
A Generic Machine Learning Model for Spatialuery Optimization

based on Spatial Embeddings

ALBERTO BELUSSI, University of Verona, Verona, Italy

SARA MIGLIORINI, University of Verona, Verona, Italy

AHMED ELDAWY, University of California Riverside, Riverside, USA

Machine learning (ML) and deep learning (DL) techniques are increasingly applied to produce eicient query optimizers, in

particular in regards to big data systems. The optimization of spatial operations is even more challenging due to the inherent

complexity of such kind of operations, like spatial join or range query, and the peculiarities of spatial data. Although a few

ML-based spatial query optimizers have been proposed in literature, their design limits their use, since each one is tailored

for a speciic collection of datasets, a speciic operation, or a speciic hardware setting. Changes to any of these will require

building and training a completely new model which entails collecting a new very large training dataset to obtain a good

model.

This paper proposes a diferent approach which exploits the use of the novel notion of spatial embedding to overcome these

limitations. In particular, a preliminary model is deined which captures the relevant features of spatial datasets, independently

from the operation to be optimized and in an unsupervised manner. This model is trained with a large amount of both

synthetic and real-world data, with the aim to produce meaningful spatial embeddings. The construction of an embedding

model could be intended as a preliminary step for the optimization of many diferent spatial operations, so the cost of its

building can be compensated during the subsequent construction of speciic models. Indeed, for each considered spatial

operation, a speciic tailored model will be trained but by using spatial embeddings as input, so a very little amount of training

data points is required for them. Three peculiar operations are considered as proof of concept in this paper: range query,

self-join, and binary spatial join. Finally, a comparison with an alternative technique, known as transfer learning, is provided

and the advantages of the proposed technique over it are highlighted.

CCS Concepts: · Information systems→ Database management system engines; · Computing methodologies→

Machine learning approaches.

Additional Key Words and Phrases: query optimizer, machine learning, big data, range query, spatial join, spatial embedding

1 INTRODUCTION

In the last years, big data analytics has increased its strategic role in supporting decision systems, thanks to the
growing availability of data, sometimes in heterogeneous formats. Very often geo-referenced data and spatial
objects represent a signiicant part of the datasets subject to analysis, leading to the development of many spatial
big data systems and libraries [10, 11, 38]. Due to the complexity and richness of some kinds of analysis, in many
cases data processing tasks are structured as pipelines of operations [27], and this allows the deinition of many
alternative ways to produce the requested result. Moreover, the existence of diferent alternatives could also
be originated by the fact that each single operation on spatial data can be implemented in several ways and by
applying diferent algorithms. This could be further exacerbated in distributed and cluster-based systems, since

Authors’ addresses: Alberto Belussi, alberto.belussi@univr.it, Department of Computer Science, University of Verona, Verona, Italy; Sara

Migliorini, sara.migliorini@univr.it, Department of Computer Science, University of Verona, Verona, Italy; Ahmed Eldawy, eldawy@ucr.edu,

Computer Science and Engineering, University of California Riverside, Riverside, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2374-0353/2024/4-ART

https://doi.org/10.1145/3657633

ACM Trans. Spatial Algorithms Syst.

HTTPS://ORCID.ORG/0000-0003-3023-8020
HTTPS://ORCID.ORG/0000-0003-3675-7243
HTTPS://ORCID.ORG/0000-0002-6584-1455
https://orcid.org/0000-0003-3023-8020
https://orcid.org/0000-0003-3675-7243
https://orcid.org/0000-0003-3675-7243
https://orcid.org/0000-0002-6584-1455
https://doi.org/10.1145/3657633
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3657633&domain=pdf&date_stamp=2024-04-13

2 • Belussi et al.

the parallel execution of an algorithm often requires the tuning of several parameters, which depend on both the
cluster coniguration and the characteristics of datasets at hand. The immediate consequence of such richness of
alternatives is the increasing importance covered by the presence of query optimizers able to automatically guide
towards the choice of the best execution plan in terms of performances.

The spatial query optimization problem could be formulated as follows: given an operation � to be performed,
the input dataset (or datasets) and the available hardware and software cluster coniguration: (i) identify the
diferent alternative implementations of � available on the cluster, (ii) estimate the cost of each of them and choose
the best one, denoted as � , based on the characteristics of the input dataset (or datasets), and (iii) estimate the best
parameter conigurations � for tuning � in the given cluster. The problem becomes even more complicated if
the data processing requires a sequence of operations to be applied (like in a pipeline), since the optimization
of each single operation could also depend on the operations previously executed or on the operation order. In
general, the main objective of each optimization strategy is to produce an estimation of the cost of each available
alternative solution.

Recently some techniques have been proposed to address the optimization problem described above, as we will
deeply discuss in Sec. 2. In order to provide an efective solution to this complex task, many of them are based
on estimation approaches implemented through machine learning (ML) or deep learning (DL) models, with the
general architecture summarized in Fig. 1(a). As shown in the igure, these models are completely independent
from each other although they could share a lot of similarities depending on what they estimate. For example,
two models that estimate the range query selectivity and the range query running time are expected to share
many similarities in terms of the considered features. However, as a consequence of their independence, each
model requires a heavy-weight training step that works on its own large training dataset. In particular, the
training dataset needs to be large enough to be able to capture the intricate relationship between input data,
query characteristics, and hardware speciications. Building each training dataset is a challenging problem itself,
since it has to be diverse enough to capture the efect of all these parameters on the required estimation.
Given these considerations, the main limitations of existing solutions can be summarized as follows: (i) each

model is tailored to one speciic collection of datasets. Thus, if this set changes signiicantly, the model must be
retrained, consistently reducing the generality and reusability of the solution. In order to overcome this problem,
it is necessary to use a collection of datasets even synthetically generated, which is able to capture the relevant
characteristics and behaviour of spatial objects in the execution of spatial operations. In this regard, generators
of synthetic datasets with diferent distributions have been proposed [18, 36], so that models can be trained on a
variety of input datasets and become independent from a given speciic collection of datasets. (ii) Models are
usually dedicated to a single speciic operation; hence, the extension to other operations requires to collect new
data points, namely to execute a great number of experiments to collect the desired parameters to estimate, and
subsequently to retrain the model on them. Moreover, (iii) the results obtained with a speciic cluster cannot be
easily generalized to diferent clusters, since also the system coniguration has an impact on the cost estimation.
Therefore, such expensive activity, performed for building the training set, should be repeated for each cluster
coniguration. Some attempts to overcome this last limitation have been proposed [33] where few metrics have
been identiied for determining the best partitioning technique, which are independent from the adopted cluster
conigurations and depend only on the dataset features. Similarly, some metrics independent from the cluster
conigurations are used also in [34] where some models for estimating the fastest implementation of an operation
on a given dataset or pair of datasets have been proposed. However, this last proposal leads to another limitation:
(iv) these solutions are based on the extraction of some features from the input datasets and such features can be
diferent according to the operation we need to estimate the cost of. Thus, they must be recomputed for each
operation we consider.

This paper proposes a generic ML-based model for spatial query optimization that overcomes the limitations
of existing work. It can estimate diferent cost parameters regarding the execution of multiple implementations

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 3

Dataset

Feature
Extraction

RQ
Processor

Estimate RQ

Selectivity

RQ-specific
features

RQ
Selectivity

Heavy-weight

training

Dataset 1

Feature
Extraction

SJ
Processor

Estimate SJ

Execution Cost

SJ-specific
features

SJ execution

cost

Heavy-weight

training

Dataset

Feature
Extraction

Query
Processor

Estimate

query performance

Query-specific

features
Query-specific

measures

Heavy-weight

training

…

Dataset 2

Model 1 Model 2 Model n

Independent heavy-weight models with no reuse

(a) Existing ML-based query optimization models create a separate model from

scratch for each problem and cannot reuse models.

Spatial Embedding

Dataset

Query-independent Embedding

One-time heavy-
weight training

Histogram

Model M1

Embedding 1

Dataset 1

Model M1

Model M2

Estimate RQ
selectivity

Light-weight
training

Embedding 2

Dataset 2

Model M1

Model M2

Estimate SJ
selectivity

Light-weight
training

No training
required

Model estimation Model estimation

One reusable model

Light-weight models

(b) Proposed approach trains a model for spatial embedding and reuses it in

several models to reduce training time.

Fig. 1. Existing ML-based query optimization models and the proposed spatial-embedding-based approach

of some spatial operations which are independent from the speciic input collection of datasets and the cluster
characteristics. The proposed framework, illustrated in Fig. 1(b), is characterized by the following components:

(1) A irst machine learning model (�1) that is trained on a large dataset � with the goal of extracting a set of
signiicant features that are independent from the operation and the hardware. Thanks to its independency
and generality, it needs to be trained only once and can be reused for any spatial operation that we want to
build an estimation model for. Moreover, since it is trained only once, we can invest more time in training
this model to make sure it works with a wide range of datasets including synthetic and real datasets. We
call this model spatial embedding, since it creates a compact summary of the input spatial data that can then
be used in any ML model. To build the spatial embedding, we generate and use a multifaceted histogram

representing the distribution of some features in the reference space of � (Minimum Bounding Rectangle
of �). Furthermore, model�1 can be trained in an unsupervised manner with a large amount of data, even

ACM Trans. Spatial Algorithms Syst.

4 • Belussi et al.

automatically generated with tools like [18, 36], and whose result does not depend on the speciic spatial
operation.

(2) Given an operation and a speciic implementation for it, a set of cost parameters are chosen. Operations
can be for example: range query, self-join, or binary spatial join. Diferent implementations of the same
operation can be: index-based and scan-based range query algorithms, or partition-based and index-based
spatial join algorithms.

(3) For each chosen combination of an operation � , implementation � , and parameters � , a model�2(�, �, �) is
trained starting from the spatial embeddings of the input dataset(s) produced by the irst model. Since�1
is already trained on large amount of spatial data, the amount of data points required for training�2 is
reduced, consequently limiting the cost needed to execute expensive spatial operations.

In summary, the proposed framework is composed of a unique unsupervised model�1 for producing spatial
embeddings, and a supervised model �2 for each cost parameter � of a given implementation � of a spatial
operation � . More speciically, the training of model�1 requires a large collection of synthetic datasets covering
the most common distributions of real spatial data. This collection can be automatically generated by using
the Spider tool [18], which can produce a large number of synthetic datasets with a small efort. Conversely,
each model�2(�, �, �) requires the execution of the chosen implementation � of the operation � where the cost
parameter � is measured. Thus, the generation of such data points is costly and can require several hours of
processing, depending on the operation we consider. The idea is to use the embedding produced by�1 as input
for each model �2 to reduce the size of the required training set, consequently reducing both the cost for its
generation and the training time. In this way the cost of training�1 is amortized, since it is trained only once,
while models�2(�, �, �) can use a training set with less data points and of reduced size.

This paper widely extends our preliminary work [8] where the notion of spatial embedding has been introduced
for the irst time and some initial experiments on only synthetic data and range query operation have been
presented. First of all, in order to prove the efectiveness of the framework, in this paper we focus on: (i) three
operations, range query, self-join and binary spatial join; (ii) multiple implementations, the one provided by the
library Beast on Spark [10]; (iii) two cost parameters for each operation, selectivity and number of MBR tests.
In this regard, selectivity is the ratio between the cardinality of the result of the operation execution and the
maximum cardinality the operation can produce, while the number of MBR tests is the number of comparisons
between two MBRs that are performed during the execution of the chosen implementation. Notice that the former
is independent from the chosen implementation and the cluster coniguration, while the latter only depends
on the implementation. Second, experiments are performed by considering both synthetic and real datasets.
These experiments show that spatial embeddings can be generated by diferent models and with diferent latent
dimensions, but the most efective one, starting from histograms of shape 128�128�6 is of dimension 3072 or less.
Moreover, we showed that the same embedding can be used for the estimation of diferent cost parameters of
diferent operations. The estimates produced by models�2 outperform some baseline values obtained by applying
other consolidated estimation techniques. We also demonstrate that the use of spatial embeddings in place of the
original histograms can reduce the dimension of the training set and also the amount of computational resources
needed to train models�2. Finally, a comparison with an alternative approach, known as transfer learning, is
proposed which further highlights the advantages of the proposed framework based on spatial embeddings.
The remainder of this paper is organized as follows. In Sec. 2 previous solutions for the estimation of query

execution costs are presented. Sec. 3 introduces the concept of spatial embedding and describes how they can
be generated starting from spatial vector datasets. Sec. 4 presents the three spatial operations considered in
this paper, range query, self join and two-way spatial join, together with their cost parameters that we want to
estimate. Sec. 5 illustrates the results of the performed experiments about the construction of spatial embeddings,
and the estimation of the various operation parameters. In this section the beneits of using spatial embeddings

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 5

with respect to histograms during training are discussed and a comparison with the transfer learning technique
is also presented. Finally, Sec. 6 presents conclusions and future work.

2 RELATED WORK

The optimization of query and processing operations has been the subject of many research works starting from
the advent of databases and now revamped with the spread of big data systems. In this context, spatial data
covers a particular role due to the peculiarity of its operations, like spatial join and range query.

Cost-based optimization ś Due to the high cost of such operations and its inherent complexity, the optimization
has been studied in terms of both selectivity estimation and join cost estimation. Regarding the irst aspect,
several works have been proposed in the past to deine some formulas or parameters that provide an estimation
of the join selectivity, with respect to both uniformly distributed datasets [3] and skewed datasets [5, 12]. These
methods have been recently extended to deal with large amounts of data processed by big data systems, like
SpatialHadoop [11] and GeoSpark [38]. More speciically, in [31] a cost-based and a rule-based optimizer has been
proposed for MapReduce. It has two limitations: irstly it does not consider all possible spatial join algorithms, and
secondly, it requires to experimentally collect several parameters in order to properly catch the characteristics of
the hardware, algorithms and data at hand. A more detailed model has been proposed in [7], where the cost is
subdivided into three main components: CPU, local, and network I/O. It essentially overcomes the limitations
of the previous work, but its applicability is limited to uniformly distributed data. The extension of this work
to other non-uniform distributions requires the deinition of more complex models that can capture the efects
of skewness on spatial operations. In [6] the authors extend the use of the correlation fractal dimension for
determining the level of skeweness, and consequently the kind of distribution, of a spatial dataset. However, the
model has to become very complex to correctly capture all the facets of a dataset distribution and exploit them
for correctly partitioning big datasets in the right way. Therefore, the use of machine learning approaches has
begun to be experimented as an alternative way to build sophisticated models [33].

ML/DL optimization ś Due to the inherent complexity of many big data operations and the amount of factors
that can inluence their costs, like the distribution and size of the dataset, or the used algorithms and clusters, the
identiication of precise theoretical formulas is not always possible. Therefore, in recent years many diferent
attempts have been made in order to exploit machine learning and deep learning techniques for building
sophisticated data-driven models for selectivity estimation [14, 20, 37], join cost estimation [21, 23, 25], and
join order enumeration [24]. These methods sufer from two limitations: (i) they only work with equi-joins
and do not support the complex logic of spatial data, (ii) they are trained with a small number of tables and
speciic datasets and can produce an estimation only for them. DeepDB [15] attempted to address the second
approach by building a pure data-driven model that tries to capture the correlation across attributes and the
data distribution of single attributes. This would help in supporting more complex queries and join operations
between multiple tables. It achieves this through a probabilistic query compilation procedure that translates a
generic query into an evaluation of expectations and probabilities. That approach is a irst step towards building
a model that applies across many datasets that were not part of the training process. However, it was limited to
alphanumeric databases and cannot be applied to spatial data and operations. Indeed, spatial data have some
speciic characteristics that make them diferent from any other alphanumerical data type. For instance, spatial
data objects are multidimensional, and in presence of more than one dimension, there is no ordering able to
preserve proximity, while many of the existing techniques for alphanumeric data (like equi-joins) rely on the fact
that neighbouring objects are always adjacent to each other. Moreover, spatial data have an extent which makes
other techniques essentially impractical.

A irst attempt to extend the use of ML techniques for distributed spatial join selectivity and cost estimation has
been done in [34]. It difers from existing ML-based query optimizer as it supports spatial join and can be applied

ACM Trans. Spatial Algorithms Syst.

6 • Belussi et al.

to any input data that was not part of the training set. It also overcomes the limitation of existing theoretical
approaches, because it can deal with skewed datasets including real-word ones and it works on well-deined data
statistics that can be collected in a simple data scan. However, as emphasized in the introduction, this approach
has two main limitations: (i) it requires to collect a big training set which in turn requires to perform a large
amount of expensive spatial join operations, namely the construction of the training set is much more costly than
the training, (ii) a diferent training has to be performed for each operation we want to optimize (see Fig. 1(a)).
This paper performs a step forward by introducing the concept of spatial embedding with the aim to perform a
preliminary unsupervised training on large amount of data, which can be easily automatically generated [18] and
then used in the subsequent phase for reducing the amount of training data points needed for each particular
operation to be optimized (see Fig. 1(b)).

Embedding ś Autoencoders are neural networks typically used to learn a compressed representation of a dataset,
known as embedding. The notion of embedding has been developed for solving the problem of dimensionality
reduction and it comes from the assumption that there may exist a small number of variabilities which can
guarantee the łsemantics" of the original high-dimensional data [16]. It has been shown that autoencoding is a
powerful way to learn the hidden representations of data, since most of them focus on the locality-preserving
property of embedding [39].
In some sense autoencoders can be considered a form of image compression algorithms, but they are much

more. Their main purpose is to balance two criteria: (i) the compactness of representation, measured by its
capability of compressing the input and reconstructing it (i.e., like any compression technique), and (ii) its
ability to extract behaviorally relevant variables from the input, so that similar inputs have a similar compact
(embedding) representation. More speciically, embeddings try to capture the relevant features for the problem
at hand, not necessarily those that allow the best reconstruction. In this way, embeddings allow to provide a
similarity measure between diferent input datasets, and also a more meaningful clustering of them. In other
words, the degree of separation in the embeddings translates into a degree of separation in the original inputs.
Embeddings have been successfully used in many deep learning applications, from natural language processing
(see the Word2Vec technique [28]) to image processing [22]). In this paper, we specialize the general notion
of embedding to the more speciic one of spatial embedding. With a spatial embedding, we can cluster all the
possible input datasets with respect to their spatial properties, reducing the amount of necessary training data
points.

Embedding Space for Regions ś In recent years an emerging problem known as Learning an Embedding
Space for Regions (LESR) has been deined in literature [13]. The term łregionž refers to an urban region that
consists of a location and a neighbour area inside which many Points-of-Interests (POIs) representing urban
functions are located. The main idea is to build a graph where nodes represent POIs and edges are deined based
on several viewpoints on neighborhood, e.g., distance or connectivity. Then, graph embedding is used on that
network to deine a similarity between regions which capture both spatial and semantic properties. A follow-up
work uses several sources of information when constructing the model, like satellite images, crowd-sourced
geo-tagged data, trajectories, and GPS traces, which produces a multimodal embedding [17]. Even if these works
represent a irst attempt to use the notion of embedding in the spatial domain, they are limited to points and the
spatial aspects that are used during graph construction. However, existing work in regional embedding cannot
be directly used for our problem due to two factors. First, the constructed graph only captures the relationship
among points and not their location in the reference space which makes them inapplicable for range queries and
spatial joins where the location is an integral part of the query. Second, the above work only considers points
while we consider objects with extents, e.g., lines and polygons, for both range query and spatial join. The notion
of spatial embedding proposed in the following section starts from a vector representation of a spatial dataset

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 7

with a variable size and composed of any kind of spatial object, and can condense all the information inluencing
the cost of a generic spatial operation.

3 SPATIAL EMBEDDING

Deep learning techniques often follow a pattern that tries to organize the architecture of a neural network in
two steps. In the irst step the goal is to extract the signiicant information that is contained in the input data so
that the second step can be fed with a distillate of the original input where noise has already been purged. This
condensed information is usually called embedding and it can be orders of magnitude smaller than the original
data. The second step focuses on the prediction of the target value, which can be a class of a taxonomy or a
forecast of a given parameter. As discussed in Sec. 2, the distillation of the embedding is very often applied in
Natural Language Processing [28] and image processing [22], with the additional efect that the next step is
proven to gain accuracy with respect to models in which embeddings are not distilled.

Flatten Fully-connected

with RELU activation

Histogram Hidden Layers Embedding

Encoder Decoder

Fig. 2. Architectures of a stacked autoencoder.

A neural network used for this kind of task is called autoencorder and can be implemented as a stack of
fully connected layers (stacked autoencoder), or of convolutional neural layers (convolutional autoencoder). As
illustrated in Fig. 2, in a stacked autoencoder each layer has the responsibility to reduce the dimensionality of the
input with also the aim to detect at each step the most interesting features. Conversely, as illustrated in Fig. 3,
a convolutional autoencoder typically reduces the spatial dimensionality of the inputs (i.e., height and width)
while increasing the depth (i.e., the number of feature maps). A convolutional autoencoder has typically a latten
layer which reshapes the output in order to produce the inal embedding.
In its general form, an autoencoder has a symmetric architecture, namely with reference to Fig. 2-3, an

autoencoder includes also a stack of reverse layers which allow to reconstruct the original input dataset starting
from the obtained embedding. In this way, the training of an autoencoder �� is unsupervised, since the input set
of data points is at the same time the training set and the ground truth for the training. Indeed, the metrics used
as loss function for the evaluation of the trained model is usually the Mean Squared Error and is computed as the
average of the diference between an original data point �0 and the reconstructed one, i.e.:

����� (�0) = ��� (�0 −��.������ (��.������ (�0)))

ACM Trans. Spatial Algorithms Syst.

8 • Belussi et al.

Encoder Decoder

3x3 Convolutional layers

with RELU activation

Fig. 3. Architecture of a convolutional autoencoder.

where ��.������ () and ��.������ () refer to the application of the encoding and decoding functionalities of the
autoencoder, respectively; while the overall loss function becomes:

���� =

�︁

�=1

����� (��)
2

�

In this paper we propose to apply this approach to the spatial optimization problem; in particular, for generating
a condensed representation of the input dataset which correctly synthesizes its peculiar characteristics w.r.t. the
cost of spatial operations. As already mentioned in Sect. 1, this allows us to factorize some large amount of work
independently from the given operations. Therefore, we can subsequently produce a model tailored for a speciic
spatial operation with less training data points. Since this distillation process regards a generic spatial dataset,
represented as a collection of vector geometries, instead of an image, it is necessary to perform the following
preliminary operations:

(1) Deine a format for the model input, indeed while images have a ixed structure (i.e., a grid of pixels), spatial
dataset can vary a lot.

(2) Generate a large number of spatial datasets that cover as much as possible the diferent real distributions
that characterize geographical information on the Earth surface.

(3) Deine the structure of the neural network that, after training, can be used for generating the spatial
embedding.

Regarding point (1), we choose to compute for each dataset a multifaceted histogram of ixed size, as done in
many previous work on the ield [1, 2, 9, 26, 30, 32ś34]. For deciding which features to store in each cell of the
histogram, we consider the goal of the successive models: evaluate the cost of an operation on spatial data. Usually,
such cost is inluenced by the dataset size and the complexity of the geometries contained in the dataset.
As representative features for the dataset size we choose the cardinality of the input (�1), namely the number of
geometries contained in the input dataset, and the size in bytes (�2) of the input ile. Conversely, for measuring
the complexity of the geometries we use: the area of the geometries (�3), namely the area of the region enclosed by
their boundaries, the length on � and � axes of their MBR (�4 and �5), namely the width and height of their MBR,
and inally the number vertices (�6) of their vector representation, namely the number of points used to describe
the boundary of the geometries. Indeed, the vector representation of geometries is a way to describe spatial
objects in terms of the list of points/vertices composing its external and/or internal boundaries. These features
are computed for each cell of the histogram so that the distribution of the dataset łcomplexityž in the reference
space can be represented by the histogram itself. In particular, in each cell � we compute the sum of features �1,
�2 and �6 and the average for features �3, �4 and �5 considering only the geometries that intersect the cell � .

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 9

Table 1. Datasets used for training model�1 which produces the spatial embeddings. Columns Count reports the number of

datasets for each distribution. Synthetic datasets have been generated by using the SpiderWeb tool [18], while real datasets

have been obtained by spliting the global dataset available at https://star.cs.ucr.edu/ by using a fixed grid.

Distrib. Count
Cardinality Size (in bytes)

min max min max

Synthetic datasets

Uniform 1145 55 K 50 M 19 MB 24 GB
Diagonal 345 17 K 50 M 35 MB 24 GB
Gaussian 343 25 K 46 M 72 MB 22 GB
Parcel 225 24 K 50 M 23 MB 22 GB
Bit 305 23 K 50 M 54 MB 22 GB

Sierpinski 200 52 K 25 M 26 MB 11 GB

Real datasets

TIGER2018 103 3,191 78,741,390 204 KB 3.76 GB
OSM Lakes 148 9,950 2,933,002 4.5 MB 1.37 GB
OSM Parks 127 10,167 10,445,012 3.3 MB 4.20 GB

Conversely, for point (2), we generate a collection of about 2,550 synthetic datasets with diferent distributions
and about 380 real datasets. Details concerning such datasets are reported in Tab. 1. We also choose diferent sizes
from a minimum of about 20MB to more that 20GB. Notice that the number of datasets with uniform distribution
is higher with respect to the number of other distributions (see column Count). This choice is necessary because
with highly skewed distributions there are many empty cells inside the reference space. Therefore, to ensure that
the computed histograms are balanced between zero and non-zero values, and to avoid creating a model that over-
estimates zeros, we need in this phase a bigger number of uniformly distributed datasets which compensates the
overall presence of skewed distributions (independently from their type). The inal size of the dataset containing
the multifaceted histograms computed on these spatial datasets, which represent the input data points for the
irst model�1 of the architecture in Fig. 1(b), is 2.2 GByte.
As inal preparation step, we need to normalize the values of the features in each cell of the histograms.

Diferent functions can be applied to normalize data before training. We chose the simplest one, which requires
irstly to compute the minimum and the maximum value for each feature among all histograms, producing two
arrays of values���[] and��� [], and secondly to normalize each original list of feature ����� [�] [] as follows:

����� [�] [�] =
����� [�] [�] −���[�] [�]

��� [�] −���[�]
(1)

Finally, relatively to point (3), we teste both kinds of mentioned autoencoders: the stacked and the convolutional
ones. For the stacked autoencoders we choose 3 fully connected layes (as in Fig. 2), while for the convolutional
autoencoders we use 3 convolutional layers (see Fig. 3). We try diferent values for the embedding dimension
(also called latent dimension), and diferent numbers of nodes in each layer. As we will see in Sect. 5, the trained
models are able to reconstruct histograms which are very similar to the original one (see for instance Fig. 4).
However, as we mentioned in Sec. 2, the aim of spatial embeddings is not necessarily to rebuild correctly the
original histograms, but to correctly distill the signiicant features that are relevant for the following tasks, and,
in our case, for the estimation of the cost parameters of spatial operations. Therefore, taking this consideration in
mind, we do not choose for the second step only the model that produces the best reconstruction, namely the
one with the smallest reconstruction error, but we consider a set of promising models that while keeping good
behaviour are able to reduce as much as possible the latent dimension. Indeed, the more we reduce the size of the

ACM Trans. Spatial Algorithms Syst.

10 • Belussi et al.

spatial embedding, the more we can obtain a signiicant distillation of the dataset characteristics for training the
next model.

In the next section, we describe how the results obtained by model�1 can be used to train a set of models�2,
each one tailored for a speciic spatial operation, considering in particular the range query, the self-join and the
binary spatial join.

4 ESTIMATING THE COST OF SPATIAL OPERATIONS

After training the irst model �1, we need to deine the second part of the proposed approach in Fig. 1(b). As
previously mentioned, while �1 can be trained only once starting from a large collection of spatial datasets
covering a great variety of distributions, the second model has to be deined for each operation and for each
metric that we want to use for measuring its cost.

In this paper we consider three spatial operations: the Range Query, the Self Join and the Binary Spatial Join. For
the irst one we use selectivity as metric for estimating its cost, while for last two we use two metrics: selectivity
and number of MBR tests. As already discussed in literature, these metrics are good indicators of the cost of range
query and spatial join operations [3, 34], respectively. In the following the generic term spatial join is used to
denote both the self-join and the binary spatial join when there is no reason for distinguishing them.

In case of range query, selectivity is the ratio between number of elements returned by the operation and the
total number of elements in the input dataset.

����� (�, �) =
|{� ∈ � : � ∩ � ≠ ∅}|

|� |
(2)

where � is the input dataset, � is the range window used by the operation and � ∩ � returns the result of the
intersection between the geometry � and the query window �.
Similarly, join selectivity is deined as the ratio between the actual number of pairs produced by the join

operation and the number of pairs produced by the cross product:

���� � (�1, �2) =
|{(�1, �2) ∈ �1 × �2 : �1 ∩ �2 ≠ ∅}|

|�1 × �2 |
(3)

Clearly in case of the self join, the two datasets �1 and �2 are exactly the same.
Finally, in spatial join the number of MBR tests reports the number of tests performed onMBRs by the operation

implementation itself. It is computed as:

#���� � (�1, �2) =

©­­­«
︁
�� ∈��
� � ∈� �

︁
�1,�2∈
��×� �

#������� (�1 ∩ �2)
ª®®®¬
/|�1 × �2 | (4)

where �∗ returns the set of partitions in which the dataset �∗ has been subdivided in order to perform the join
operation, while � ∈ � returns the geometries contained in the partition � , and #������� (�1 ∩ �2) computes the
number of MBR comparisons that are performed for testing the not empty intersection between two geometries
�1 and �2. Notice that, unlike Eq 3, all (�1, �2) pairs are considered even if they do not overlap, since some of them
still need to be tested to know that they are not in the result. For the self-join, not only the datasets �1 and �2

are the same, but also the partitions �� and � � .
In the next subsections, we will show how they can be used in our second model�2 for estimating the cost of

the three spatial operations, while Sect. 5 will illustrate some experimental results about the ability of spatial
embeddings to distill the signiicant features necessary to estimate the desired cost in the correct way.

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 11

4.1 Range query estimation

As discussed in the previous section, for each spatial operation we need to instantiate a model�2 which will work
on the dataset embedding produced by�1 and a set of speciic information. In case of the range query, we add to
the embedding the following eight features: 4 values representing the dataset MBR and 4 values representing the
range query window. Therefore, each input data point for model�2, which estimates range query selectivity, is
the tuple:

⟨��� (�),���� (�),���� (�),���� (�),���� (�),

���� (�),���� (�),���� (�),���� (�), �⟩
(5)

where ��� (�) is the embedding of � computed by model�1, while���� (�),���� (�),���� (�),���� (�) is
the MBR of � and���� (�),���� (�),���� (�),���� (�) is the MBR of the range query window, inally � is the
selectivity value to be estimated. The main idea is that the MBR of the dataset and the MBR of the range query
window are enough to specialize the information distilled by the spatial embedding.

Example 4.1. Let us consider as an illustrative example the case of a dataset � composed of 100K geometries
which are enclosed in an MBR described by the minimum coordinate (0, 0) and a maximum coordinate of (1, 1),
while the range window � has an area of 10−8 starting from a bottom left coordinate of (0.1, 0.1). The tuple in
Eq. 5 becomes:

⟨��� (�), 0, 0, 1, 1, 0.1, 0.1, 0.1001, 0.1001, 0.05⟩

where ��� (�) is the embedding of � represented as a tensor whose dimension depends on the chosen latent
dimension, while � = 0.05 means that only 5% of the geometries in � intersects the range query window.

4.2 Spatial join estimation

The data points for the binary spatial join operation are built by following the same idea illustrated in the previous
section for the range queries. However, in this case we have two datasets at hand that have to be represented; in
particular, their spatial embeddings have to be properly combined. We chose to synthesize the spatial embeddings
of the two input datasets by overlapping them, so that if they have individually a dimension of for instance
32�32�3, we obtained a tensor of 32�32�6. Therefore, similarly to Eq. 5, the input of model�2 for the estimation
of the spatial join metrics is given by the following tuple:

⟨��� (�1�2),���� (�1),���� (�1),���� (�1),���� (�1),

���� (�2),���� (�2),���� (�2),���� (�2), �⟩
(6)

where ��� (�1�2) is the representation of the combined embedding, the following four values represent the MBR
of �1, the other four values are the MBR of �2, while � is the value of the metric to be evaluated (i.e., selectivity
or number or MBR tests).

For the self join, the representation is essentially the same except that �1 and �2 are the exactly same dataset.

Example 4.2. Let us consider as an illustrative example the case of two datasets �1 and �2 with the following
characteristics. �1 contains 50K geometries which are enclosed in an MBR described by the minimum coordinate
(0, 0) and a maximum coordinate of (0.8, 0.8), while �2 contains 25K geometries which are enclosed in a MBR
with minimum coordinate (0.3, 0.3) and a maximum coordinate of (0.9, 0.9). The tuple in Eq. 6 becomes:

⟨��� (�1�2), 0, 0, 0.8, 0.8, 0.3, 0.3, 0.9, 0.9, 0.01⟩ (7)

where ��� (�1�2) is obtained by combining the embedding of the �1 with the embedding of �2. As mentioned
above, if for instance each single dataset has an embedding of size 32 × 32 × 3, ��� (�1�2) is represented by a
tensor of dimension 32 × 32 × 6. Finally, if � is the selectivity, a value equal to 0.01 means that only 1% of the
cartesian product (50� × 25�) will be included in the result. Conversely, if the element � represents the number

ACM Trans. Spatial Algorithms Syst.

12 • Belussi et al.

of MBR tests and has a value of 10, 000, it means that 10, 000 intersection tests between MBRs will be necessary
to identify the spatial join result.

5 EXPERIMENTS

Considering the architecture of the proposed approach, we divide the experiments in two parts. First, we need
to train model�1 for obtaining a set of candidate autoencoders which are able to generate meaningful spatial
embeddings of a given histogram dataset representation. Second, we need to train a model�2 for each considered
spatial operation and parameter.
The source code developed for the experiments (together with the training and test sets) are available as

a GitHub repository1. The experiments have been performed on a server equipped with an Intel i9-10900X
processor, with 64 GByte of RAM, a GPU NVIDIA Quadro RTX A5000 GPU with 24 GByte of dedicated RAM,
and Ubuntu 22 operating system with Nvidia driver version 535.86.05 and CUDA version 12.2.

5.1 Spatial Embeddings

As previously discussed, the training of model�1 requires the preparation of a set of data points by generating
the histograms for the datasets listed in Tab.1. Every histogram is a grid of 128 × 128 cells, each one containing 6
features, as described in Sec. 3. Given such set of input data points, we perform 4 set of experiments in order to
ind the best architecture for�1. The 4 set of experiments will be denoted as ���1

�1, ���
2
�1, ���

3
�1 and ���

4
�1,

respectively. At the end of this phase, we select a collection of 8 good autoencoders which will be tested in the
second part of the experiments regarding model�2. For not cluttering the presentation, we report in this section
only the experimental results obtained with the selected good autoencorders, while the detailed results of each
experiment are contained in Sec. A.1 of App. A.

In the irst set of experiments, denoted as ���1
�1, we consider for the training only synthetic datasets and the

used models are stacked autoencorders composed of three dense layers. In this experiment we evaluate also the
capability of a stacked autoencoder trained with only synthetic datasets to perform well also on real datasets.
Tab. 2 reports the results obtained for the selected autoencoders, which are denoted as ���1 and ���2. In the
table, the values of the hyperparameters (columnHyperpar.), i.e., the number of neurons in each fully connected
layer, and the latent dimension (column Latent Dim.), i.e., the dimension of the produced spatial embedding, are
reported together with the inal values of the loss and val loss functions (columns LOSS and VAL LOSS). For
the accuracy evaluation we use the standardWMAPE metric, namely the Weighted Mean Absolute Percentage
Error, since it allows us to correctly treat zeros in the set of actual and predicted values. It is a variant of MAPE in
which the mean absolute percentage error is treated as a weighed arithmetic mean. Most commonly the absolute
percent errors are weighted by the actual values, which leads to the following formula:

����� =

∑�
�=1

(
�� ·

|�� − �� |

|�� |

)
∑�

�=1��
=

∑�
�=1

(
|�� | ·

|�� − �� |

|�� |

)
∑�

�=1 |�� |
=

∑�
�=1 |�� − �� |∑�

�=1 |�� |

where �� are the actual value, while �� are the predicted value.
More speciically, we compute the WMAPE error on both: (a) a synthetic test set obtained by selecting a 20%

of the automatically generated synthetic datasets, that the model has not seen before, and (b) an additional set
of real data points produced by considering 194 real datasets, from TIGER and OSM sources. With reference to
Tab. 2 (and Tab. 10 of App. A), the values in column WMAPE are those computed by performing the test on only
synthetic datasets, while the values in column WMAPE REAL are those computed considering the collection of
real datasets during the test.

1https://github.com/smigliorini/spatial-embedding

ACM Trans. Spatial Algorithms Syst.

https://github.com/smigliorini/spatial-embedding

A Generic Machine Learning Model for Spatial uery Optimization • 13

Table 2. Experiment ���1
�1

performed by using stacked autoencoders, which have been trained with only synthetic

datasets and tested on both synthetic and real datasets. The spatial embeddings have been extracted from histograms of

128 × 128 × 6 and the training has been performed with 50 epoches.

Autoencoder Latent Dim. Hyperpar. Training LOSS VAL WMAPE WMAPE

time(sec) LOSS REAL

���1 384 1024,512 105 9.6E-04 1.5E-03 0.363 57.12

���2 1536 1024,512 104 1.1E-03 1.6E-03 0.356 54.06

Notice that, the metric WMAPE for fully connected models (stacked autoencoders) is good, in the best case it
is around 0.36, but these dense networks are not able to generalize well to real cases. Indeed, when applied to real
datasets they produce a WMAPE above 50. More details about the other tested but not selected conigurations
can be found in Tab. 10 of App. A.

In the second set of experiments, denoted as ���2
�1, we perform the training considering again only synthetic

datasets, but by using convolutional autoencoders, in place of stacked ones. As shown in Tab. 3 (and Tab. 11 of

Table 3. Experiment ���2
�1

performed by using convolutional autoencoders, which have been trained with only

synthetic datasets and tested on both synthetic and real datasets. The spatial embeddings have been extracted from

histograms of 128 × 128 × 6 and the training has been performed with 50 epoches.

Autoencoder Latent Dim. Hyperpar. Training LOSS VAL WMAPE WMAPE

time(sec) LOSS REAL

���1 768 ilter(128,64) 121 1.3E-03 1.3E-03 0.352 1.28

���2 3072 ilter(64,32) 80 9.8E-04 9.9E-04 0.319 1.48

App. A), in this case the models not only produce a similar quality during the reconstruction of synthetic datasets
(i.e., WMAPE is around 0.32 in the best case), but they are also able to generalized better obtaining, with real
datasets, a WMAPE around 1.5 on average (see column WMAPE REAL). Fig. 4 shows an example of application
of the encoding-decoding process performed by a convolutional autoencoder trained with only synthetic datasets
and tested on both synthetic and real datasets. In particular, for each group the irst row shows the original
histogram, while the second row reports the decoded one. We can notice that the distribution of the values is
maintained in the decoded histograms. To obtain colored images, we convert feature 0, 2 and 4 in RBG values,
similar images (but with diferent colors) can be obtained by considering the other three features.

We also consider a third and fourth set of experiments, denoted as ���3
�1 and ���

4
�1, with the aim to evaluate

the impact of including also some real datasets in the training of the autoencoders. Tab. 4 reports the results
obtained with the two autoencorders selected from each set of experiments. In particular, ���3

�1 and autoencoders

���∗ refer to a stacked autoencoder trained with both synthetic and real data, while ���4
�1 and autoencoders

���∗
are related to a convolutional autoencoder trained with both synthetic and real datasets. Detailed results are

reported in Tab. 12 and 13 in App. A for stacked and convolutional autoencoders, respectively. In this case column
WMAPE REAL is not used, because real datasets are used during both the training and the test phase. Moreover,
we can notice that convolutional models are able to produce better results also in this case, with WMAPE values
similar to the ones obtained when only synthetic datasets are considered during training and test (see column
WMAPE in Tab. 3).

Fig. 5 illustrates some example of encodings and decodings performed by a stacked autoencorder trained and
tested with both synthetic and real datasets. These cases exemplify the fact that such dense model performs
well with syntethic datasets, but their reconstructions are worsen that the one in Fig. 4 when real datasets are
considered (see cases 4 and 6). Finally, Fig. 6 speciically compares the ability of a stacked and a convolutional

ACM Trans. Spatial Algorithms Syst.

14 • Belussi et al.

Fig. 4. Application of the encoding-decoding process performed by a convolutional autoencoder with a latent dimension

of 1536, 3 layers and filter (64,32,3), that has been trained with only synthetic data and tested on both some synthetic and

real datasets.

Table 4. Experiments ���3
�1

and ���4
�1

performed by using stacked and convolutional autoencoders, respectively,

which have been trained with both synthetic and real datasets. Models with subscript �∗ are stacked autoencoders,

while models with subscript �∗ are convolutional autoencoders. Spatial embeddings have been extracted from histograms of

128 × 128 × 6 and the training has been performed with 50 epochs.

Experiment Autoencoder Latent Dim. Hyperpar. Training LOSS VAL WMAPE

time(sec) LOSS

���3
�1

���3 48 16,32 53 1.7E-03 2.8E-03 2.84

���3
�1

���4 384 16,32 51 1.6E-03 2.6E-03 2.42

���4
�1

���3 1536 ilter(128,64) 143 7.1E-04 7.0E-04 0.51

���4
�1

���4 768 ilter(64,32) 98 1.1E-03 1.1E-03 0.54

autoencorder in working with real datasets. In particular, we use them with two real datasets representing
roads and municipalities of Italy. Columns (a) and (b) are produced by a dense model, while columns (c) and
(d) are obtained with a CNN model. We can notice that the convolutional autoencoder produces a signiicant
improvement in the reconstruction of the original histograms. However, since we are not speciically interested
in the reconstruction capabilities of the autoencoders, but in their ability to properly distill the characteristics of
a spatial datasets, we decide to not discard the stacked autoencoders entirely. In particular, given this irst session
of experiments, we select all the 8 models in Tab. 2-4 for the generation of the embeddings describing the input
datasets:

• 4 stacked autoencoders: ���1 and ���2 (trained with only synthetic data and a latent dimension of 384
and 1536, respectively), ���3 and ���4 (trained with also real data and a latent dimension of 48 and 384,
respectively);

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 15

Fig. 5. Application of the encoding-decoding process performed by stacked autoencoder with a latent dimension of 384, 2

layers and output (512,256), which have been trained and tested with both synthetic and real datasets.

(a) (b) (c) (d)

Fig. 6. Application of the encoding-decoding process to 2 real datasets representing roads and municipalities of Italy not

used in model training. (a) and (b) are produced by a stacked autoencoder, while (c) and (d) by a convolutional autoencoder.

• 4 convolutional autoencoders: ���1 and ���2 (trained with only synthetic data and a latent dimension of
768 and 3072, respectively), ���3 and ���4 (trained with also real data and a latent dimension of 1536 and
768, respectively).

ACM Trans. Spatial Algorithms Syst.

16 • Belussi et al.

In the second part of the experiments, which are discussed in the following subsections, we focus on the
deinition of speciic models�2 for estimating the chosen cost parameters for range queries, self-join and binary
spatial join.

5.2 Range query

For the production of the input data points, we consider a set of about 2,950 datasets with various distributions
and various sizes, where about 380 are real datasets, as reported in Tab. 1. As regards to synthetic datasets, in
order to simulate their various placements inside the reference space and the fact that they occupy a small
area inside it, we randomly place them, with an MBR of at most (0, 0, 1, 1), inside a reference space with MBR
(0, 0, 10, 10). Conversely, real datasets were extracted from TIGER and OSM collections by splitting them to
generate smaller subsets. For each selected synthetic and real datasets, we randomly produce 50 range queries for
synthetic datasets and 100 range queries for real datasets, with diferent extents and positions. Therefore, we
executed about 100,000 range queries �� on synthetic datasets, and about 36,000 on real datasets, collecting for
each one the selectivity (i.e., � (��)). The query windows, generated in the reference space (0, 0, 10, 10), have an
area between 1.8× 10−11 and 7.3× 102. The input data points built in this way are inally normalized by using the
��� −��� formula in Eq. 1.

Before using this set of collected data points for training model�2, we extract from it a subset of cases with
the aim to obtain a balanced training set. More speciically, we use an undersampling strategy through which we
select around 64,000 data points for synthetic datasets from the original 100,000, so that all intervals of possible
selectivity values between 0 and 1 are almost equally represented. In the balancing procedure, we subdivide
the interval of possible values [0, 1] into ten sub-intervals: [0, 0.1], . . . [0.9, 1]. In the following subsections, the
balanced set of synthetic data points for selectivity is denoted as �����

� . We try to produce a balanced set of data
points also for real datasets following the same approach. This balanced set of real data points for range query
selectivity is denoted as ������� .

5.2.1 Histograms vs embeddings. This irst experiment has the aim to demonstrate the beneits of using spatial
embeddings in terms of required size of the training set. In particular, we show that by using spatial embeddings
as input for a prediction model� , instead of the original histograms, we can reach the same accuracy with less
training data points and with data of smaller size.
To perform this experiment we prepare two series of data point collections for estimating the range query

selectivity by following the approach described in Eq. 5. In particular, the irst series uses the embeddings produced
by autoencoder ���2, which have the biggest latent dimension, as component ��� (�) of the tuple shown in
Eq. 5. Conversely, the second one substitutes this component by using directly the whole dataset histograms of
size 128�128�6; thus, increasing the size of each data point. Each series of input collections has an increasing
number of data points, from 485 to 15, 474.

Fig. 7.a compares the WMAPE errors obtained in the two cases (i.e., training with spatial embeddings or with
histograms) as the dimension of the data point collection increases. The igure shows that using the spatial
embeddings as input always produces an improvement, since the WMAPE decreases of 24% in average. Fig. 7.b
shows that in order to obtain a similar accuracy of the model, in terms of WMAPE, the network fed by histograms
needs a training set that is an order of magnitude bigger than the training set composed of the corresponding
embeddings. This is relected also in the time needed to execute the training which is for the irst coniguration
in Fig.7.b about 400 seconds for the training with embeddings and 3200 seconds for the training with histograms.
These results conirm the potentialities of using spatial embeddings in place of the original histograms. Therefore,
the following experiments focus only on models fed with spatial embeddings.

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 17

(a) (b)

Fig. 7. Comparison among�2 models trained with spatial embeddings or directly with histograms. In (a) the WMAPE error

for the two cases is shown as the cardinality of the training set is increased, while (b) compares the size in MByte of the

input sets needed for the two cases for obtaining the same WMAPE values.

5.2.2 Selectivity of range queries. The second experiment regards the prediction of the range query selectivity.
As reported in Eq. 5, each training data point will contain the information about a given dataset � and the extent
of the query window � . More speciically, each dataset � is described in terms of its spatial embedding and
the coordinates of its MBR. In Sec. 5.1 we selected 8 autoencoders (i.e., ���) as candidate models for producing
spatial embeddings. Starting from them and from the set �����

� previously introduced, we generate 8 diferent

collections of data points��� (��
���
�), each one characterized by a diferent size according to the latent dimension

of the embeddings generated by ��� . The size of the obtained input datasets varies from about 0.044Gb for a
latent dimension of 48, to 2.31Gb for a latent dimension of 3,072.
Referring back to Eq. 5, the input of �2 is composed of two parts: (a) the embedding of � and (b) 8 values

representing the MBR of � and of the query window � . Given such structure, we consider two alternative
approaches for the architecture of model�2:

• In the irst one (called�2���) the input (a) is processed by a dense (DNN) model composed of three fully
connected layers, then the obtained result is concatenated with input (b) and two additional fully connected
layers produce the inal estimate.

• Conversely, in the second architecture (�2���) input (a) is processed instead by two convolutional (CNN)
layers and the result is concatenated with (b) and given to the same inal two dense layers.

In both cases we tested diferent conigurations of the hyperparameters in combinations with the 8 sets of data
points mentioned above. Moreover, each model has been initially trained and tested with only synthetic data (i.e.,
��� (��

���
�)) and then with both real and synthetic data. In this regard, a new collection of data points is obtained

by joining ��� (��
���
�) and ��� (���

���
�); in particular, we chose 32, 000 points from the irst set and an equal

amount from the second set.
Tab. 5 reports for each choice of�2 architecture, namely�2��� and�2��� , the best coniguration of hyperpa-

rameters (column Hyperpar.) together with the autoencoder (column Autoencoder) used for the generation of
the spatial embeddings (see Tab. 2-4). ColumnM2 Training distinguishes the case in which�2 is trained and
tested with only synthetic data (set ��� (��

���
�), containing around 64,000 data points) or with both synthetic

and real data (about 64,000 data points where an half comes from ��� (��
���
�) and the other from ��� (���

���
�)).

Column Baseline reports the error of the baseline using WMAPE metrics. As baseline we use the theoretical
formula proposed in [5] for estimating the selectivity of range query, that has been applied to the test set. Notice

ACM Trans. Spatial Algorithms Syst.

18 • Belussi et al.

that all experiments use the same test set. Detailed results are reported in Tab. 14 and Tab. 15 of App. A for the
case�2��� and�2��� , respectively.

Table 5. M2 for range query selectivity when it is trained with only synthetic (64,000 data points) or both real and synthetic

data (32,000 + 32,000 data points) and in combination with the spatial embeddings presented in Tab. 4. Hyperparameters

for�2��� are dH2 = 128,64,64,32,32, and dH3 = 256,128,128,64,64 while for�2��� are cH4 = 512,256,256,128. Time is the

amount of time needed for training in seconds.

M2 architecture M2 Training Autoencoder Hyperpar. Time (sec) WMAPE Baseline

�2��� Synth. ���1 dH3 2,007 0.0782
0.691

�2��� Synth. ���2 cH4 1,835 0.0894

�2��� Synth. + Real ���3 dH2 1,676 0.2143
1.320

�2��� Synth. + Real ���4 cH4 2,700 0.2007

Considering the case in which the model is trained and tested with synthetic data only, the best results
are obtained with the architecture �2��� and the autoencoder ���1, with a WMAPE equal to 0.0782. As you
can notice, in any case the proposed model performs better than the baseline method which produces on the
corresponding test set a WMAPE of 0.691. Conversely, when also real data are used both in training and testing,
the best predictions are obtained with the architecture�2��� with embeddings generated by autoencoder ���4
producing a WMAPE of 0.2007 when executed on the test set.
The results obtained with the range query are used also for discarding some model combinations to be used

in the following experiments regarding the spatial join. In particular, based on the complete set of experiments
reported in Tab. 15 of App. A, we selected a stacked and a convolutional autoencoder for training and testing on
synthetic data, which are respectively ���1 and ���2, and a stacked and convolutional autoencoder for training
and testing on both synthetic and real data, namely ���4 and ���3. These are the best embeddings for the
estimation of the range query selectivity in each respective category.

5.3 Spatial Self-join

The self-join operation runs on a single dataset. Given a dataset � , it inds all pairs of distinct records that have
overlapping geometries. To perform this operation in Spark, we irst partition the dataset using the R*-Grove
partitioner [35] while replicating boundary objects to all overlapping partitions. Then, we process each partition
independently with a plane-sweep self-join algorithm to ind overlapping records and remove duplicates.

Table 6. M2 for self-join selectivity when it is trained with only synthetic (4,194 data points) or both real and synthetic

data (4,784 data points) and in combination with the spatial embeddings in Tab. 4. Hyperparameters for �2��� are dH1 =

64,32,32,16,16, and dH3 = 256,128,128,64,64, while for�2��� are cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Time is the

amount of time needed for training in seconds.

M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

�2��� Synth. ���2 dH3 108 0.2138
0.69

�2��� Synth. ���2 cH4 128 0.2211

�2��� Synth. + Real ���4 dH1 160 0.3557
2.0

�2��� Synth. + Real ���3 cH5 233 0.3010

To perform the experiments related to the two parameters of the self join, namely the selectivity and the
number of MBR tests, we consider the synthetic and real datasets reported in Tab. 1 and for each of them we
perform the join with itself, collecting both parameters of interest. As done for the range query operation, before

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 19

using these data for training�2, we need to extract a subset of cases which represent a balanced training set.

For this purpose we use again an undersampling technique which produces four sets of data points: SJN���
� ,

SJNR���
� , SJN���

#�� and SJNR���
#�� . In particular, SJN���

� contains about 4,190 data points describing the selectivity of

the self-join performed on a selection of the synthetic datasts, while SJN���
� contains about 4,784 elements and is

obtained by adding to the previous set the data regarding the selectivity computed on the real datasets. Similarly,

SJN���
#�� and SJNR���

#�� have the same cardinality and structure of the previous one, but collect as parameter the
number of MBR tests performed during the self-join execution. As described at the end of the previous section, for
the experiments on self-join, we do not use all autoencoders considered for the range query, but we use the results
obtained in these previous experiments to select the best ones to apply also for the estimation of the self-join
parameters. In particular, we consider the following 4 autoencoders: ���1, ���2 and ���4 and ���3, the irst two
are used for training and testing�2 only on synthetic data, while the last two are used for training and testing

�2 on both synthetic and real data. Indeed, given the four collections of data points: SJN���
� , SJNR���

� , SJN���
#��

and SJNR���
#�� , we need to apply on them the chosen autoencoders to produce the embeddings needed as input

of �2. This produces a collection of 8 data points, the irst 4 for synthetic data: ���1 (SJN
���
�), ���1 (SJN

���
#��),

���2 (SJN
���
�),���2 (SJN

���
#��), and the other 4 for real data:���4 (SJNR

���
�),���4 (SJNR

���
#��),���3 (SJNR

���
�), and

���3 (SJNR
���
#��).

Table 7. M2 for the number of MBR tests in self join when it is trained with only synthetic or both real and synthetic

data and in combination with the spatial embeddings in Tab. 4. Hyperparameters for�2��� are dH1 = 64,32,32,16,16, and

dH4 = 512,256,256,128,128, while for�2��� are cH4 = 512,256,256,128, and cH5 = 1024,512,512,256. Time is the amount of

time needed for training in seconds.

M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

�2��� Synth. ���2 dH4 139 0.3128
0.96

�2��� Synth. ���2 cH4 182 0.3232

�2��� Synth. + Real ���4 dH1 134 0.4452
0.96

�2��� Synth. + Real ���3 cH5 174 0.3001

Tab. 6 reports the best conigurations for the selectivity estimation, while Tab. 7 reports the best conigurations
for the estimation of the number of MBR tests. Detailed results about all the other considered conigurations are
contained in Tab. 16 and 17 of App. A. Notice that since the number of MBR tests has been divided by |� × � |,
this metric is always less than one. In the experiments we use as the baseline (BL) devised in [7] which estimates
the cost of the distributed join algorithm. To apply it for self join, we use the dataset statistics for the two inputs
in the formula.
The obtained results demonstrate that the selected autoencoders perform quite well with the estimation of

both parameters considered for the self-join. In particular, convolutional autoencoders seem to better capture
the characteristics of the datasets when both synthetic data only, or synthetic and real datasets together are
considered. Relatively to the selectivity of self-join, encoder ���2 provides essentially the same accuracy with
both kinds of�2 architectures when only synthetic data is considered, while in presence of both synthetic and
real datasets the best encoder is again the convolutional one, namely ���3. Similar results are obtained also
with the tests regarding the estimation of the number of MBR tests, where again the best encoder for synthetic
data is ���2, while when real and synthetic data are considered the best performances are obtained with ���3
with a convolutional�2 model. The obtained results outperform the ones obtained with the baseline in terms of
the achieved accuracy, and also the performances. The obtained WMAPE errors are in line with what has been
obtained for the estimation of the range query selectivity when synthetic and real data are considered together,
conirming that spatial embeddings provides promising generalization capabilities. Notice that the baseline we

ACM Trans. Spatial Algorithms Syst.

20 • Belussi et al.

used performs equally well for synthetic and real data since the partitioning step captures data skewness and
balances the cost across partitions which makes the cost estimation easier.

5.4 Binary spatial join

Given a collection of � input datasets, the amount of spatial join operations that need to be executed for producing
a training set covering all possible cases is equal to (� × (� − 1))/2. This can lead to a very large number of
costly operations to be performed. Therefore, we apply a clustering technique, exploiting also the presence of the
computed embeddings, in order to select the most signiicant pairs on which actually perform the join operation.
In particular, starting from about 2,550 synthetic datasets, we select about 11,000 signiicant pairs, while starting
from about 380 real datasets, we generate a subset of around 2, 000 pairs.
Given these pairs of datasets (�� , � �), we compute the spatial join between �� and � � by applying two

consolidated implementations of this operation provided by the Beast library on Spark: the Spatial Join Map
Reduce (SJMR) [40] and the Distributed Join with Index (DJ) [11, 38]. The irst one is a MapReduce implementation
of the Partition Based Spatial Merge Join (PBSM) [29] and has been designed to eiciently perform a spatial join
on non-indexed datasets. The second one is a MapReduce adaptation of the Grid File Spatial Join algorithm [19]
and works on previously indexed datasets. The execution of these 11, 000 join operations on synthetic datasets
and 2, 000 join operations on real datasets tooks almost one month for each implementation.

As regards to the selectivity estimation, since this metric does not depend on the algorithm, we use the results

of the SJRM execution to produce both a set of 11, 000 synthetic data points, denoted as JN���
� , and a set of 2, 000

real data points, denoted as JN���
� . Conversely, for the number of MBR tests depends on the selected algorithm.

This means that we also generates the following sets of data points: SJ���#�� and SJR���
#�� for SJMR and DJ���#�� and

DJR���
#�� for DJ. These sets have the same cardinality and regards the same pairs of JN���

� and JN���
� , but they

collect as parameter the number of MBR tests performed by SJMR and DJ algorithms,respectively.

Table 8. M2 for spatial join selectivity when it is trained with only synthetic (11,000 data points) or both real and synthetic

data (13,000 data points) and in combination with the spatial embeddings in Tab. 4. Hyperparameters for �2��� are dH1 =

64,32,32,16,16, and dH5 = 1024,512,512,256,256, while for �2��� are cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Time is

the amount of time needed for training in seconds.

M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

�2��� Synth. ���2 dH5 431 0.2251
0.7274

�2��� Synth. ���2 cH4 550 0.2810

�2��� Synth. + Real ���4 dH1 131 0.2636
0.8420

�2��� Synth. + Real ���3 cH5 175 0.2125

As described done in the previous section, for the experiments on the binary spatial join, we consider the
following 4 autoencoders: ���1, ���2 and ���4 and ���3, the irst two are used for training and testing �2
only on synthetic data, while the last two are used for training and testing�2 on both synthetic and real data.

Indeed, given the six collections of data points: JN���
� , JN���

� , SJ���#�� , SJR
���
#�� , DJ

���
#�� , DJR

���
#�� , we need to apply on

them the chosen autoencoder to produce the embeddings needed as input of�2. This produced 12 collections of

data points, the irst 6 for synthetic data: ���1 (JN
���
�), ���1 (SJ

���
#��), ���1 (DJ

���
#��), ���2 (JN

���
�), ���2 (SJ

���
#��),

and ���2 (DJ
���
#��), and othe other 6 for real data: ���4 (JN

���
�), ���4 (SJR

���
#��), ���4 (DJR

���
#��), ���3 (JN

���
�),

���3 (SJR
���
#��), and ���3 (DJR

���
#��) These are the sets of data points used in the experiments illustrated in Tab. 8,

Tab. 9, and Tab. 18-20 of App. A.
In the experiments we use as the baseline (BL) the model proposed in [34]. Notice that this model has been

trained again with the new datasets JN���
� , JN���

� , SJ���#�� , SJR
���
#�� , DJ

���
#�� and DJR���

#�� , which are much richer and

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 21

Table 9. M2 for the number of MBR tests in spatial join when it is trained with only synthetic or both real and synthetic

data and in combination with the spatial embeddings in Tab. 4. Hyperparameters for�2��� are dH3 = 256,128,128,64,64, dH4

= 512,256,256,128,128, and dH5 = 1024,512,512,256,256, while for�2��� are cH3 = 256,128,128,64, and cH5 = 1024,512,512,256.

Time is the amount of time needed for training in seconds.

Algorithm M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

SJMR
�2��� Synth. ���2 dH4 424 0.3401

0.811
�2��� Synth. ���2 cH3 475 0.3907

DJ
�2��� Synth. ���2 dH5 107 0.2631

0.37
�2��� Synth. ���2 cH3 144 0.2846

SJMR
�2��� Synth. + Real ���4 dH3 140 0.3379

1.008
�2��� Synth. + Real ���4 cH3 166 0.3205

DJ
�2��� Synth. + Real ���4 dH4 119 0.3344

0.39
�2��� Synth. + Real ���4 cH5 199 0.3645

diverse than the dataset used in the original paper. We found that with these new datasets, the performance
started to drop due to the more complex data distributions, e.g., Sierpinski distribution and real datasets. Tab. 8
reports the best conigurations for the selectivity, while Tab. 9 reports the best conigurations for the number of
MBR tests (notice that, since this metric is divided by |�1 ×�2 |, it is always less than one). Detailed results can be
found in Tab. 18 of App. A for experiments with selectivity, and in Tab. 19 and Tab. 20 of App. A for experiments
with the number of MBR tests int the two implementations.

We can notice that the selected autoencoders perform quite well with the estimation of both parameters and in
presence of only synthetic, or both synthetic and real data together. In particular, convolutional autoencoders
seam to better capture the characteristics of both parameters and allow to obtain smaller errors when they
are used in combination of both kinds of �2 models. With reference to selectivity of spatial joins, the use of
autoencoders ���2 and ���3 allows to obtain the best results with synthetic data only, or with synthetic and
real data together, respectively. In particular, the error of this last more complicated case (i.e., 0.2125) is even
smaller than the best one obtained in the simpler synthetic case (i.e., 0.2251). A similar behaviour of convolutional
autoencoders can be observed also in the estimation of the number of MBR tests where smaller errors are obtained
with���2 on synthetic data. However, for the more complicated case where also real data are used���4 performs
slighltly better than the convolutional autoencoders, obtaining an error of 0.3205 for SJRM and 0.3344 for DJ.
The obtained results outperforms the ones obtained with the baseline in terms of the achieved accuracy, and
as mentioned before, in terms of performances. The obtained WMAPE errors are in line with what has been
obtained for the estimation of the range query selectivity when synthetic and real data are considered together,
and with self-join parameters in all the cases. Moreover, the best identiied autoencorders for the two parameters
of the binary spatial join are the same of those identiied for the self-join in the previous section. All these
considerations conirm the generalization capabilities of spatial embeddings.

5.5 Discussion on experiment results

Given the experimental results that we obtained in the previous subsections for both operations, range query and
spatial join, we can observe that:

(1) Spatial embeddings, generated by the trained autoencoders, are able to distill the information useful for
training successive models which predict parameters for cost evaluation of spatial operations. Indeed, they
behave always better than the considered baselines. Moreover, as shown in Fig. 7, the size of the training
set that is needed to obtain a certain accuracy (misured as the inverse of the WMAPE error) is considerably

ACM Trans. Spatial Algorithms Syst.

22 • Belussi et al.

reduced by the introduction of the embeddings with respect to the one required when histograms are
directly used as model inputs.

(2) The autoencoder that in average produces the best results is ���2, which is produced by a convolutional
autoencoder and is the one having the largest latent dimension (3,072). However, also smaller embeddings,
like ���1 or ���4 can produce good results both for estimating range query and spatial join selectivity.

(3) Considering that we used a limited collection of datasets for training�1 models and a larger set of data
points for training �2 for range query, the training time of the two experiments are not comparable.
However, the set of data points used for training �2 models for self-join or binary spatial join and �1
were similar in size and also the training time of these models is similar, around 100 sec. Training a unique
model for estimating the range query selectivity starting from histograms of datasets requires: (i) a large
training set (around 20Gb for 100,000 range queries) and (ii) almost one day for executing a irst try of
training, that did not end. Therefore, the separation between�1 and�2 represents an efective solution
for generating in a reasonable time a tool that is able to predict cost parameters.

(4) The idea that�1 can be trained only once is conirmed by the fact that the same generated embeddings
can be used for estimating two diferent parameters for three distinct operations, i.e. range query, self-join
and binary spatial join, as well as two alternative implementations of the latter one, SJMR and DJ.

(5) Finally, even if the time required for training and testing the entire pipeline could be very long, in particular
for model�1, this does not afect the applicability of the approach in a real-world query optimizer. Indeed,
the training and test will be performed oline and only once for �1 and once for each operation for
�2. Conversely, a query optimizer is afected only by the prediction time which takes essentially few
milliseconds to execute.

In order to check whether we can further improve the efectiveness of the autoencoders (�1) in generating
spatial embeddings that can be used by a successive model (�2) which predicts a speciic cost parameter, we
integrate a previously trained autoencorder in a new model �2, applying the transfer learning approach, as
described in the following subsection.

5.6 Spatial embeddings vs Transfer learning

This section illustrates a set of the experiments that check the efect of applying a transfer learning approach in
combination with the spatial embedding generation, instead of using the proposed two-model-layer architecture.
More speciically, given one of the previously trained autoencorders, namely ���2, we integrate its encoding
layers into a new CNN model�2, denoted as�2����� with the aim to estimate the selectivity of range queries.
In particular, model �2����� is trained with new sets of data points with increasing size. Each of these sets,
called �� (�����

�)� , contains the histograms of a subset of �����
� (see Sec. 5.2) as input. Indeed, in this architecture,

spatial embeddings are not used as input of �2, but they are produced by the encoding layers of ���2 that
have been integrated in �2����� . We built the various �� (�����

�)� by considering collection of data points of
cardinality from 485 to 15,474, with a corresponding size from 0.45 GB to 1.22 GB. Finally, we compare the
accuracy obtained by�2����� for each�� (�����

�)� with the one obtained by the corresponding model�2��� that
has been trained with the same collection of datasets, but by substituting their histograms with the corresponding
spatial embeddings produced by ���2. Clearly, in this case despite to the cardinality of the input set, the training
with spatial embedding substantially reduces the size in bytes, which becomes from 0.01 GB to 0.41 GB, instead
from 0.45 GB to 1.22 GB.

The results of the comparison is illustrated in Fig. 8 where the accuracy of the two models is shown in terms of
WMAPE error with respect to the cardinality of the training set. Notice that, the transfer learning approach has
a positive efect only when the cardinality of the training set is lower than 7, 000 data points. Indeed,�2�����
performs better than the coniguration �2���+���2 only for small training sets. Conversely, when a bigger

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 23

Fig. 8. Comparison between�2����� and ���2+�2��� models, the first trained directly with histograms and the second

with spatial embeddings. The WMAPE error of both models is reported with respect to the cardinality of the training set.

training set can be generated, the proposed two-layer-model approach, that separates the generation of the spatial
embeddings from the training of�2, produces a better accuracy.

6 CONCLUSION AND FUTURE WORK

In this paper we propose a new approach for exploiting ML and DL techniques in optimization of spatial queries.
In particular, the proposed framework aims at developing a generic model for estimating diferent cost parameters
of several spatial operation implementations. The key idea is to introduce a two level architecture, where a irst
model, denoted as�1, is responsible for generating spatial embeddings of given datasets which are able to distill
their relevant features for the following parameter estimation. Model�1 needs large amount of training datasets
to work properly, but it can be trained only once and this cost can be amortized by the following estimation
models. Indeed, the second level of the proposed framework is composed of several models �2, one for each
spatial operation parameter to be estimated, but since they use as one of their inputs the spatial embeddings,
in place of the original multi-faced histograms, the amount and the size of the training set can be drastically
reduced.

We demonstrate the this idea can be applied successfully for the estimation of selectivity of range queries and
also of selectivity and number of MBR tests of both self-join and binary spatial join. Experiments showed that the
predictions of diferent parameters can be based on the same spatial embeddings and that the obtained accuracy
is better than the considered baselines. Moreover, we experimentally show that the use of spatial embeddings
drastically reduces the amount and the size of the training set needed to achieve a particular accuracy. Finally,
a comparison with another ML technique, called transfer learning, is presented which further highlights the
advantages of the proposed framework.
The obtained results are promising in terms of achieved accuracy with respect to the considered baseline

methods. They encourage the further investigation in this direction and the testing of the proposed framework
with other spatial operation implementations and cost parameters. Moreover, since many assumptions that have
been made consider only outdoor applications, for instance, relatively to the possible spatial distributions, an
interesting future extension would be studying the applicability and extensibility of the proposed methodology
also to indoor scenarios.

ACM Trans. Spatial Algorithms Syst.

24 • Belussi et al.

REFERENCES

[1] Ildar Absalyamov, Michael J. Carey, and Vassilis J. Tsotras. 2018. Lightweight Cardinality Estimation in LSM-Based Systems. In

Proceedings of the 2018 International Conference on Management of Data (SIGMOD ’18). Association for Computing Machinery, 841ś855.

https://doi.org/10.1145/3183713.3183761

[2] Ahmed M. Aly, Ahmed R. Mahmood, Mohamed S. Hassan, Walid G. Aref, Mourad Ouzzani, Hazem Elmeleegy, and Thamir Qadah.

2015. AQWA: Adaptive Query Workload Aware Partitioning of Big Spatial Data. Proc. VLDB Endow. 8, 13 (2015), 2062ś2073. https:

//doi.org/10.14778/2831360.2831361

[3] W. Aref and H. Samet. 1994. A Cost Model for Query Optimization Using R-Trees. In Proceedings of the Second ACM Workshop on

Advances in Geographic Information Systems, ACM-GIS. ACM, 60ś67.

[4] Walid G. Aref and Hanan Samet. 1993. Estimating Selectivity Factors of Spatial Operations. In Fifth Workshop on Foundations of Models

and Languages for Data and Object (Informatik-Berichte des IfI, Vol. 93/9), Andreas Heuer and Marc H. Scholl (Eds.). 31ś43.

[5] Alberto Belussi and Christos Faloutsos. 1998. Self-spacial join selectivity estimation using fractal concepts. ACM Trans. Inf. Syst. 16, 2

(1998), 161ś201. https://doi.org/10.1145/279339.279342

[6] Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2018. Detecting Skewness of Big Spatial Data in SpatialHadoop. In Proceedings of

the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL

’18). 432ś435. https://doi.org/10.1145/3274895.3274923

[7] A Belussi, S Migliorini, and A Eldawy. 2020. Cost estimation of spatial join in SpatialHadoop. GeoInformatica 24, 4 (2020), 1021ś1059.

https://doi.org/10.1007/s10707-020-00414-x

[8] Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2022. Spatial Embedding: A Generic Machine Learning Model for Spatial Query

Optimization. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (Seattle, Washington)

(SIGSPATIAL ’22). Association for Computing Machinery. https://doi.org/10.1145/3557915.3560960

[9] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidimensional Workload-Aware Histogram. In Proceedings of

the 2001 ACM SIGMOD International Conference on Management of Data (SIGMOD ’01). Association for Computing Machinery, 211ś222.

https://doi.org/10.1145/375663.375686

[10] Ahmed Eldawy et al. 2021. Beast: Scalable Exploratory Analytics on Spatio-temporal Data. In CIKM (Virtual Event, Queensland,

Australia) (CIKM ’21). ACM, 3796ś3807. https://doi.org/10.1145/3459637.3481897

[11] A. Eldawy and M. F. Mokbel. 2015. SpatialHadoop: A MapReduce framework for spatial data. In 2015 IEEE 31st International Conference

on Data Engineering (ICDE). 1352ś1363. https://doi.org/10.1109/ICDE.2015.7113382

[12] Christos Faloutsos, Bernhard Seeger, Agma Traina, and Caetano Traina. 2000. Spatial Join Selectivity Using Power Laws. In Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00). Association for Computing Machinery, 177ś188.

https://doi.org/10.1145/342009.335412

[13] Yanjie Fu, Pengyang Wang, Jiadi Du, Le Wu, and Xiaolin Li. 2019. Eicient Region Embedding with Multi-View Spatial Networks: A

Perspective of Locality-Constrained Spatial Autocorrelations. In Proceedings of the Thirty-Third AAAI Conference on Artiicial Intelligence

and Thirty-First Innovative Applications of Artiicial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in

Artiicial Intelligence (AAAI’19/IAAI’19/EAAI’19). Article 112, 8 pages. https://doi.org/10.1609/aaai.v33i01.3301906

[14] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and Gautam Das. 2020. Deep Learning Models for

Selectivity Estimation of Multi-Attribute Queries. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of

Data (SIGMOD ’20). 1035ś1050. https://doi.org/10.1145/3318464.3389741

[15] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020. DeepDB: Learn

from Data, Not from Queries! Proc. VLDB Endow. 13, 7 (2020), 992ś1005. https://doi.org/10.14778/3384345.3384349

[16] G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the Dimensionality of Data with Neural Networks. Science 313, 5786 (2006),

504ś507. https://doi.org/10.1126/science.1127647

[17] Porter Jenkins, Ahmad Farag, SuhangWang, and Zhenhui Li. 2019. Unsupervised Representation Learning of Spatial Data via Multimodal

Embedding. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM ’19). 1993ś2002.

https://doi.org/10.1145/3357384.3358001

[18] Puloma Katiyar, Tin Vu, Sara Migliorini, Alberto Belussi, and Ahmed Eldawy. 2020. SpiderWeb: A Spatial Data Generator on the Web. In

Proceedings of the 28th International Conference on Advances in Geographic Information Systems (Seattle, WA, USA) (SIGSPATIAL ’20).

465ś468. https://doi.org/10.1145/3397536.3422351

[19] Jin-Deog Kim and Bonghee Hong. 2000. Parallel Spatial Joins Using Grid Files. In Seventh International Conference on Parallel and

Distributed Systems, ICPADS. IEEE Computer Society, 531ś536. https://doi.org/10.1109/ICPADS.2000.857739

[20] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper. 2019. Learned Cardinalities: Estimating

Correlated Joins with Deep Learning. In Conference on Innovative Data Systems Research (CIDR). http://cidrdb.org/cidr2019/papers/p101-

kipf-cidr19.pdf

ACM Trans. Spatial Algorithms Syst.

https://doi.org/10.1145/3183713.3183761
https://doi.org/10.14778/2831360.2831361
https://doi.org/10.14778/2831360.2831361
https://doi.org/10.1145/279339.279342
https://doi.org/10.1145/3274895.3274923
https://doi.org/10.1007/s10707-020-00414-x
https://doi.org/10.1145/3557915.3560960
https://doi.org/10.1145/375663.375686
https://doi.org/10.1145/3459637.3481897
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1145/342009.335412
https://doi.org/10.1609/aaai.v33i01.3301906
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1126/science.1127647
https://doi.org/10.1145/3357384.3358001
https://doi.org/10.1145/3397536.3422351
https://doi.org/10.1109/ICPADS.2000.857739
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

A Generic Machine Learning Model for Spatial uery Optimization • 25

[21] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and Ion Stoica. 2018. Learning to Optimize Join Queries With

Deep Reinforcement Learning. CoRR abs/1808.03196 (2018). http://arxiv.org/abs/1808.03196

[22] Anders Boesen Lindbo Larsen, Sùren Kaae Sùnderby, Hugo Larochelle, and Ole Winther. 2016. Autoencoding beyond Pixels Using a

Learned Similarity Metric. In Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML’16).

JMLR.org, 1558ś1566.

[23] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska. 2021. Bao: Learning to Steer

Query Optimizers. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD ’21). 1275ś1288. https:

//doi.org/10.1145/3448016.3452838

[24] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for Join Order Enumeration. In Proceedings of the

First International Workshop on Exploiting Artiicial Intelligence Techniques for Data Management (aiDM’18). ACM, 3:1ś3:4. https:

//doi.org/10.1145/3211954.3211957

[25] Ryan C. Marcus et al. 2019. Neo: A Learned Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705ś1718. https://doi.org/10.14778/

3342263.3342644

[26] Yossi Matias, Jefrey Scott Vitter, and Min Wang. 1998. Wavelet-Based Histograms for Selectivity Estimation. SIGMOD Rec. 27, 2 (1998),

448ś459. https://doi.org/10.1145/276305.276344

[27] Sara Migliorini, Alberto Belussi, Mauro Negri, and Giuseppe Pelagatti. 2016. Towards massive spatial data validation with SpatialHadoop.

In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (BigSpatial ’16). 18ś27. https:

//doi.org/10.1145/3006386.3006392

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Eicient Estimation of Word Representations in Vector Space. CoRR

abs/1301.3781 (2013).

[29] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join. SIGMOD Rec. 25, 2 (1996), 259ś270. https://doi.org/10.

1145/235968.233338

[30] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita. 1996. Improved Histograms for Selectivity Estimation of

Range Predicates. SIGMOD Rec. 25, 2 (1996), 294ś305. https://doi.org/10.1145/235968.233342

[31] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce. In Proceedings of the 25th International Conference on

Advances in Geographic Information Systems (Redondo Beach, CA, USA). Article 21, 10 pages. https://doi.org/10.1145/3139958.3139967

[32] Samriddhi Singla and Ahmed Eldawy. 2022. Flexible Computation of Multidimensional Histograms. In Spatial Gems, Volume 1 (1 ed.).

Association for Computing Machinery, 119ś130.

[33] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2020. Using Deep Learning for Big Spatial Data Partitioning. ACM Trans.

Spatial Algorithms Syst. 7, 1 (2020), 3:1ś3:37. https://doi.org/10.1145/3402126

[34] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2021. A Learned Query Optimizer for Spatial Join. In Proceedings of the 29th

International Conference on Advances in Geographic Information Systems (Beijing, China) (SIGSPATIAL ’21). Association for Computing

Machinery, New York, NY, USA, 458ś467. https://doi.org/10.1145/3474717.3484217

[35] Tin Vu and Ahmed Eldawy. 2018. R-Grove: growing a family of R-trees in the big-data forest. In Proceedings of the 26th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL ’18). Association for

Computing Machinery, 532ś535. https://doi.org/10.1145/3274895.3274984

[36] Tin Vu, Sara Migliorini, Ahmed Eldawy, and Alberto Belussi. 2022. Spatial Data Generators. In Spatial Gems, Volume 1 (1 ed.). Association

for Computing Machinery, New York, NY, USA, 13ś24. https://doi.org/10.1145/3548732.3548736

[37] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator

for All Tables. Proc. VLDB Endow. 14, 1 (2020), 61ś73. https://doi.org/10.14778/3421424.3421432

[38] J. Yu, J. Wu, and M. Sarwat. 2015. GeoSpark: a cluster computing framework for processing large-scale spatial data. In Proceedings of

the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL ’15).

70:1ś70:4. https://doi.org/10.1145/2820783.2820860

[39] Wenchao Yu, Guangxiang Zeng, Ping Luo, Fuzhen Zhuang, QingHe, and Zhongzhi Shi. 2013. EmbeddingwithAutoencoder Regularization.

In Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 208ś223.

[40] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009. SJMR: Parallelizing spatial join with MapReduce on clusters.

In CLUSTER. IEEE Computer Society, New Orleans, LA, 1ś8. https://doi.org/10.1109/CLUSTR.2009.5289178

ACM Trans. Spatial Algorithms Syst.

http://arxiv.org/abs/1808.03196
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.1145/276305.276344
https://doi.org/10.1145/3006386.3006392
https://doi.org/10.1145/3006386.3006392
https://doi.org/10.1145/235968.233338
https://doi.org/10.1145/235968.233338
https://doi.org/10.1145/235968.233342
https://doi.org/10.1145/3139958.3139967
https://doi.org/10.1145/3402126
https://doi.org/10.1145/3474717.3484217
https://doi.org/10.1145/3274895.3274984
https://doi.org/10.1145/3548732.3548736
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.1109/CLUSTR.2009.5289178

26 • Belussi et al.

A APPENDIX - DETAILED EXPERIMENTAL RESULTS

This appendix reports some detailed results about the performed experiments which have not been included in
the main paper for not cluttering the presentation. Sec. A.1 is related to the experiments performed about the
construction of model �1 which produces the spatial embeddings. Sec. A.2 reports detailed results about the
identiication of the best model�2 which estimates the range query selectivity parameter. Sect. A.3 illustrates
detailed results aboth the�2 models for estimating the selectivity and the number of MBR tests for the self-join.
Finally, Sec. A.4 contains detailed results about the models�2 built for estimating the selectivity and the number
of MBR tests required by the two considered implementations of the binary spatial join, respectively.

A.1 Autoencoders

This section reports the detailed results about the four experiments described in Sec. 5.1 for the identiication of
the 8 candidate spatial embeddings. In particular, Tab. 10 reports the detailed results obtained with a stacked
autoencoder trained with only synthetic data. The WMAPE is computed on a test set covering the 20% of the data
points that the model has not seen before. Moreover, an additional set of data points produced by considering 194
real datasets, from TIGER and OSM sources, have been used as test set producing the WMAPE REAL shown in
the 6th column. Similarly, Tab. 11 reports the detailed results obtained with a convolutional autoencoder trained
with only synthetic data and tested on the same synthetic and real datasets considered in the previous case.

Table 10. Training of the stacked autoencoder, with 3 dense layers, for extracting spatial embeddings starting from

histograms of 128 × 128 × 6. The training has been performed with 50 epoches and considering only synthetic datasets.

ColumnWMAPE reports the error obtained by performing the test on synthetic data, while columnWMAPE REAL contains

the error for the test performed on real datasets.

3 dense layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE WMAPE Selected

time (sec) LOSS REAL autoencoder

latent dimension = 384

512,256 71 9.5E-04 1.3E-03 0.405 55.71 ś

1024,512 105 9.6E-04 1.5E-03 0.363 57.12 ���1
2048,1024 165 9.6E-04 1.5E-03 0.400 50.57 ś

latent dimension = 768

512,256 71 9.0E-04 1.3E-03 0.366 56.81 ś

1024,512 103 9.6E-04 1.6E-03 0.370 58.01 ś

2048,1024 163 1.0E-03 1.4E-03 0.370 50.92 ś

latent dimension = 1536

512,256 73 1.2E-03 1.3E-03 0.368 55.85 ś

1024,512 104 1.1E-03 1.6E-03 0.356 54.06 ���2
2048,1024 164 9.2E-04 1.6E-03 0.423 52.87 ś

Tab. 12 reports the detailed results obtained with a stacked autoencoder trained with both real and synthetic
data. The WMAPE is computed on a test set covering the 20% of the data points that the model has not seen
before which includes both synthetic and real datasets, so column WMAPE REAL is not necessary in this case.
Similarly, Tab. 13 reports the detailed results obtained with a convolutional autoencoder trained and tested on
both real and synthetic data.

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 27

Table 11. Training of the convolutional autoencoder, with 3 CNN layers, for extracting spatial embeddings starting from

histograms of 128 × 128 × 6. The training has been performed with 50 epoches and considering only synthetic datasets.

ColumnWMAPE reports the error obtained by performing the test on synthetic data, while columnWMAPE REAL contains

the error for the test performed on real datasets.

3 CNN layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE WMAPE Selected

time (sec) LOSS REAL autoencoder

latent dimension = 512

ilter(32,16) 78 2.8E-03 3.0E-03 0.501 1.82 ś

ilter(64,32) 87 2.6E-03 2.4E-03 0.486 1.97 ś

ilter(128,64) 124 2.9E-03 3.0E-03 0.507 1.59 ś

latent dimension = 768

ilter(32,16) 72 2.6E-03 2.8E-03 0.510 1.67 ś

ilter(64,32) 80 1.6E-03 1.5E-03 0.421 1.94 ś

ilter(128,64) 121 1.3E-03 1.3E-03 0.352 1.28 ���1
latent dimension = 3072

ilter(32,16) 73 1.4E-03 1.5E-03 0.386 1.42 ś

ilter(64,32) 80 9.8E-04 9.9E-04 0.319 1.48 ���2
ilter(128,64) 121 8.4E-04 9.2E-04 0.326 1.25 ś

Table 12. Training of the stacked autoencoder, with 3 dense layers, for extracting spatial embeddings starting from

histograms of 128 × 128 × 6. The training has been performed with 50 epochs and considering both real and synthetic

datasets.

3 dense layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE Selected

time (sec) LOSS autoencoder

latent dimension = 48

2048,1024 182 8.8E-04 3.2E-03 5.53 ś

1024,512 122 8.2E-04 2.6E-03 5.60 ś

512,256 84 8.4E-04 3.5E-03 5.72 ś

16,32 53 1.7E-03 2.8E-03 2.84 ���3
latent dimension = 192

2048,1024 182 1.3E-03 3.9E-03 6.52 ś

1024,512 123 8.4E-04 3.3E-03 5.12 ś

512,256 81 9.6E-04 3.8E-03 5.64 ś

16,32 52 1.8E-03 3.3E-03 3.59 ś

latent dimension = 384

2048,1024 184 1.3E-03 3.0E-03 5.54 ś

1024,512 122 8.4E-04 2.8E-03 5.28 ś

512,256 82 9.3E-04 3.5E-03 6.38 ś

16,32 51 1.6E-03 2.6E-03 2.42 ���4

A.2 Models estimating the selectivity of range queries

This section contains the detailed results of the experiments performed to build model�2 which estimates the
selectivity of range queries. As described in Sec. 5.2, two diferent architectures have been tested for this purpose.

ACM Trans. Spatial Algorithms Syst.

28 • Belussi et al.

Table 13. Training of the convolutional autoencoder, with 3 CNN layers, for extracting spatial embeddings starting from

histograms of 128 × 128 × 6. The training has been performed with 50 epochs and considering both real and synthetic

datasets.

3 dense layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE Selected

time (sec) LOSS autoencoder

latent dimension = 1536

ilter(32,16) 93 9.8E-04 9.1E-04 0.59 ś

ilter(64,32) 100 7.7E-04 8.2E-04 0.59 ś

ilter(128,64) 143 7.1E-04 7.0E-04 0.51 ���3
latent dimension = 768

ilter(32,16) 89 1.4E-03 1.6E-03 0.60 ś

ilter(64,32) 98 1.1E-03 1.1E-03 0.54 ���4
ilter(128,64) 144 9.3E-04 9.8E-04 0.55 ś

latent dimension = 512

ilter(32,16) 88 1.4E-03 1.4E-03 0.60 ś

ilter(64,32) 95 1.3E-03 1.3E-03 0.63 ś

ilter(128,64) 144 1.1E-03 1.1E-03 0.64 ś

They difer from the kind of network used to process the input spatial embeddings and are denoted as�2��� and
�2��� , respectively.

Tab. 14 reports the results of the application of�2��� in combination with various input sets containing spatial
embeddings generated by diferent autoencoders. In particular,�2 is trained and tested on: (a) only synthetic data
points, in this case a set of 64,000 data points is considered; or (b) on both real and synthetic data points, in this
case 32,000 data points for synthetic data are randomly selected from the original 64,000 elements, and additional
32,000 real data points are added to this set by randomly selecting them from the 33,554 points obtained from the
range queries computed on OSM Lakes and OSM Parks datasets. The results of case (a) are reported in the irst
ive rows of Tab. 14, while the results of case (b) are contained in the last ive rows of the table.

In Tab. 14, column Hyperpar. reports the number or nodes in each layer, while column Baseline reports the
error of the baseline evaluated with the metrics WMAPE. As baseline we use the theoretical formula proposed
in [4] for estimating the selectivity of range query. Notice that, when�2��� is tested on synthetic dataset alone,
we use only spatial embeddings generated with autoencorder trained with only synthetic data, i.e. ���1, ���2,
���1 and���2. On the contrary, when�2��� is tested also on real datasets, then we use the autoencoders trained
also with real data, i.e. ���3, ���4, ���3 and ���4. For each considered autoencoder, its latent dimension (LD) is
also reported.
Similarly, Tab. 15 reports the results of the application of �2��� in combination with various input sets

containing spatial embeddings generated by diferent autoencoders. As in the previous case,�2��� is initially
trained and tested on only synthetic data and then on both synthetic and real data. The same considerations
made above for the choice of the autoencoder in the various cases hold also here.

A.3 Models estimating the selectivity and number of MBR tests of self-join

This section reports the detailed results of the experiments performed to build the two models �2 which are
used to estimate the selectivity and the number of MBR tests of the self-join, respectively. In this case only 4
autoencoders are considered, the ones that perform better in the various conigurations identiied in the previous

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 29

Table 14. M2 for estimation of selectivity of range queries with a model of type DNN. Hyperparameters of column

Hyperpar. are as follows: dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 = 256,128,128,64,64, dH4 = 512,256,256,128,128,

dH5 = 1024,512,512,256,256.

Hyperpar. Embedding Baseline

M2 trained and tested on synthetic data

���1 ���2 ���1 ���2 Theoretical

�� = 384 �� = 1536 �� = 768 �� = 3072 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

dH1 0.1701 1569 0.2038 1317 0.2001 1150 0.2268 750

0.691

dH2 0.1120 2146 0.1268 1140 0.3409 1285 0.1088 1231

dH3 0.0782 2007 0.1103 989 0.2818 560 0.1554 890

dH4 0.0802 2145 0.1225 1360 0.2361 736 0.0934 989

dH5 0.0818 2114 0.1231 1077 0.2335 647 0.1312 507

M2 trained and tested on synthetic and real data

���3 ���4 ���3 ���4 Theoretical

�� = 48 �� = 384 �� = 1536 �� = 768 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

dH1 0.2367 1550 0.3208 1355 0.3449 1172 0.3306 407

1.32

dH2 0.2143 1176 0.2968 682 0.3463 651 0.3423 954

dH3 0.2718 1698 0.2449 1497 0.2904 1044 0.3251 596

dH4 0.2237 1290 0.2649 1164 0.3386 829 0.4291 343

dH5 0.2274 1570 0.3013 571 0.3365 441 0.3047 458

Table 15. M2 for estimation of selectivity of range queries with a model of type CNN. Hyperparameters of column Hyperpar.

are as follows: cH1 = 64,32,32,16, cH2 = 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256.

Hyperpar. Embedding Baseline

M2 trained and tested on synthetic data

���1 ���2 ���1 ���2 Theoretical

�� = 384 �� = 1536 �� = 768 �� = 3072 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

cH1 0.1621 1101 0.1646 2208 0,1836 1874 0.1206 2018

0.691

cH2 0.1167 2021 0.1201 2108 0.1333 1877 0.1304 2650

cH3 0.0973 1150 0.1061 2222 0.1038 1877 0.0961 2350

cH4 0.1062 1659 0.0948 2309 0.1005 1742 0.0894 1835

cH5 0.0859 2257 0.1001 2199 0.1038 1559 0.0907 3228

M2 trained and tested on synthetic and real data

���3 ���4 ���3 ���4 Theoretical

�� = 48 �� = 384 �� = 1536 �� = 768 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

cH1 0.2619 1400 0.3092 936 0.2747 1641 0.3096 1119

1.32

cH2 0.2726 2412 0.2379 2513 0.2379 2531 0.2542 2366

cH3 0.2386 2492 0.2269 2530 0.2737 2851 0.2994 1540

cH4 0.2071 2567 0.2007 2700 0.2332 2815 0.2453 707

cH5 0.2772 1542 0.2156 2159 0.3097 2820 0.2851 2788

experiments done for the range query selectivity. In particular, given the two considered architectures described in
Sec. 5.3 and denoted as�2��� and�2��� , we consider for each of them a stacked and a convolutional autoencoder.

ACM Trans. Spatial Algorithms Syst.

30 • Belussi et al.

Table 16. M2 for estimating the self-join selectivity for both synthetic datasets only, and synthetic and real dataasets

together. Hyperparameters of column Hyperpar. are for �2��� are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 =

256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for �2��� are cH1 = 64,32,32,16, cH2 =

128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256.. Column Time reports the training time in

seconds.

Net. Hyper Synthetic data Synthetic and real data

arch. par. ���1 ���2 BL ���4 ���3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

�2���

dH1 0.3079 135 0.2974 75

0.69

0.4135 154 0.6954 53

2.0

dH2 0.3261 135 0.2217 93 0.3958 153 0.6738 36

dH3 0.2646 134 0.2138 198 0.4078 154 0.5959 154

dH4 0.2789 138 0.2495 141 0.3847 158 0.6061 105

dH5 0.2806 141 0.2761 98 0.3557 160 0.5876 159

�2���

cH1 0.3519 139 0.2727 76

0.69

0.4178 194 0.4562 196

2.0

cH2 0.3144 139 0.2666 138 0.4095 194 0.7788 39

cH3 0.3006 136 0.2252 124 0.3694 213 0.3345 199

cH4 0.3059 139 0.2211 128 0.3397 216 0.3163 229

cH5 0.3096 144 0.2533 101 0.3691 236 0.3010 233

Tab.16 report the results of training and testing the two models�2��� and�2��� for the selectivity estimation
of the self-join with both synthetic datasets only, and synthetic and real datasets together. In particular, the
input set of these models is represented by the spatial embeddings generated by the stacked autoencoder ���1 or
the convolutional autoencoder ���2 in the irst case, and the stacked autoencoder ���4 or the convolutional
autoencoder ���3 in the second case . For each of these cases, we report both the error obtained during the
estimation of the spatial join selectivity (i.e., columnWMAPE) and the required training time in seconds. Various
hyperparameter conigurations are considered and the best obtained results are highlighted in bold.

Table 17. M2 for estimating the number of MBR tests for the self-join for both synthetic datasets only, and synthetic

with real datasets together. Hyperparameters of column Hyperpar. for�2��� are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32,

dH3 = 256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for�2��� are cH1 = 64,32,32,16, cH2 =

128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Column Time reports the training time in

seconds.

Net. Hyper Synthetic data Synthetic and real data

arch. par. ���1 ���2 BL ���4 ���3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

�2���

dH1 0.4547 109 0.4562 77

0.96

0.4588 133 0.5199 136

0.96

dH2 0.3904 124 0.3908 90 0.4452 134 0.7129 30

dH3 0.3947 124 0.3399 138 0.4538 133 0.4795 119

dH4 0.4135 128 0.3128 139 0.4946 136 0.6773 124

dH5 0.4093 153 0.3231 109 0.5129 140 0.5262 142

�2���

cH1 0.4973 138 0.5057 110

0.96

0.5578 110 0.3983 173

0.96

cH2 0.4097 158 0.3029 182 0.4452 169 0.3517 171

cH3 0.4136 174 0.3624 147 0.4327 187 0.3001 174

cH4 0.3971 175 0.3232 184 0.4266 191 0.3403 202

cH5 0.3932 191 0.3566 182 0.4255 207 0.3724 206

ACM Trans. Spatial Algorithms Syst.

A Generic Machine Learning Model for Spatial uery Optimization • 31

Finally, Tab.17 reports the estimation errors for�2��� and�2��� when they are trained and tested on both
synthetic data only, and synthetic and real datasets togehter, with the aim to estimate the number of MBR tests
performed during the self-join. In particular, as in the for the selectivity estimation the input embeddings are
produced by using autoencoders ���1 and ���2 in the irst case, and ���4 and ���3 in the second one.

A.4 Models estimating the selectivity and number of MBR tests of binary spatial join

This section reports the detailed results of the experiments performed to build the models�2 which are used to
estimate the selectivity and the number of MBR tests of the binary spatial join, respectively. As in the previous
case only 4 autoencoders are considered, the ones that perform better in the experiments done for the range
query selectivity. In particular, given the two considered architectures described in Sec. 5.4 and denoted as�2���
and�2��� , we consider for each of them a stacked and a convolutional autoencoder.

Table 18. M2 for estimating the binary spatial join selectivity for both synthetic datasets only, and synthetic and real

datasets together. Hyperparameters of column Hyperpar. for�2��� are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3

= 256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for �2��� are cH1 = 64,32,32,16, cH2 =

128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256.. Column Time reports the training time in

seconds.

Net. Hyper Synthetic data Synthetic and real data

arch. par. ���1 ���2 BL ���4 ���3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

�2���

dH1 0.3024 403 0.2862 441

0.7274

0.2636 131 0.4502 132

0.8424

dH2 0.2794 406 0.2507 408 0.2863 126 0.2683 95

dH3 0.2495 401 0.2555 409 0.3096 131 0.4507 101

dH4 0.2409 411 0.2865 420 0.2832 75 0.3993 134

dH5 0.2431 432 0.2251 431 0.2795 135 0.4217 142

�2���

cH1 0.3490 341 0.3122 518

0.7274

0.3459 126 0.3639 127

0.8424

cH2 0.3184 481 0.2859 551 0.2665 157 0.2637 174

cH3 0.3101 483 0.2811 575 0.2302 155 0.2171 163

cH4 0.3115 510 0.2810 550 0.2521 149 0.2255 174

cH5 0.3035 522 0.2907 588 0.2502 168 0.2125 175

Tab.18 report the results of training and testing the two models�2��� and�2��� for the estimation of binary
spatial join selectivity, when we use synthetic datasets only, or synthetic and real data together. In particular,
the input set of these models is in the irst case represented by the spatial embeddings generated by the stacked
autoencoder ���1 or the convolutional autoencoder ���2, while in the second case it is represented by the
embeddings generated by���4 and���3, respectively . For each of these cases, we report both the error obtained
during the estimation and the time required by the training. Various hyperparameter conigurations are considered
and the best obtained results are highlighted in bold.

Tab.19 reports the estimation errors for�2��� and�2��� when they are trained and tested on both synthetic
datasets only, and synthetic and real datasets together with the aim to estimate the number of MBR tests for the
SJMR implementation of the binary spatial join. In particular, in this case the input embeddings are produced
by using autoencoders ���1 and ���2 in the irst case, and by ���4 and ���3 in the second one. In a similar
way, Tab. 20 reports the same result but for the estimation of the number of MBR tests performed by the DJ
implementation of the binary spatial join.

ACM Trans. Spatial Algorithms Syst.

32 • Belussi et al.

Table 19. M2 for estimating the number of MBR tests for the SJMR implementation of the binary spatial join trained

with both synthetic datasets only, and synthetic with and real datasets together. Hyperparameters of column Hyperpar.

are for �2��� are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 = 256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 =

1024,512,512,256,256. While for�2��� are cH1 = 64,32,32,16, cH2 = 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128,

cH5 = 1024,512,512,256. Column Time reports the training time in seconds.

Net. Hyper Synthetic data Synthetic and real data

arch. par. ���1 ���2 BL ���4 ���3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

�2���

dH1 0.4032 407 0.8587 54

0.8115

0.3681 140 0.6719 143

1.0085

dH2 0.3904 403 0.3897 407 0.4275 111 0.4937 87

dH3 0.4137 408 0.3672 419 0.3379 140 0.7307 123

dH4 0.3477 418 0.3401 424 0.4321 124 0.6962 147

dH5 0.4045 365 0.3533 405 0.4559 108 0.6843 132

�2���

cH1 0.8556 98 0.4540 520

0.8115

0.3626 164 0.5321 168

1.0085

cH2 0.8567 97 0.4100 547 0.3784 166 0.5141 177

cH3 0.4587 485 0.3907 465 0.3205 166 0.4819 191

cH4 0.4427 514 0.4140 538 0.3223 169 0.3696 189

cH5 0.4722 496 0.4564 571 0.3261 153 0.3307 190

Table 20. M2 for estimating the number of MBR tests for the DJ implementation of the binary spatial join trained

with both synthetic datasets only, and synthetic with and real datasets together. . Hyperparameters of column Hyperpar.

are for �2��� are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 = 256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 =

1024,512,512,256,256. While for�2��� are cH1 = 64,32,32,16, cH2 = 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128,

cH5 = 1024,512,512,256.. Column Time reports the training time in seconds.

Net. Hyper Synthetic data Synthetic and real data

arch. par. ���1 ���2 BL ���4 ���3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

�2���

dH1 0.3768 99 0.2917 93

0.37

0.4119 134 0.4543 101

0.39

dH2 0.3381 97 0.2767 96 0.3429 116 0.4265 119

dH3 0.2953 142 0.2723 99 0.3478 1 17 0.4197 119

dH4 0.2985 98 0.2696 99 0.3344 119 0.4234 122

dH5 0.3012 99 0.2631 107 0.3391 120 0.4058 124

�2���

cH1 0.3681 117 0.2998 143

0.37

0.4063 144 0.4063 203

0.39

cH2 0.3556 119 0.2979 143 0.3765 143 0.4334 144

cH3 0.3543 129 0.2846 144 0.3884 160 0.3904 177

cH4 0.3382 136 0.2909 154 0.3699 164 0.3822 171

H5 0.3485 127 0.2887 263 0.3645 199 0.4222 231

ACM Trans. Spatial Algorithms Syst.

	Abstract
	1 Introduction
	2 Related work
	3 Spatial embedding
	4 Estimating the cost of spatial operations
	4.1 Range query estimation
	4.2 Spatial join estimation

	5 Experiments
	5.1 Spatial Embeddings
	5.2 Range query
	5.3 Spatial Self-join
	5.4 Binary spatial join
	5.5 Discussion on experiment results
	5.6 Spatial embeddings vs Transfer learning

	6 Conclusion and future work
	References
	A Appendix - Detailed Experimental Results
	A.1 Autoencoders
	A.2 Models estimating the selectivity of range queries
	A.3 Models estimating the selectivity and number of MBR tests of self-join
	A.4 Models estimating the selectivity and number of MBR tests of binary spatial join

