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Abstract

Sufficient dimension reduction (SDR) methods target finding lower-dimensional
representations of a multivariate predictor to preserve all the information about the
conditional distribution of the response given the predictor. The reduction is com-
monly achieved by projecting the predictor onto a low-dimensional subspace. The
smallest such subspace is known as the Central Subspace (CS) and is the key pa-
rameter of interest for most SDR methods. In this article, we propose a unified and
flexible framework for estimating the CS in high dimensions. Our approach general-
izes a wide range of model-based and model-free SDR methods to high-dimensional
settings, where the CS is assumed to involve only a subset of the predictors. We
formulate the problem as a quadratic convex optimization so that the global solution
is feasible. The proposed estimation procedure simultaneously achieves the structural
dimension selection and coordinate-independent variable selection of the CS. Theo-
retically, our method achieves dimension selection, variable selection, and subspace
estimation consistency at a high convergence rate under mild conditions. We demon-
strate the effectiveness and efficiency of our method with extensive simulation studies
and real data examples.

Keywords: Sufficient dimension reduction, central subspace, variable selection.

1 Introduction

Sufficient dimension reduction (SDR) is a widely used concept in multivariate statistics and
various applied sciences. Nowadays, high-dimensional data is routinely collected thanks to

modern technological advances. Many scientific and engineering problems are formulated
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as regressions of univariate response on p-dimensional predictor. Therefore, an important
issue today in multivariate statistics is SDR with p much larger than the sample size n.

The idea of SDR is to project the predictor X € R” onto a lower-dimensional subspace

S C R? without losing any information in regression of ¥ on X. Formally, we have

Y| X~Y |PsX, (1)
where Pgs € RP*P is the projection matrix onto S in the standard inner product and “~”
denotes “distributed as”. The intersection of all the subspaces satisfying (1) is called the
central subspace (CS; Cook, 1998), if the intersection itself also satisfies (1). The CS is the
target of many SDR methods and is commonly denoted by Syx. We assume the existence
of the CS throughout this paper and let d* < p to be the structural dimension of the
CS. Let 8* = (B%,...,85) € RP*¥ be a basis matrix of Sy;x. Then we can reduce the
predictor from X € RP to B*'X € R? for subsequent regression analysis without loss of
information. An overview of SDR can be found in Li (2018).

The most notable SDR method, sliced inverse regression (SIR; Li, 1991), was introduced
several years earlier than the formal definition of CS. Nevertheless, SIR and many other
SDR methods are, in fact, estimating the CS, or at least a portion of the CS. In this paper,
we study high-dimensional methods for estimating the CS and implement our proposal in
both the model-based SDR setting, e.g., principal fitted components (Cook and Forzani,
2008), and the model-free SDR setting, e.g., SIR (Li, 1991) and Intraslice covariance (Cook
and Ni, 2006). When p is large, it is often assumed that only a subset of variables in X is
involved in Sy|x for improved interpretability and computational feasibility. For example,
Yin and Hilafu (2015) contains a recent discussion on sufficient variable screening and
variable selection in SDR. We consider this sparse SDR problem of estimating the CS with
sparsity constraint that only a subset of X contributes to the CS.

In this paper, we propose a novel and general framework for high-dimensional sparse

SDR called Subspace Estimation with Automatic dimension and variable Selection (SEAS).
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It has the following major contributions.

First of all, SEAS is a unified approach for sparse SDR in high dimensions. Li (2007)
and Chen et al. (2010) provided general frameworks for sparse SDR and extended many
existing SDR methods by incorporating variable selection in estimation. Unfortunately,
these methods are not directly applicable in high dimensions because they require inversion
of the sample covariance matrix. In recent years, many methods for sparse high-dimensional
SIR have been developed. For example, Lin et al. (2019) proposed a Lasso-type method for
estimating sparse SIR directions sequentially; Tan et al. (2018a) proposed to re-formulate
SIR optimization into a generalized Rayleigh quotient problem; Tan et al. (2018b) proposed
a convex formulation for fitting SIR method in high dimensions; Lin et al. (2021) and Tan
et al. (2020) studied the theoretical limits and optimality of SIR in high dimensions. Our
SEAS framework is much more general than the existing sparse SIR methods. It is a unified
framework that applies beyond SIR, as the sparse SDR frameworks in Li (2007) and Chen
et al. (2010); and, at the same time, it is applicable in ultra-high dimensional settings like
the recently developed sparse SIR methods. To illustrate the versatility of our method, we
study the application of SEAS to SIR and two other SDR methods. Research is challenging
in developing unified theory and methods for high-dimensional SDR, problems because this
relies on different aspects of SDR methods (forward and inverse regression, model-based
and model-free estimation) that yield complex procedures that must be understood and
re-formulated for their high-dimensional extensions.

Secondly, SEAS avoids the long-standing problem of dimension determination prior
to subspace estimation. Most SDR methods are developed under the assumption that
the dimension d* is given. Dimension determination has been a crucial and challenging
problem in the literature since the very beginning of the SDR developments and is often
treated as a separate issue from subspace estimation. Numerous methods were developed

for determining the dimension of the CS (Schott, 1994; Ferré, 1998; Zeng, 2008; Bura and



Yang, 2011; Luo and Li, 2016). However, little is known about the theory and methods
for dimension determination in ultra-high dimensional settings, where the correct selection
of d* is even more important than before. Our estimation procedure for SEAS avoids
the commonly used two-stage procedure that first estimates the dimension d* and then
estimates a p x d* basis matrix of the CS; the structural dimension of the CS and the
important variables in regression are selected simultaneously in estimation. We establish
theoretical results for variable selection, dimension determination, and subspace estimation.
Thirdly, SEAS is built upon a convex formulation and is computationally efficient.
Many SDR methods can be formulated as a generalized eigenvalue problem (Li, 2007):
Vi = ZyD  with ' Eep =1, (2)
where 3 = Cov(X) > 0 and V > 0 is a method-specific symmetric matrix (see Section 2).
The matrix 1 € RP*?" consists of d* generalized eigenvectors with constraint @' 3 = Iy,
and D = diag(py, ..., par) consists of the corresponding d* generalized eigenvalues. Specif-
ically, each generalized eigenvector ;, i = 1,...,d*, is 2 times the i-th eigenvector of
Y VRl Sparse SDR methods based on the above formulation are naturally non-convex
due to the additional sparsity constraint and the orthogonality constraint ' 31 = I4.
Therefore, they are computationally expensive and can not guarantee the convergence to the
global optimum. Unlike existing sparse SDR approaches, we propose a quadratic objective
function with double penalization — a nuclear norm penalty for dimension determination
and a group Lasso penalty (Yuan and Lin, 2006) for coordinate-independent variable selec-
tion (Chen et al., 2010). This optimization problem is convex and solved by an alternating
directions method of multiplier (ADMM; Gabay and Mercier, 1976) algorithm.
There are other works that employ double penalization to achieve low-rank and sparse
estimators. For example, Zhou et al. (2013) adopted the element-wise ¢; and nuclear norm
penalties to induce a sparse low-rank network of social influence; Richard et al. (2014)

solved a similar double-penalized problem to recover a sparse low-rank adjacency matrix
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in the link prediction problem. However, to the best of our knowledge, we are the first to
connect a doubly penalized formula with SDR problems. Such a connection is important,
as it avoids solving the much more challenging aforementioned problem of generalized
eigenvalue decomposition for SDR. Moreover, our formulation is specially designed for SDR
problems to tackle some of their distinct challenges. First, as already mentioned, the two
penalties are carefully chosen to achieve the coordinate-independent variable selection and
the structural dimension selection, which is desirable for SDR. Second, the optimization
problems in Uematsu et al. (2019); Zhao et al. (2017); Zhang et al. (2017) enforce the joint
row/column sparsity and low-rank structure in linear regression models, but our formula
can work in a model-free context. Third, we employ some novel re-parametrization to
make sure that the final optimization problem is convex and the global minimum can be
achieved, while some double-penalized problems in the literature are nonconvex (Uematsu
et al., 2019).

Very recently, Tan et al. (2018b) proposed the convex relaxation of the sparse SIR
and the corresponding Convex-SIR method. Their convex relaxation is achieved by re-
parameterizing the generalized eigenvectors 1 € RPX?" as the projection matrix IT =
pp " € RP*P. Then the optimization problem is convex in a constrained parameter space
of p X p symmetric matrices. Since the basis matrix 1 is augmented into a much higher
dimensional parameter I, Convex-SIR can be computationally demanding when p is large.
Our convex formulation is completely different and is directly inspired by the classical SDR
methods. For SEAS-SIR, the parameter space of optimization is the set of px H dimensional
matrices, where H is the number of slices in SIR. The number H is usually selected between
3 and 20 as a common practice and is thus much smaller than the dimension p.

The variable selection in SEAS is coordinate-independent and is group-structured.
Many sparse SDR methods, such as the Lasso-SIR method (Lin et al., 2019), obtain sparse

directions of the CS in a sequential way. As such, the sparsity is imposed separately on



each direction of the CS but not directly on the variables themselves. While the CS is
unique, the directions in the CS are often not identifiable. Our proposed method aims at
joint variable selection and subspace estimation. We impose group-structured sparsity to
achieve a more interpretable coordinate-independent variable selection (cf. Section 2.3).
Finally, we obtain comprehensive theoretical results for variable selection, dimension
determination, and subspace estimation that include a general theorem and applications to
three SDR methods. The general theorem establishes a high convergence rate of the SEAS
estimator and is widely applicable. When applied to SIR, the proposed SEAS-SIR method
is shown to achieve the optimal convergence rate under weaker assumptions than existing

high-dimensional SIR methods in recent years (Lin et al., 2019; Tan et al., 2020).

1.1 Notation

For a p-dimensional vector v, the L,norm is defined as ||v], = (30, vf)1/9, where
1 < ¢q < oo; the Lp-norm is [|v|lo = [{¢ | v; # 0}|; and the Lo-norm is ||v][,. = max|v;].
For a matrix A = (a;;) € RP*Y, we use span(A) and Sa interchangebly to denote the
subspace spanned by the column vectors of A, and define its Ly ;-norm, L.-norm, Frobe-
nius norm, and maz norm as [|Allay = Y0 (31 af)? Al = max; Y1 fagl,
Al = (300, 2291 a2)'?, and [|Allmax = max |a;;|, respectively. The nuclear norm
and the spectral norm are given by [|[A|, = Z?;ilf{p’q} oi(A) and ||A|| = 01(A), where
01(A) > o03(A) > ... > 0 are the ordered singular values of A. For an index set
T C {1,...,p}, let Z¢ denote its complement set, and let A7z € RZX? denote the rows
of A indexed by Z. Moreover, let the capital letter A; € R? denote the i-th row of A
and the lowercase letter a; € R” denote the j-th column of A. For a symmetric positive
semi-definite matrix N € RP*P let @ax(N) = ©1(N) > ... > ¢,(N) = @min(IN) de-

note its eigenvalue; and define the smallest and the largest restricted eigenvalues of N as

o (k) = minjyjo<kuzo ' Nu/(u'u) and ¢, (k) = max|yy<ruzou’ Nu/(u'u). Sup-
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pose that B € RP*? is a basis of subspace & C RP, we then let Ps = Pg = 8(8'3)'3"
denote the projection onto the subspace S. For two sequences {a,} and {b,}, we use
a, = o(b,) to denote a, /b, — 0 as n — oco. For any two numbers a and b, let a A b =

min{a, b}. For a random element Z, let £(Z) denote its probability distribution.

2 Method

2.1 Review of sliced inverse regression (SIR)

Before introducing our convex formulation and unified optimization framework, we first
review SIR (Li, 1991) and related key parameters. Without loss of generality, we assume Y’
is continuous unless otherwise stated. The first step in SIR is to divide the range of Y into
H slices based on the marginal distribution of Y and construct the discretized response
Y e {1,...,H}. Then SIR targets at the following subspace,

Ssir = span(E ' Vgr) C Syx, Vi = Cov{E(X | V)}, (3)
where the matrix Vgg is the aforementioned V matrix in the generalized eigenvalue prob-
lem (2) for SIR method. The relationship Ssir € Sy|x is guaranteed by the linearity
condition: E{X | (8*)"X} is a linear function of (8*)"X where B* € RP*?" is the basis
matrix of the CS. The linearity condition is satisfied when the marginal distribution of X is
elliptically contoured. The coverage condition, Ssir = Sy/x, is often further assumed (e.g.,
Cook and Ni, 2006; Cook and Zhang, 2014) but not necessary for our method and theory.

Our high-dimensional generalization of SIR is aiming at the same Sgig as
Ssir = span(X ' Ugir), Usin = (p1 — @, -, o — ), (4)
where p = E(X) and py, = E(X|Y = h), h=1,...,H. Since H < p in our setting, the
target matrix 3" 'Ugr € RP* in (4) has a much smaller number of parameters than the

matrix X7 'Vgr € RP*P in (3). This re-parameterization later leads to computationally



efficient implementation.

2.2 Proposed Optimization Framework

When n > p, the target subspace Ssir = span(X~'Ugr) can be estimated directly by
plugging in the sample estimators S =n! Yo (X — X)(X; — X)T and ﬁSIR = (X; —
X,..., Xy — X), where X is the sample mean of X and X;, = n;' Y" | I(g = h)X; is
the h-th intraslice mean with nj, = > | T (Y; = h) being the sample size of the h-th slice.
However, in high-dimensional settings where p > n, 31 does not exist. We re-formulate

SIR as a new quadratic penalized optimization problem.

First, we recognize the population SIR subspace as the following solution,

1
B* = argmin ~tr(B"XB) — tr(B'U), (5)
BeRpxH

where ¥ > 0 and U € RP*# The solution B* = X7'U has the form we need for most
SDR methods. For SIR, the span of Bz = X !'Ugy is exactly the target subspace Ssir

in SIR. In Section 2.4, we reformulate two additional SDR, methods from (5).
Recall that H > d*, so the matrix B* is naturally low-rank. To enforce the low-rankness,
we add the nuclear norm penalty on B in the objective function (5). The nuclear norm
penalty encourages a low-rank matrix solution by restricting the sum of the singular values.

To select the variables simultaneously, we further impose Ly; norm penalty. Finally, we

have the doubly penalized optimization problem

B = argmin L (BTEB) — tr(BTT) + M |Bllos + Ao BI., (6)

€RPX
where A, > 0 and A, > 0 are the tuning parameters. After obtaining B from (6), we
estimate B and the target subspace as follows. For a user-specified number 6 > 0, we let
d = S [{ai(ﬁ) > 0}, where o;(B) is the i-th singular value of B. Then our SEAS

estimator is defined as

SB = Span(a) = Spa’n(/é\lu s 75&)) (7>



where B\k is the k-th left singular vector of B.

In this paper, we formulate various SDR estimation procedures into a unified convex
optimization (6), where the two penalty terms are adopted in order to obtain a sparse
and low-dimensional subspace representation. The threshold 4 is introduced to ensure that
d = d* with a high probability, as will be shown in Theorem 1 and discussed shortly af-
terward. The Ly ;-norm penalty is known as the group Lasso (Yuan and Lin, 2006) in
high-dimensional regression and corresponds to the coordinate-independent variable selec-

tion in SDR problems, as we discuss next.

2.3 Coordinate-independent variable selection

In high-dimensional regression, variable selection is of crucial importance in improving the
interpretation. Various sparsity-inducing penalties have been proposed (e.g., Tibshirani,
1996; Fan and Li, 2001; Yuan and Lin, 2006). In the context of SDR, the parameter of
interest is the subspace Sy x, while its basis matrix 8* is not unique. If 3* is a basis matrix
for the CS, then, for any orthogonal matrix O € R *9" 3*Q is also a basis matrix for the
CS. Similarly, in our proposed optimization (6), we are interested in the subspace spanned
by B € RP*H 1t is thus important to use a coordinate-independent penalty function (Chen
et al., 2010) that satisfies
p
¢(B) =Y 0:h(B/B;), (8)
i=1
where 6; > 0 is the penalty parameter, h; is a positive convex function, and B, € R¥
is the i-th row vectors of matrix B, ¢ = 1,...,p. It can be proven that ¢(B) = ¢(BO)
for any orthogonal matrix O € R?*# which indicates that the function ¢ is independent
of any particular basis choice. Accordingly, the variable selection based on such penalty
function is coordinate-independent and invariant under rotation. The Ly ;-norm penalty in

our optimization (6) is indeed coordinate-independent.



Another nice feature and byproduct of the SEAS framework is its ability to perform
sufficient variable selection. Sufficient variable selection was introduced by Yin and Hilafu
(2015). The goal is to find subspace S spanned by a € RP** that consists of only ones and
zeros and satisfies (1). The intersection of all such subspaces is called the central variable
selection subspace (CVSS) if itself satisfies (1). The CVSS is essentially a set of variables,
which we denote as V. In our problem, we define the active set A as the indices of non-zero

rows in any basis 3* of the central subspace, i.e., A= {j :[|8}[|2 > 0}.
Lemma 1. Assuming the CS and the CVSS exist, then V = A.

This lemma establishes the connection between sparse SDR and sufficient variable se-
lection. As such, we may re-arrange the variables according to V such that the basis 3* of

the CS can be written as (87", 83")" with 85 = 0(—s)xa+-

2.4 Model-based and model-free SDR methods beyond SIR

Beyond sliced inverse regression, many other existing SDR methods can be incorporated
into our SEAS framework with the same penalized optimization and a properly chosen U
in (5). In this section, we illustrate the flexibility of SEAS optimization with two additional
SDR methods: a model-free SDR method, Intraslice covariance (Cook and Ni, 2006), and
a model-based SDR method, principal fitted components (Cook and Forzani, 2008).

It is likely that considerable information of the conditional distribution X | Y is ignored
by SIR, because only the intraslice means E(X | Y) are considered. Cook and Ni (2006)
proposed to further exploit the intraslice covariance to better recover the information.
Similar to SIR, the range of Y is divided into H slices, and the intraslice covariance is
defined as Cov{X,YJ"(Y)},h = 1,..., H. The function J" equals to 1 when Y = h and

0 otherwise. Under the linearity condition and the coverage condition as in SIR (Li, 1991,
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Cook and Ni, 2006), the target subspace of the intraslice covariance method is
Shtra := span(X ' Upyya) = Syix; Umngra = {Cov(X, YJY,...,Cov(X,YJM}.  (9)

Let G'Ima denote the sample counterpart of Upy,.. For each column in ﬂ'lma, we use
Cov(X,Y Jh) = LS (X =X) (Y Jh =Y JR), where J! = J"(Y;) and YJb = LS Y Jh,
Then the population and sample objective functions of our SEAS-Intra are obtained by
substituting Uy, and ﬁlntra in (5) and (6), respectively.

Cook and Forzani (2008) proposed a model-based SDR method called principal fitted
components (PFC), based on the following inverse regression model,

X = p+In{f(Y)—Ef(Y)} +e, e~ N(0,A), (10)

where f(Y) € R¥ is some user-specified functions of Y, the matrix n € R¥*H is of
rank d < min(H,p) and the matrix T' € RP*?" is semi-orthogonal. The error term e is
independent of Y and normally distributed with covariance A > 0. Cook and Forzani

(2008) showed that under this model, the CS can be recovered as
Sprc := span(X'Xg;) = span(AT'T) = Syx,
where X € RP*P is the covariance of the fitted values from the regression of X on f(Y).
Straightforward calculation can verify the following re-parameterization,
Sprc = span(X ' Uppc), Upre = Cov{X, f(Y)}. (11)

The sample estimator of Uppc is Uppe = L3 (Xe = X){f(Y;) — f}7, where f =
L5 f(Y;). Similar to SEAS-SIR and SEAS-Intra, the optimization of our SEAS-PFC
method targets Sprc = span(X~'Uppc), and the population and sample objective functions
are defined by replacing U and U in (5) and (6) with Uppc and Uppc, respectively.

Compared to the generalized eigenvalue problem (2), the SEAS methodology targets at
the same subspace span(X~'U) = span(X~'V). However, the SEAS approach does not
involve matrix inversion in its optimization problem. Moreover, the SEAS optimization is

convex and has significant advantages over the non-convex problem in (2) with orthogonal-
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ity constraint 1" X1y = I;«. While the convex relaxation in Tan et al. (2018b) is achieved
by reparameterizing the generalized eigenvectors 9 € RP*9" as IT = apap | € RP*P, our
convex formulation is achieved by reparameterizing the basis matrix as B € RP*# where
the number H is method-specific, user-specified, and does not grow (or grow very slowly)
with p or n. Because H < p, our new re-parameterization is computationally much feasible
in high-dimensional SDR problems.

Since our SEAS approach is a general framework to be combined with each SDR method
in their original low-dimensional forms, it preserves the same population properties as these
existing methods. With different matrix U in (6), the SEAS methods estimate the same
population subspaces such as Ssir, Smira and Spra. To distinguish different estimates and
SDR methods, we use names SEAS-SIR, SEAS-Intra, and SEAS-PFC. Importantly, we
have not altered the existing connections between those method-specific subspaces and the
CS Syx: Under the linearity and coverage conditions, Ssir = Siira = Sy|x, Where the last
equality becomes “C” without the coverage condition; under the inverse regression model
assumption (10), Sprc = Syx. In other words, the method-specific subspaces are of our
primary target of estimation, which do not rely on the linearity or coverage conditions.
However, for ease of presentation, we assume these conditions throughout the paper so

that the target subspaces of those methods are the same as the CS.

3 Estimation procedure

3.1 Doubly penalized alternating directions methods of multiplier (ADMM)

The sample estimators for i, ﬁSIR, ﬁlmra and [AJPFC are introduced in the previous section.
The estimation procedures for different methods differ only in the matrix U. T herefore, in
this section, we present the general estimation procedure for solving (6) with a generic U.

Since there are two penalty terms involved, it is difficult to optimize (6) directly. We
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impose an equality constraint and apply the ADMM algorithm (Gabay and Mercier, 1976)
to decouple the two penalty terms. The ADMM algorithm is a widely used technique in
convex optimization that breaks a complex optimization into several simpler subproblems.
See Boyd et al. (2011) for an overview of ADMM algorithm.

The optimization problem (6) is equivalent to

PN 1 . N
(B,C) = argmin —tr(B'EB) — tr(B"U) + \||Bl21 + \2||C||., (12)
B=CgRpxH
where the equality constraint ensures B = C. Then the augmented Lagrangian for the

above problem (12), denoted by L, (B, C,w), is

%tr(BTf]B) — t2(B"0) + M| Bll2,1 + A[|C]l. + (w, B~ C) + %HB - C||%, (13)
where vy > 0 is the ADMM parameter, w € RP*# is the dual variable and (-, ) is the inner
product of two matrices defined as (M, W) = 3., M;;W;;.

Following Boyd et al. (2011), we iteratively update B, C) and w® in the Lagrangian

Ly~(B,C,w) while fix the others until the convergence of B®, C® and w®,

B(t) _ argmin L)\,'y(B, C(t—l)’ w(t—l))7 (14)
BeRpxH

c® — argmin LA’7<B(t), C, w(t_l)), (15>
CeRpxH

w® = Wt 4 4 (BO — ), (16)

Next, we show that the Algorithm is guaranteed to converge to the global optimum.

Lemma 2. Let (B®, CW) denote the iterates after t iterations, and let (B,C) denote
the global minimizer of problem (12), then as t — oo, we have |B® — B[y — 0 and

|C® — C|[F — 0.

Since problem (12) is equivalent to (6), the above Lemma 2 also suggests that B as
well as C® | converges to the global minimizer of problem (6). The optimization problem
in (14) contains the Lo ;-norm penalty on B; and the optimization problem in (15) contains
the nuclear norm penalty on C. As such, we decouple the two penalty terms and solve

two separately penalized optimization problems. By simplifying L, (B, C,w) in (13) and
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removing the constants in (14) and (15), we update the two matrices according to the

following two lemmas.

Lemma 3. The minimizer B in (14) s the solution of the following problem,

1 ~ .
B = argmin ~tr{B" (X +4L,)B} — tr{BT(U — 0" + yCEN} 4 A || B2y (17)

BeRpxH
The problem in (17) is convex. We have implemented a group-wise coordinate descent
algorithm for solving (17). See Section B.3 in the Supplementary Material for details of
this group-wise coordinate descent algorithm. For the update of C, we have derived the

closed-form solutions based on truncated singular value decomposition as follows.

Lemma 4. The minimizer C) in (15) is the solution of the following problem,

C® = argmin 1||C — (BY 447 LD 12 4+ 0|C. (18)
CeRpxH
Let 0;, u; and v; be the singular values and vectors of the matriz B® +7_1w(t_1). In other
words, B® + 71wt = Z;n:hf{p’H} ouv, . Let 0, = (05 — Xa/7y) 4 = max(0,0; — \y/7) be
erii;l{p,H} ~ T

the truncated singular values. Then the solution to (18) is C*) = ou; .

The minimizer C® from (18) shares the same singular vectors with B® 4 1wt

but takes truncated singular values. This is a commonly known result in nuclear norm
penalization problems (see, for example, Zhou and Li, 2014, Corollary 1). Based on the
two lemmas, we now summarize the SEAS algorithm in Algorithm 1 with more details on

the implementation.

3.2 SEAS Algorithm

In Algorithm 1, the input estimators Y and U are simple sample estimators obtained
from observations {(x;, y;)}i;, and the tuning parameter selection is discussed in the next
section. From Step 2 of Algorithm 1, we see that our algorithm does not require an initial

guess for B or C. We initialize the primal variables B, C(® and the dual variable w(® as
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Algorithm 1 SEAS algorithm

1. Input: f), [AJ', the tuning parameters A\, Ao, 7.

2. Initialize B, C© and w©® as zero matrices.

3. Repeat the following steps for ¢ = 1,2, ... until convergence (||B® — C® || < 6):

(a) Update B®: implement group-wise coordinate descent algorithm.
(b) Update C®: C® = Z;n:hf{p’H} o;u;v; from Lemma 4.
(¢) Update w®: w® = w1 44 (B® — CO) .

4. Let B and C be the solution at termination. The rank of the CS is estimated as the
number of non-trivial singular values of C: d = Yol {o;(C) > 8}, where o;(C) is the
1-th singular value of C.

5. Output: the estimated CS as Sﬁ = span(a) € ]Rpxg, where B is constructed as the

top—g left singular vectors of B.

zero matrices. According to Lemma 2, B®) converges to B and C® converges to 6, where
B = C. As such, we use ||[B®) — C® ||, < 8 in Step 3 as the convergence criterion, where
§ is the user-specified tolerance. In our implementation, we used 6 = 1072 for all numerical
studies. In Step 4, the rank of the CS is based on non-trivial singular values of C. The
cutoff of non-trivial singular value is also set to be § = 1073, the same as our tolerance in
Step 2 of the algorithm. Finally, the output is a d-dimensional subspace.

In Step (3a), the Lo -norm penalized optimization problem (17) in Lemma 3 is solved
by the group-wise coordinate descent algorithm proposed by Mai et al. (2015). The details
are given in Section B.3 in Supplementary Materials. The Lg;-norm penalty in this step
shrinks B® so that the sufficient variable selection is achieved. In Step (3b), the truncated
singular value decomposition solution of C® further reduces the rank of our estimator to
approach the true dimension d*. In Step (3c), the dual variable w® is updated.

At termination of Step 3, ||[B® — C®||nax < 8 = 1073, the estimators B and C do not
have to exactly satisfy the equality constraint in the ADMM optimization problem (12).

Therefore, the rank of B or C is not exactly our estimated rank for CS. In order to select
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the dimension consistently, we employed the same threshold § = 1073 to count the number
of non-trivial singular values of C. We used the non-trivial singular values of C instead
of B because the low-rank structure is encouraged only during the update of C®. The
dimension selection consistency and theoretical insights on 0 are given in Section 4.

For Algorithm 1, we need to select the optimal tuning parameters: the sparsity parame-
ter A, the low-rank parameter Ay, and the ADMM parameter v. We use the cross-validated
distance correlation (Székely et al., 2007) to select these tuning parameters by a grid search.
Another practical issue is the choice of H for slicing-based methods (SEAS-SIR and SEAS-
Intra). We recommend using H = 5 for small sample size scenarios (n < 200) and H = 20
for larger sample size scenarios (n > 200). See Sections B.1 and B.2 of Supplementary

Materials for a detailed discussion on these practical issues.

4 Theory

4.1 General results for SEAS

We study the theoretical properties of the SEAS estimators by establishing dimension
determination (equivalently, rank selection for B*), variable selection, and subspace esti-
mation consistency results. All the SEAS estimators are obtained by plugging suitable
estimates U (i.e., IAJSIR, ﬁlntra or IAJPFC) into (6). Hence, we first present a general result
concerning SEAS with a consistent estimate ﬂ', without relying on the specific form of U.
We show that, when 3 and U have proper concentration properties, the SEAS estimator
is consistent in both rank selection and subspace estimation. This general result is used to
further establish the consistency properties of the three specific SEAS estimators (SEAS-
SIR, SEAS-Intra, and SEAS-PFC) in Section 4.2 and implies a weak version of variable
selection consistency. The exact variable selection consistency is presented in Section C of

Supplementary Materials.
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Recall that SEAS attempts to estimate the span of B* = XU, whose rank d* is
the dimension of the target dimension reduction subspace. Also recall that B* € RP*?" is
the basis of span(B*), and s is the number of nonzero rows of B*. The estimated basis
matrix B is defined in (7), with rank d being the number of singular values of B greater
than &, where B is defined in (6). We let Pg. and P5 be the projection matrices onto the
target subspaces Sg+ and the estimated subspace SB spanned by the columns of 8* and B,
respectively. The distance between the two subspaces is defined as

D(Sp-.S5) = [Pg — P3lle/V2d". (19)
Many works in SDR use distance similar to (19), because it measures the distance between
subspaces in a coordinate-free manner; full-rank rotations of 8* and B\ do not change the
value of D(Sg-, Sz). When d = d*, this distance is between 0 and 1.

We need the following conditions on > and U that will be verified for each of the three
SEAS estimators under (lower-level) technical assumptions on the parameters. For ease of

presentation, C' and C” denote generic positive numbers that can vary from line to line.

(C1) There exist constants C,C’ such that ]P’(HIAJ — Ul|max < €, H(f] —3X)b} |l < €,Vh) >
1 — Cpexp(—C'ne?) for 0 < € < ', where b} is the h-th column of B*.
(C2) There exist constants K > 1 and C,C’ such that P{K~! < gogin(k) < @Eax(k:) <

K} > 1—Cexp(—C'k) for some k < p satisfying cklog(ep/k) < n for some constant

c > 1.

Condition (C1) states that U converges to U in an element-wise fashion, and 3 con-
verges to 3 when both projected onto the central subspace. As SEAS constructs pe-
nalized estimators based on U and f), it is natural to require some level of accuracy
in these two input matrices. We choose to require U and < to converge exponentially
because it is easily satisfied under some commonly used technical assumptions in high-

dimensional inference (see Section 4.2). For U and S with other convergence rates, i.e,
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]P’(||fj — Ullmax < €, ||(§) — Y)bj |l < €,Vh) > 1 —£(€) for some &(€) other than the ex-
ponential function in Condition (C1), one could typically follow our proofs to show that
the corresponding SEAS estimator converges to the truth at a corresponding order. Con-
dition (C2) is similar to the restricted eigenvalue condition commonly used in regression
problems (e.g, Bickel et al., 2009; Raskutti et al., 2010). It requires the eigenvalues of small
k x k submatrices of & to be bounded. With the group Lasso penalty, we can show that
the solution B is approximately sparse, and thus we only need the submatrices of 3 to be
well-conditioned. Similar to Condition (C1), Condition (C2) holds under mild lower-level
assumptions for our three SEAS estimators. In the future, if one wants to construct differ-
ent SEAS estimators with 3 and U not studied in this paper, the theory can be established
by verifying Conditions (C1) and (C2).

In our theoretical study, we assume that d* < H < A for some constant A > 0. To
simplify presentation, we further assume that H < s, which holds asymptotically as s
diverges with n. Without this additional assumption, all the theoretical results in the

following still holds by replacing s with max(H, s) in the convergence results. For example,

the term /slogp/n in Theorem 1 would become /max{s, H}logp/n.

To prove the rank selection consistency, the nonzero singular values of B* should be
reasonably separated from zero. Denote the nonzero singular values of B* as o7 > ... >
og~ > 0. The assumption on o4 is as follows.

(A1) There exists some sufficiently large constant M > 0, which does not depend on n, p, s,

such that o4 > My/slogp/n.

The following theorem establishes the convergence of the generic SEAS estimator.

Theorem 1. Suppose that (C1), (C2) and (A1) hold, and Cislogp < n for some suffi-

ciently large constant C7; > 0. There exist constants c¢1,cq,Cp,C,C" > 0 such that, when

2c14/logp/n < A < 3cyy/logp/n, Ay < ce)y and Cgy/slogp/n < § < 2Cp\/slogp/n, we
have that (i) |B—B*||r < Cp+\/slogp/n, (ii) d = d*, (iii) D(Sp+, S5) < C(o1/0.)\/slogp/n,
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with probability at least 1 — C'exp{—C"(s ANlogp)}.

Theorem 1 shows that, with a high probability, the SEAS estimator accurately estimates
the target subspace and correctly selects its dimension. Such results are very general. On
the one hand it is obtained under mild conditions/assumptions; we do not assume any
particular relationship between ¥ and X. On the other hand, we do not need the estimates
U and & to have any specific form as long as they have the concentration properties in
Conditions (C1) and (C2). Thus, Theorem 1 can be used to prove the properties of various
SEAS estimators in an almost model-free manner. Moreover, the rates in Theorem 1 are
high. When Theorem 1 is later applied to SEAS-SIR, the resulting convergence rate is
optimal in a minimax sense under weaker assumptions compared to existing results.

We make some remarks on the term oy/03. that is involved in the convergence rate
of D(Sp+, Sz) in Theorem 1. The singular values oy and 04+ and the matrix B* are more
explicitly studied in the next section as we analyze the three SDR estimators (SEAS-SIR,
SEAS-Intra, and SEAS-PFC). The value of ¢;/02, depends on the SDR method adopted
in the SEAS framework and the model between Y and X, and it generally describes the
model complexity. For SEAS-SIR, we provide some examination of o1/02, in examples
provided in Section D of Supplementary Materials. We show that for linear regression
model with larger signal-to-noise ratio and linear discriminant model with smaller Bayes
classification error rate, oy /0% becomes smaller, resulting in a lower non-asymptotic bound
for D(Sp-, 83). For simpler interpretation, one may also treat o;/c3, as a constant.

We further present the following asymptotic result as a corollary to Theorem 1.

Corollary 1. Under the same conditions as in Theorem 1, further assume that (o1/02.)\/slogp/n =
o(1), we have (i) |B — B*||p — 0, (ii) d=d*, and (iii) D(Sg-,Sz) — 0, with probability

tending to 1, as n — oo.

Corollary 1 states that SEAS simultaneously provides consistent estimates for the rank
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and the subspace even when the dimension p grows at an exponential rate of n. Such
results support the application of SEAS estimators in high dimensions. Similar to the non-
asymptotic results in Theorem 1, the asymptotic results in Corollary 1 apply to any SEAS
estimators with 3 and U that meet Conditions (C1) and (C2).

Moreover, Theorem 1 directly implies that all the important variables are selected under
the following assumption on signal strength. Recall that A is the true active set defined

formally in Section 2.3. Let A be the estimated active set defined similarly.

(A2) There exits some sufficiently large constant N > 0, which does not depend on n, p, s,

such that minjec 4 | B}|l2 > N(07/03.)/slogp/n.

Corollary 2. Under the same conditions as in Theorem 1, and further assume (A2) holds,
we have that (i) A C A, and (ii) ||Bae|lr < C(o1/03.)\/slogp/n, with probability at least

1—Cexp{—C'(sAlogp)}.

Assumption (A2) guarantees that the important variables have coefficients separated
from zero, although the lower bound could tend to zero quickly at the order of (o3 /02, ) \/W.
Under this assumption, Corollary 2 reveals that with high probability, SEAS is able to re-
cover all the important variables, while the falsely selected variables have small coefficients.
Thus, Corollary 2 could be viewed as a weak version of variable selection consistency. How-
ever, we note that Corollary 2 does not guarantee exact recovery of A = A\, as there could
be some weak false positives. We establish the exact recovery results in Section C of Sup-
plementary Materials under additional assumptions, such as the irrepresentable condition

that is commonly required in penalized regression literature (Zhao and Yu, 2006).

4.2 SEAS-SIR, SEAS-Intra and SEAS-PFC

In this section, we present estimation and rank selection results for the three specific SEAS

estimators. The variable selection consistency for these methods is established in Section C
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of Supplementary Materials. SEAS-SIR, SEAS-Intra, and SEAS-PFC are all consistent
in subspace estimation and rank selection. To avoid redundancy, we only present the
non-asymptotic results, as it is straightforward to obtain asymptotic results similar to
Corollary 1. The non-asymptotic results are proved by verifying Conditions (C1) and (C2)
under technical assumptions and applying Theorem 1. We first introduce the following two

assumptions required by all three estimators.

(A3) The predictor Xy, ...,X,, € RP are i.i.d. centered sub-Gaussian random vectors with
parameter k? < m/4 for some constant m > ¢! (¥). That is, E(X;) = 0 and, for
any a € R?, we have E{exp(a’X;)} < exp(x?||al|3/2),i=1,...,n.

(A4) There exists some constant 7' > 0 such that the leading singular value of B*, oy < T.

The sub-Gaussianity of X in Assumption (A3) is common in high-dimensional statistics
to obtain concentration inequalities (e.g, Wainwright, 2019), while Assumption (A4) is a
technical assumption that helps bound (3 — 3)b} || in Condition (C1). In what follows,
we present different additional assumptions (when needed) and results for each method.
Subscripts are further employed to distinguish different methods’ target parameters and
subspaces (cf. Section 2). Recall that, for SEAS-SIR, we estimate Sgir = span(B%r) =
span(X~1Ugr) with Sa,,, based on S and Ugr. The rank of Bir = X7 'Ugg is denoted
as dgp, and ogg ¢« denotes the smallest non-zero singular value of Bgy.
To apply SEAS-SIR, we need to slice Y into the discretized response Y € {1,...,H},
and Ugg is computed based on the within-slice means. Let 7, = P(Y = h) for h =

1,...,H. We assume that a=! < m, < a for some constant a > 0.

Corollary 3. Assume that (A1)(A3) and (A4) hold. Further assume that Cislogp < n

for some sufficiently large constant C; > 0. There exist constants ci,co,Cpg,C,C" > 0

such that, when 2ci+/logp/n < A1 < 3ci4/logp/n, Aa < oA and Cpy/slogp/n < § <

2C5+\/slog p/n, with probability at least 1 —C exp{—C"(sAlogp)}, we have that (i) |Bsir —
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Birllr < Cpy/slogp/n; (ii) CTSIR = dgg; (1ii) D(SSIR,Sﬁsm) < C\/S Ing/(naélIR,d*)~

Corollary 3 establishes the probability bound for rank selection and subspace estimation
of SEAS-SIR by verifying Conditions (C1) and (C2) under the mild Assumptions (A3) and
(A4). Moreover, the convergence rate for D(Ssir, Sg,, ) is optimal in the minimax sense
under a flexible model space. We discuss the optimality result rigorously in what follows.

Since most existing high-dimensional SIR works are based on the aforementioned gen-
eralized eigenvalue problem formulation in (2), we describe our parameter space in this
context as well. In our notation, SIR looks for % such that Vgr®yp = 3D subject to
T8 = I, where Vgg = Cov{E(X | Y)} and D = diag(py, . .., pa+) is the diagonal ma-
trix with the diagonal elements being the generalized eigenvalues p; > -+ > pg» = p > 0.

The column subspace of ) is exactly Sgir. We consider the model space
Pn,p,s,p) = {L(X,Y:),i=1,...,n:(X;,Y;)’s are i.i.d. such that X; satisfies (A3);
(B* has at most s nonzero rows; pg = p > 0}.

We have the following minimax lower bound for this model space.

Lemma 5. Assume that Cyslog(ep/s) < np? for some sufficiently large constant Cy > 0.

Let 85 denote an estimator of Ss;r. There exist some constants C,co > 0 such that,

1
lllf sup P D(SSIR, SB) > C %65/8) Ney p 2> 0.8.
B PeP(n,p,s,p) np

Combining Corollary 3 and Lemma 5, we note that SEAS-SIR is optimal in subspace es-

timation. Recall that in Corollary 3 we showed that D(Ssir, Sz, ) < C \/ slogp/(nogg 4-)-
We further have that g 4o > Cp for some positive constant C' (see Lemma H.3 in Sup-
plementary Material). Hence, with a high probability, SEAS-SIR has a convergence rate
of D(SSIR’Sﬁsm) <C \/W , which matches the lower bound in Lemma 5 when
lim,, o (log s/logp) < 1, e.g., when s < p* for some constant k < 1. Therefore, SEAS-SIR

is optimal in the minimax sense over a wide range of models.
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Compared to many existing high-dimensional SIR proposals, SEAS-SIR achieves the
optimal convergence rate under weaker assumptions. For example, Tan et al. (2020) devel-
oped the sparse SIR with the optimal convergence rate of /slogp/(np?) when X | Y =
h) ~ N(pp,Xy) for py, € RP and X, € RP*P. h = 1,..., H, while our theoretical study
does not impose any assumption on the relationship between X and Y, and our model
space includes theirs as a subset. Convex-SIR proposed by Tan et al. (2018b) converges at
the rate of \/W , which is sub-optimal as s diverges. The convergence rate of
Lasso-SIR (Lin et al., 2019) was shown to approach the minimax rate only when p = o(n?),
while SEAS-SIR is rate-optimal even when p diverges at an exponential rate of n.

Finally, we note that GSIR is calculated based on the within-slice means of X, and
the original value of Y does not directly affect GSIR. Thus, no additional probabilistic
assumption is needed for Y. It will be seen that this is not the case for SEAS-Intra
or SEAS-PFC; both of the latter methods need additional assumptions on Y. This is a
difference between the three methods from the theoretical perspective, as will be made
clearer in what follows.

For SEAS-Intra, which also requires slicing the response, we again assume that 7, =
]P’(? = h) is bounded, i.e, a™* < 7, < a, h = 1,..., H, for some constant a > 0. We

establish the theoretical properties by further assuming the distribution assumption on Y.

A5) The response Y is centered sub-Gaussian with parameter 2 < G for some constant
( p p

G > 0.

Corollary 4. Assume that Assumptions (A1) and (A3)-(A5) hold. Further assume that

Cislogp < n for some sufficiently large constant Cy > 0. There exist constants c¢1,ce, Cg, C,C" >

0 such that, when 2ci+/logp/n < A\ < 3ciy/logp/n, A < caAi and Cp/slogp/n < § <

2Cp+/slogp/n, with probability at least 1 —C' exp{—C"(sAlogp)}, we have that (i) ||]§Intra—

Biurallr < C/5108 0/ (i1) distra = iy (ii1) D(Storas S5, ) < C[5108 D/ (001, 0.
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Compared with SEAS-SIR, SEAS-Intra additionally requires Assumption (A5) because
it estimates the within-slice covariance instead of the within-slice mean. We need Y to
be light-tailed to guarantee that the within-slice covariance is estimated to the level of
accuracy in Condition (C1). Under our assumptions, SEAS-Intra is also consistent in
ultra-high dimensions. With a high probability, the estimated subspace converges to the
target subspace, and the rank is selected correctly.

In SEAS-PFC, the user-specified fitting functions f(Y') is used instead of slicing. We
impose the following assumption for the PFC fitting functions.

(A6) In the PFC model (10), the fitting functions f(Y;) are i.i.d. centered sub-Gaussian
random vectors with parameter £2 < L for some constant L > 0, i = 1,...,n. Also
assume that ||n|| is bounded from above and ¢! < Yuin(A) < Pmax(A) < g for some

constant g > 0.

Corollary 5. Assume that Assumptions (A1)(A4) and (A6) hold. Further assume that

Cislogp < n for some sufficiently large constant Cy > 0. There exist constants ¢y, ¢, Cg, C, C" >

0 such that, when 2ci+/logp/n < A\ < 3ciy/logp/n, Ao < caA1 and Cp/slogp/n < § <

2Cp+/slogp/n, with probability at least 1 —C exp{—C"(sAlogp)}, we have that (i) ||]§ch—

Bipcllr < Coy/slogp/n; (ii) dpec = diye; (i) D(Sprc. Sp,.,) < C \/ slogp/(noppe gv)-

Corollary 5 shows that SEAS-PFC is consistent in high dimensions under suitable as-
sumptions. Different from SEAS-SIR and SEAS-Intra, SEAS-PFC does not explicitly re-
quire Assumption (A3) that X is sub-Gaussian. This is because Assumption (A3) is a
direct consequence of Assumption (A6) under the PFC model (10). On the other hand,
SEAS-PFC needs the additional Assumption (A6) to guarantee that the covariance ma-
trix Uppc is estimated accurately. We note that the sub-Gaussianity assumption on f(Y)
in (A6) is very mild. In PFC, we build a conditional model of X given Y. Thus, Y is often

scaled to be bounded. As a result, for any continuous function f, f(Y) is bounded and
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thus sub-Gaussian.

5 Simulation Studies

We implement the three SEAS estimators, SEAS-SIR, SEAS-Intra, and SEAS-PFC, as
high-dimensional extensions of the SDR methods SIR (Li, 1991), Intraslice covariance (Cook
and Ni, 2006), and PFC (Cook and Forzani, 2008). The three SEAS estimators are com-
pared with several state-of-the-art sparse SDR methods, including Lasso-SIR (Lin et al.,
2019), natural SSIR, and refined SSIR (i.e., sparse SIR; Tan et al., 2020). We also consider
convex-SIR (Tan et al., 2018b), Rifle-SIR (Tan et al., 2018a), and Lasso regression (Tib-
shirani, 1996; Neykov et al., 2016). The convex-SIR and Rifle-SIR are not included in
our numerical studies because they are computationally infeasible in our high-dimensional
simulation models where p > 1000. The Lasso regression is only able to estimate one-
dimensional CS and is thus included only for single-index models (M1) and (M2).

We consider high-dimensional settings with n = 200 and p = 1000 or 3000. For each
of the following simulation models, the results are based on 100 independent replicates,
except for p = 3000 models, where the natural SSIR and refined SSIR results are based on
16 replicates due to their high computational cost.

For SEAS-PFC, we use f(Y) = (Y, Y2 Y3)" as the default fitting functions. Tuning
parameters were selected by five-fold cross-validation for our methods, and also for Lasso-
SIR, Lasso, and refined SSIR. For natural SSIR, the default tuning parameters in the
implementation are used because no cross-validation function is available. The dimension
selection is not provided for natural SSIR and refined SSIR methods in Tan et al. (2020).
Hence, to illustrate their best-case scenarios, we use the true rank for these two methods.
The dimension selection for Lasso-SIR follows the R packages LassoSIR. For all slicing-

based methods, we take H = 5.
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We consider a linear regression model (M1), a single index model (M2), two multiple
index models (M3a) and (M3b), and a PFC model (M4). In models (M1) and (M2), the
active set A = {1,...,10}, and in models (M3a)(M3b) and (M4), the active set A =
{1,...,6}. The central subspace dimension d* equals to 1 in models (M1) and (M2) and 2
otherwise. For single index models (M1) and (M2), 8;’s are generated from Unif(0.1,0.4)
for 1 < j <10, and 35 = 0 otherwise. For multiple index models (M3a) and (M3b), £;’s
and ﬁgj’s are generated from Unif(0.3,0.6) for 1 <7 <6 and 1 <j <3, ng’s are generated
from Unif(—0.6,—0.3) for 4 < j < 6, and §j; = 0 otherwise. For PFC model (M4), 3};’s
and (3;’s are generated from Unif(2,2.5) for 1 <i¢ <6 and j =1,3,5, p3;’s are generated
from Unif(—2.5, =2) for j = 2,4,6, and 3;; = 0 otherwise. Each model is described as
follows:

(M1) Y =X"8*+¢
(M2) Y = sinh(XT8*) +¢;
(M3a) Y = (XT3%) - exp(X "85 + 0.5¢), with normally distributed X;
(M3b) Y = (XT8%) - exp(X " 35 + 0.5¢), with non-elliptically distributed X;
(M4) X =T'nf(Y) + €, with e ~ N(0,A) and I'n = A(B7, 33).

For models (M1)(M2) and (M3a), X is normally distributed as N(0,X) where ¥ =
AR(0.5), and the error term e follows N(0,1). The auto-regressive covariance matrix
AR(0.5) denotes a p x p matrix with the (4,7)-th element 0.5, For model (M3b),
X ~ 04N (p1,31) + 0.2N (g, Xo) + 0.4N (s, X3) and e follows N(0,1). The values of p;,
it =1,2,3, are set as py; = —1, pg; = 1 for 1 < 7 <6 and p;; = 0 otherwise. And we fix
3, = AR(0.1), ¥, = AR(0.5) and ¥3 = AR(0.9). For PFC model (M4), Y ~ Unif(—1,1)
and € ~ N(0,A), where A = AR(0.5). And we take f(Y) = (Y, |Y])".

To evaluate dimension selection and subspace estimation accuracy, we record the es-
timated structural dimension d and the subspace distance D(Sg+, S3) between the esti-

mated basis and the true basis. For variable selection results, we report the true posi-
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p = 1000 p = 3000
Method Dx100 TPR (%) FPR(%) d | Dx100 TPR (%) FPR (%) d
Model (M1)
SEAS-SIR 39.5 (0.8) 96.0 1.4 1.00 | 47.8 (1.6) 91.5 1.4 1.02
SEAS-Intra | 37.4 (0.7)  97.6 1.3 1.00 | 43.3 (0.9) 943 15 1.01
SEAS-PFC | 36.1 (0.7)  97.3 0.8 1.00 | 41.2 (0.8) 952 0.9 1.00
Lasso-SIR 82.7 (1.7) 95.3 8.5 1.63 | 75.6 (1.2) 92.6 2.4 1.09
Lasso 47.3 (0.8) 89.5 0.2 1.00 | 49.4 (0.9) 88.0 0.2 1.00
natural SSIR | 54.8 (0.9) 82.7 0.1 1.00 | 56.8 (2.5) 78.8 0.0 1.00
refined SSIR | 51.8 (0.8) 91.6 1.8 1.00 | 57.0 (2.5) 91.9 1.2 1.00
Model (M2)
SEAS-SIR 37.6 (0.7) 93.1 1.3 1.00 | 43.5 (0.9) 89.1 0.3 1.01
SEAS-Intra | 34.9 (0.7)  95.8 1.3 1.00 | 39.1 (0.7) 923 0.4 1.00
SEAS-PFC | 33.8 (0.6)  95.6 0.8 1.00 | 37.1 (0.6) 939 0.2 1.00
Lasso-SIR 76.4 (1.8) 93.2 8.1 156 | 68.4 (1.3) 91.1 2.2 1.06
Lasso 49.5 (1.5) 74.9 0.0 1.00 | 53.6 (1.6) 69.2 0.0 1.00
natural SSIR | 49.1 (0.7) 80.1 0.1 1.00 | 47.7 (2.1) 75.6 0.0 1.00
refined SSIR | 46.6 (0.7) 89.0 2.1 1.00 | 45.3 (1.6) 86.9 0.7 1.00
Model (M3a)
SEAS-SIR | 28.3 (0.7)  100.0 0.3 2.04 | 29.4 (0.5)  100.0 0.1 1.99
SEAS-Intra | 30.0 (0.8)  99.7 0.2 2.03 | 32.8 (0.8) 99.3 0.1 2.02
SEAS-PFC | 40.7 (1.2) 88.2 0.4 1.87 | 444 (1.2) 85.8 0.1 1.87
Lasso-SIR 60.8 (0.7) 99.8 6.0 1.44 | 61.5 (0.5) 98.7 1.9 1.03
natural SSIR | 42.9 (0.9) 99.0 11 2.00 | 45.0 (2.8) 96.9 0.6 2.00
refined SSIR | 31.4 (0.8) 99.8 1.9 2.00 | 29.1 (1.3)  100.0 0.5 2.00
Model (M3b)
SEAS-SIR | 30.0 (2.0)  99.0 0.1 2.30 | 28.9 (1.9)  99.2 0.0 2.25
SEAS-Intra | 31.5 (1.9)  97.5 0.0 220 | 28.4 (1.5)  99.0 0.0 2.10
SEAS-PFC | 52.3 (0.9) 60.5 0.1 1.14 | 52.1 (0.6) 56.7 0.0 1.10
Lasso-SIR 65.9 (0.8) 99.3 6.4 1.63 | 63.6 (0.7) 99.7 1.3 1.10
natural SSIR | 59.9 (0.9) 96.0 3.3 2.00 | 64.5 (2.2) 90.6 L5 2.00
refined SSIR | 40.7 (1.0) 98.8 2.1 2.00 | 43.7 (2.7) 99.0 0.8 2.00
Model (M4)
SEAS-SIR 39.5 (1.4) 99.8 0.5 2.26 | 42.7 (1.5) 100.0 0.0 2.34
SEAS-Intra | 35.0 (1.0) 100.0 0.2 2.05 | 36.1 (0.9) 100.0 0.1 1.97
SEAS-PFC | 31.7 (0.8)  100.0 0.1 1.95 | 33.5 (0.7)  100.0 0.0 1.95
SEAS-PFC* | 31.7 (0.8)  100.0 0.1 1.94 | 33.2 (0.7)  100.0 0.0 1.95
Lasso-SIR 69.1 (1.0) 98.5 5.2 1.53 | 61.7 (0.7) 99.0 0.6 1.05
natural SSIR | 64.1 (0.7) 98.2 114 200 | 65.9 (0.9) 100.0 5.0 2.00
refined SSIR | 73.5 (0.5) 79.5 4.1 2.00 | 77.8 (0.5) 79.2 15 2.00

Table 1: Simulations with n = 200 and p = 1000,3000. The standard errors for the average of
D x 100 are in parenthesis. The standard errors for TPR, FPR, and d are less than 4.3 (%), 0.4
(%), and 0.07, respectively, and are thus omitted.

tive rate (TPR) and the false positive rate (FPR), defined as TPR = |A(.A|/|A| and
FPR = |.Zﬂ A°|/|A|. Based on 100 replicates, we calculate the averages of D, TPR,

FPR, and d for each method under each model. To demonstrate the advantages of PFC in
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model (M4), we also report the performance of SEAS-PFC with the true fitting function
FY)=(Y,]Y])". All these results are summarized in Table 1.

From Table 1, it is clear that our SEAS methods achieved the best subspace estimation
across all five models for both dimensions p = 1000 and p = 3000. Our SEAS-SIR out-
performed all existing SIR-type methods (Lasso-SIR, Rifle-SIR, natural SSIR, and refined
SSIR). This agrees with our theoretical results that SEAS-SIR achieves the optimal rate
of convergence. The SEAS-Intra and SEAS-PFC had the edge over SEAS-SIR in simpler
models, (M1) and (M2), by utilizing additional information beyond the intraslice mean
functions. Under the PFC model (M4), SEAS-PFC was significantly better than all other
methods by achieving the smallest subspace distance, the exactly correct dimension selec-
tion, and excellent variable selection. Moreover, the performance of SEAS-PFC does not
suffer much from the mis-specification of f(Y'). In model (M3b), X is non-elliptically con-
toured; comparing the results to those in model (M3a), SEAS-SIR and SEAS-Intra were
robust to such violation of the linearity condition. In contrast, Lasso-SIR was not able to
estimate the central subspace accurately in either of the two models, and natural SSIR and
refined SSIR were more sensitive to non-elliptically contoured predictors.

The dimension selection results of all three SEAS methods were very encouraging.
Their selected d were very close to the true d* in all models except for (M3b), where
X followed a non-elliptically contoured distribution. In model (M3b), SEAS-PFC under-
estimated d* significantly, but SEAS-SIR and SEAS-Intra only slightly over-estimated d*
and had better subspace estimation accuracy than other methods, including the two SSIR
methods that used the true d* information. Lasso-SIR is the only high-dimensional SDR
method that we found to have a built-in dimension selection procedure. However, Lasso-SIR
significantly over-estimated d* in models (M1) and (M2) and significantly under-estimated
d* in the other three models. These inaccurate dimension selections also contributed to

the poor subspace estimation results for Lasso-SIR. Our SEAS methods indeed benefited
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Methods Estimation Classification error (%)

D x 100 »(%) 3 d | Logistic SVM LDA RF
SEASSIR | 47.9 (1.2) 94.3 (0.3) 216(0.7) 20| 21 1.4 1.1 1.6
Lasso-SIR | 87.9 (1.1) 87.1 (0.5) 28.6(L.3) 10| 357 241 133 85
natural SSIR | 76.6 (0.5)  79.5 (0.5) 46.5(2.0) 20| 24 18 18 19
refined SSIR | 87.4 (0.4) 72.9(0.3) 455 (0.7) 2.0 3.7 1.6 16 1.7

Table 2: Comparison results on Lymphoma data set. The standard errors are in parenthesis. The
standard errors for d and the classification error rate are zero and less than 1.5 (%), respectively,
and are thus omitted.
from the automatic and accurate dimension selection. Similar to the dimension selection
performance, the SEAS methods also had great variable selection accuracy.

To illustrate the computational cost of each method, we report the computation time of
these SIR-based methods under model (M3a) in Section A.2 of Supplementary Materials.

The results clearly showed that our method, as well as Lasso-SIR, are much faster and

scalable to higher dimensions than the two SSIR methods.

6 Real data analysis

In this section, we analyze a high-dimensional gene expression data from three different
types of lymphoma samples. In the lymphoma data, there are 42 samples of diffuse large
B-cell lymphoma (DLBCL), 9 samples of follicular lymphoma (FL), and 11 samples of
chronic lymphocytic leukemia (CLL). The total sample size is thus n = 62. Each sample
has a categorical response Y € {0, 1,2} indicating the three types DLBCL, FL, and, CLL,
respectively, and p = 4026 gene expression measurements that were pre-processed and
standardized to be zero mean and unit variance. See Chung and Keles (2010) and Chung
et al. (2019) for more details about the data set. In Section A.1 of Supplementary Materials,
we present another real data analysis, which contains a regression problem with continuous
response Y (where SEAS-PFC outperforms others) and a binary classification problem.

Because the response is a categorical variable, both SEAS-PFC and SEAS-Intra (with
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Figure 1: The scatterplot of the CS from SEAS-SIR. on the lymphoma dataset.

indicator functions) reduce to SEAS-SIR. Therefore, we only compare SIR-based methods:
SEAS-SIR, Lasso-SIR, natural SSIR, and refined SSIR. For comparison, we generated 100
bootstrap data sets from the original data. Then, for each method, we estimate 3 and Bb
from the original and the bootstrap data, respectively. The subspace estimation consistency
is estimated as D, denoting the subspace distance between a and each 5&- The bootstrap
variability of subspace estimation is a commonly used criterion for comparing SDR methods
(e.g., Ye and Weiss, 2003). Similarly, for the variable selection consistency, we use the simple
matching coefficient, ¢ = (|4 N Ay + | A° N A¢|)/p, where A and A, are the active sets for
f‘j and Bb- The average results based on 100 bootstrap data sets are presented in Table 2,
where we also reported the estimated dimension d and the sparsity level s.

From Table 2, we can see that SEAS-SIR attained the smallest D, indicating the stable
and accurate subspace estimation of SEAS-SIR over the competitors. Similarly, SEAS-SIR
also attained the largest 1/, implying a more stable and replicable variable selection over
other methods. Moreover, SEAS-SIR. selected d = 2, and Lasso-SIR suggested d=1all
the time. For natural SSIR and refined SSIR, we only reported the results with d* = 2.
The results with d* = 1 were worse and thus omitted. It can be seen that the subspace
estimation and variable selection of natural SSIR and refined SSIR are less accurate than

SEAS-SIR. The larger sparsity level 5 estimated by these two SSIR. estimators brought
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difficulty to the interpretation of the fitted model. To visualize the estimated CS, we plot
the data after projecting onto the two-dimensional CS estimated by SEAS-SIR. Figure 1
illustrated a perfect separation of the three classes by the SEAS-SIR reduction. This verifies
that the two-dimensional subspace estimated by the SEAS method is indeed a sufficient
dimension reduction and the most suitable dimension of CS is d* = 2.

Next, we investigate the prediction performance of SEAS-SIR and other SDR methods.
We split the data into training and testing data sets at a ratio of 80/20 in a stratified
way (i.e., sample splitting within each class). On the training data set, we first reduce the
predictor by each SDR method and then train classifiers based on the reduced predictor.
Various classification methods are included, such as logistic regression, linear discriminant
analysis (LDA), random forest (RF'), and support vector machine (SVM). Then the trained
classifiers are validated on the testing data set, where the predictor is reduced by projecting
onto the same CS. We repeat randomly 100 training-testing sample splitting and report
the averaged classification errors in Table 2. With logistic regression, linear discriminant
analysis, and support vector machine, the classification error of SEAS-SIR was the lowest.
And with random forest, SEAS-SIR still achieves the second-lowest classification error. The
very low classification error from SEAS-SIR is not surprising, given the clear separation of

classes in Figure 1.

7 Discussion

We propose a flexible SEAS framework for extending SDR methods to high-dimensional
settings. Different from most existing SDR methods, which treat dimension selection as a
separate task, the SEAS methods perform dimension selection and sparse subspace estima-
tion simultaneously. The superior performance of SEAS methods over recently developed

sparse SDR methods is demonstrated in both simulation and real data analysis. We es-
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tablished the general asymptotic and non-asymptotic results as well as specific theoretical
properties of three high-dimensional extensions, SEAS-SIR, SEAS-PFC, and SEAS-Intra.

It is worth mentioning that SDR methods are not restricted to estimating the CS. For
example, the central mean subspace (Cook and Li, 2002) and related methods (Li, 1992; Xia
et al., 2002; Ma and Zhu, 2014) are of substantial interest and is left as a future research
direction. In this paper, we only considered the first-order SDR methods in SEAS. As
discussed in Chen et al. (2010) and Li (2007), many other second-order SDR methods can
also be formulated as the generalized eigenvalue problems. Extensions to the second-order

methods are related future research topics.
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