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ABSTRACT: We present software infrastructure for the design and testing of new quan-
tum mechanical /molecular mechanical and machine-learning potential (QM/MM-AMLP)
force fields for a wide range of applications. The software integrates Amber’s molecular
dynamics simulation capabilities with fast, approximate quantum models in the xtb pack-
age and machine-learning potential corrections in DeePMD-kit. The xtb package imple-
ments recently developed density-functional tight-binding quantum mechanical models with
multipolar electrostatics and density-dependent dispersion (GFN2-xTB), and the interface
with Amber enables their use in periodic boundary QM /MM simulations with linear-scaling
QM /MM particle-mesh Ewald electrostatics. The accuracy of the semiempirical models is
enhanced by including machine-learning correction potentials (AMLPs) enabled through an
interface with the DeePMD-kit software. The goal of this paper is to present and validate

the implementation of this software infrastructure in molecular dynamics and free energy
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simulations. The utility of the new infrastructure is demonstrated in proof-of-concept exam-
ple applications. The software elements presented here are open-source and freely available.
Their interface provides a powerful enabling technology for the design of new QM /MM-
AMLP models for studying a wide range of problems, including biomolecular reactivity and

protein-ligand binding.

Introduction

Molecular simulations provide atomic-level insight to complex chemical phenomena and are
indispensable in many areas of fundamental research, technology development, and molecular
design.'? The predictions enabled by molecular simulations are critically dependent on the
accuracy of the atomic forces that drive the dynamics.!™ These forces are determined as the
negative gradients with respect to the atomic positions of a model potential energy function,
commonly referred to as the “force field”. A wide range of force fields exist for performing
molecular simulations for different types of applications.?® Two particularly challenging ar-
eas for force field development are the design of potential energy models that can address
problems that involve: (1) chemical reactions in complex heterogeneous condensed phase
environments,? and (2) protein-ligand binding free energies used in drug discovery.!® The
former requires an accurate model capable of describing covalent bond cleavage/formation
and the associated change in electronic structure that occurs along the reaction’s minimum
free energy path. The latter requires quantitatively accurate prediction of intermolecular
interactions experienced by candidate drug-like molecules — for which little or no experimen-
tal data may exist — in different environments. The challenge in developing accurate force
fields for these target areas is further amplified by the large amount of required sampling.
This requirement demands that the methods be sufficiently fast to be practical (and hence
preclude the use of computationally intensive ab initio quantum mechanical methods).!?

One promising strategy is to develop generalized hybrid quantum mechanical /molecular



mechanical (QM/MM) models based on fast, approximate semiempirical /density-functional
tight-binding QM methods that are augmented by machine-learning potential (MLP) correc-
tions to enhance accuracy while maintaining low computational cost.? Combined QM /MM-
AMLP models have seen a burst in development over the past few years.'>!” A critical
barrier to progress is the availability of open-source software that enables the integration of
the latest QM, MM, and MLP potentials within a molecular dynamics framework that sup-
port a wide range of free energy and enhanced sampling methods under periodic boundary
conditions with rigorous long-ranged electrostatics. The current work addresses this issue
with the integration of software infrastructure to develop new QM/MM-AMLP models for
use in molecular dynamics and free energy simulations.

The remainder of the manuscript proceeds as follows. The Methods section describes key
background and technical aspects of the software integration between Amber, ¥ xtb?? and
DeePMD-kit, 223 as well as the computational details for the demonstration applications.
The Results and Discussion section is organized into two topics. The first topic focuses on
applications that demonstrate the effectiveness of the new sander/xtb interface for simulat-
ing catalytic reactions using GFN2-xTB QM /MM. Specifically, we apply the new interface to
evaluate free energy profiles of the self-alkylation mechanism in artificially engineered RNA
enzymes?> 2 calculated from GFN2-xTB QM /MM umbrella sampling.?® The reaction pro-
files are compared to DETB3/30b and ab initio PBE0/6-31G* QM/MM sampling. Further-
more, we demonstrate that inclusion of a AMLP correction improves the agreement between
the ab initio and semiempirical free energy profiles of methyltransferase ribozyme.2"?83° The
second topic addressed in the Results and Discussion section focuses on the development of
a GFN2-xTB QM /MM-AMLP model for drug discovery applications using the new inter-
face between Amber and DeePMD-kit. The ability of the preliminary model to reproduce
benchmark relative energies from a variety of databases is demonstrated, and the results are
compared to several semiempirical, ab initio, and machine learning potentials. Finally, the

model is applied to calculate the relative solvation free energies of drug-like tautomers using



an indirect thermodynamic approach.3' These calculations demonstrate the ability to cor-
rect end-state free energies from molecular mechanical (MM) to quantum mechanical (QM)

levels, as would be used in drug discovery applications.

Methods

The framework for the QM /MM-AMLP force fields in Amber use the following general form.

Eqmmv-amvie = Evv + Eoum + Equynvm + Eur (1)

Eyiv and Egy are the MM and QM contributions to the energy, and Eqm/nv is their
interaction, calculated with electrostatic embedding. FEjyy, is a non-electrostatic correction
obtained from a machine learning potential (sometimes referred to as the machine learning
potential correction, AMLP). In the present work, we extend the capability of the sander
program to calculate Equ and Equwu with the GEN2-xTB? model provided by the the xtb
package.?® Furthermore, we introduce Eyy, into sander via an interface to the DeePMD-kit

software. The interfaces are described in detail in the next sections.

QM /MM integration of xtb with Amber

The QM /MM interface between Amber and external QM software has often been performed
through a file-based process in which a QM input file is written at each MD time step,
a system call is made to invoke the QM program, and the energy and forces are read by
parsing the QM output file. The xtb software?®293233 can be compiled as a library and
directly linked to the MD program thereby avoiding the need to make system calls and
perform disk operations at each step of dynamics. Furthermore, the direct linkage provides
an opportunity to incorporate long-range Ewald electrostatics within the self-consistent field

(SCF) procedure. 24:34736



The QM /MM interaction is performed with electrostatic embedding.
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Eqwm /v,y s the nonelectrostatic Lennard-Jones contribution. The second term is the short-
range electrostatic interaction between the QM charge density qqum(r) and the nearby MM
charges g,(r—r,), where the primed summation includes only those MM atoms within a cutoff
of the QM region. The remaining terms model the long-range electrostatic interactions. ¢,
is the Mulliken charge of atom a, Adym(r,) is the electrostatic potential of the MM atoms
outside of the cutoff, and A¢qu(r,) is the long-range interaction between the QM region
and its periodic images. The last term is a contribution arising from a neutralizing uniform
background correction. The MM energy contains a similar correction such that the net

contribution to the total energy depends on the total charge of the system, —m(Qumm +
Qan)?/(26%V).
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The first term in eqs. 3 and 4 is the reciprocal space potential of the MM and QM charge

densities, respectively. k is the angular wave number of the plane wave, V' is the volume



of the unit cell, and g is the Ewald coefficient. The second term in eqs. 3 and 4 is a real-
space correction that removes the potential of the Ewald Gaussians within a cutoff of the
QM region. In many applications the real-space correction appears as a term involving the
complimentary error function, which replaces the Ewald Gaussian potential with a point
charge potential; however, Eqy already contains a model for the QM/QM electrostatic
interactions, and the nearby QM /MM interactions are given by the second term in eq. 2.
The software interface is written such that sander, an MD engine within AmberTools, '&1°
is responsible for calculating Enmv, Evvry, Aévm, and Agqu; and xtb is responsible for
calculating Eqwm, ¢q, and the second term in eq. 2. An analogous separation of responsibilities
occurs when calculating atomic forces. Before the SCF starts, sander evaluates Agyng with
the particle mesh Ewald (PME) method and it precomputes the exponentials appearing
in eq. 4. The xtb calculation is initialized from the QM atom positions and the location,
charges, and “hardness” values, n, of each MM atom within a cutoff of the QM region. The
xtb software uses the hardness values to represent the nearby embedding charges as diffuse

monopoles. For example, in GFN2-xTB, the second term in eq. 2 is given by eq. 5, where s

indexes the atomic orbital shells, and ¢, is a shell-resolved partial charge.
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In our interface, one can set a parameter g to control the MM hardness values according to

eq. 6, where n(Z) is the hardness of the element with atomic number Z.

g, ifg>0

N\

Mo = 4 n(1), ifg=0 (6)

JMMZJ if g <0

In the present work, we set g = 0 which assigns all MM charges the hardness of hydrogen.



We take advantage of the object oriented programming features within the Fortran
2008 language to update and communicate the contribution of the long-range electrostatics
within the SCF procedure by creating a new class that inherits from the TSolvation data
structure defined within xtb. This structure is normally used to variationally interact the
QM region with an implicit solvent model; however, the resulting child class redefines the
class methods to evaluate the last term in eq. 2 and the potential shift of each QM atom:
Apyn(ra) + Apqui(ra). We have validated the sander/xtb interface and the incorporation
of Ewald electrostatics into the xtb self-consistent field procedure by verifying that the to-
tal energy is conserved in simulations performed in the microcanonical ensemble. Details

regarding this test can be found in the Supporting Information.

QM /MM integration of DeePMD-kit with Amber

We have interfaced the DeePMD-kit library?!™23 to the sander MD package.'® The imple-
mentation was heavily influenced by the development of so-called AMLP potentials, which

123741 35 in eq. 1.

use neural networks to correct an underlying potential energy function
Specifically, we are interested in using new range-corrected semiempirical QM /MM-AMLP
potentials that correct the semiempirical QM /MM energies and forces to better reproduce
ab initio QM/MM.* From a user’s perspective, one provides a neural network parameter
file and selects a set of atoms whose energies and forces should be corrected. This selection
normally corresponds to the QM atoms in the system, such that the semiempirical QM/QM
interactions are corrected with the AMLP. Furthermore, one can optionally set a cutoff ra-
dius that will calculate a AMLP correction between the QM atoms and nearby MM atoms
within the cutoff.*! The DPRc neural network parameter files include settings that smoothly
turn off the AMLP QM /MM corrections over a range (typically from 5-to-6 A), and the cut-
off radius should either be 0 (no QM/MM corrections) or the upper-bound of the range
(typically 6 A) When sander requests the energy and force corrections from DeePMD-kit,

it provides the position, atom type, and residue number of each QM atom and those MM



atoms within a cutoff of the QM region. From the perspective of DeePMD-kit, the QM atom
types are their 2 character element symbols. The MM atom types are the letter “m” followed
by the 2 character element symbol. This strategy allows the neural network to correct a
QM/QM interaction differently than a QM /MM interaction.

The DPRc energy is a sum of atomic energy contributions, F;:

N
Eppre = Z Ei(ri, {rj}cnm) (7)
i=1

where N is the number of atoms, r; is the position of atom 7, and n(7) is the set of neighboring
atom indexes within a cutoff of atom i (the DPRc cutoff). The atomic decomposition of the
DPRec potential (eq. 7) model makes it well-suited for parallel computation. Expressions for

the neural networks used to calculate the E; values can be found elsewhere. 124!

QD7-2 QM /QM model

We describe the preliminary training of a QDm-2 force field based on GFN2-xTB?? as a
motivating demonstration of the new QM/MM-AMLP software infrastructure for drug dis-
covery applications. The model is preliminary in that only the QM/QM interactions have
been trained; it remains to tune the QM /MM interactions with a separate neural network
model.

The QDm-2 QM/QM model is a AMLP correction to the GFN2-xTB?? energies and
forces.

Eqpr2 qu/qu = EgrnextB + EppRe (8)

The DPRc model supplements the deep-potential model used in the original QD7 *? by
introducing the attention-based descriptor#® with 2 attention layers, as described in Ref. 23.

To train the model, we prepared target data from several databases, including: SPICE,**
ANIL-1x% and ANI-2x%® (ANI), GEOM drug,*” FreeSolv,%® and the relative energy (RE)

datasets collected in the previous QD7 model.*? The entirety of the SPICE and RE datasets



were used in the initial training to produce 4 sets of neural network parameters, because we
had already recalculated the reference values at a consistent wB97M-D3BJ/def2-TZVPPD
level of theory. The ANI-1x, ANI-2x, and GEOM datasets were not tabulated at the same
level of theory, and recalculating the entire databases would be time-consuming; therefore,
we used an active learning strategy implemented in the DP-GEN program®® to reduce the
number of wBI7TM-D3BJ/def2-TZVPPD evaluations with these other datasets. The energy
and force corrections for each molecule in the ANI-1x, ANI-2x, and GEOM datasets were
calculated from the 4 initial parameter sets. If the standard deviation in the energies and
forces exceed a threshold, then a reference wB97TM-D3BJ/def2-TZVPPD calculation of the
molecule was performed and included in the training data. Specifically, a structure is selected
for labeling when the standard deviation in the energy-per-atom exceeds o > 0.015 eV /atom
or the maximum standard deviation in the atomic force exceeds o > 0.20 ¢V/ A. Four new
sets of neural network parameters were optimized with the expanded set of target data, the
databases are recalculated with each model, and additional data is selected for labeling. The
active learning procedure terminates when no new target data is selected for labeling. The
target data was similarly expanded by using an active learning strategy*! to collect data from
10 ps GFN2-xTB QM /MM simulations of each molecule in the FreeSolv database (FreeSolv-
MD). The simulations were performed in explicit OPC water,?° and the solute configuration
was saved every 1 ps. The corrections produced by the neural network parameters sets were
compared, and the structure was labeled with wB97M-D3BJ/def2-TZVPPD if the deviation
between the 4 models was large. The target data was further expanded from 1 ps gas
phase simulations of the RE monomers (RE-MD). Upon termination of the active learning
procedure, the expanded set of target data is partitioned into training and validation subsets.
The neural network parameters are re-optimized using the training data, which consists of
95% of the expanded target data. By following this procedure, we collected a total of 997,535
(SPICE), 331,341 (ANI), 23,569 (GEOM), 31,163 (FreeSolve-MD), 12,019 (RE-MD), 175,193

(RE) data points. The data was divided into training and validation subsets, where 5% of



the data was reserved for validation. The entirety of the RE dataset was included in the
training because samples from RE-MD was included in the validation subset.

We used the PSI4 program®! to perform the wB97M-D3BJ/def2-TZVPPD labeling.>?
Comparisons will be made against the COMP6 database.?® This database was not included
in the training nor validation sets. We recalculated the COMP6 database at the wB97M-
D3BJ/def2-TZVPPD level of theory to make comparison. The QD7-2 neural network pa-
rameters were trained for 18 million steps using the Adam optimizer with a batch size of
16.

The differences between the QD7-1 and QD7-2 and models are summarized: *2

1. The number of elements is expanded from 4 (H,C,N,0) to 12 (H,C,N,0,F,Na,P,S,C1,K,Br,I).

[\]

. The target QM level is upgraded from wB97X/6-31G*54 to wBI7TM-D3BJ /def2-TZVPPD.52
3. The base semiempirical QM model is changed from DFTB3/30b*5*% to GFN2-xTB.?°
4. The AMLP model is enhanced using the attention-based descriptor.4?

5. The training data is expanded by using an active learning procedure, as previously

described.

The datasets are used to make comparison between several potentials, including: wB97X/6-
31G*5 using PSI4,! GFN2-xTB? using xtb,?° DFTB3/30b%% using DFTB+,%" a pure
Deep Potential model trained against the SPICE dataset for 10M steps (DP-SPICE),?* and

other methods that were benchmarked in our previous work.®

QM /MM-AMLP alchemical free energy calculations

Alchemical free energy (AFE) simulations are typically applied to classical pairwise additive
molecular mechanical (MM) force fields. ' The Amber software has undergone significant im-
provements to support AFE simulations®*% by introducing efficient optimized pathways, %!

new smoothstep softcore potentials,®%? and A-scheduling features® that enable the direct
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transformation of one MM molecule into another. These “direct AFE” simulations often re-
quire specialized enhanced sampling methods®* to reliably converge the free energy estimates.
Hence, AFE simulations are more practical when used with computationally efficient MM
force fields. Direct AFE simulations using quantum mechanical models, such as QM /MM-
AMLPs, present much greater challenges because they are not pairwise decomposable and

relatively expensive to evaluate.
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Figure 1: Schematic of two approaches for calculating the relative solvation free energy of
tautomers Ty and 77 with a QM/MM potential. The two equations (left) are equivalent
expressions for the solvation free energy. The top expression is the difference between the
QM /MM solvation free energies for each tautomer indicated by the blue arrows shown in the
thermodynamic cycle. The bottom expression is the difference between the two black arrows.
The thermodynamic cycle depicts the “indirect approach”, whereby the relative solvation
free energy at the QM /MM level is evaluated from alchemical transformations using a MM
reference potential (the green arrows) and MM—QM /MM “book-end” corrections (the red
arrows). Alternatively, the relative solvation free energy can be estimated from a free energy
surface (depicted on the right), A(§) that physically connects the Ty and 73 QM /MM states
(the black arrows) using a proton transfer reaction coordinate, .

An alternative is to use an “indirect” approach that utilizes MM force fields to represent
intermediate alchemical states, as illustrated in Figure 1. Such calculations require additional
end-state calculations to account for the free energy of changing the MM representation of a
molecule into a QM/MM-AMLP representation (or vice verse). The end-state calculations

within the indirect AFE approach are sometimes referred to as “book-ending corrections”.3!
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The indirect AFE approach has the advantage that the computationally intensive alchemical
steps can be conducted efficiently using MM force fields and existing free energy infrastruc-
ture, whereas the MM —QM book-ending corrections — which do not involve any alchemical
changes — can be efficiently performed with only modest sampling requirements.

There have been two widely used methods for performing MM—QM book-ending cor-

31,65-68 and non-

rections: ¥ free energy perturbation (FEP) analysis of equilibrium sampling
equilibrium work methods.%"%?"72 In principle, equilibrium FEP methods can be performed
in a single step that requires only MM sampling. In practice, this is usually not possible
unless a specifically tuned “reference potential” is used that has sufficient phase space over-
lap with the high-level QM method. Reliable free energy estimates often require sampling
of the high-level QM method and use of Bennett’s acceptance ratio (BAR) method.™ One
strategy that has been demonstrated to be successful is to perform short high-level QM
simulations. These short simulations are used to parameterize a MM reference potential
through force-matching, and the reference potential is extensively sampled. The free energy

is then estimated from BAR analysis of the high-level and reference potential sampling. 3!

Non-equilibrium work "7 methods, on the other hand, require equilibrium sampling at
either one or both end states. A series of short “switching” simulations, departing from the
end-state samples, are used to form a collection of work values. A switching simulation
dynamically varies A from 0 to 1, where A = 0 and A = 1 represent the MM and QM /MM
potentials, respectively, and the free energy difference between the two states is calculated
from the collection of work values.

We demonstrate that the Amber software infrastructure is capable of performing both
equilibrium FEP and non-equilibrium work book-ending corrections using new QM /MM-
AMLP force field models that integrate GFN2-xTB and deep-learning potentials from DeePMD-
kit. We apply the methods to calculate relative solvation free energies of drug-like tautomers.

The 9 tautomer reactions examined in this work are illustrated in Figure 2.
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Figure 2: Small molecule tautomeric reactions examined in this work. The red hydrogens
highlight the transferred proton.

Computational Details

Free energy surface simulations of artificially engineered RNA enzymes. The new integrated
sander /xtb/DeePMD-kit software is applied to simulations of self-alkylation reactions in
artificially engineered RNA enzymes, in particular the self-alkylating ribozyme?® (SAR) and
the methyltransferase ribozyme?"?%3° (MTR1). The SAR and MTRI systems were built
from crystallographic structures PDB ID 6XJW?2¢ and 7VIE,?® respectively. The crystal
structures correspond to the product state, and the active site coordinates were manipulated
to represent the reactant state. Furthermore, we protonated the N3 position of residue C10
in the MTR1 system. The MTRI1 system was solvated with 18250 waters in a truncated
octahedron with unit cell lengths of 90.2 A. A total of 113 Na™ and 47 C1~ ions were added
to neutralize the system and yield a 140 mM bulk ion concentration. The SAR system was
was similarly solvated with 15181 waters 96 Na™ and 38 Cl~ ions in a orthorhombic cell
whose average lattice vector length is 79.3 A.

All simulations were performed with ff990L3 RNA force field,”” TIP4P /Ew water model, 5
and the monovalent ion parameters developed by Joung and Cheatham.”™ The MM simu-
lations used the particle mesh Ewald method with 10 A real-space cutoffs, tinfoil boundary

79,80

conditions, and a 1 A reciprocal space grid. The systems were equilibrated in a multistep
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procedure described in Ref 81 consisting of 150 ns of dynamics.

The free energy profiles were analyzed from QM/MM umbrella sampling®? departing
from the MM reactant state. The QM/MM models considered are: DFTB3/30b, GFN2-
xTB, and PBE0/6-31G*. The SAR “baseline” reaction involves nucleophilic attack of the
guanine N7 to an epoxide ligand. This reaction was modeled with a neutral QM region
consisting of 30 atoms, including the 16 nucleobase and a subset of the epoxide ligand. We
also examine an “activated” mechanism whose reactant state includes a protonated epoxide
oxygen. In this case, the QM region consisted of 31 atoms with a net 1+ charge. The MTR1
QM region has a 1+ net charge and includes 48 atoms from the O6mG ligand and the
C10 and A63 nucleobases. The semiempirical electrostatic calculations were evaluated with
the QM/MM Ewald approach introduced by Nam, Gao and York,?* whereas the ab initio
QM /MM simulations used the ambient potential composite Ewald method.¢ In all cases,
the Ewald calculations employed 10 A real-space cutoffs, a 1 A reciprocal space grid, and
tinfoil boundary conditions. ™° The unbiased free energy surface was obtained from solution
of the unbinned weighted histogram analysis method (UWHAM)®*8 and multistate Bennett
acceptance ratio (MBAR) equations® using the FE-ToolKit software. %

The SAR mechanism was described with a single reaction coordinate, & = Rc22.021 —
Rcoo.gi6:n7, which was sampled from -1.5 Ato 1.0 A using 32 umbrella windows. The
DFTB3/30b and GFN2-xTB simulations were sampled for 50 ps/window using a 1 fs time
step, whereas the PBE0/6-31G* simulations were sampled for 10 ps/window with a 1 fs time
step.

The MTRI1 free energy surface was generated from GFN2-xTB QM/MM umbrella sam-
pling involving 2 reaction coordinates: & = Rcio.n3-H — Rosma:ni-g and & = Rogma:06-¢c —
Rag3.n1-c. The minimum free energy path was determined from 50 iterations of the surface-
accelerated string method.®” Each string was discretized with 32 windows and each window
was sampled for 4 ps in each iteration (6.4 ns of aggregate sampling). We compare the

GFN2-xTB free energy profile to the DEFTB3/30ob and PBE0/6-31G* profiles previously re-
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ported in Ref. 88. The umbrella sampling was performed in the canonical ensemble using
the Langevin thermostat with a collision frequency of 5 ps~! to maintain a temperature of
298 K.

Alchemical free energy calculations of drug-like tautomers. We calculate the free energy of 9

8991 The relative solvation

tautomeric reactions (Figure 2) taken from tautomeric database.
free energy is evaluated from an indirect approach that performs the AFE simulations with a
MM model. The end-state free energies are then supplemented with MM-to-QM /MM book-
end corrections. We compare two strategies for calculating the book-end corrections. The
first strategy analyzes equilibrium sampling produced by a A-dependent potential energy
function, U(A) = (1 — A\)Umm + AUqui/mm, at 21 uniformly spaced A values. The second
strategy estimates the book-end correction from nonequilibrium statistics using Jarzynski’s
equation. Furthermore, we compare the relative solvation free energies to results obtained
from QM /MM umbrella sampling, which does not involve a MM reference potential. The
umbrella sampling is analyzed to produce a free energy surface of the proton transfer. The
reaction free energy is the difference between the product and reactant state minima on the
surface. The relative solvation free energy is obtained by repeating the calculations in the
gas phase and taking the difference from the aqueous phase result. The calculation details
are described below. The MM-to-QM /MM bookend simulations and the QM /MM umbrella
sampling were performed with the DFTB3/30ob, GFN2-xTB, and QD=-2 models. The QDm-
2 model differs from the GFN2-xTB QM/MM calculations only by the inclusion of neural
network correction to the QM /QM interactions.
Each molecule shown in Figure 2 was modeled with the GAFF2 force field?? and solvated
in a truncated octahedron (whose real space lattice vector lengths were approximately 48.5
A) with 3000 TIP4P /Ew waters.® The solvated systems were equilibrated for 200 ps in the
NPT ensemble at 1 atm and 298.15 K. The Berendsen barostat and Langevin thermostat
1

were utilized to control the pressure and temperature with a collision frequency of 5 ps™.

The systems were further equilibrated for an additional 100 ps in the canonical ensemble

15



at 298.15 K. The initial gas phase structures were prepared by removing the solvent and
equilibrating the molecule at 298.15 K for 50 ps.

The alchemical free energy calculations were performed with the second-order smoothstep
function, % and the alchemical space was uniformly discretized by 21 X values. The initial
configurations were geometry optimized for 5000 steps o steepest descent minimization. This
was followed by 2 ps of equilibration and 6 ns of simulation in the canonical ensemble at
298.15 K with a 1 fs time step. Hamiltonian replica exchange attempts were made every 20
fs, and the first 200 ps of simulation was discarded from the analysis. The gas phase AFE
simulations were performed analogously, and the free energies were calculated from MBAR
analysis. %

Equilibrium book-ending corrections were applied to the A = 0 and A = 1 end-states in
both the solvated and gas phase environments. Each MM-to-QM /MM correction used 21
uniformly spaced windows, and each window was simulated for 100 ps at 298.15 K using a
1 fs time step. The first 25% of each simulation was discarded as equilibration, and the free
energy was estimated from MBAR analysis.

The book-ending corrections were also calculated from Jarzynski’s equation. ™"

— Wi
At = kI {exp (ZA01) ) )
MM

kp is Boltzmann’s constant, 7" is the temperature, and W is the accumulated non-equilibrium
work required to change the potential from MM to QM /MM in each switch.

U O\
W= /0 o (10)

t, is the switch time, and the switching rate is constant A = t;!. The exponential in eq. 9 is
averaged over starting configurations taken from the MM ensemble. A total of 1600 switching
simulations were used to calculate the average, and each switch continuously varied A over

the course of 2 ps. The 1600 configurations were obtained from 16 ns of MM sampling.
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The tautomer free energies were also calculated from profiles generated from umbrella
sampling of the proton transfer reaction coordinate, {pr = Ro_g — Rn_p. The reaction
coordinate was scanned with 51 harmonic biasing potentials using 300 kcal mol=* A~2 force
constants. Initial configurations were created by scanning the reaction coordinate with a
sequence of brief 500 fs simulations, and each window was equilibrated for 10 ps. Production
sampling was made in the canonical ensemble at 298.15 K for 100 ps, and each simulation was
repeated 4 times using different thermostat random number seeds. The free energy surfaces
were calculated from MBAR analysis using the FE-ToolKit software®® upon discarding 25%
of the data. Error estimates were made from circular moving block bootstrap analysis of the

data collected from the 4 trials.

Results and Discussion

Application of the new sander /xtb interface to simulation of catalytic

reactions

The study of synthetically engineered nucleic acid enzymes shows promise to significantly im-
prove design, creation, and implementation of superior artificial nucleic acid enzymes. %10
Two important exemplars are the self-alkylating ribozyme?® (SAR) and the methyltrans-
ferase ribozyme®® (MTR1). These artificially evolved ribozymes catalyze C-N bond forma-
tion, a transformation that has not yet been observed in naturally occurring ribozymes, but
would be essential for nucleic acid synthesis and early metabolic transformations within the
context of the RNA world hypothesis. % We apply the software infrastructure developed in
this work to compare ab initio, DFTB3/30b and GFN2-xTB QM/MM free energy profiles
of SAR and MTRI1.

1D free energy profile for a self-alkylating ribozyme. The SAR (Figure 3a) catalyzes the

ring opening of an epoxide ligand, forming an irreversible nitrogen-carbon bond between the

ligand and the N7 of a specific guanine (G16), as illustrated in Figure 3b.?° We performed
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Figure 3: Reaction catalyzed by the self-alkylating ribozyme. (a) The SAR structure. (b)
The reaction mechanism involves nucleophilic attack of the guanine N7 to an epoxide ligand.
The schematic illustrates the “baseline” mechanism, where the epoxide oxygen is neutral
(unprotonated). The “activated” mechanism differs only by having protonated the epoxide
oxygen. (c¢) QM/MM free energy profiles of the “baseline” mechanism. (d) QM/MM free
energy profiles of the “activated” mechanism.
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QM /MM umbrella sampling to calculate 1-dimensional free energy profiles of this process
using GFN2-xTB, DFTB3/30b, and PBE0/6-31G*. A “baseline” mechanism (Figure 3c)
was explored where the nucleophilic attack of N7 occurs on a neutral epoxide, leading to a
primary alkoxide product. The “activated” mechanism (Figure 3d) starts with a protonated
epoxide to facilitate ring opening and leads to a more stable primary alcohol product. The
activated reactant state free energies have been shifted by 13.3 kcal/mol to account for the
protonation of the epoxide (-2.8 pK,) at pH 7.103

All QM /MM models predict the baseline mechanism to have a higher barrier than the
activated ligand, as expected. However, the transition state barriers are quantitatively differ-
ent. DFTB3/30b produces a baseline mechanism that is nearly isoergic with a 16.7 kcal /mol
forward barrier, whereas PBE0/6-31G* and GFN2-xTB predict the product state to be con-
siderably higher in free energy, and their forward barriers are larger (35.9 and 46.0 kcal /mol,
respectively). For the activated mechanism, the DFTB3/3ob and PBE0/6-31G* barriers
(3.8 and 2.6 kcal/mol, respectively) are similar, whereas GFN2-xTB is markedly higher
(13.8 kecal/mol). These results demonstrate that for this reaction DFTB3/30b and GFN2-
xTB give quantitatively different results from one another and from PBE0/6-31G*. This
strongly suggests that there is need to further augment these models with AMLP corrections
to achieve improved accuracy.

2D free energy profile for a methyltransferase ribozyme. The MTRI1 catalyzes the nu-
cleophilic attack of adenine (A63) at position N1 to the O-methylguanine (O6mG) ligand
at position C6. The attack is assisted by a proton transfer from N3 of C10 to the N1 of
O6mG, as illustrated in Figure 4a. We applied the new sander/xtb interface to calculate a
2-dimensional free energy surface of the MTR1 reaction from GFN2-xTB QM /MM umbrella
sampling (Figure 4c). The GFN2-xTB minimum free energy path is predicted to be step-
wise, in agreement with previous work using DFTB3/30b and PBE0/6-31G*.%% A proton
is transferred from C10:N3 to O6mG:N1, and this is followed by a methyl transfer from

O6mG:06 to A63:N1. The inset of Figure 4c compares the GFN2-xTB, DFTB3/30b, and
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Figure 4: Reaction catalyzed by the methyltransferase ribozyme. (a) The MTR1 structure.
(b) The MTR1 mechanism involves nucleophilic attack of adenine (A63) N1 at the O°-
methylguanine (O6mG) ligand C6 position. The attack is assisted by a proton transfer
from N3 of C10 to N1 of O6mG. (c) The 2-dimensional GFN2-xTB QM /MM free energy
surface and minimum free energy path. The inset compares the minimum free energy profile
with DFTB3/30b and PBE0/6-31G* QM /MM umbrella sampling results taken from Ref.
88. (d) The 2-dimensional DFTB3/30b—AMLP QM /MM free energy surface and minimum
free energy path. The p = 0 and p = 1 labels denote the reactant and product states,
respectively.
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PBE0/6-31G* free energy profiles. The profiles are qualitatively similar, but quantitatively
different. The activation free energy predicted by GFN2-xTB (18.6 kcal/mol) agrees much
better with PBE0/6-31G* (19.4 kcal/mol) than DFTB3 (15.5 kcal/mol). Nonetheless, the
barrier for the proton transfer step using GFN2-xTB (2.1 kcal/mol) is considerably lower
than PBE0/6-31G™ (7.2 kcal/mol). The DFTB3 profile exhibits an overstabilization of the
protonated C10 intermediate (-7.5 kcal/mol) relative to ab initio (1.6 kcal/mol). The extent
of overstabilization is not as severe with GFN2-xTB (-1.1 kcal /mol), but it is still significant.
The experimental barrier of the methyl transfer reaction is approximately 21.1 kcal/mol,
based on the intrinsic rate of reaction.?” All of the methods explored here underestimate the
barrier. The PBE(0/6-31G* and GFN2-xTB barriers are within 1.7 and 2.5 kcal/mol of this
estimate, respectively, whereas the DFTB3 prediction is lower by 5.6 kcal /mol.

The computational cost of PBE0/6-31G* QM/MM simulations quickly becomes pro-
hibitive to apply. Although the DFTB3 and GFN2-xTB QM models provide a practical
alternative in terms of computational efficiency, we find there are important quantitative
differences from the PBE0/6-31G* results. For this system, the performance of the GFN2-
xTB method is competitive with DFTB3; either method may serve as a useful base model to
construct new QM /MM-AMLP potentials. As a proof of concept demonstration, Figure 4d
illustrates the MTRI1 free energy surface calculated from umbrella sampling performed with
a preliminary DFTB3/30b-AMLP model trained to reproduce the PBE0/6-31G* QM /MM
energies and forces. The AMLP uses the DPRc potential,*! and it is trained in a manner
similar to our previous works. 241194 In brief, the DPRc model consists of filtering and fitting
neural networks. The fitting network consists of 3 hidden layers (240 neurons/layer) that
transform an atomic descriptor matrix to an atomic energy contribution to the MLP. In the
current work, we use the two-body embedding smooth edition deep potential descriptor,?
which is calculated from the filtering network consisting of 3 hidden layers (25, 50, and 100
neurons). The input to the filtering network is a “coordinate matrix” that describes an atom’s

environment. This description includes switching functions that smoothly eliminate correc-
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tions between QM and MM atoms as a function of distance such that there is no correction
beyond 6 A. The training consisted of 10 iterations of active learning with 4 MLP parameter
sets. The parameters were optimized from 100,000 steps of the Adam algorithm!%® using
an exponentially decaying learning rate that varied from 1073 to 5x10~%. Each round of
active learning performed umbrella sampling with 224 umbrella windows covering the rele-
vant areas of the 2-dimensional free energy surface. The simulations were sampled for 1 ps
with a 1 fs time step, and the active learning procedure incorporated approximately 10,000
PBE0/6-31G* samples into the training procedure, in total. After training, the minimum
free energy path of the DFTB3/30b-AMLP was found using the finite temperature string
method,®” and production simulations were performed using the same protocol described for
the GFN2-xTB umbrella sampling.

The DFTB3/30b-AMLP model shows improved agreement with PBE0/6-31G* than
the uncorrected GFN2-xTB and DFTB3/30b semiempirical models. The proton transfer
barrier (6.9 kcal/mol) and rate-limiting transition state barrier (19.1 kcal/mol) are within
0.4 kcal/mol of the PBE0/6-31G* values. In this particular application, the AMLP was
trained for a specific reaction. Although the scope of applicability is limited, it provides
access to simulation time scales that would not be feasible with ab initio QM /MM sampling.
Similarly, it makes it possible to perform path integral molecular dynamics, which requires
multiple force evaluations at each time step. In the next section, we highlight the use of

AMLPs for modeling a wider chemical space for drug discovery applications.

Proof of concept demonstration in drug discovery applications

In this section, we show that a GFN2-xTB-AMLP model can be trained to achieve quan-
titative accuracy with respect to a reference high-level ab initio method. Specifically, we
focus the demonstration on the creation of a preliminary model for improving QM/QM in-
teractions. The parametrization of a AMLP to improve QM /MM interactions will require

further training. The QM/MM-AMLP presented here is a second-generation version of the
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Quantum Deep-learning Potential Interaction model,*?>5® designated QD7-2.

Preliminary GFN2-xTB/AMLP model for drug-like molecules

We compare energy and force mean absolute errors (MAESs) relative to wB97M-D3BJ /def2-
TZVPPD against a broad set of databases using GFN2-xTB/AMLP and several other mod-
els. Table 1 summarizes the MAEs produced by QD7-2 on the training data. Furthermore,
the MAEs of QD7-2, wB97X/6-31G*, GFN2-xTB, DFTB3/30b (“DFTB3”), and DP-SPICE
methods are compared using the validation data. The QDm-2 model produces similar errors
between the training and validation data, suggesting the model is not overfit. QD7-2 out-
performs the other models on all validation datasets; the GFN2-xTB/AMLP model is more
accurate than GFN2-xTB, the pure MLP model, and even a low-level DF'T method. The
results suggest that GFN2-xTB is a more accurate baseline QM model than DF'TB3 for these
datasets. This observation is consistent with previous findings.**%® Table 2 compares force
and relative energy MAESs using subsets of the ANI, COMP6, and RE databases. The subsets
are limited to molecules containing the elements: C, H, O, and N. Similar comparisons were
reported in Ref 58 using wB97X/6-31G* reference data; however, we recalculated the refer-
ence data in the present work with a higher level of theory (wWB97M-D3BJ/def2-TZVPPD).
Consequently, the models previously trained to reproduce wB97X/6-31G* calculations do
not appear as accurate in Table 2. The QDm-2 model is the most accurate method for
all datasets. The GFN1-xTB and GFN2-xTB models are the most accurate semiempirical
models.

The accurate prediction of tautomer and protonation states is important for drug dis-
covery applications because 30% of the compounds in vendor databases and 21% of drug
databases have potential tautomers. %5197 Furthermore, it has been estimated that up to
95% of drug molecules contain ionizable groups.!%® Figures 5 and 6 compare relative pro-

tonation energies and tautomerization energies, respectively. These comparisons include

QD7-2, wB97X/6-31G*, GFN2-xTB, and DFTB3. The reference values were calculated at
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the wB97M-D3BJ/def2-TZVPPD level of theory. The QD7-2 model is the most accurate,

followed by wB97X/6-31G*, GFN2-xTB, and DFTB3. This illustrates that machine-learning

corrections can be used to achieve quantitative accuracy at an affordable computational cost.

Table 1: Mean absolute error (MAE) of the energies (in kcal /mol) and forces (in kcal /mol/A)
from the training and validation data.®

Training Validation

Dataset QDm-2 QD72  wB97X GFN2-xTB DFTB3 DP-SPICE

E F E F F F F E F
SPICE 1.19 1.36 | 1.19 1.36 2.40 3.98 6.02 7.75  2.62
ANI 1.51 228 | 1.55 2.29 3.15 6.75 11.09 14.22 11.44
GEOM 222 1.42 1180 1.32 2.61 3.53 7.03 16.78  3.05
FreeSolv-MD | 0.72 1.39 | 0.71 1.41 3.17 5.18 8.25 27.14  6.85
RE-MD 1.55 1.69 | 1.26 1.58 2.50 3.92 8.60 5.77  3.15

@ The datasets include SPICE,** ANI, 4546 GEOM,*" FreeSolv-MD,*® and RE-MD.*' The
validation data compares wB97M-D3BJ/def2-TZVPPD?? using PSI4°! and QDm-2 using
xtb?" and DeePMD-kit,?* wB97X/6-31G*1%® (wB97X) using PSI4,'” GFN2-xTB?’ using
xth,2° DFTB3/30b55¢ using DFTB+,57 and the pure Deep-Potential model trained against
the SPICE dataset?® (DP-SPICE).
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Figure 5: Comparison of relative protonation energies (kcal/mol). The reference values
are wBITM-D3BJ/def2-TZVPPD. The comparisons include molecules from the AAMC, 16
NAMC, 16 and PA26!!7 databases.
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Table 2: Relative energy (in kcal/mol) and force (kcal/mol/A) mean absolute errors calcu-
lated from subsets of the ANI (ANI-1x and ANI-2x), COMP6 (S66 and COMP5), and RE
(TB, AA, NA, PA, HB, T15, SQM) databases.”

Method ANI S66 TB AA NA PA COMP5 HB T15 SQM

F AF AF AFE AE AFE F AE AE AF
QD7-1 451 1.14 282 6.61 194 2.38 3.11 0.74 253 3.16
AIQM1 3.45 158 129 4.60 222 5.04 2.08 0.68 1.04 284
ANI-1x 6.32 194 3.51 84.29 9.64 35.40 429 133 3.56 16.57
ANI-2x 450 1.30 3.08 65.93 7.41 20.04 3.55 1.65 241 13.09
GFN2-xTB 6.89 094 3.36 598 390 3.16 448 047 1.15 4.22
GFN1-xTB 5.82 096 392 5.55 5.50 3.73 3.94 0.56 496 4.19
DFTB3 11.13 1.24 323 7.85 6.07 8.01 6.60 0.75 2.39 5.76
DFTB/ChIMES | 6.02 2.28 297 510 3.34 8.98 3.51 1.43 211 7.53
ODM2 1757 134 520 5.66 437 6.22 12.06 0.92 4.62 4.07
PM6 17.39 1.10 4.24 812 7.90 597 10.65 0.80 5.72  3.37
PM6-D3H4X 1831 0.96 4.59 6.23 7.72 7.04 11.68 0.59 5.58 3.92
PM7 16.13 099 344 6.19 6.32 7.19 9.83 0.64 4.04 3.55
AM1 18.64 1.92 3.68 837 385 5.77 14.14 2.09 3.94 4.18
MNDO/d 20.61 649 746 13.88 7.28 10.83 13.79 892 6.72 5.16
QD7-2 227 1.04 1.17 0.60 0.15 0.37 1.62 040 0.69 2.34

¢ Only molecules containing the elements C, H, O, and N were included in the statistics.
The “ANI” dataset refers to ANI-1*° and ANI-2.46 The COMP6° database consists of
S66x 8531101 and COMP5.11211 The relative energy (RE) dataset?? is a conglomeration
of the following databases: Tautobase®®!!5 (TB), amino acid!'® (AA), nucleic acid''6 (NA),
PA26'17 (PA), HB375x 108 (HB), TAUT15"7 (T15), and RegioSQM20™ (SQM).

o Tautobase TAUT15
QDn-2 wB97X/6-31G* GFN2-xTB DFTB3
R2: 0.88 R2: 0.92 R2: 0.78 Rz: 0.61
309 makE: 1.18 ] maE253 o, 1 maE: 2.80 maE: 2.87
rmsE: 2.67 . rmsE: 3.25 Pl rmsE: 3.44 rmsE: 4.55
] "r
o 30 of .
g 20 ° e .ﬁ 'y
= oa > s ° ®e o °
[iT] ° (] e ry F K
< 2 % (R) '
101 o ® 'o'
[d -
(J
.,
L
ot . : | a_ ‘ : £ : ‘ - : :
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

AE wB97M-D3BJ/def2-TZVPPD AE wB97M-D3BJ/def2-TZVPPD AE wB97M-D3B)/def2-TZVPPD AE wB97M-D3BJ/def2-TZVPPD

Figure 6: Comparison of tautomerization energies (kcal/mol). The reference values are

wBITM-D3BJ/def2-TZVPPD. The comparisons include molecules from the Tautobase 115
and TAUT157 databases.

25



Alchemical free energy simulation with QM /MM-AMLP “book-ending” correc-

tions for ligand-protein binding

In this section we demonstrate that the new software infrastructure can be used to perform
QM/MM-AMLP alchemical free energy calculations using an “indirect” approach. Specif-
ically, the indirect approach is employed to calculate relative solvation free energies of the
tautomers shown in Figure 2 with the QD7-2 model, whose parametrization was described
in the previous section. Comparisons are made to DFTB3/30b and GFN2-xTB QM/MM
potentials and experiment, when available. Recall that the QDm-2 differs from the GFN2-
xTB QM/MM model only by including a MLP correction to the QM /QM interactions; both
models share the same QM /MM interactions.

Table 3 compares the experimental tautomeric free energies in solution to values obtained
from free energy profiles evaluated from umbrella sampling. For clarity, these are the free
energy differences between the solvated tautomeric forms; they are not relative solvation
free energies. The DFTB3/30ob QM/MM potential yields the larges mean absolute error
(maE). The GFN2-xTB QM /MM model reduces the error by approximately 50% (maE 3.3
kcal/mol). The QDm-2 QM /MM-AMLP reduces the error to 2.3 kcal /mol despite not having
trained the neural network for the QM /MM interactions. These results show promise that
the development of MLPs for the QM /MM interactions will lead to further improvement.

The MM—QM/MM-AMLP book-ending approach provides corrections to thermody-
namic cycles where counterpoised transformations occur in two environments to obtain a
relative free energy. When the environments are in the gas phase and aqueous solution,
this implies a relative solvation free energy, whereas relative binding free energies calcu-
late the free energies in solution and when complexed with a protein. We examine two
strategies for evaluating MM—QM/MM-AMLP book-ending corrections. The first strat-
egy analyzes equilibrium sampling produced by a A-dependent potential energy function
at a series of 21 uniformly spaced \ values. This strategy will be referred to as equilibrium

book-ending (EBE). The second strategy analyzes nonequilibrium sampling with Jarzynski'’s
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Table 3: Tautomer reaction free energies (kcal/mol) in solution.

Reaction  Expt. DFTB3 GFN2-xTB QDm-2
AA AA OAA AA OAA AA OAA
1A—1B -4.78 -12.93 0.12 -1.96 0.08 -2.93 0.12
2A—2B -6.10 -14.82 0.14 -6.53 0.06 -6.96 0.09
3A—3B -7.23 -14.81 0.13 -6.18 0.12 -8.59 0.06
4A—4B -2.30 -10.62 0.16 2.30 0.06 1.58 0.13
5A—5B -4.78  -9.75 0.08 -2.12  0.09 -2.13 0.09
6A—6B -9.28 -17.17 0.15 -8.75 0.11 -12.57 0.09
10D—10C -1.23 -6.88 0.17 5.12  0.07 0.95 0.08
12D—12C -1.77 -6.76 0.10 5.31 0.08 1.30 0.15
14D—14C  0.27 -5.42  0.07 4.01 0.04 1.50 0.08
mak 6.88 3.25 2.26
rmsE 7.03 3.97 2.46

@ Experimental values taken from Ref. 90. oa 4 is the standard error of the mean from 4 trials. The
summary statistics include the mean of absolute error (maE) and root-mean-square error (rmsE) relative
to experiment.

equation, 67:69-72

which we refer to as nonequilibrium book-ending (NEBE). These strategies
are compared to solvation free energies obtained from umbrella sampling (US) performed in
the aqueous and gas phase environments.

Table 4 compares the DFTB3/30b, GFN2-xTB, and QD7-2 relative solvation free ener-
gies calculated from the US, EBE, and NEBE strategies. The US results are used here as a
reference to compare the EBE and NEBE values, because the US calculations do not involve
a MM reference potential. The mean absolute deviation of the EBE results is approximately
0.1 kecal/mol. The NEBE values have similar deviations for GFN2-xTB, slightly larger devi-
ations for QDm-2 (maE 0.24 kcal/mol), and considerably higher deviations for DFTB3 (0.41
kcal/mol). The DFTB3 NEBE deviation is dominated by a 1.8 kcal/mol outlier (10D—10C)
that we are currently unable to rationalize. The NEBE deviations are related to the com-
pleteness of the equilibrium MM distribution and the non-equilibrium “switching time”. A
more detailed study of how these parameters influence the precision of the calculation is

forthcoming. Overall, the close agreement between the EBE and US results illustrate that

the software infrastructure is in place for performing reliable QM/MM-AMLP alchemical
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Table 4: Comparison of relative solvation free energies (kcal/mol).*

Reaction US EBE NEBE
AAA OAAA AAA OAAA AA OAAA
DFTB3
1A—1B -15.27  0.16 -15.13  0.08 -15.37  0.09
2A—2B -12.53  0.16 -12.66  0.09 -12.64  0.18
3A—3B -12.01  0.16 -11.84  0.08 -12.23  0.14
4A—4B -18.35  0.18 -18.41  0.10 -18.08  0.14
5A—5B -12.80  0.16 -12.68  0.08 -12.48  0.12
6A—68 -9.66  0.18 -9.48  0.08 -943  0.21
10D—10C -19.43  0.19 -19.37  0.12 -18.65 0.29
12D—12C -20.92 0.13 -20.76  0.18 -20.37  0.63
14D—14C -14.15 0.10 -14.13  0.10 -13.65  0.20

maD 0.12 0.34
rmsD 0.13 0.40
GFN2-xTB
1A—1B -2.66 0.10 -2.71  0.06 -2.73  0.09
2A—2B -2.52  0.07 -2.30  0.08 -2.42  0.10
3A—3B -2.11  0.15 -2.25  0.07 -2.10 0.21
4A—4B -3.17  0.08 -3.27  0.11 -290 0.21
5A—5B -1.86  0.13 -1.89  0.10 -1.80  0.15
6A—6B -0.95 0.16 -1.07  0.07 -0.92 0.16
10D—10C -3.82 0.14 -3.72  0.09 -3.82  0.13
12D—12C -3.91 0.14 -3.89  0.09 -3.76  0.12
14D—14C -1.66 0.11 -1.67  0.07 -1.82  0.06
maD 0.09 0.10
rmsD 0.11 0.13
QDm-2
1A—1B -2.69 0.17 -2.73  0.06 -2.79  0.09
2A—2B -2.30  0.14 -2.28  0.08 -2.29  0.17
3A—3B -2.44  0.12 -2.21  0.09 -1.61 0.22
4A—4B -3.20  0.15 -3.12  0.09 -2.96  0.13
5A—5B -2.02 0.16 -1.89  0.09 -1.69  0.13
6A—6B -0.91 0.16 -1.06  0.07 -1.05  0.14
10D—10C -2.89 0.11 -2.83  0.09 -3.00 0.14
12D—12C -3.31  0.17 -3.02  0.09 -2.97  0.10
14D—14C -1.25 0.13 -1.24  0.06 -1.32  0.07
maD 0.11 0.24
rmsD 0.14 0.33

% oan4 is the standard error of the mean from 4 trials. The summary statistics include the mean absolute

deviation (maD) and root-mean-square deviation (rmsD) relative to the values obtained from umbrella
sampling.
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free energy simulations using an indirect approach with book-ending corrections.

Conclusion

We report the implementation and testing of integrated software for performing free en-
ergy simulations with generalized hybrid QM /MM-AMLP force fields for enzyme mecha-
nism and drug discovery applications. Specifically, we integrate Amber’s open-source MD
and free energy program sander!® with the xtb?® and DeePMD-kit?!23 to enable periodic
boundary condition condensed phase simulations with rigorous treatment of the long-ranged
electrostatics using QM /MM-Ewald methods.?* We presented several example applications
to demonstrate the capabilities of the software. The free energy surfaces of the SAR and
MTRI1 engineered RNA enzymes were calculated from umbrella sampling. The results in-
dicate that the GFN2-xTB and DFTB3/30b models perform reasonably well but neither
model achieves quantitative agreement with ab initio PBE0/6-31G* QM /MM results. This
suggests there is need to develop QM/MM-AMLPs to improve the accuracy of fast, semiem-
pirical QM models to enable a broader range of practical applications. A preliminary QD7-2
force field for drug discovery was presented. The QD7-2 model supplements GFN2-xTB
with a machine learning potential designed to improve internal QM/QM interactions. Com-
parisons were made to other models using a series of established databases, and we find that
QDm-2 is superior to the first-generation QD7 model based on DFTB3. Furthermore, the
QDm7-2 potential outperforms other machine-learning models and low-level ab initio DFT
methods such as wB97X/6-31G*. The new QD7-2 model was applied to alchemical free
energy simulations using an indirect approach to calculate relative solvation free energies of
small drug-like tautomers. It was demonstrated that the alchemical free energy infrastruc-
ture well-reproduced free energy differences obtained from umbrella sampling, which do not
use a MM reference potential. Taken together, this work reports a significant advance in

the creation of new integrated software infrastructure for the development and application
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of new QM /MM-AMLP force fields for enzyme mechanism and drug discovery applications.

Supporting Information Available

Numerical validation tests of the sander/xtb Ewald implementation.  This material is

available free of charge via the Internet at http://pubs.acs.org/.
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