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Abstract: Discriminant analyses of multidimensional array data (i.e., tensors) are
of substantial interest in numerous statistics and engineering research problems,
such as signal processing, imaging, genetics, and brain—computer interfaces. In this
study, we consider a multi-class discriminant analysis with a tensor-variate predictor
and a categorical response. To overcome the high dimensionality and to exploit
the tensor correlation structure, we propose the discriminant analysis with tensor
envelope (DATE) model for simultaneous dimension reduction and classification.
We extend the notion of tensor envelopes from regression to discriminant analysis
and develop two complementary estimation procedures: DATE-L is a likelihood-
based estimator that is shown to be asymptotically efficient when the sample size
goes to infinity and the tensor dimension is fixed; DATE-D is a novel decomposition-
based estimator suitable for high-dimensional problems. Interestingly, we show that
DATE-D is still root-n consistent, even when the tensor dimensions on each model
grow arbitrarily fast, but at a similar rate. We demonstrate the robustness and
efficiency of our estimators using extensive simulations and real-data examples.
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1. Introduction

Statistical analyses of tensor data are common in areas such as high-throu-
ghput genetics (Hore et al. (2016)), signal processing (Cichocki et al. (2015)),
neuroimaging (Zhou, Li and Zhu (2013)), and point cloud data (Yan, Paynabar
and Pacella (2019)), among others. Our notion of a tensor analysis differs from
that in mathematics and physics, although some operators and techniques are
the same. We use multilinear algebra (e.g., Hitchcock (1927); Tucker (1966)) to
provide a concise statistical modeling framework and estimation procedures.

Two tasks popular in the statistical literature on tensor data analysis are
tensor decompositions and tensor regression problems. In the first category,
studies are mostly unsupervised, with tensor decompositions used to reduce the
dimensionality of the tensor and to extract a meaningful representation along
each mode of the tensor. For example, Kolda and Bader (2009) give an overview
of tensor decompositions and related applications, Wang, Meng and Yuan (2018)
provide a recent review on tensor sparse recovery, Chi and Kolda (2012) developed
algorithms for sparse count data, Zhang and Xia (2018) study the theoretical
limits of tensor singular value decomposition, and Zhang (2019) examine tensor
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completion. In the second category, the goal is to study the relationship between a
tensor variable and other variables (scalar, vector, or even tensor). Such problems
are formulated as tensor regression problems. In particular, a tensor variable can
appear in regression models as the predictor (e.g., Zhou, Li and Zhu (2013); Wang,
Zhu and Initiative (2017); Li et al. (2018)), the response (e.g., Hoff (2015); Li
and Zhang (2017); Sun and Li (2017)), or both (i.e., tensor on tensor regression,
Lock (2018); Gahrooei et al. (2020); Raskutti, Yuan and Chen (2019)).

Here, we study the problem of tensor discriminant analysis. Unlike the
abundant literature on tensor decompositions and regression problems, there are
far fewer statistical approaches and theoretical studies for tensor classification
and discriminant analysis. Some earlier works (Ye, Janardan and Li (2004); Li
and Schonfeld (2014); Zhong and Suslick (2015); Yan et al. (2006)) have shown
promising performance for matrix and tensor discriminant analysis, based on
the principle of maximizing the ratio of between-class variation to within-class
variation. These methods are thus extensions of Fisher’s discriminant analysis
(Fisher (1936)) to matrix/tensor data. Because of the high dimensionality,
such linear/multilinear classifiers are arguably more reliable than quadratic
or nonlinear discriminant analysis. Another important, but different research
direction is using margin-based classification methods for tensor data (Lyu,
Lock and Eberly (2017); Li and Maiti (2019)). More recently, likelihood-based
matrix/tensor discriminant analysis models and methods (Molstad and Rothman
(2019); Pan, Mai and Zhang (2019)) were shown to be more effective than
moment-based and margin-based methods.

We propose the discriminant analysis with tensor envelope (DATE) model,
which incorporates the recently proposed tensor envelope (Li and Zhang (2017);
Zhang and Li (2017)) to reduce the model complexity and improve estimation
efficiency. A Tensor envelope is a multilinear extension of the envelope
methodology in multivariate statistics (Cook, Li and Chiaromonte (2010)).
We provide a brief review of envelopes and tensor envelopes in Section 2.2.
The core idea of an envelope is to identify and eliminate unimportant and
immaterial variation in the data in order to improve the estimation and
prediction. This is achieved by projecting the data onto a latent subspace,
known as an “envelope.” The existing envelope methods for tensor data were
developed in regression problems, with very few focusing on tensor discriminant
analysis. We address this gap in the literature by extending the envelope
discriminant analysis (Zhang and Mai (2019)) from vector data to tensor data.
Similarly to existing envelope methods, we derive a likelihood-based estimator
(DATE-L) that is asymptotically efficient. To accommodate high-dimensional
applications, we propose a novel decomposition-based estimator (DATE-D) that
is a complementary alternative to the more expensive manifold optimization in
likelihood-based envelope estimation. We obtain a convergence rate for DATE-D
that is sufficiently strong for most tensor data applications. Therefore, DATE-
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D provides a computationally feasible and theoretically justified approach in
high dimensions when DATE-L fails. It also fills the gap in the literature on
high-dimensional theoretical analysis of envelope methods, especially because
additional structural assumptions, such as sparsity, are not required.

Extending the tensor envelope concept from regression to the present setting
is not trivial, requiring new parameterization and maximum likelihood estimator
derivations. We also adapt the fast and stable one-step estimation (Li and Zhang
(2017)) and 1D algorithm (Cook and Zhang (2016)) to control the computational
complexity of our DATE-L estimation procedure. More importantly, existing
envelope methods (including DATE-L) often require iterative Grassmann man-
ifold optimization. We provide a novel decomposition-based estimation that is
computationally tractable and theoretically justified for high-dimensional tensors,
and can be straightforwardly modified to fit tensor envelope regression models in
high dimensions. While existing tensor envelopes are studied under fixed tensor
dimensions, we establish new consistency results for both fixed and diverging
tensor dimensions.

The rest of the paper is structured as follows. In Section 2, we introduce
some tensor notation and briefly review envelopes in both vector and tensor
regression. In Section 3, we propose the DATE model and derive the two
estimation procedures, DATE-L and DATE-D. Section 4 studies the asymptotic
properties of the DATE-L estimator and the convergence rate of the DATE-D
estimator. Simulations and real-data examples are presented in Section 5. Section
6 concludes the paper. Additional numerical results, implementation details, and
proofs are provided in the online Supplementary Material.

2. Background
2.1. Notation

We call a multidimensional array A € RP***PM gn M-way tensor or Mth-
order tensor (e.g., M = 1 for vectors and M = 2 for matrices). Some key
operators on the Mth-order tensor A are defined as follows.

Vectorization: The vectorization of A is denoted by vec(A) € RIInPm where
the (i1,...ip)th scalar in A is mapped to the jth entry of vec(A), for j =

L+ S0 {(m — D) T )

Matricization: The mode-n matricization, reshapes the tensor A into a matrix
denoted by A, € RP I lnznPm - such that the (i1,...,1p)-th element in A
becomes the (i,,j)th element of the matrix A(,, where j = 1+ 37, {(ix —

1) Hl<k,l7én Pl}'

(Collapsed) Vector product : The mode-n vector product of A and a vector
c € RP» is represented by Ax,c € RPLX " XPrn-1XPni1XXPM - and results in a
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collapsed (M — 1)th-order tensor. This product is the result of the inner products
between every mode-n fiber in A with vector c. The mode-n fibers of A are the
vectors obtained by fixing all indices except the nth index.

Matrix product: The mode-n product of a tensor A and a matrix G € R**P»,
denoted as A x, G, is an Mth-order tensor with dimension p; X --- X p,_1 X
S X Ppa1 X -+ X ppyr. Similarly to the vector product, the product is the result of
a multiplication between each mode-n fiber of A and the matrix G.

Tucker product: The Tucker product of the core tensor A and a series of factor
matrices Cyq,...,C,s, where C, € R%*Px for k = 1,...,m, is defined as A x;
Cixg - Xy Cpyr =[A;Cy,...,Cy] € RO 2 If g > p;. and each Cy, satisfies
C/Cy =1, then B=[A;C,,...,Cy] is called a Tucker decomposition of B.

The tensor normal distribution with mean p € RP***PM and separable

covariance matrices 3,, > 0, where X, € RP»*Pm_ for m = 1,..., M, is
denoted by TN(p,Xq,...,35). We have X ~ TN(p,2q,...,28y) if X = p+
[Z; 21/ S 2}\//[2]], where Z is the standard tensor normal random variable with

elements that are all independently N (0, 1) random variables. The vectorization
and matricization operations on a tensor normal random variable preserve the
normality. Specifically, vec(X) follows a multivariate normal distribution with
mean vec(p) and covariance ¥ = 3, ®- - -®3;, where ® represents the Kronecker
product; and, for m = 1,..., M, X, follows a matrix normal distribution
(Gupta and Nagar (2018)) with mean pt(,,), row covariance X,,, and column
covariance ¥_, =Xy ® - X, 11 Q0¥ 1 ® - ® M.

2.2. Tensor envelope

A tensor envelope (Li and Zhang (2017); Zhang and Li (2017)) is a gener-
alization of the envelopes in multivariate analysis (Cook, Li and Chiaromonte
(2010); Cook (2018)) that combines the Tucker tensor decomposition with the
notion of reducing subspaces in functional analysis (Conway (2013)). We briefly
review these concepts below.

Given a matrix B € RP*¢ B = span(B) C R? is defined as the subspace
spanned by the column vectors of B. Projections onto B and its orthogonal
complement subspace B* are denoted as Pg = Py and Qg = Qp = I, — Pg,
respectively. If the matrix is of full column rank, then Pg = B(B?B)~'B.

Definition 1. A subspace B C R? is a reducing subspace of M € RP*? if and
only if M = PgMPg + QgMQg. The M-envelope of B is the intersection of all
reducing subspaces of M that contain B, and is denoted as En(B) or Em(B).

By construction, the envelope Ey(B) C R? is always unique and the smallest
such subspace. The existence is easily guaranteed when M > 0 (Cook, Li
and Chiaromonte (2010)). Cook and Zhang (2015) provide a general envelope
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construction for a wide range of multivariate parameter estimation problems. In
the general envelope construction, B is the parameter of interest, and M is either
the covariance matrix of some random vector or the asymptotic covariance matrix
of a /n-consistent estimator. Thus, the existence and uniqueness of envelopes
are always true. Tensor envelopes have been developed under linear regression
models with a tensor response (Li and Zhang (2017)) and with a tensor predictor
(Zhang and Li (2017)). We unify the two envelopes, and give the following more
general formulation of a tensor envelope. Let B € RP1**PM he the tensorial
parameter of interest. Let X = ®:n:M Yo =Xy ®---® X, be the Kronecker
product of a series of symmetric positive-definite matrices X,, € RP»*Pm_ for
m =1,..., M. The Kronecker operator for two subspaces S&; ® S, is defined as
the subspace spanned by B; ® Bs, where B, is any basis matrix for subspace
Sy, for k = 1,2. The definition and a key property of the tensor envelope are
summarized as follows.

Definition 2. The tensor envelope Tx(B) is the intersection of all reducing
subspaces S of ¥ that contain vec(B) and can be written as S =Sy ® - - ® S,
with S,, CRP», form=1,..., M.

Proposition 1. 7x(B) =&x,,(Bun) ® --- @ &, (Bg)).

This proposition (derived from Li and Zhang (2017, Prop. 3)) connects the
tensor envelope Tx(B) with the multivariate envelopes &s,, (B(n)), for m =
1,..., M, along each mode of the tensor B. It implies that we can estimate
a tensor envelope by estimating the individual envelopes Ex,, (B(y)), for each
mode m. The existence, uniqueness, and minimality of the envelope &, (Bm))
are shown in Cook, Li and Chiaromonte (2010). Then, by Proposition 1, the
tensor envelope 7x(B) always exists and is unique.

3. Discriminant Analysis with Tensor Envelope
3.1. The TDA model

We consider an Mth-order tensor variable X € RPr>*>*Pm for M > 2, and
a categorical response Y € {1,...,K}, with K > 2 categories/classes. We
consider the following tensor discriminant analysis (TDA) model that is a natural
generalization of the linear discriminant analysis model in the vector case:

X|(Y:/{3)N TN(uk>217>2M)’ (31)

where p;, € RPVXPM g the class-specific mean, and 3,, € RP»*Pm_ for
m = 1,..., M, are symmetric positive-definite common covariance structures
across classes. We assume nontrivial classes such that Pr(Y = k) = m, > 0
and Y1 7, = 1. Pan, Mai and Zhang (2019) also considered this model and
developed a sparse TDA method. For a discriminant analysis, our goal is to
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improve the estimation of the optimal prediction of Y, which is known as Bayes’
rule. Under the TDA model (3.1), the Bayes rule is given as

pTPA(X) = %Egl;mai)(( Pr(Y =k |X) = %Eglma;{({ck + (B, X)}, (3.2)

where By = [ — ;270 ., 23], e = log(mi/m1) — (Bg, (i + p1)/2), and
(B, X) is the inner product of B, and X. Let B € RPrx>xPux(K=1) he the
stacked tensor coefficients {B,,...,Bg}. Then, ¢TP4(X) can be viewed as a
function of B(ynyvee(X) = ((By,X),...,(Bg,X))" € R¥7!. Therefore, to
improve classification accuracy, we need to improve the estimation of the tensor
parameter B. Although the TDA model reduces the number of parameters in
the covariance matrix, many model parameters remain in most tensor data sets.
Therefore, we use the tensor envelope to further reduce the number of parameters
in the TDA model, thus facilitating the estimation.

3.2. The DATE model

Similarly to the motivation of the envelope discriminant analysis for a vector
predictor (Zhang and Mai (2019)), the tensor envelope for a discriminant analysis
and classification aims to identify and eliminate the part of X € RP***PM that is
unrelated to Bayes’ classification rule and the remaining information. We consider
a decomposition in the form of X = P(X)4+Q(X), where P(X) = [X; Py, ..., Py],
and each P,, € RP»*Pm ig the projection onto a latent subspace S,, C RP~. The
Tucker product form of P(X) preserves all information for discriminating Y, and
Q(X) = X — P(X) is the part that is irrelevant for classification. As such, we
consider that, for k =1,..., K,

Pr(Y =k | X)=Pr{Y =k |P(X)}, QX)LPX)|(Y =k), (3.3)

where L indicates the independence of random variables. The first condition in
(3.3) implies that Bayes’ classification rule does not change if we project the data
onto the subspaces &,,, for m = 1,..., M, along each mode of the tensor. The
second condition in (3.3) requires that the material part P(X) is not affected by
the immaterial part Q(X). The following proposition connects the subspaces S,,,
form=1,..., M, with the TDA model parameters and Bayes’ rule.

Proposition 2. Under the TDA model (3.1), assumption (3.3) is equivalent to
Span(B(TMH)) CE=8Su®-- @81, Xn=PpYE,Pn+Q,3X,Qn,

form =1,...,M. Furthermore, s, (B{);,1)) € Te(B) = &x,,(Bun) ® -+ @
Es, (B()), where Xx = cov(vec(X)).

Proposition 2 establishes the tensor envelope construct 7s(B), and implies
that Pr(Y =k | X)=PY =k | X%x,, P,,) and X x,,, P,,, L X X, Q.. | (Y = k)



PARSIMONIOUS TENSOR DISCRIMINANT ANALYSIS 163

on each mode m = 1,..., M, where Q,, = I, — P,, is the projection onto
S, When M = 1, this reduces to the envelope LDA model (Zhang and Mai
(2019)). Proposition 2 offers a more intuitive explanation of the tensor envelope:
it is the smallest subspace reduction P(X) to attain the same Bayes’ rule as the
original X, while not leaking information by correlating with Q(X). Finally, the
tensor envelope is shown to contain the vectorized envelope discriminant subspace
Esix (B{ar41y); and is a reducing subspace for the marginal covariance of vec(X).

To further investigate the subspace representations in Proposition 2, we
let (T',,,To,) be an orthogonal basis matrix for RP™ such that span(T',,) =
Es,,(Bm)). Let the envelope dimension be u,,, u, < pm, Iy € RP2**m and
Iy, € RPm*(Pn=um) Then, we have the following parameterization of the TDA
model, for k=1,..., Kandm=1,..., M:

By = [Ty, ..., Ty], myp € R0 (3.4)
Yo =TI + Lo Q0T (3.5)
where m, defined as a tensor with conforming dimensions, consists of the
coordinates of B, with respect to the basis matrices I'y, ..., I'j;. Similarly, €2,,,
Qy,, and the following @, are constructed based on the basis matrices I'y, ..., T's;.

Note that g = Zszl Ty 18 the overall mean tensor. It is straightforward to show
that (3.4) is equivalent to the following equation:

“k—ﬁ: [[(-)k,I‘l,,I‘M]],Gk GRuIX".XuM, (36)

where we have an additional constraint Zszl 7.0 = 0. The total number of free
parameters in the TDA model (3.1) is (K — 1)+ K [12_, pm+ M {pm(pm + 1)}
/2, whereas the total number of free parameters in (3.5) and (3.6) is (K —1) +
K Hf\le Uy + Z%Zl{pm (pm + 1)} /2. Therefore, the tensor envelope has reduced
the number of parameters by K (Hﬁle D — H%Zl U,) under the TDA model.
By reducing the model complexity, the envelope approach can often lead to a
substantial gain in the estimation of By, thus improving the classification.

3.3. Likelihood-based estimation

Given the observed data {X® Y?}"_  for each class kK = 1,..., K, we have

ny = Y, 1(Y* = k) as the class-k sample size and X;, = n;' Y, [(Y' = k)X

as the class-k sample mean. Under TDA model (3.1), the standard maximum

likelihood estimators (MLEs) for 7, and uy are ny/n and Xy, respectively. In

addition, the MLE for X,, can be obtained through iterative updates as the
solution to

s, = ! DIV = K)(X' = X)) 5 (X = Xp)

nPp-m ;=

T
(m)?

(3.7)
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where p_p, = [, and X, =Xy ®@ - @ X, 1 @ %, 1 ® - ® Xy, The
derivation for (3.7) is similar to that in Manceur and Dutilleul (2013), and is thus
omitted. Under the tensor envelope parameterization (3.4) and (3.5), we have
derived MLE equations to greatly facilitate estimation.

Proposition 3. Under the DATE model (3.1), (3.4), and (3.5), the MLE of
the envelope basis Ty, is obtained by minimizing the following objective function
under the semi-orthogonal constraint TLT,, =1, :

(T, =1og |TZM,, T, | + log [TZ (N,,,) "'T,nl, (3.8)
where My, = (0], pm)—1¥? I(Yi = ){séﬁ)Z:}n(szﬁL))T}, N,, =
(n]_[m#pm)*lz (X — X)(m)EZ (X* )m), and s* = I(Y' = k)(X
X) - [Xi — X; Pl,...,Pm 1,Ipm,Pm+1,..., m]. The MLEs for the DATE

parameters are given by

@ = [[Kk - X, f‘?, . fTMH ﬁk == [[Xk — Xl, f‘lﬁl_lf‘,{, . ,f‘MﬁX/[lf‘%;[ﬂ7

S =L IT + T, Qo LY

om>
ﬁm = ZI {I‘Ts(m)23 m(s(m))Tf‘m}’
np— mi 1
—m=1

The implementation of the algorithm is based directly on the above
proposition. To initialize, we first obtain the standard MLE for X, based
on equation (3.7), and replace f‘m with I, in the construction of the pseudo
observations s?*. The pseudo observations are used to update the envelope basis
T, by minimizing ¢,,(T,,) in Proposition 3. We then iteratively update the
envelope basis, the pseudo observations, and the covariance matrices f)m. After
convergence, we calculate the MLEs for the means p;, and for other parameters,
such as ©; and B. Finally, after we obtain ]§, the prediction is simply the LDA
classification rule (3.2) on the reduced data ((By,X), ..., (Bg, X)) € RE-1,

The objective function ¢,,(T,,) in (3.8) is nonconvex and depends on
all other {I';},., intrinsically through 3 _,, and s*. Therefore, the fully
iterative algorithm can be slow and sensitive to initialization. To speed up the
computation, we adopt the one-step estimation procedure of Li and Zhang (2017)
for tensor envelopes. Specifically, we run the iteration of the MLE equations only
once. That is, without alternately updating all T',,, we optimize each ¢,,(T,,)
separately, which is sped up further by the 1D envelope algorithm (Cook and
Zhang (2016)). Because the one-step estimation in the DATE model is similar to
that in Li and Zhang (2017), the implementation details are relegated to Section
S2 of the Supplementary Material. In practice, note that the estimation accuracy
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(e.g., for the key parameter B) and the classification/prediction accuracy of the
one-step estimator are always as good as the MLEs. Such findings are consistent
with those of previous works (Cook and Zhang (2016); Li and Zhang (2017)),
where the one-step estimator and the 1D algorithm are shown to outperform to
be better than the full MLE updates in practice. Therefore, we present only the
numerical results obtained using the one-step estimator in our simulations and
real-data analysis.

Another important hyperparameter that we need to estimate is the envelope
dimension. To select the envelope dimension u,,, for m = 1,..., M, we apply
cross-validation with a grid search to choose u,, that minimizes the classification
error. Because cross-validation tends to overfit the envelope dimension, we adopt
the “one standard error rule”, in which we choose the smallest w,, with an error
that is no more than one standard error above the minimum cross-validated
error. This method has proven to be stable in simulation studies. Note that
the Bayesian information criterion (BIC) is frequently considered for envelope
dimension selection. Owing to the carefully derived and simplified objective
function ¢,,(T,,) in (3.8), we may directly apply the 1D-BIC envelope dimension
selection (Zhang and Mai (2018)), which has been proven theoretically and is
computationally feasible (it is much faster and more stable than the standard
BIC in envelope dimension selection). See Section S2.2 of the Supplementary
Material for additional discussion and numerical examples.

3.4. Decomposition-based estimation

Our decomposition-based approach is motivated by the following lemma.

Lemma 1. Under parameterization (3.4) and (3.5), &, (Bum)) = &, (Un),
form = 1,...,M, where U,, = p= {31 m(per — ) () (1t — )} If we
further assume that the eigenvalues of Pr, %,,Pr,  are distinct from those of
QF,,,LEm((Q;_"m; then &s,, (U,,) = 2wy, v 20 span(v.™), form =1,..., M,

where v;"" is the ith eigenvector of X,,.

Lemma 1 establishes the equivalence between &, (B(n)) and &x, (U,),

where U,, is a positive semi-definite symmetric p,, X p,, matrix. This matrix U,,

—1
m 7

mode-m between the class variance of X. The symmetry of U,, also facilitates the
estimation later. In order to construct a decomposition-based method, we assume
that the eigenvalues of Pr_ 3, Pr  are distinct from those of Qr, 3,,Qr,, . This
assumption is mild, and much weaker than requiring 35, to have p,, distinct

does not involve the covariance inverse ¥ *, as in B, and can be viewed as the

eigenvalues. Under this mild assumption, the tensor envelope can be obtained by
recognizing &, (B(n)) as the subspace spanned by all eigenvectors ng) of ¥,,

that are not orthogonal to U,,, namely, Z(v,ﬁm’))TUmvgm#o Span(vgm)).
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Thus, the DATE-D procedure for £, (B(.,)) in the population is as follows:
(m)

1. Obtain the eigenvectors of 3,,: v; ,...,vz(;:n’f), with ordered eigenvalues
/\gm) > > )\](;;L).

2. Calculate the envelope scores: ¢\™ = (vI"™)TU,v\™ for l=1,...,pm.

3. Organize the envelope scores in descending order gi)g;) > gbg;) > > gZ)E;Z),

and let VES) be the eigenvector corresponding to gi)gr;)
4. Output the envelope as &, (U,,) = span(vg’;), .. ,VE:Z’)L)), which has a basis
matrix of T, = (VE;';), . ,VEZL)))

The sample algorithm is readily available by replacing 3,, and U,, with their
sample counterparts: 3, = {1/ (p_n)} Sp IV = K) (X = X)) (X —
Xk)(Tm) and U, = (1/p,m){z,§:1(nk/n)(ik — X) () (X — X)(Tm)}, respectively.
Note that the estimate im is a closed-form solution, which avoids the iterations
within the covariance matrices in (3.7). This modification further accelerates
the computation and facilitates theoretical analyses in high dimensions. The
algorithm can be viewed as an extension of the algorithm in Zhang, Deng and
Mai (2023) for vector data.

The DATE-D procedure can be intuitively viewed as selecting the eigenvec-
tors of 3, with nonzero envelope scores. The computationally most expensive
part of DATE-D is the eigen-decomposition of X,, in Step 1. Because no
matrix inversion is needed, DATE-D can be applied to very high-dimensional
settings. Striving for a best prediction, we again use cross-validation to select
the envelope dimension for DATE-D. Note that the selected “most predictive”
envelope dimensions may differ for DATE-L and DATE-D.

4. Theory
4.1. Asymptotic properties of DATE-L

Here, we study the consistency and asymptotic efficiency of three likelihood-
based estimators: the MLE without the separable covariance assumption (i.e., the
standard LDA on vectorized data); the MLE with the separable covariance
assumption (i.e., the TDA); and the MLE under the DATE model (i.e., DATE-L).
Though we recommend using the one-step estimation rather than the full MLE
updates for DATE-L in practice, the asymptotic properties of the MLE provide
an idealistic “best-case scenario” and insights into the potential advantages of
the DATE model. The y/n-consistency of the one-step estimator is provided in
the Supplementary Material (Theorem S1).

The results are presented for all the parameters in the model, with additional
focus on the estimation of By, for k = 2,..., K, or equivalently, 3; = vec(By,).
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The estimators are denoted by BEPA = S~lvec(X), — X,) for the LDA estimator,
EDA = (EM ® - ® B)vee(X), — X;) for the TDA estimator, and BPATE —
Tu® - I‘l)vec(ﬁk) for DATE-L.

We first compare the asymptotic efficiency of BLDA, A,?DA, and B,?ATE.
Specifically, we define the parameter vectors corresponding to each estimator as
follows, where we stack all unique parameters in a vector using the operators
vec (vectorization of matrix/tensor) and vech (vectorization of symmetric matrix
by stacking the lower triangular of the matrix), h” = ({BF}£,,vech’ (X)),
nT = ({BF}E,, {vech” (£,,)}}_,), and for envelope parameters & =
({vec” (Ton) } ooy, {vec” (m) Hs, {vech” () 10y, {vech” (o) }2y). It s
straightforward to calculate the number of parameters based on the length of
each parameter vector. Specifically, h corresponds to the parameterization in the
vectorized LDA model, where the covariance 3 € RIInPm*Il.Pm is unstructured;
1 corresponds to the parameterization in the TDA model with the separable
Kronecker covariance structure; finally, &€ contains all parameters under the
tensor envelope structure.

From (3.4) and (3.5), we can see that h is an estimable function of 1 and
E; that is, h = h(n) = h(§). We define the gradient as H = 0h(n)/0¢ and

= 0h(&)/0€. We denote hrpa as the standard MLEs containing the sample
estimators X, and 3, in (3.7). Similarly, hpare and hypa are the MLEs under
the DATE model and the vectorized LDA model, respectively.

Theorem 1. Assume (X, Y?), for i = 1,...,n, are independent and identi-
cally distributed (i.i.d) according to the DATE model (3.1), (3.4), and (3.5).
Then \/nvec(B“P* — B) —4 N0, Wpg); nvece(B™* — B) —4 N(0,Ug); and
Vnee(BPATE — B) =, N(0, V). Moreover, Vg < Ug < W,

The detailed expressions of the asymptotic variances Vg, Ug, and Wy are
provided in the Supplementary Material (Section S4.2). Theorem 1 establishes
the y/n-consistency and asymptotic normality of all three types of MLEs. The
result is not surprising, because we gain more efficiency by using more structures,
while maximizing the likelihood.

To gain further insights, we consider the oracle envelope estimator of 3,
denoted as Bp, that replaces T with the true envelope basis I' in the estimation.

Theorem 2. Under the same conditions as those in Theorem 1, ﬁp is \/n-
consistent and asymptotically normal. The asymptotic covariance of vec(,[;p) 18
Ve = A {(Ty2,TT) ® - @ (T:Q'TT)}, where A = diag(ny ", ..., m") +
7y g1 1% | is a constant matriz.

Because we can write 3 = (' Q% + Lo Qo) @ -+ @ (LT +
Ty1Q01 L), Vi < Ug. In particular, a direct comparison shows that the envelope
estimators have bigger potential gains in efficiency when the immaterial variation
Qq,, is large relative to the material variation €2,, in the predictor.
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Finally, we establish the +/n-consistency and asymptotic normality of
the envelope estimator under mild moment conditions, instead of the tensor
normality assumption in (3.1). Specifically, we consider the tensor envelope
parameterization without the distributional assumption. Then, the conditional
independence assumption in (3.3), Q(X) L P(X) | (Y = k), is weakened to the
assumption of uncorrelated Q(X) and P(X) in each class Y = k.

Theorem 3. For k = 1,..., K, assume vec(X") | Y =k, fori =1,...,n are
i.4.d with finite fourth moments with mean tensor p;, and separable covariance
Y =3y® -3, and parameterizations (3.4) and (3.5) are still satisfied. Then
\/ﬁveC(HTDA) converges to a normal distributions with mean zero and asymptotic
covariance matrix avar(\/ﬁflTDA) =HMHTIJ,H)HTJ,EJ,HH"J,H)'HT, and
\/ﬁvec(ﬁDATE) converges to a normal distribution with mean zero and asymptotic
covariance matrix avar(\/ﬁﬁDATE) = K(KTJ,K)'KTJ,EJ, K(KTJ,K)'KT”.
Furthermore, avar(y/nhpars) < avar(y/nhrpa) < avar(y/nh*2) if span(J,/*H)
and span(J}/*K) are reducing subspaces of J)/*2I}/?, where B = avar(y/nhypy).

Theorem 3 shows that the envelope estimator is robust to model misspecifi-
cation in the sense that it is \/n-consistent without tensor normality. Moreover,
the DATE-L estimator still has potential advantages over the standard TDA
estimator for nonnormal data (See Section 5.3 for simulation examples).

The classification error rate obtained from the Bayes rule is a continuous
function of the parameters (8y, 7y, px), for £ =1,..., K, under the LDA model.
Then, by the delta method, the asymptotic efficiency gain by DATE-L established
in the above theorems implies a more accurate classification error. This is
analogous to the efficiency gain and classification error rate comparison of the
MLE versus the logistic regression (a /n-consistent, but asymptotically less
efficient estimator) under the LDA model (Efron (1975); Bi and Jeske (2010)).

4.2. Theoretical properties of DATE-D

We establish the convergence rate of the DATE-D estimator in high
dimensions, where p,, can grow faster than n. We use ¢ and C to represent
generic positive constants that may vary. For simplicity, the envelope dimensions
uy,...,uy are treated as constants that do not grow with p or n. We first
introduce some technical assumptions:

(A1) The eigenvalues of 3,,, for m = 1,..., M, are all bounded between positive
constants ¢; and cs.

(A2) The smallest nonzero eigenvalue of U,, is bounded below by c;.

(A3) ([ — pllp < ca.

(A4) The difference between any eigenvalue of Pr ¥, Pr ~— and each
Qr,, 3,Qr,, is greater than cs.
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(AD) ¢5/K <np/n<c;/K,fork=1,..., K.

Assumption (A1) implies that the population parameter ¥,, is wellconditioned,
regardless of how p,, grows. Assumption (A2) can be viewed as a “signal
strength assumption” that ensures that the envelope scores calculated from
U,, are sufficiently accurate. Assumption (A3) is a mild assumption, because
pre — p = [0;;T,...,Ty], for some 0; € R*“*"*“m_ Because 6; is a low-
dimensional tensor, it is natural to assume that ||@;]r < c3. Then, we arrive
at Assumption (A3) by noting that ||p, — pl|r = [|0;]|r. Assumption (A4) is
required for the identifiability of the envelope from the decomposition perspective
(Lemma 1). Assumption (A5) guarantees that each class has a decent sample size.
All five assumptions are satisfied in our simulation examples (M1)—(M4) under
covariance (C1) in Section 5.2.

We use 7, = /Pm/P—m to quantify the squareness of the matricization
X(m). For a tensor in which no mode’s dimension dominates all other modes
combined, 7,, is small. We define the classification error rate formally as
R = Pr(Y(By, bk = 1,...,K) # Y), where Y(By,, G,k = 1,...,K) =
i@, + (B, X)}. The population counterpart R is thus the Bayes
error. Denote ||A||; for a tensor A as the ¢y-norm of vec(A).

argmax;_,

.....

Theorem 4. Under assumptions (A1)—(A5), for a constant Cs > 1, we have

|Pg, —Pr, [lr= n Y20y, + 1), form=1,..., M,

m

with probability at least 1 — K exp{—C1p,,(Cs — 1)}. Moreover,
By, — Byll» = n~20(maxn,, +1), |R— R| =n""20(maxn,, + 1),

with probability at least 1 — Co KM exp{—Cip,,(C5 — 1)}.

Corollary 1. Under assumptions (Al)—(A5), when n > n,,, pm — 00, and
n — 0o, we have Pz — Pr,,, By = By, and R — R in probability.

mJ

The result in Theorem 4 is sufficiently strong for most tensor data applica-
tions, because p_,, is usually greater than p,,, especially when the M > 3. If
the dimensions p,,, for m =1,..., M, grow at the same rate, the ratio 7, either
converges to zero (M > 3) or is bounded from above by a constant (M = 2).
Then, we have y/n-consistency for arbitrarily high-dimensional p,, when M > 2.
However, for vector data, the rate becomes (p/n)'/?
too fast. Hence, Theorem 4 reveals a fundamental difference between tensor and
vector data. For vector data, it is challenging to estimate the covariance matrix
accurately, but in tensor data, we can aggregate the information from different

, which means p cannot grow

modes to achieve a consistent estimation of XJ,,.
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5. Numerical Studies
5.1. Comparison setup

To investigate the empirical performance of the proposed DATE methods,
we consider both simulations and real-data examples. In Section 5.2, we consider
simulations under the DATE model. In Section 5.3, we consider models in which
the DATE assumptions are violated. In Section 5.4, we construct a model with
a high-dimensional matrix predictor to verify the consistency of DATE-D in
high dimensions (cf., Theorem 4). In Section 5.5, we demonstrated our methods
using real-data examples from colorimetric sensor arrays and longitudinal gene
expressions.

We include various classification methods as competitors. First, we con-
sider the standard LDA and TDA estimators. However, owing to the high
dimensionality, the standard LDA estimator is not applicable, and is hence
replaced by the diagonal LDA (DLDA) (Dudoit, Fridlyand and Speed (2002)). As
regularized classification methods for high-dimensional vector data, we include
an f;-penalized Fisher’s discriminant analysis (¢;-FDA; Witten and Tibshirani
(2011)) and an ¢;-penalized logistic and multinomial logistic regression (¢£;-GLM,;
Friedman, Hastie and Tibshirani (2010)). We also include several recent methods
for matrix/tensor classification methods: a distance-weighted discrimination for
multi-way data (m-way DWD; Lyu, Lock and Eberly (2017)), a tensor logistic
regression based on the Tucker decomposition (Tucker; Li et al. (2018)), a
regularized matrix regression (RMR; Zhou and Li (2014)), and the covariate-
adjusted tensor classification in high-dimensions (CATCH; Pan, Mai and Zhang
(2019)). We focus on the classification error rates of these methods. Therefore,
Bayes’ error is also reported.

5.2. Simulations under the DATE model

Unless otherwise specified, we generate data from the DATE model as follows:

(XY =k)~pp +[Z;21,...,20], Z(?f)uk:& (5.1)

k=1

where Z consists of independent N(0,1) random variables, such that X |
Y = k) ~ TN(pg,21,...,2y). We first let p; = [Of;Iy,..., Ty for
some randomly generated ®; € R*“* *“M with Uniform(0,1) elements, and
let @* = Zle(nk/n)uz. Then, the mean parameter p, = p; — @". Let
¥ =T,.9,I7 +T,.Q,.L%,. The covariance matrix X, = 02 x X* /[|Z* ||r,
where the scalar 0> > 0 is chosen differently for each model to control
Bayes’ classification error in a reasonable range. The envelope basis matrices
L, for m = 1,..., M, are generated with Uniform(0,1) elements and then
orthogonalized. Three types of covariance are considered:
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(C1) @, =1,, and ¢, =0.01I, _, ;
(C2) Q,, =0.11,, and Qq,, =1, ., .;

(C3) @,, = 0,,D,,0F and Qp,, = 00, D0, OF,, where O,, € R“»*"= and
Oy, € RPm—um)x(Pm=um) are randomly generated orthogonal matrices,
Dy, is a diagonal matrix with elements exp(kn.1,---,Kmp,,—u,, ), Where
Emas. o kmp, —u,, are D, — u, evenly spaced numbers between —10 and
m, and D,, is a diagonal matrix to be specified later.

The following four DATE models are considered. For each training set with
sample size n, we evaluate the predictive performance of each method on a testing
set with sample size of 10n. The results are averaged over 100 replications. For the
tuning parameters in each model, we use the true envelope dimension {u,,}*_,
for our method and for the Tucker rank. The m-way DWD uses rank Hff:l (T,
All tuning parameters in the penalized methods (CATCH, ¢;-GLM , ¢;-FDA, and
RMR) are chosen using five-fold cross-validation.

(M1) Matrix predictor with binary response, M = K = 2. We generate training
data with n = 200 observations. Let p; = 80, po = 20, u; = 4, uy = 2,
and n; = ny = n/2. The parameter o2 is 1, 40, and 3 for covariance (C1)-
(C3), respectively. For (C3), D,, is a diagonal matrix with u,, elements
(5,5%,...).

(M2) The true parameter B € RP**?2 is constructed such that we can visualize
the estimates directly (see Figure S1 in Supplementary Material). Let
n =300, p1 = py = 64,u; = uy = 2, and n; = ny = n/2. The parameter o>
is 0.1, 5, and 0.13 for covariances (C1)—(C3), respectively. For (C3), D,,

is a diagonal matrix with u,, elements (e,e?,...).

(M3) Similar to (M1), but with K = 4. Let n = 300,u; = uy = 5,p; = pa = 50,
and ny = ny = nz = ng = n/4. The parameter o2 is 1.5, 40, and 2.5 for
covariances (C1)—(C3), respectively.

(M4) Similar to (M1), but with M = K = 3. Let p1 x pa X ps = 20 x 30 x 40,
u=(2,3,4), and n; = 90,n, = 60, n3 = 150. The parameter o2 is 1.3, 40,
and 2 for covariances (C1)—(C3), respectively.

The results for the above four models and the three covariance structures are
summarized in Table 1. Note that some binary and matrix classification methods,
such as m-way DWD, Tucker, and RMR, cannot be applied to three-way tensor
data in M3 and M4. In addition, Tucker is not applicable for M1, because the
sample size is too small.

Under the covariance structure (C1), the material variation in the predictor
is much larger than the immaterial variation. The setting is thus not challenging,
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Table 1. Averaged classification error (%) and standard error (in parentheses), calculated
over 100 replicates.

M1 M2
Model
(C1) (C2) (C3) (C1) (C2) (C3)
Bayes 11.53 14.03 14.63 13.74 16.29 14.08

DATE-L 13.25 (0.15) 16.74 (0.10) 16.36 (0.15) 14.07 (0.10) 17.01 (0.19) 14.26 (0.06)
DATE-D 12.45 (0.09) 50.05 (0.10) 16.12 (0.13) 14.06 (0.08) 49.91 (0.08)  15.14 (0.07)
TDA  33.34 (0.13)  36.08 (0.12)  35.95 (0.14)  38.13 (0.11)  40.23 (0.11)  38.46 (0.11)
m-way DWD  12.36 (0.09)  50.69 (0.11)  21.73 (0.17)  13.99 (0.07)  49.98 (0.09) 14.66 (0.07)
CATCH 1353 (0.13)  49.91 (0.11)  19.13 (0.23) 14.58 (0.08) 49.93 (0.10)  15.37 (0.10)
Tucker - - 40.49 (0.22)  48.43 (0.15)  42.23 (0.22)
RMR 12.05 (0.09) 49.35 (0.11)  18.17 (0.13) 14.02 (0.07) 49.86 (0.10) 14.72 (0.08)

(0.09)

(0.06)

(0.06)

)

0.12)  26.52 (0.22
)
)

DLDA 12.74 (0.09) 49.99 14.91 (0.08)  49.74 (0.09)  19.90 (0.13)

¢;-GLM  13.65 (0.16)  49.90 15.53 (0.09)  50.00 (0.06 16.79 (0.10)

NN Nt

(

(
0.06)  17.88 (0.12

(

e

(,-FDA  12.74 (0.09) 49.95 (0.09 26.52 (0.22 14.91 (0.08)  49.87 (0.06 19.90 (0.13)
Model M3 M4
(C1) (C2) (C3) (C1) (C2) (C3)
Bayes 16.45 12.04 16.92 11.54 12.69 11.28

DATE-L 20.01 (0.18) 14.47 (0.07) 19.75 (0.13) 19.75 (0.43) 22.05 (0.25) 15.63 (0.27)
DATE-D 19.72 (0.11)  74.67 (0.16)  21.79 (0.10)  14.85 (0.09)  56.72 (0.10) 15.14 (0.13)
TDA 5435 (0.10)  49.21 )
(0.12)

(0.13)

(0.11)  55.09 (0.11)  49.88 (0.01)  49.90 (0.01)  49.85 (0.01)

CATCH 2159 (0.12) 74.88 (0.07)  25.90 (0.19)  15.16 (0.10)  53.91 (0.25)  25.14 (0.27)
DLDA 31.00 (0.13) 75.16 (0.09) 4177 (0.15) 13.47 (0.07) 50.19 (0.02)  20.56 (0.11)
6,-GLM  21.43 (0.10)  75.00 (0.05)  25.64 (0.13)  15.55 (0.09)  50.34 (0.48)  22.90 (0.13)
6,-FDA  18.65 (0.08) 74.83 (0.07)  27.74 (0.12) 13.47 (0.07) 50.02 (0.01)  20.56 (0.11)

and most of the methods work well. Under (C2), the immaterial variation
dominates, and most methods fail to identify the weak signals. The only exception
is DATE-L, which effectively identifies that €2,, contains the small eigenvalues in
¥, Finally, covariance structure (C3) is between the two extremes of (C1) and
(C2). Its complex covariance structure favors both DATE-L and DATE-D over
other methods.

From Table 1, DATE-L is either the best or very close to the best for all the
models considered. Moreover, it is the only method that works well under the
covariance structure (C2). Although DATE-D is not a likelihood-based method,
it has very good finite-sample performance that is similar to that of DATE-L
under the (C1) and (C3) covariance structures. This is an encouraging result
for DATE-D, because it is a much faster and simpler estimation method for the
tensor envelopes. For the more complex covariance (C3), DATE-L and DATE-D
outperform the other methods, improving estimation significantly.

Comparing models M3 (multi-class response and matrix predictor) and M4
(multi-class response and tensor predictor) with model M1 (binary response and
matrix predictor), the advantages of DATE over TDA (and other methods) is
more significant when K, M > 2. In model M2, several estimators (DATE-L,
Tucker, and RMR) of B € R®*% are visualized in Figure S1 in the Supplementary



PARSIMONIOUS TENSOR DISCRIMINANT ANALYSIS 173

Material, showing that DATE-L clearly provides much better parameter estimates
than its competitors do under all three covariance structures.

5.3. Violation of DATE model assumptions

We consider the following models in which the DATE assumptions are
violated.

Heavy-tail distribution: We first consider a model in which the data are
generated from a multivariate ¢-distribution. The model is the same as (M1),
except that we set p; = ps = 20, u; = uy = 2, and each element in Z is generated
independently from a Student’s t-distribution with degree of freedom 4. The
parameter o2 is 0.4, 40, and 3 for covariances (C1)—(C3), respectively. For (C3),
D,, is diagonal with w,, elements (5,57, ...).

TDA models: We consider two TDA models from (3.1), where no envelope
assumptions are imposed on p; and X,,. The true envelope dimension is u,, =
Pm. We set p1 = py =20, K =2, and n; = ny, = 100:

e TDA1: Let pp = [O;T, ;] for a randomly generated ©®, € R**? with
Uniform(0, 1) elements and randomly generated basis matrices I',, €
R29%2 D, be a diagonal matrix with elements evenly spaced between
0.3 and 3, and O,, € RP»*Pm be a randomly generated orthogonal
matrix. Then, we let 3, = 02X /|2 ||r, where ¥* = O,,D,, 0
and 02 = 1.2.

e TDA2: Each element of p; is generated randomly from Uniform(0.2,1) and
¥, = ¥, = 2.5AR(0.3), where AR(p) represents a covariance matrix
with the (i, j)-th element to be pl*~7!.

We also construct three simulation models from our competing methods m-
way DWD (Lyu, Lock and Eberly (2017)), Tucker logistic regression (Li et al.
(2018)), and CATCH (Pan, Mai and Zhang (2019)). This allows us to better

understand how the two DATE methods perform under model misspecification.

DWD model: Let p; X p; =20 x 10 and n; = ny = 50. For each training data
set, the vectorized samples are generated from a multivariate normal distribution
N(vec(py,), Xer), with 3 = 0% 1. Let py = 0 and py = v@w, which corresponds
to a rank-1 DWD model, where v and w are generated from multivariate normal
distributions with mean zero and variances o°I and o021, respectively. We set
0% =175, 0% =2, and 0? = 02 =0.2.

Tucker model: For the Tucker logistic regression model, the regression
coefficient B € R%4%%* ig the same as in M2, the predictors X; € R*64 for ¢ =
1,...,n, are randomly generated with all elements being independent standard
normal. The binary response Y is generated from a binomial distribution with
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probability {1 + exp(—(B,X))}~!. The training sample size n = 500 and the
testing sample size is 1,000.

CATCH model: TDA model (3.1) with p; = po = p3 = 20, ny = ny =
100, and K = 2. The parameter B is sparse with nonzeros at the 3 x 3 x 3
sub-tensor generated from Uniform(0,0.5) independently. Let D be a diagonal
matrix with diagonal elements evenly between 3 and 0.3. We set 3; = D,
3, = {D + AR(0.3)}/2, and 33 = {D + CS(0.3)}/2, where CS(p) is a matrix
with diagonals that are ones, and off-diagonals that are equal to p’s.

For the results of DATE-D and DATE-L presented in Table 2, we use u; =
uy = 2 for the t-distribution model, and cross-validation to select the dimensions
for all the other models. DATE-L is the best or very close to the best method,
overall, for all the models in this section, and DATE-D is fairly competitive for
most of the models. For the t-distribution model, DATE-L is among the best
methods for all the covariance structures, and the only method that works well
for covariance (C2). DATE-D performs similarly to DATE-L for covariances (C1)
and (C3). Thus, the two proposed DATE methods are not sensitive to nonnormal
heavy-tailed distributions. In the TDA1 model, the parameterization (3.5) for
the covariance matrices is violated, and the mean parameter still has a low-rank
structure. Note that DATE-L can still find a low-dimensional subspace such that
the projected data are informative, and provides better classification results than
those of TDA. We visualize the classification errors of the various methods in
Figure 1, where we vary the envelope dimension. It is clear that DATE-L has
superior classification accuracy when the input dimension is between 5 and 15.
From Figure 1, as the input envelope dimensions increase, DATE-D improves
and reaches the same results as TDA when w,, = p,,. In the TDA2 model, the
parameterizations (3.5) and (3.6) are both violated. In this case, cross-validation
returns a dimension equal to p,, or close to p,, for both DATE-L and DATE-D,
resulting in almost identical performance to that of TDA.

Not surprisingly, the m-way DWD, Tucker logistic regression, and CATCH
perform best under their own respective models. It is encouraging to note that
DATE-L exhibits competitive performance with the best methods, and is better
overall, demonstrating the flexibility and effectiveness of our DATE-L estimator.
DATE-D performs well for the CATCH model and the DWD model, but, in
general, is less effective than DATE-L. We believe that DATE-L, when applicable,
is probably more robust than DATE-D under model misspecification.

5.4. Data sets with higher dimensions

We consider simulations in which the tensor dimension p = [, py, is much
larger than the sample size n. We vary the sample size of the training set from
50 to 400, and set the sample size of the testing set to 2,000. The settings for
this model are analogous to those for M1, but p; = p, = 200 and u; = uy, = 5.
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Table 2. The averaged error rates and associated standard errors over 100 replicates.

Model ¢ distribution TDA DWD Tucker ~ CATCH
1) (©2) (C3) (TDA1)  (TDA2)
Bayes 16.10 16.10 12.22 6.50 6.18 11.82 ; 5.63

DATE-L.  16.66 (0.14) 16.81 (0.13) 12.73 (0.07) 8.92 (0.11) 13.75 (0.15) 23.82 (0.24) 30.99 (0.22) 11.71 (0.27)
DATE-D 16.64 (0.09) 50.14 (0.08) 12.84 (0.08) 11.16 (0.13) 13.46 (0.14) 30.93 (0.20) 46.14 (0.16) 10.54 (0.12)
TDA 29.34 (0.14)  29.33 (0.14) 24.59 (0.13) 10.58 (0.09) 13.13 (0.09) 30.67 (0.20) 41.51 (0.15) 35.16 (0.12)
m-way DWD 16.70 (0.09) 50.06 (0.10) 13.97 (0.08) 10.49 (0.09) 36.88 (0.23) 21.16 (0.18) 48.34 (0.55)
CATCH  17.34 (0.12) 49.49 (0.10) 14.14 (0.11) 14.06 (0.13) 22.81 (0.19) 33.42 (0.41) 42.76 (0.19) 7.44 (0.09)
Tucker 38.48 (0.22) 40.36 (0.30) 34.09 (0.27) 27.91 (0.28) 34.84 (0.27) 41.84 (0.32) 28.18 (0.25) -
RMR  16.40 (0.08) 49.34 (0.12) 14.09 (0.09) 10.44 (0.08) 21.75 (0.14) 33.52 (0.20) 39.63 (0.16) -
DLDA  16.65 (0.08) 49.49 (0.12) 16.54 (0.15) 12.95 (0.09) 22.81 (0.14) 39.28 (0.23) 41.37 (0.15) 34.72 (0.14)
£,-GLM  17.81 (0.08) 49.93 (0.07) 13.97 (0.15) 20.21 (0.17) ( ) 46.70 (0.29) 11.81 (0.14)
(1-FDA  16.65 (0.10) 49.84 (0.07 ) ( ) (

30.14 (0.20)  38.42 (0.54
22.81 (0.14)  29.23 (0.21

)
)
)
)
)
)
)
)

16.54 (0.10) 12.95 (0.09 41.37 (0.15) 34.71 (0.14)

Error rate versus envelope dimenion

0.3

0.2

Misclassitication Error

0.1

5 0 15 20
Envelope Dimension

Figure 1. Model (TDA1): Classification error versus the input envelope dimensions
u; = us. The black curve shows DATE-L and the red dashed curve shows DATE-D.
From top to bottom, the horizontal dashed lines show [;-GLM, CATCH, DLDA, TDA,
and RMR, respectively.

We use covariance (C3) with D,, =1, and o® = 3.

From Table 3, DATE-D still performs well even when p; X p, is much larger
than n (e.g., n=100). Note that DATE-D outperforms DATE-L, especially when
n is small. DATE-L is not accurate and is less stable when the dimensions
of the predictors are much larger than n, partially because of the nonconvex
optimization. This simulation model provides encouraging evidence that DATE-
D can be applied in high dimensions. The results support those of Theorem
4, which states that DATE-D can be consistent, even when p,, goes to infinity
faster than n does. In our experience, DATE-D can handle cases with much
larger dimensions and is computationally efficient, because it involves only matrix
multiplications and eigen-decompositions.
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Table 3. The averaged error rates and associated standard errors over 100 replicates.

0 {pm} = {200,200}, n; = no =n/2
50 100 200 400

Bayes 7.89 7.89 7.89 7.89
DATE-D 24.33 (0.42)  15.85 (0.23) 11.63 (0.13) 9.74 (0.08)
DATE-L  46.70 (0.56) 30.85 (0.88) 15.38 (0.30) 10.65 (0.11)

TDA 4712 (0.12)  45.93 (0.13) 44.50 (0.11) 41.92 (0.11)
CATCH 39.17 (0.42) 29.30 (0.32) 20.75 (0.24) 14.91 (0.13)
0,-GLM  43.10 (0.52)  31.54 (0.52) 22.78 (0.16) 17.59 (0.11)
0,-FDA 22,63 (0.19)  17.15 (0.13) 13.18 (0.10) 10.62 (0.08)

5.5. Real-data examples

The first data set is from a colorimetric sensor array (CSA) study, where
chemical dyes are used to transform smell into optical composite signals (Zhong
and Suslick (2015)). The experiments used a colorimetric sensor array separately
at Immediately Dangerous to Life or Health (IDLH) and Permissible Exposure
Level (PEL) concentrations of the K = 21 chemical toxicants. The dimension of
the predictor is 36 x 3, and the total sample size is n = 7 x K = 147. For each of
the data sets, IDLH and PEL, we perform 100 repeated training/testing splits,
126 as training and 21 as testing, because each class has only seven samples. The
tuning parameters for all methods are based on cross-validation. For DATE-L,
we select the dimensions u; = 8 and uy = 2 for the IDLH data set, and u, = 7
and u, = 3 for the PEL data set. For DATE-D, we select u; = 7 and uy = 2 for
the IDLH data set, and u; = 9 and u, = 3 for the PEL data set. The results are
summarized in Table 4. Because of a large number of classes and very low sample
sizes per class, many methods are not applicable. It is clear that the DATE-L and
DATE-D methods achieve better classification results than the other methods do
on this data set. In particular, DATE-L, DATE-D, CATCH, and ¢,-FDA achieve
perfect classification in the IDLH setting. In the PEL data set, the classification
becomes more difficult. Here, DATE-L achieves the best classification, followed
by DATE-D.

The second study is the Gene Time (GT) study of Baranzini et al. (2004), who
collected gene expressions from patients suffering from multiple sclerosis (MS).
Fifty-three patients treated with recombinant human interferon beta (rIFN/)
are followed at six time points with 76-gene expression data, resulting in tensor
data of dimension p; X p; = 76 X 7 and n = 53. This is a binary classification
problem. The two classes are patients who respond well and those who respond
poorly to interferon beta. Based on cross-validation, we select u; =5 and uy = 1
for the DATE-L method, and u; = 7 and uy, = 1 for the DATE-D method.
We compare the classification errors for leave-one-out (LOO) and 10-fold cross-
validation. For the 10-fold cross-validation, we repeat 100 times, and report the
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Table 4. The classification errors, averaged over different training-testing sample splits:
seven-fold cross-validation for the CSA data, and leave-one-out (LOO) and 10-fold cross-
validation for the GT data.

CSA-IDLH  CSA-PEL _ GT (LOO) QT (10-fold CV)
DATEL 0 (0) 1.24 (0.28) 9.43 12.20 (0.30)
DATED 0 (0) 2.24 (0.26)  11.32 14.77 (0.26)
TDA - - -
m-way DWD - - 16.98 17.63 (O 33)
CATCH 0 (0) 403 (0.43)  16.98 20.50 (0.31)
RMR ) - 15.09 20.07 (0.23)
LDA 481 (052) 17.81 (0.78)  32.08 30.23 (0.27)
0-GLM 057 (0.17)  16.89 (0.50)  26.42 26.88 (0.43)
0-FDA 0 (0) 6.62 (0.55)  32.08 30.55 (0.27)

average classification errors and standard errors. The results are summarized in
Table 4. Again, DATE-L has the lowest error rate, followed by DATE-D, based on
both leave-one-out and 10-fold cross-validation. The improvement of the DATE
methods over the other methods is quite substantial. These encouraging results
indicate that the DATE methods can capture information in both the parameter
B, and the covariance matrices.

6. Conclusion

We have developed a parsimonious tensor discriminant analysis model based
on tensor envelopes. A likelihood-based estimator is derived from the tensor
normal likelihood, and is shown to be effective in practice and robust to
model assumption violations. When the tensor dimension is very high and
the likelihood-based estimator becomes infeasible, a fast decomposition-based
estimator can be applied with theoretical guarantees.

The estimators can be extended to the covariate-adjusted tensor classification
framework of Pan, Mai and Zhang (2019). Details of this extension, including the
formulation of the DATE estimators and the derivations of the MLEs, as well as
simulations and a real-data example are included in the Supplementary Material,
Section S1.

Supplementary Material

The online supplementary material contains additional numerical results,
implementation details, and proofs.
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