurement error on the individual predictor scores. Theoretically, the empirical Bayes estimate
can also incorporate unreliability due to such measurement error (e.g., Zitzmann, 2018) Lai, 2021,
assuming that an estimate of the reliability of the individual scores is known. Future research can

further explore this extension and compare it with the latent means approach.

In addition, our discussion is limited to two-level models; there is additional complexity for
defining cluster means in three-level and crossed designs (Brincks et al., 2017); Lai, 2019, and the
potential need for finite population corrections at more than one level. Finally, the proposed

method can be extended to cluster means of binary predictors, with which the cluster-mean



521

522

EMPIRICAL BAYES MEANS WITH FPC 23

reliability depends not only on the cluster size but is also a function of the cluster mean estimate,

as well as to generalized linear mixed models with nonnormal outcome variables.
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Table 1
Inadmissible Solutions and Bias of Between-Level Coefficients in Low
Cluster-Mean Reliability Conditions of Study 1.

% Inadmissible® Bias for yo1
n oty J SF 1 EBM CM EBM EBM-FP LMC
5 005 20 0 0.1 36.25 0.83  0.03 0.03  0.19
0.4 36.05 0.85  0.00 0.00  0.02
0.2 0.1 54.40 0.80  -0.77 -0.41  -0.20
0.4 53.45 0.82  -0.81 -0.46  -0.48
0.5 0.1 88.25 0.71  -3.91 -0.56  -1.16
0.4 87.55 0.76  -4.47 -0.74  -1.91
50 0 0.1 18.55 0.83  -0.07 -0.07  0.03
0.4 18.55 0.85  -0.07 -0.07  -0.22
0.2 0.1 4275 0.79  -1.82 -1.18  -0.63
0.4 42.80 0.82  -1.80 -1.19  -1.33
0.5 0.1 93.45 0.70  -9.78 -1.44  -1.70
0.4 93.55 0.75  -9.53 -1.40 -3.83
100 0 0.1 8.55 0.84 -0.14 -0.14  -0.06
0.4 8.60 0.86 -0.13 -0.13 -0.12
0.2 0.1 34.60 0.80 -2.03 -1.32 -0.84
0.4 34.60 0.82 -1.91 -1.27  -1.58
0.5 0.1 98.15 0.71 -17.58 -2.52  -1.98
0.4 98.20 0.76 -17.33 -2.67  -4.78

Note. *Results are admissible for all replications in CM and LMC. True yo; =
0.7 in the data generating model.
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Table 2
A Comparison of Different Estimation Approaches for the Empirical
Hllustration.
term CM EBM EBM (FPC) LMC
Intercept 12.06 (0.20) 12.09 (0.20) 12.09 (0.20) 12.08 (0.21)
SES (Between) 5.25 (0.37)  5.47 (0.40)  5.45 (0.39) 5.58 (0.39)
SES (Within)  2.19 (0.13)  2.20 (0.13)  2.20 (0.13) 2.20 (0.13)
SECTOR 1.37 (0.31)  1.31 (0.31)  1.31 (0.31)  1.34 (0.38)
o 2.39 2.30 2.31 2.26
2 0.70 0.70 0.70 0.46
o2 36.71 36.71 36.71 36.78

Note. CM = Observed cluster mean approach. EBM = Empirical Bayes
mean approach. FPC = with finite population correction. LMC = Latent

mean centering (hybrid approach in Mplus).
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Figure 1

Bias for parameter estimates in Study 1. The panels show, from top to bottom, the between-cluster
effect, the conditional random intercept variance of the outcome, and the random slope variance.
CM, EBM, and LMC represents analyses with observed, Empirical Bayes, and latent means as
covariate. EBM-FP = EBM with finite population corrections. Conditions with average cluster size
= 5 and t% = 0.05 are not shown (see Table 1).
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Figure 2

Empirical coverage for Study 1 (all conditions). The panels show, from top to bottom, the between-
cluster effect, the conditional random intercept variance of the outcome, and the random slope
variance. CM, EBM, and LMC represents analyses with observed, Empirical Bayes, and latent
means as covariate. EBM = EBM with maximum likelihood estimation and 95% Wald intervals.
EBM-FP = EBM with finite population corrections. The dashed line represents the 95% reference
rate.
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Figure 3

Bias of parameter estimates in Study 2 for conditions with low cluster mean reliability (i.e., average
cluster size = 5 and 17)2( = 0.05). The panels show the between-cluster effect (yo1), the effect of the
level-2 covariate (yo2), the cross-level interaction (ya21), the conditional random intercept variance
of the outcome (’cg), and the random slope variance (’tf} CM, EBM, and LMC represents analyses
with observed, Empirical Bayes, and latent means as covariate.
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Figure 4
Bias of parameter estimates in Study 2 for conditions with average cluster size = 25 or 12 >

X
0.25. The panels show the between-cluster effect (yo1), the effect of the level-2 covariate (yo2), the

cross-level interaction (ya1), the conditional random intercept variance of the outcome (‘cg), and
the random slope variance (‘c% ). CM, EBM, and LMC represents analyses with observed, Empirical
Bayes, and latent means as covariate.
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Empirical coverage for Study 2. The panels show the between-cluster effect (yo1), the effect of the
level-2 covariate (yo2), the cross-level interaction (y21), the conditional random intercept variance of
the outcome (1:3), and the random slope variance (rf} The dashed line represents the 95% reference
rate. CM, EBM, and LMC represents analyses with observed, Empirical Bayes, and latent means as
covariate.
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T SCHooOL CLUSTER SES SES SES REL REL

SIZE SIZE M EBM (FPC)
1 2305 485 67 -0.368 -0.6280 -0.6033 0.960 0.965
2 2305 485 67 -0.588 -0.6280 -0.6033 0.960 0.965
3 2768 1680 25 0.332 -0.0536 -0.0488 0.900 0.901
4 2768 1680 25 -1.958 -0.0536 -0.0488 0.900 0.901
5 4410 100 41 -0.528 0.0964 0.0899 0.937 0.961
6 4410 100 41 0.962 0.0964 0.0899 0.937 0.961
7 5761 215 52 -1.238 -0.3230 -0.3069 0.949 0.961
8 5761 215 52 -1.368 -0.3230 -0.3069 0.949 0.961
9 7688 1410 54 0.792 0.1859 0.1765 0.951 0.953
10 7688 1410 54 0.432 0.1859 0.1765 0.951 0.953
11 8367 153 14 -0.228 0.0256 0.0204 0.835 0.847
12 8367 153 14 -0.048 0.0256 0.0204 0.835 0.847
Figure 6

A snapshot of the data for the empirical illustration, including the observed and empirical Bayes
cluster means and the cluster-mean reliability.
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Appendix

Deriving a Consistent Estimate of 178 Under EBM

Consider a random intercepts model at the population level
Yij = Yoo + v10(Xij — Bx;) + Yor1px; + uoj + €ij

where ug and e are assumed independent and independent to px; and both have zero means, and
the variance of ug is ’Eg. This between-within model can be reparameterized as an equivalent

contextual model

Yij = Yoo + Y10Xij + (Yo1r — Y10) Hx; + Uoj + €.

Let 1:)2( be the variance of px. The above model implies that the partial variance of Y accounted for

by the group mean, py, is 1)2((701 — v10)?, after conditioning on X;;.

EB
Xj?

In EBM, when the empirical Bayes estimate of the group mean, fi is used in place of py;,
the proportion of variance of Y it accounts for is attenuated to the extent that ﬂg? is not a

perfectly reliable measurement of pyx (i.e., A; < 1). Because the variance of ﬁg}g is Aj 1}2(, it follows
that the partial variance of ¥ accounted for by ﬂ)]%? is A; 17)2((\(01 — v10)?, which is smaller than that
by px. The difference, (1 — )\j)'c?((ym — v10)2, will be added to the random intercept variance of Y.

Therefore, the random intercept variance estimate of ¥ under EBM converges to

5" =15+ (1= M) (Yor — y10)* 7%

As under EBM, the sample ML and REML estimates A, Yo1, Y10, and 1:)2( are consistent, a

consistent estimator of ’cg can be obtained as

22— (1= 2) (o1 — 10?12
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