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Abstract—Advancements in unmanned aerial vehicle (UAV)
technology have led to their increased utilization in various
commercial and military applications. One such application is
signal source search and localization (SSSL) using UAVs, which
offers significant benefits over traditional ground-based methods
due to improved RF signal reception at higher altitudes and
inherent autonomous 3D navigation capabilities. Nevertheless,
practical considerations such as propagation models and antenna
patterns are frequently neglected in simulation-based studies in
the literature. In this work, we address these limitations by
using a two-ray channel model and a dipole antenna pattern
to develop a simulator that more closely represents real-world
radio signal strength (RSS) observations at a UAV. We then
examine and compare the performance of previously proposed
linear least square (LLS) based localization techniques using
UAVs for SSSL. Localization of radio frequency (RF) signal
sources is assessed based on two main criteria: 1) achieving the
highest possible accuracy and 2) localizing the target as quickly as
possible with reasonable accuracy. Various mission types, such as
those requiring precise localization like identifying hostile troops,
and those demanding rapid localization like search and rescue
operations during disasters, have been previously investigated. In
this paper, the efficacy of the proposed localization approaches
is examined based on these two main localization requirements
through computer simulations.

Index Terms—AERPAW, antenna pattern, drone, linear least
square (LLS), positioning, RSSI-based localization, unmanned
aerial vehicles (UAV), two-ray model.

I. INTRODUCTION

The availability of unmanned aerial vehicles (UAVs) has
expanded in various industries, leading to rapid growth in the
UAV market. As interest in the UAV industry continues to
increase, numerous studies and experiments are being con-
ducted aggressively. Especially compared to ground systems,
UAVs have significant advantages in achieving line of sight.
In addition, UAVs offer flexibility in deployment for various
situations with immediate response time. These characteris-
tics make UAVs well-suited for signal source searching and
localization (SSSL) missions.

Requirements for SSSL can vary in different situations.
From a high-level perspective, we can categorize the UAV
localization requirements into two: 1) localization accuracy
with fixed flight time (LAFFT): requiring a high localization
accuracy, and 2) localization time with fixed localization
accuracy (LTFLA): demanding fast localization with a coarse
accuracy. For example, the implementation of UAVs for posi-
tioning hostile targets with RF signals in warfare is studied in
[11, [2]. This is a representative example of LAFFT because
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accurate localization is highly critical for a precise strike
in warfare. On the other hand, the localization, search, and
rescue of victims (e.g., after disasters) in an undetermined vast
area within a limited time is studied in [3], [4]. This can be
categorized as LTFLA since the localization time may be more
critical than achieving a very low localization accuracy.

Estimating an RF signal location using UAVs is covered
in various studies in the existing literature [5]-[8]. The im-
portance of optimizing UAV search patterns for improving
localization accuracy is explored in [9], while in [10], [11],
the effect of the unknown path loss exponent on localization
performance is studied. The dependence of the localization
accuracy on the transmitter and receiver’s antenna patterns are
quantified in [12]. Most previous studies use the free space
path loss model in an outdoor environment as a propagation
model because of its simplicity.

In this paper, we utilize UAV-based SSSL algorithms sug-
gested in previous work [13], using more realistic propagation
models and antenna patterns. The major contributions of this
paper can be summarized as follows. First, rather than the
free-space propagation assumption in [13], we use the two-ray
propagation model that may to some extent characterize air-
to-ground propagation in an open field. Moreover, we consider
both omnidirectional and doughnut-shaped dipole antenna
patterns with different UAV altitudes for performance analysis.
We evaluate a modified version of the SSSL algorithms in [13]
and compare their localization accuracy and localization time
for various scenarios.

The remainder of this paper is organized as follows. In
Section II, two-ray propagation models, antenna gain models,
and the least square-based localization approach are discussed.
In Section III, three different SSSL approaches are reviewed
along with the new simulation setup. In Section IV, experimen-
tal configurations and setups are presented, and localization
performance upon antenna patterns and UAV’s altitude are
compared. Consequently, the conclusion and future works are
suggested in Section V.

II. SYSTEM MODEL

The coordinates of a transmitter that is to be localized
are represented as T = (z,y,z). The receiver’s (UAV’s)
location at the ¢, discretized coordinate is expressed as
1P = (2,9, 2;). We assume that the UAV altitude is fixed
for a given SSSL mission, hence, z; = h. Considering a two-
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Fig. 1: Two-ray propagation model.

ray propagation model, the received signal strength can be
characterized as follows [14]:

_ 2

b_p (X 21 /G(6) emine
ot 47 dios dyet

where P, is received signal strength, P is transmitted signal

+T(0,)v/G(0r) , (1)

strength, A is % 0; = tan~( 'z_h) is the elevation angle
2D
between the transmitter and the receiver and 6, = tan—! (%ﬁ)

is the ground reflection angle. To calculate ; and 6,., we
use dop = +/(x — x;)2 + (y — y;)2. Moreover, G(6;) is the
antenna gain of the line of sight and G(6,.) is the antenna gain
of the ground reflected ray. In this context, the antennas of both
the transmitter and the receiver are oriented vertically. Based
on these assumptions, the antenna gains can be represented
as a function of the spatial coordinates pertaining to the
transmitter and the receiver in the following manner [15]:

cos(™L sin()) — cos(TLL)
c - C , (2)
cos(6)

where ( = % is the wavelength that is assumed to be a half-
wave dipole antenna in this paper. In (1), I'(9) is the ground

reflection coefficient and it is represented as [16]
r(6,) = s?n(@r) — /&0 — cos?(6;) 7 3)

sin(6;) go — cos?(6y)

where ¢ = € — j60PA is an environment constant that
represents the relative permittivity of the ground. This value
depends on the two components of ground type: i) ¥ repre-
sents the conductivity of the earth (units in mhos per meter),
and ii) € denotes the dielectric constant of the ground relative

to unity in free space.

G(0) = G(I",1P) =

In (1), A2 is the phase difference between the line of sight
and the reflected paths by the different arrival time, which can
be expressed as
27 (dyer — d
Ag — 71'( ef los) : (4)
where djos and d,r are the line of sight distance between the
transmitter and the 7;;, receiver and the reflected distance from
each, respectively. They can be expressed as functions of {7
and [P as follows

hos, (1712 = /(@ = 20 + (g — ) + (= B, (5)

ret, (1) = /(@ = 2 + (g —9)* + (2 + W) . (6)
We assume that the transmitted signal strength of the target
is known by the UAV. Then, the path loss at each receiver’s
location can be modeled by

PL; =P — Py, +wi , (N
where w denotes shadowing component that follows a zero-
mean Gaussian distribution w ~ N (0, 2). Then, the measured
path loss by the received signal strength at the 7}, location can
be expressed as -

PL; =Py —P,, . (8)

To implement the least square algorithm for localization, the
distance between the target and the 4, receiver’s locations
needs to be estimated. We assume that the two-dimensional
separation between the transmitter and the receiver can be
estimated based on the residuals between the measured path
loss and the path loss by the analytical model. The estimated
distance based on the difference in path loss can be formulated
as follows

N . _ —\ 2
dop = arg min (PLZ- — PLi) ; 9)

where dop represent the estimated distance between the target
and the 4y, UAV location in two dimensions, PL; denote
the measured path loss, and PL; indicates the analytically
derived path loss using (1). Note that PL; is a function of
a single variable dop since the parameters of this equation,
G(6), T'(0r), dios, and d,ef, can be expressed in terms of daop.

Assuming that the index of the current location of the UAV
is denoted as N , we only utilize the subset of indices to esti-
mate the target location. The size of the selected unique indices
to be used in the localization process should be 3 < S < N.
The subset of indices can be represented as v. In addition,
a reference index ry,, r € v, is defined for each suggested
localization algorithm, which is used to obtain |S — 1| linear
equations from S expressions. In this paper, the closest index
among the indices v from the target is set as a reference
index. Once the estimated distance has been determined, the
transmitter’s position can be approximated by employing the
least square approach for k =1,---,S, and k # r, as [13]

AT = b, , (10)
where
Loy(1) — Lr Yu(1) — Yr
A, =2 Tyk) — Tr Yo(k) = Yr | > (11)
Ly(S) = Tr Yu(S) = Yr
4} = dZ )+ 230 Yy — X
by = | df —d + 2l Fubgy — x|, (12)
di = i)+ 2s) FUos) X
and 1T, = [, 9]T is the estimated target location, where
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Fig. 2: SSSL algorithms considered in this paper.

v(k) is ke index of v, dy(y) is estimated distance between
the target and the receiver gained based on (9), and x is (22 +
y?2). The estimated target location lgD can then be determined
employing the least square solution, given by

lgD = (AZAv)ilAZbu .

III. PROPOSED SSSL METHODS

13)

In our previous study [13], five heuristic-based localization
algorithms were proposed for the selection of indices v on
the UAV’s trajectory for constructing equations as indicated
in (13): 1) LLS-CON: utilizing three consecutive indices from
the current UAV’s flight index N, given by v = {N , N —
1, N —2}; 2) LLS-CUM: using every index up to the current
UAV’s flight index N, denoted as v = {1, ..., N'}; 3) LLS-
FML: selecting the first, middle, and last index, which can be

N2+12 : N}; 4) LLS-CHLM:
adopting three to five indices using the concept of the convex
hull in which the connected lines of each index encompass
all other indices of the UAV’s trajectory; and 5) LLS-CLS:
selecting three indices that are the closest to a target location,
which can be represented as v = {vg4(1), v4(2), V4(3)} ,
where vy is a reordered by ascending manner.

In previous work, these algorithms were evaluated in a
simplified simulation scenario, utilizing the free space path
loss model and minimizing noise factors to reduce the inherent
randomness of the simulations. On the other hand, the present
study aims to investigate the performance of these localization
algorithms in more realistic environments, considering the
two-ray propagation model in an open field and using more
realistic antenna patterns. In the current simulation setup, the
interval between each index on the UAV’s trajectory, where RF
measurements from the target are taken, is much shorter than
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Fig. 3: Trajectory of the UAV with fixed waypoints, and three
different signal source locations that the UAV is searching.
While all the target locations are on the ground, their corre-
sponding locations at the UAV’s altitude are also illustrated,

to show their relative location with respect to the UAV’s
trajectory more clearly.

what is used in [13]. Hence, we decided not to implement
LLS-CON. In addition, given its poor localization accuracy
in [13], LLS-FML is also not included in this study. In the
end, the LLS-CUM, LLS-CHLM, and LLS-CLS are used and
compared with each other in this paper.

In the current research, the number of indices on the UAV’s
trajectory is updated as follows for different SSSL approaches
to accommodate the new simulation environment.

1) LLS-CUM: The same index array as the previous study
isused as v = {1, s ]\7}

2) LLS-CHLM: A total of thirteen indices are used based
on the number of predefined trajectory’s waypoints (WPs). In
this modified algorithm, consecutive thirteen indices are used
before the UAV reaches the WPs. However, as the UAV passes
each WP, index array v is updated in a way to have a WP
passing index as a member. The index array for the LLS-
CHLM is denoted as

v ={N,N-1,.., N—(12—j),..., WPy, ..., WP;} ,
N>13,and2<j <13,
where WP; is the j;;, WP upon the preplanned trajectory.

3) LLS-CLS: Uses five trajectory indices for better per-
formance. As the interval of each index becomes narrowed,
the consecutive three points tend to have limited localization
performance. As we assume that vy is a reordered array
of v in an ascending manner, the index array used for
implementation of the LLS-CLS is represented as

v = {U¢(1)’ U¢(2)> U¢<3)’U¢(4)7U¢(5)} .
Figure 2 presents the underlying frameworks of each localiza-
tion algorithm being considered in this study.

IV. NUMERICAL RESULTS

The experiments are carried out in MATLAB-based simu-
lations. During the simulation stage, the theoretical received
signal strength (RSS) is evaluated based on the two-ray
propagation model. The three proposed localization algorithms
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Fig. 4: RSS measurements for various scenarios. (a)-(d): RSS vs. distance, and (e)-(h) RSS vs. trajectory.

TABLE I: Summary of simulation parameters.

Channel model

Carrier frequency 2.4 GHz
Bandwidth 20 MHz
Path loss exponent 2
Transmitter

Height Im
Transmit power 76 dBm
Antenna gain (Omni) 2 dBi
UAV

Altitude {30,50,70} m

Antenna gain (Omni) 2 dBi

are then implemented and comparatively assessed in terms of
their localization performance. In this stage, the transmitter’s
and receiver’s antenna patterns are set to two separate config-
urations: 1) omnidirectional antenna pattern; and 2) doughnut-
shaped dipole antenna pattern. Finally, to evaluate localization
algorithm performance, three components were implemented
consistent with the previous study: 1) accuracy; 2) time used
to achieve a specific level of localization accuracy; and 3)
reliability.

In simulations, the frequency and bandwidth for the trans-
mitted signal are set as 2.4 GHz and 20 MHz, respectively.
We employed a zig-zag pattern for the UAV’s trajectory.
In addition, the transmitter is positioned in three different
locations: 1) the target is on the UAV’s predefined trajectory;
2) the target is at the boundary of the trajectory; and 3)
the target is in a position far away from the trajectory. This
approach enabled the analysis of localization performance
based on the distance of the signal source from the predefined
trajectory. The trajectory and the different target locations are
represented in Fig. 3. For the antenna pattern configuration,
the omnidirectional antenna pattern’s gain is set to 2 dBi for
simplicity. On the other hand, the doughnut-shaped dipole

antenna gain is set based on (2). The principal distinction
between the dipole antenna and the omnidirectional antenna
pattern lies in the variation of antenna gain as the UAV’s
altitude changes.

A. Analysis of RSS for Different Scenarios

Using the simulation assumptions described earlier, the RSS
observations at different UAV altitudes, which are to be used
for different SSSL algorithms, are summarized in Fig. 4. The
theoretical RSS is obtained based on (7), while the measured
RSS is also derived from the same equation but includes a
Gaussian noise component. Figs. 4a-4d depict the variation
of RSS as a function of the distance between the transmitter
and the receiver. Figs. 4e-4h represent RSS in relation to the
UAV’s trajectory. In these figures, RSS at close distances to
the target location is significantly influenced by the UAV’s
altitude. Using these measurements, the proposed localization
algorithms are executed and compared across different UAV
altitudes in the following section.

B. Analysis of Distance Estimation Accuracy

In this section, we analyze how the accuracy of distance and
location estimates change with respect to the true distance and
angle between the UAV and the ground target. The root mean
square error (RMSE) of the distance estimates using (9) as a
function of the distance (DROD) and angle (DROA) between
the UAV and the ground target are depicted in Figs. 5a-5h. In
addition, the RMSE of the location estimates using (13) as a
function of the distance (LROD) and angle (LROA) between
the UAV and the ground target are illustrated in Figs. 5i-5p.
The RMSE of the estimated distance has proportional relations
with the real distance for both omnidirectional and dipole
antenna patterns when the altitude of the UAV is below 50
meters. On the other hand, when the UAV is at an altitude of 70
meters, the close distances also result in poor estimation due
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Fig. 5: Estimation RMSE for distance and angle variation. (a)-(h): distance estimation, and (i)-(p): localization.

to weaker signal strength caused by the dipole antenna pattern.
Similar trends in the relationship between distance estimation
RMSE and angle are also shown. Assuming that the altitude
of the UAV is fixed in each experiment, the angle variation is
mainly affected by the distance. In the figures, larger angles
exhibit lower RMSE on distance estimates for both antenna
patterns when the UAV altitude is below 50 meters. However,
the distance estimation RMSE increases at higher angles when
the UAV is at an altitude of 70 meters.

The impact of angle and distance variations on localization
performance is also illustrated in Fig. 5. The angle and distance
differ at every trajectory index, so tracking the characteristics
of each index is crucial. From this perspective, the LLS-CHLM
algorithm is implemented for localization results in Fig. 5.
Recalling the features of the other two algorithms: 1) the LLS-
CLS only uses the closest five indices, and 2) the LLS-CUM

uses every index up to the current flight index, they cannot
explicitly represent the influence of each index. In addition,
to clearly observe the variation in distance and angle, the
transmitter is positioned at the center of the UAV’s trajectory.
In Fig. 5i-51, it is observed in all antenna patterns and UAV
altitudes that larger distances cause higher localization RMSE.
On the other hand, higher angles result in a lower localization
RMSE. One remarkable observation is the discrepancy in how
the distance and localization errors depend on angle when the
UAV altitude is at 70 meters. In Fig. 5h, the distance RMSE
increased when the angle is larger than 60 degrees. On the
other hand, in Fig. 5p, the localization RMSE is stabilized
after 30 degrees. In this case, the possible localization error
caused by the distance error is mitigated by other indices when
using the least-square localization algorithm.
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C. Analysis of Proposed SSSL Methods

Utilizing the estimated distances and least-square approach,
we implemented and compared the proposed localization al-
gorithms for the omnidirectional antenna pattern at a UAV
altitude of 30 meters and the dipole antenna pattern at UAV
altitudes of 30, 50, and 70 meters, as depicted in Fig. 6.
In this figure, the x-axis represents the distance traveled by
the UAV, while the y-axis indicates the localization RMSE.
For performance comparison, we set a localization RMSE
threshold at 20 meters. For on-target location setup, the LLS-
CUM achieves the localization RMSE threshold in the shortest
flight time. However, for mid-target and far-target setups,
the LLS-CHLM and LLS-CUM exhibit similar localization
performance for both dipole and omnidirectional antenna
configurations, while the LLS-CLS demonstrates unreliable
performance, particularly in far-target settings.

Fig. 7 presents the long-term localization RMSE for each
algorithm with respect to target variation and the required
flight time to reach the RMSE threshold in the CDF graphs.
For simplicity and to distinguish the antenna pattern’s impact,
we primarily consider the dipole antenna pattern with a
UAV altitude of 50 meters. The LLS-CLS delivers the best
localization accuracy in on-target (1.8814 meters) and mid-
target (2.6457 meters) scenarios. However, the same algorithm
exhibits the worst performance for the far-target scenario, as
the UAV’s trajectory does not pass nearby the target. Both
the LLS-CUM and LLS-CHLM demonstrate relatively similar
localization accuracy in every target setup. For the required
flight time measurement, we assume a maximum UAV flight
speed of 20ms and an acceleration speed of 5ms—2. The
required flight time for LLS-CLS is heavily influenced by the
target’s position, with the current target configuration showing
the longest flight time for the required localization accuracy.
The other two algorithms display similar performance in terms
of required time, with LLS-CUM requiring slightly less flight
time than LLS-CHLM in the overall target configurations.
Table II summarizes the performances of all SSSL approaches,
considering different evaluation criteria.

V. CONCLUSIONS

In this study, we study the SSSL problem with an au-
tonomous UAV, considering three distinct approaches for se-
lecting anchor locations along a UAV’s trajectory. We incorpo-
rate a two-ray propagation model and specific UAV antenna
patterns into our simulation setup. We demonstrate that the
LLS-CLS algorithm excels in terms of localization accuracy
when the target is in close proximity to the UAV’s trajectory.
However, it falls short of achieving the required localization
accuracy when the target is far from the trajectory. In contrast,
the other two algorithms, LLS-CUM and LLS-CHLM, display
similar and relatively stable localization performance in terms
of both accuracy and required search time. Nonetheless, the
LLS-CUM algorithm entails high computational complexity
due to the expanding size of parameter matrices used for
location estimation. From our analysis, the LLS-CHLM al-
gorithm emerges as a promising choice, offering a balanced
performance trade-off between accuracy and search time with

TABLE II: SSSL algorithms performance summary.

Algorithms UAV flight UAV flight Average long term‘
time (seconds) | distances (m) | accuracy (m) (Var (m?))
CUM-On 35.9 683.6 2.0058 (1.5653)
CHLM-On 77.3 1,369.1 5.8384 (19.5932)
CLS-On 142.9 2,462.6 1.8814 (1.6371)
CUM-Mid 156.6 2,782.5 11.2024 (77.2772)
CHLM-Mid | 125.8 2,192.2 7.7171 (20.4467)
CLS-Mid 238.6 4,142.6 2.6457 (3.0880)
CUM-Far 240.4 4,190.5 14.2262 (124.4173)
CHLM-Far | 244.6 42259 15.6131 (100.1289)
CLS-Far — — 85.8901 (2,883.2)

comparatively low computational complexity. Looking ahead,
our future work will examine these algorithms under realistic
noise conditions. Moreover, we plan to test the proposed ap-
proaches in a real-world UAV testbed, utilizing the emulation
and testbed environments of the NSF AERPAW platform at
NC State University.

REFERENCES

[1] D. Kim, K. Lee, M. Park, and J. Lim, “UAV-based localization scheme
for battlefield environments,” in Proc. IEEE Military. Commun. Conf.
(MILCOM), 2013, pp. 562-567.

[2] H. Lee, K. Lee, and J. Lim, “Autonomous maneuvering of relay UAV for
battlefields using TDOA localization,” in Proc. IEEE Military. Commun.
Conf. (MILCOM), 2017, pp. 748-753.

[3] D.-E. Oh and J. Han, “Smart search system of autonomous flight UAVs
for disaster rescue,” Sensors, vol. 21, no. 20, p. 6810, 2021.

[4] M. Atif, R. Ahmad, W. Ahmad, L. Zhao, and J. J. P. C. Rodrigues,
“UAV-assisted wireless localization for search and rescue,” IEEE Sys-
tems Journal, vol. 15, no. 3, p. 3261, September 2021.

[5] N. Giizey, “RF source localization using multiple UAVs through a novel
geometrical RSSI approach,” Drones, vol. 6, no. 12, p. 417, 2022.

[6] U. Bhattacherjee, I. Guvenc, E. Ozturk, M. L. Sichitiu, O. Ozdemir, and
H. Dai, “Experimental study of outdoor UAV localization and tracking
using passive RF sensing,” in Proc. ACM Workshop on Wireless Network
Testbeds, Experimental evaluation and CHaracterization (WINTECH).
ACM, 2022.

[71 H. Mehmet, H. Omer, Y. Ramazan, K. Emre, and I. Gokhan, “RF source
localization using unmanned aerial vehicle with particle filter,” in Proc.
Int. Conf. on Mechanical and Aerospace Engineering, 2018.

[8] A. Visalakshi and A. Rajesh, “Implementation of an efficient extreme
learning machine for node localization in unmanned aerial vehicle
assisted wireless sensor networks,” Int J Commun Syst, vol. 33, p. e4173,
2020.

[9] D. Freddy, S. Sanaa, and F. Omar, “An optimized UAV trajectory
planning for localization in disaster scenarios,” Computer Networks, vol.
179, p. 107378, 2020.

[10] B. Liu, X. Zhu, Y. Jiang, Z. Wei, and Y. Huang, “UAV and piecewise
convex approximation assisted localization with unknown path loss
exponents,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12396-
12400, Dec 2019.

[11] M. Maode, J. Won Ho, C. Hong-Rak, and K. Kyung-Seok, “Empirical
path loss modeling and a RF detection scheme for various drones,”
Wireless Commun. and Mobile Comput., vol. 2018, p. 6795931, 2018.

[12] P. Sinha and I. Guvenc, “Impact of antenna pattern on TOA based 3d
UAV localization using a terrestrial sensor network,” IEEE Trans. Veh.
Technol., vol. 71, no. 7, p. 7703, 2022.

[13] H. J. Kwon and I. Guvenc, “RF signal source search and localization
using an autonomous UAV with predefined waypoints,” in Proc. [EEE
Veh. Technol. Conf. (VTC), June 2023.

[14] S. J. Maeng, O. Ozdemir, I. Guvenc, M. L. Sichitiu, R. Dutta, and
M. Mushi, “AERIQ: SDR-based LTE I/Q measurement and analysis
framework for air-to-ground propagation modeling,” in Proc. IEEE
Aerosp. Conf., Big Sky, MT, Mar. 2023.

[15] S.J. Maeng, M. A. Deshmukh, I. Guvenc, and A. Bhuyan, “Interference
mitigation scheme in 3D topology IoT network with antenna radiation
pattern,” in Proc. IEEE Veh. Technol. Conf. (VTC), Honolulu, HI, Sep.
2019.

[16] W. Jakes and D. Cox, Microwave mobile communications. Wiley IEEE
press, 1994.

Authorized licensed use limited to: Northeastern University. Downloaded on June 26,2024 at 16:53:42 UTC from IEEE Xplore. Restrictions apply.



