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ABSTRACT: We present software infrastructure for the design and testing of new quan-

tum mechanical/molecular mechanical and machine-learning potential (QM/MM–∆MLP)

force fields for a wide range of applications. The software integrates Amber’s molecular

dynamics simulation capabilities with fast, approximate quantum models in the xtb pack-

age and machine-learning potential corrections in DeePMD-kit. The xtb package imple-

ments recently developed density-functional tight-binding quantum mechanical models with

multipolar electrostatics and density-dependent dispersion (GFN2-xTB), and the interface

with Amber enables their use in periodic boundary QM/MM simulations with linear-scaling

QM/MM particle-mesh Ewald electrostatics. The accuracy of the semiempirical models is

enhanced by including machine-learning correction potentials (∆MLPs) enabled through an

interface with the DeePMD-kit software. The goal of this paper is to present and validate

the implementation of this software infrastructure in molecular dynamics and free energy
∗To whom correspondence should be addressed
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simulations. The utility of the new infrastructure is demonstrated in proof-of-concept exam-

ple applications. The software elements presented here are open-source and freely available.

Their interface provides a powerful enabling technology for the design of new QM/MM–

∆MLP models for studying a wide range of problems, including biomolecular reactivity and

protein-ligand binding.

Introduction

Molecular simulations provide atomic-level insight to complex chemical phenomena and are

indispensable in many areas of fundamental research, technology development, and molecular

design.1,2 The predictions enabled by molecular simulations are critically dependent on the

accuracy of the atomic forces that drive the dynamics.1–4 These forces are determined as the

negative gradients with respect to the atomic positions of a model potential energy function,

commonly referred to as the “force field”. A wide range of force fields exist for performing

molecular simulations for different types of applications.5–8 Two particularly challenging ar-

eas for force field development are the design of potential energy models that can address

problems that involve: (1) chemical reactions in complex heterogeneous condensed phase

environments,9 and (2) protein-ligand binding free energies used in drug discovery.10 The

former requires an accurate model capable of describing covalent bond cleavage/formation

and the associated change in electronic structure that occurs along the reaction’s minimum

free energy path. The latter requires quantitatively accurate prediction of intermolecular

interactions experienced by candidate drug-like molecules – for which little or no experimen-

tal data may exist – in different environments. The challenge in developing accurate force

fields for these target areas is further amplified by the large amount of required sampling.

This requirement demands that the methods be sufficiently fast to be practical (and hence

preclude the use of computationally intensive ab initio quantum mechanical methods).11

One promising strategy is to develop generalized hybrid quantum mechanical/molecular
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mechanical (QM/MM) models based on fast, approximate semiempirical/density-functional

tight-binding QM methods that are augmented by machine-learning potential (MLP) correc-

tions to enhance accuracy while maintaining low computational cost.12 Combined QM/MM–

∆MLP models have seen a burst in development over the past few years.13–17 A critical

barrier to progress is the availability of open-source software that enables the integration of

the latest QM, MM, and MLP potentials within a molecular dynamics framework that sup-

port a wide range of free energy and enhanced sampling methods under periodic boundary

conditions with rigorous long-ranged electrostatics. The current work addresses this issue

with the integration of software infrastructure to develop new QM/MM–∆MLP models for

use in molecular dynamics and free energy simulations.

The remainder of the manuscript proceeds as follows. The Methods section describes key

background and technical aspects of the software integration between Amber,18,19 xtb20 and

DeePMD-kit,21–23 as well as the computational details for the demonstration applications.

The Results and Discussion section is organized into two topics. The first topic focuses on

applications that demonstrate the effectiveness of the new sander/xtb interface for simulat-

ing catalytic reactions using GFN2-xTB QM/MM. Specifically, we apply the new interface to

evaluate free energy profiles of the self-alkylation mechanism in artificially engineered RNA

enzymes25–28 calculated from GFN2-xTB QM/MM umbrella sampling.29 The reaction pro-

files are compared to DFTB3/3ob and ab initio PBE0/6-31G* QM/MM sampling. Further-

more, we demonstrate that inclusion of a ∆MLP correction improves the agreement between

the ab initio and semiempirical free energy profiles of methyltransferase ribozyme.27,28,30 The

second topic addressed in the Results and Discussion section focuses on the development of

a GFN2-xTB QM/MM–∆MLP model for drug discovery applications using the new inter-

face between Amber and DeePMD-kit. The ability of the preliminary model to reproduce

benchmark relative energies from a variety of databases is demonstrated, and the results are

compared to several semiempirical, ab initio, and machine learning potentials. Finally, the

model is applied to calculate the relative solvation free energies of drug-like tautomers using
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an indirect thermodynamic approach.31 These calculations demonstrate the ability to cor-

rect end-state free energies from molecular mechanical (MM) to quantum mechanical (QM)

levels, as would be used in drug discovery applications.

Methods

The framework for the QM/MM–∆MLP force fields in Amber use the following general form.

EQM/MM–∆MLP = EMM + EQM + EQM/MM + EML (1)

EMM and EQM are the MM and QM contributions to the energy, and EQM/MM is their

interaction, calculated with electrostatic embedding. EML is a non-electrostatic correction

obtained from a machine learning potential (sometimes referred to as the machine learning

potential correction, ∆MLP). In the present work, we extend the capability of the sander

program to calculate EQM and EQM/MM with the GFN2-xTB29 model provided by the the xtb

package.20 Furthermore, we introduce EML into sander via an interface to the DeePMD-kit

software. The interfaces are described in detail in the next sections.

QM/MM integration of xtb with Amber

The QM/MM interface between Amber and external QM software has often been performed

through a file-based process in which a QM input file is written at each MD time step,

a system call is made to invoke the QM program, and the energy and forces are read by

parsing the QM output file. The xtb software20,29,32,33 can be compiled as a library and

directly linked to the MD program thereby avoiding the need to make system calls and

perform disk operations at each step of dynamics. Furthermore, the direct linkage provides

an opportunity to incorporate long-range Ewald electrostatics within the self-consistent field

(SCF) procedure.24,34–36
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The QM/MM interaction is performed with electrostatic embedding.

EQM/MM =EQM/MM,LJ +
∑

′

b∈MM

∫ ∫

qQM(r′)qb(r− rb)

|r− r′|
d3rd3r′

+
∑

a∈QM

qa

(

∆φMM(ra) +
1

2
∆φQM(ra)

)

− π
Q2

QM + 2QQMQMM

2β2V

(2)

EQM/MM,LJ is the nonelectrostatic Lennard-Jones contribution. The second term is the short-

range electrostatic interaction between the QM charge density qQM(r) and the nearby MM

charges qb(r−rb), where the primed summation includes only those MM atoms within a cutoff

of the QM region. The remaining terms model the long-range electrostatic interactions. qa

is the Mulliken charge of atom a, ∆φMM(ra) is the electrostatic potential of the MM atoms

outside of the cutoff, and ∆φQM(ra) is the long-range interaction between the QM region

and its periodic images. The last term is a contribution arising from a neutralizing uniform

background correction. The MM energy contains a similar correction such that the net

contribution to the total energy depends on the total charge of the system, −π(QMM +

QQM)2/(2β2V ).

∆φMM(ra) =Re
∑
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4π
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e
ikT ·ra−

k2

4β2

∑
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qbe
−ikT ·rb

−
∑

′
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qb erf(βrab)
rab

−
πQMM

β2V

(3)

∆φQM(ra) =Re
∑

k 6=0

4π

k2V
e
ikT ·ra−

k2

4β2

∑

b∈QM

qbe
−ikT ·rb

−
∑

b∈QM

qb erf(βrab)
rab

−
πQQM

β2V

(4)

The first term in eqs. 3 and 4 is the reciprocal space potential of the MM and QM charge

densities, respectively. k is the angular wave number of the plane wave, V is the volume
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of the unit cell, and β is the Ewald coefficient. The second term in eqs. 3 and 4 is a real-

space correction that removes the potential of the Ewald Gaussians within a cutoff of the

QM region. In many applications the real-space correction appears as a term involving the

complimentary error function, which replaces the Ewald Gaussian potential with a point

charge potential; however, EQM already contains a model for the QM/QM electrostatic

interactions, and the nearby QM/MM interactions are given by the second term in eq. 2.

The software interface is written such that sander, an MD engine within AmberTools,18,19

is responsible for calculating EMM, EMM,LJ, ∆φMM, and ∆φQM; and xtb is responsible for

calculating EQM, qa, and the second term in eq. 2. An analogous separation of responsibilities

occurs when calculating atomic forces. Before the SCF starts, sander evaluates ∆φMM with

the particle mesh Ewald (PME) method and it precomputes the exponentials appearing

in eq. 4. The xtb calculation is initialized from the QM atom positions and the location,

charges, and “hardness” values, η, of each MM atom within a cutoff of the QM region. The

xtb software uses the hardness values to represent the nearby embedding charges as diffuse

monopoles. For example, in GFN2-xTB, the second term in eq. 2 is given by eq. 5, where s

indexes the atomic orbital shells, and qs is a shell-resolved partial charge.

∑

′

b∈MM

∫ ∫

qQM(r
′)qb(r− rb)

|r− r′|
d3rd3r′ ≈

∑

′

b∈MM

∑

a∈QM

∑

s∈a

qsqb
√

r2ab +
[

ηs+ηb
2

]−2
(5)

In our interface, one can set a parameter g to control the MM hardness values according to

eq. 6, where η(Z) is the hardness of the element with atomic number Z.

ηa =































g, if g > 0

η(1), if g = 0

|g|η(Za), if g < 0

(6)

In the present work, we set g = 0 which assigns all MM charges the hardness of hydrogen.
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We take advantage of the object oriented programming features within the Fortran

2008 language to update and communicate the contribution of the long-range electrostatics

within the SCF procedure by creating a new class that inherits from the TSolvation data

structure defined within xtb. This structure is normally used to variationally interact the

QM region with an implicit solvent model; however, the resulting child class redefines the

class methods to evaluate the last term in eq. 2 and the potential shift of each QM atom:

∆φMM(ra) + ∆φQM(ra). We have validated the sander/xtb interface and the incorporation

of Ewald electrostatics into the xtb self-consistent field procedure by verifying that the to-

tal energy is conserved in simulations performed in the microcanonical ensemble. Details

regarding this test can be found in the Supporting Information.

QM/MM integration of DeePMD-kit with Amber

We have interfaced the DeePMD-kit library21–23 to the sander MD package.19 The imple-

mentation was heavily influenced by the development of so-called ∆MLP potentials, which

use neural networks to correct an underlying potential energy function12,37–41 as in eq. 1.

Specifically, we are interested in using new range-corrected semiempirical QM/MM–∆MLP

potentials that correct the semiempirical QM/MM energies and forces to better reproduce

ab initio QM/MM.41 From a user’s perspective, one provides a neural network parameter

file and selects a set of atoms whose energies and forces should be corrected. This selection

normally corresponds to the QM atoms in the system, such that the semiempirical QM/QM

interactions are corrected with the ∆MLP. Furthermore, one can optionally set a cutoff ra-

dius that will calculate a ∆MLP correction between the QM atoms and nearby MM atoms

within the cutoff.41 The DPRc neural network parameter files include settings that smoothly

turn off the ∆MLP QM/MM corrections over a range (typically from 5-to-6 Å), and the cut-

off radius should either be 0 (no QM/MM corrections) or the upper-bound of the range

(typically 6 Å). When sander requests the energy and force corrections from DeePMD-kit,

it provides the position, atom type, and residue number of each QM atom and those MM
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atoms within a cutoff of the QM region. From the perspective of DeePMD-kit, the QM atom

types are their 2 character element symbols. The MM atom types are the letter “m” followed

by the 2 character element symbol. This strategy allows the neural network to correct a

QM/QM interaction differently than a QM/MM interaction.

The DPRc energy is a sum of atomic energy contributions, Ei:

EDPRc =
N
∑

i=1

Ei(ri, {rj}j∈n(i)) (7)

where N is the number of atoms, ri is the position of atom i, and n(i) is the set of neighboring

atom indexes within a cutoff of atom i (the DPRc cutoff). The atomic decomposition of the

DPRc potential (eq. 7) model makes it well-suited for parallel computation. Expressions for

the neural networks used to calculate the Ei values can be found elsewhere.12,41

QDπ-2 QM/QM model

We describe the preliminary training of a QDπ-2 force field based on GFN2-xTB29 as a

motivating demonstration of the new QM/MM–∆MLP software infrastructure for drug dis-

covery applications. The model is preliminary in that only the QM/QM interactions have

been trained; it remains to tune the QM/MM interactions with a separate neural network

model.

The QDπ-2 QM/QM model is a ∆MLP correction to the GFN2-xTB29 energies and

forces.

EQDπ-2 QM/QM = EGFN2-xTB + EDPRc (8)

The DPRc model supplements the deep-potential model used in the original QDπ 42 by

introducing the attention-based descriptor43 with 2 attention layers, as described in Ref. 23.

To train the model, we prepared target data from several databases, including: SPICE,44

ANI-1x45 and ANI-2x46 (ANI), GEOM drug,47 FreeSolv,48 and the relative energy (RE)

datasets collected in the previous QDπ model.42 The entirety of the SPICE and RE datasets
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were used in the initial training to produce 4 sets of neural network parameters, because we

had already recalculated the reference values at a consistent ωB97M-D3BJ/def2-TZVPPD

level of theory. The ANI-1x, ANI-2x, and GEOM datasets were not tabulated at the same

level of theory, and recalculating the entire databases would be time-consuming; therefore,

we used an active learning strategy implemented in the DP-GEN program49 to reduce the

number of ωB97M-D3BJ/def2-TZVPPD evaluations with these other datasets. The energy

and force corrections for each molecule in the ANI-1x, ANI-2x, and GEOM datasets were

calculated from the 4 initial parameter sets. If the standard deviation in the energies and

forces exceed a threshold, then a reference ωB97M-D3BJ/def2-TZVPPD calculation of the

molecule was performed and included in the training data. Specifically, a structure is selected

for labeling when the standard deviation in the energy-per-atom exceeds σE ≥ 0.015 eV/atom

or the maximum standard deviation in the atomic force exceeds σF ≥ 0.20 eV/Å. Four new

sets of neural network parameters were optimized with the expanded set of target data, the

databases are recalculated with each model, and additional data is selected for labeling. The

active learning procedure terminates when no new target data is selected for labeling. The

target data was similarly expanded by using an active learning strategy41 to collect data from

10 ps GFN2-xTB QM/MM simulations of each molecule in the FreeSolv database (FreeSolv-

MD). The simulations were performed in explicit OPC water,50 and the solute configuration

was saved every 1 ps. The corrections produced by the neural network parameters sets were

compared, and the structure was labeled with ωB97M-D3BJ/def2-TZVPPD if the deviation

between the 4 models was large. The target data was further expanded from 1 ps gas

phase simulations of the RE monomers (RE-MD). Upon termination of the active learning

procedure, the expanded set of target data is partitioned into training and validation subsets.

The neural network parameters are re-optimized using the training data, which consists of

95% of the expanded target data. By following this procedure, we collected a total of 997,535

(SPICE), 331,341 (ANI), 23,569 (GEOM), 31,163 (FreeSolve-MD), 12,019 (RE-MD), 175,193

(RE) data points. The data was divided into training and validation subsets, where 5% of
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the data was reserved for validation. The entirety of the RE dataset was included in the

training because samples from RE-MD was included in the validation subset.

We used the PSI4 program51 to perform the ωB97M-D3BJ/def2-TZVPPD labeling.52

Comparisons will be made against the COMP6 database.53 This database was not included

in the training nor validation sets. We recalculated the COMP6 database at the ωB97M-

D3BJ/def2-TZVPPD level of theory to make comparison. The QDπ-2 neural network pa-

rameters were trained for 18 million steps using the Adam optimizer with a batch size of

16.

The differences between the QDπ-1 and QDπ-2 and models are summarized:42

1. The number of elements is expanded from 4 (H,C,N,O) to 12 (H,C,N,O,F,Na,P,S,Cl,K,Br,I).

2. The target QM level is upgraded from ωB97X/6-31G*54 to ωB97M-D3BJ/def2-TZVPPD.52

3. The base semiempirical QM model is changed from DFTB3/3ob55,56 to GFN2-xTB.29

4. The ∆MLP model is enhanced using the attention-based descriptor.43

5. The training data is expanded by using an active learning procedure, as previously

described.

The datasets are used to make comparison between several potentials, including: ωB97X/6-

31G*54 using PSI4,51 GFN2-xTB29 using xtb,20 DFTB3/3ob55,56 using DFTB+,57 a pure

Deep Potential model trained against the SPICE dataset for 10M steps (DP-SPICE),23 and

other methods that were benchmarked in our previous work.58

QM/MM–∆MLP alchemical free energy calculations

Alchemical free energy (AFE) simulations are typically applied to classical pairwise additive

molecular mechanical (MM) force fields.10 The Amber software has undergone significant im-

provements to support AFE simulations59,60 by introducing efficient optimized pathways,61

new smoothstep softcore potentials,61,62 and λ–scheduling features63 that enable the direct
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transformation of one MM molecule into another. These “direct AFE” simulations often re-

quire specialized enhanced sampling methods64 to reliably converge the free energy estimates.

Hence, AFE simulations are more practical when used with computationally efficient MM

force fields. Direct AFE simulations using quantum mechanical models, such as QM/MM–

∆MLPs, present much greater challenges because they are not pairwise decomposable and

relatively expensive to evaluate.

Figure 1: Schematic of two approaches for calculating the relative solvation free energy of
tautomers T0 and T1 with a QM/MM potential. The two equations (left) are equivalent
expressions for the solvation free energy. The top expression is the difference between the
QM/MM solvation free energies for each tautomer indicated by the blue arrows shown in the
thermodynamic cycle. The bottom expression is the difference between the two black arrows.
The thermodynamic cycle depicts the “indirect approach”, whereby the relative solvation
free energy at the QM/MM level is evaluated from alchemical transformations using a MM
reference potential (the green arrows) and MM→QM/MM “book-end” corrections (the red
arrows). Alternatively, the relative solvation free energy can be estimated from a free energy
surface (depicted on the right), A(ξ) that physically connects the T0 and T1 QM/MM states
(the black arrows) using a proton transfer reaction coordinate, ξ.

An alternative is to use an “indirect” approach that utilizes MM force fields to represent

intermediate alchemical states, as illustrated in Figure 1. Such calculations require additional

end-state calculations to account for the free energy of changing the MM representation of a

molecule into a QM/MM–∆MLP representation (or vice verse). The end-state calculations

within the indirect AFE approach are sometimes referred to as “book-ending corrections”.31
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The indirect AFE approach has the advantage that the computationally intensive alchemical

steps can be conducted efficiently using MM force fields and existing free energy infrastruc-

ture, whereas the MM→QM book-ending corrections – which do not involve any alchemical

changes – can be efficiently performed with only modest sampling requirements.

There have been two widely used methods for performing MM→QM book-ending cor-

rections:10 free energy perturbation (FEP) analysis of equilibrium sampling31,65–68 and non-

equilibrium work methods.67,69–72 In principle, equilibrium FEP methods can be performed

in a single step that requires only MM sampling. In practice, this is usually not possible

unless a specifically tuned “reference potential” is used that has sufficient phase space over-

lap with the high-level QM method. Reliable free energy estimates often require sampling

of the high-level QM method and use of Bennett’s acceptance ratio (BAR) method.73 One

strategy that has been demonstrated to be successful is to perform short high-level QM

simulations. These short simulations are used to parameterize a MM reference potential

through force-matching, and the reference potential is extensively sampled. The free energy

is then estimated from BAR analysis of the high-level and reference potential sampling.31

Non-equilibrium work74–76 methods, on the other hand, require equilibrium sampling at

either one or both end states. A series of short “switching” simulations, departing from the

end-state samples, are used to form a collection of work values. A switching simulation

dynamically varies λ from 0 to 1, where λ = 0 and λ = 1 represent the MM and QM/MM

potentials, respectively, and the free energy difference between the two states is calculated

from the collection of work values.

We demonstrate that the Amber software infrastructure is capable of performing both

equilibrium FEP and non-equilibrium work book-ending corrections using new QM/MM–

∆MLP force field models that integrate GFN2-xTB and deep-learning potentials from DeePMD-

kit. We apply the methods to calculate relative solvation free energies of drug-like tautomers.

The 9 tautomer reactions examined in this work are illustrated in Figure 2.
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Figure 2: Small molecule tautomeric reactions examined in this work. The red hydrogens
highlight the transferred proton.

Computational Details

Free energy surface simulations of artificially engineered RNA enzymes. The new integrated

sander/xtb/DeePMD-kit software is applied to simulations of self-alkylation reactions in

artificially engineered RNA enzymes, in particular the self-alkylating ribozyme26 (SAR) and

the methyltransferase ribozyme27,28,30 (MTR1). The SAR and MTR1 systems were built

from crystallographic structures PDB ID 6XJW26 and 7V9E,28 respectively. The crystal

structures correspond to the product state, and the active site coordinates were manipulated

to represent the reactant state. Furthermore, we protonated the N3 position of residue C10

in the MTR1 system. The MTR1 system was solvated with 18250 waters in a truncated

octahedron with unit cell lengths of 90.2 Å. A total of 113 Na+ and 47 Cl− ions were added

to neutralize the system and yield a 140 mM bulk ion concentration. The SAR system was

was similarly solvated with 15181 waters 96 Na+ and 38 Cl− ions in a orthorhombic cell

whose average lattice vector length is 79.3 Å.

All simulations were performed with ff99OL3 RNA force field,77 TIP4P/Ew water model,6

and the monovalent ion parameters developed by Joung and Cheatham.78 The MM simu-

lations used the particle mesh Ewald method with 10 Å real-space cutoffs, tinfoil boundary

conditions,79,80 and a 1 Å reciprocal space grid. The systems were equilibrated in a multistep
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procedure described in Ref 81 consisting of 150 ns of dynamics.

The free energy profiles were analyzed from QM/MM umbrella sampling82 departing

from the MM reactant state. The QM/MM models considered are: DFTB3/3ob, GFN2-

xTB, and PBE0/6-31G*. The SAR “baseline” reaction involves nucleophilic attack of the

guanine N7 to an epoxide ligand. This reaction was modeled with a neutral QM region

consisting of 30 atoms, including the 16 nucleobase and a subset of the epoxide ligand. We

also examine an “activated” mechanism whose reactant state includes a protonated epoxide

oxygen. In this case, the QM region consisted of 31 atoms with a net 1+ charge. The MTR1

QM region has a 1+ net charge and includes 48 atoms from the O6mG ligand and the

C10 and A63 nucleobases. The semiempirical electrostatic calculations were evaluated with

the QM/MM Ewald approach introduced by Nam, Gao and York,24 whereas the ab initio

QM/MM simulations used the ambient potential composite Ewald method.36 In all cases,

the Ewald calculations employed 10 Å real-space cutoffs, a 1 Å reciprocal space grid, and

tinfoil boundary conditions.79,80 The unbiased free energy surface was obtained from solution

of the unbinned weighted histogram analysis method (UWHAM)83,84 and multistate Bennett

acceptance ratio (MBAR) equations85 using the FE-ToolKit software.86

The SAR mechanism was described with a single reaction coordinate, ξ1 = RC22-O21 −

RC22-G16:N7, which was sampled from -1.5 Å to 1.0 Å using 32 umbrella windows. The

DFTB3/3ob and GFN2-xTB simulations were sampled for 50 ps/window using a 1 fs time

step, whereas the PBE0/6-31G* simulations were sampled for 10 ps/window with a 1 fs time

step.

The MTR1 free energy surface was generated from GFN2-xTB QM/MM umbrella sam-

pling involving 2 reaction coordinates: ξ1 = RC10:N3-H − RO6mG:N1-H and ξ2 = RO6mG:O6-C −

RA63:N1-C. The minimum free energy path was determined from 50 iterations of the surface-

accelerated string method.87 Each string was discretized with 32 windows and each window

was sampled for 4 ps in each iteration (6.4 ns of aggregate sampling). We compare the

GFN2-xTB free energy profile to the DFTB3/3ob and PBE0/6-31G* profiles previously re-
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ported in Ref. 88. The umbrella sampling was performed in the canonical ensemble using

the Langevin thermostat with a collision frequency of 5 ps−1 to maintain a temperature of

298 K.

Alchemical free energy calculations of drug-like tautomers. We calculate the free energy of 9

tautomeric reactions (Figure 2) taken from tautomeric database.89–91 The relative solvation

free energy is evaluated from an indirect approach that performs the AFE simulations with a

MM model. The end-state free energies are then supplemented with MM-to-QM/MM book-

end corrections. We compare two strategies for calculating the book-end corrections. The

first strategy analyzes equilibrium sampling produced by a λ-dependent potential energy

function, U(λ) = (1 − λ)UMM + λUQM/MM, at 21 uniformly spaced λ values. The second

strategy estimates the book-end correction from nonequilibrium statistics using Jarzynski’s

equation. Furthermore, we compare the relative solvation free energies to results obtained

from QM/MM umbrella sampling, which does not involve a MM reference potential. The

umbrella sampling is analyzed to produce a free energy surface of the proton transfer. The

reaction free energy is the difference between the product and reactant state minima on the

surface. The relative solvation free energy is obtained by repeating the calculations in the

gas phase and taking the difference from the aqueous phase result. The calculation details

are described below. The MM-to-QM/MM bookend simulations and the QM/MM umbrella

sampling were performed with the DFTB3/3ob, GFN2-xTB, and QDπ-2 models. The QDπ-

2 model differs from the GFN2-xTB QM/MM calculations only by the inclusion of neural

network correction to the QM/QM interactions.

Each molecule shown in Figure 2 was modeled with the GAFF2 force field92 and solvated

in a truncated octahedron (whose real space lattice vector lengths were approximately 48.5

Å) with 3000 TIP4P/Ew waters.6 The solvated systems were equilibrated for 200 ps in the

NPT ensemble at 1 atm and 298.15 K. The Berendsen barostat and Langevin thermostat

were utilized to control the pressure and temperature with a collision frequency of 5 ps−1.

The systems were further equilibrated for an additional 100 ps in the canonical ensemble
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at 298.15 K. The initial gas phase structures were prepared by removing the solvent and

equilibrating the molecule at 298.15 K for 50 ps.

The alchemical free energy calculations were performed with the second-order smoothstep

function,62 and the alchemical space was uniformly discretized by 21 λ values. The initial

configurations were geometry optimized for 5000 steps o steepest descent minimization. This

was followed by 2 ps of equilibration and 6 ns of simulation in the canonical ensemble at

298.15 K with a 1 fs time step. Hamiltonian replica exchange attempts were made every 20

fs, and the first 200 ps of simulation was discarded from the analysis. The gas phase AFE

simulations were performed analogously, and the free energies were calculated from MBAR

analysis.85

Equilibrium book-ending corrections were applied to the λ = 0 and λ = 1 end-states in

both the solvated and gas phase environments. Each MM-to-QM/MM correction used 21

uniformly spaced windows, and each window was simulated for 100 ps at 298.15 K using a

1 fs time step. The first 25% of each simulation was discarded as equilibration, and the free

energy was estimated from MBAR analysis.

The book-ending corrections were also calculated from Jarzynski’s equation.74,75

∆AMM→QM = −kBT ln

〈

exp
(−WMM→QM

kBT

)

〉

MM

(9)

kB is Boltzmann’s constant, T is the temperature, and W is the accumulated non-equilibrium

work required to change the potential from MM to QM/MM in each switch.

W =

∫ ts

0

∂U

∂λ

∂λ

∂t
dt (10)

ts is the switch time, and the switching rate is constant λ̇ = t−1
s . The exponential in eq. 9 is

averaged over starting configurations taken from the MM ensemble. A total of 1600 switching

simulations were used to calculate the average, and each switch continuously varied λ over

the course of 2 ps. The 1600 configurations were obtained from 16 ns of MM sampling.
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The tautomer free energies were also calculated from profiles generated from umbrella

sampling of the proton transfer reaction coordinate, ξPT = RO−H − RN−H. The reaction

coordinate was scanned with 51 harmonic biasing potentials using 300 kcal mol−1 Å−2 force

constants. Initial configurations were created by scanning the reaction coordinate with a

sequence of brief 500 fs simulations, and each window was equilibrated for 10 ps. Production

sampling was made in the canonical ensemble at 298.15 K for 100 ps, and each simulation was

repeated 4 times using different thermostat random number seeds. The free energy surfaces

were calculated from MBAR analysis using the FE-ToolKit software86 upon discarding 25%

of the data. Error estimates were made from circular moving block bootstrap analysis of the

data collected from the 4 trials.

Results and Discussion

Application of the new sander/xtb interface to simulation of catalytic

reactions

The study of synthetically engineered nucleic acid enzymes shows promise to significantly im-

prove design, creation, and implementation of superior artificial nucleic acid enzymes.98–101

Two important exemplars are the self-alkylating ribozyme26 (SAR) and the methyltrans-

ferase ribozyme30 (MTR1). These artificially evolved ribozymes catalyze C-N bond forma-

tion, a transformation that has not yet been observed in naturally occurring ribozymes, but

would be essential for nucleic acid synthesis and early metabolic transformations within the

context of the RNA world hypothesis.102 We apply the software infrastructure developed in

this work to compare ab initio, DFTB3/3ob and GFN2-xTB QM/MM free energy profiles

of SAR and MTR1.

1D free energy profile for a self-alkylating ribozyme. The SAR (Figure 3a) catalyzes the

ring opening of an epoxide ligand, forming an irreversible nitrogen-carbon bond between the

ligand and the N7 of a specific guanine (G16), as illustrated in Figure 3b.26 We performed
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Figure 3: Reaction catalyzed by the self-alkylating ribozyme. (a) The SAR structure. (b)
The reaction mechanism involves nucleophilic attack of the guanine N7 to an epoxide ligand.
The schematic illustrates the “baseline” mechanism, where the epoxide oxygen is neutral
(unprotonated). The “activated” mechanism differs only by having protonated the epoxide
oxygen. (c) QM/MM free energy profiles of the “baseline” mechanism. (d) QM/MM free
energy profiles of the “activated” mechanism.
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QM/MM umbrella sampling to calculate 1-dimensional free energy profiles of this process

using GFN2-xTB, DFTB3/3ob, and PBE0/6-31G*. A “baseline” mechanism (Figure 3c)

was explored where the nucleophilic attack of N7 occurs on a neutral epoxide, leading to a

primary alkoxide product. The “activated” mechanism (Figure 3d) starts with a protonated

epoxide to facilitate ring opening and leads to a more stable primary alcohol product. The

activated reactant state free energies have been shifted by 13.3 kcal/mol to account for the

protonation of the epoxide (-2.8 pKa) at pH 7.103

All QM/MM models predict the baseline mechanism to have a higher barrier than the

activated ligand, as expected. However, the transition state barriers are quantitatively differ-

ent. DFTB3/3ob produces a baseline mechanism that is nearly isoergic with a 16.7 kcal/mol

forward barrier, whereas PBE0/6-31G* and GFN2-xTB predict the product state to be con-

siderably higher in free energy, and their forward barriers are larger (35.9 and 46.0 kcal/mol,

respectively). For the activated mechanism, the DFTB3/3ob and PBE0/6-31G* barriers

(3.8 and 2.6 kcal/mol, respectively) are similar, whereas GFN2-xTB is markedly higher

(13.8 kcal/mol). These results demonstrate that for this reaction DFTB3/3ob and GFN2-

xTB give quantitatively different results from one another and from PBE0/6-31G*. This

strongly suggests that there is need to further augment these models with ∆MLP corrections

to achieve improved accuracy.

2D free energy profile for a methyltransferase ribozyme. The MTR1 catalyzes the nu-

cleophilic attack of adenine (A63) at position N1 to the O6-methylguanine (O6mG) ligand

at position C6. The attack is assisted by a proton transfer from N3 of C10 to the N1 of

O6mG, as illustrated in Figure 4a. We applied the new sander/xtb interface to calculate a

2-dimensional free energy surface of the MTR1 reaction from GFN2-xTB QM/MM umbrella

sampling (Figure 4c). The GFN2-xTB minimum free energy path is predicted to be step-

wise, in agreement with previous work using DFTB3/3ob and PBE0/6-31G*.88 A proton

is transferred from C10:N3 to O6mG:N1, and this is followed by a methyl transfer from

O6mG:O6 to A63:N1. The inset of Figure 4c compares the GFN2-xTB, DFTB3/3ob, and
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Figure 4: Reaction catalyzed by the methyltransferase ribozyme. (a) The MTR1 structure.
(b) The MTR1 mechanism involves nucleophilic attack of adenine (A63) N1 at the O6-
methylguanine (O6mG) ligand C6 position. The attack is assisted by a proton transfer
from N3 of C10 to N1 of O6mG. (c) The 2-dimensional GFN2-xTB QM/MM free energy
surface and minimum free energy path. The inset compares the minimum free energy profile
with DFTB3/3ob and PBE0/6-31G* QM/MM umbrella sampling results taken from Ref.
88. (d) The 2-dimensional DFTB3/3ob–∆MLP QM/MM free energy surface and minimum
free energy path. The p = 0 and p = 1 labels denote the reactant and product states,
respectively.
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PBE0/6-31G* free energy profiles. The profiles are qualitatively similar, but quantitatively

different. The activation free energy predicted by GFN2-xTB (18.6 kcal/mol) agrees much

better with PBE0/6-31G* (19.4 kcal/mol) than DFTB3 (15.5 kcal/mol). Nonetheless, the

barrier for the proton transfer step using GFN2-xTB (2.1 kcal/mol) is considerably lower

than PBE0/6-31G* (7.2 kcal/mol). The DFTB3 profile exhibits an overstabilization of the

protonated C10 intermediate (-7.5 kcal/mol) relative to ab initio (1.6 kcal/mol). The extent

of overstabilization is not as severe with GFN2-xTB (-1.1 kcal/mol), but it is still significant.

The experimental barrier of the methyl transfer reaction is approximately 21.1 kcal/mol,

based on the intrinsic rate of reaction.27 All of the methods explored here underestimate the

barrier. The PBE0/6-31G* and GFN2-xTB barriers are within 1.7 and 2.5 kcal/mol of this

estimate, respectively, whereas the DFTB3 prediction is lower by 5.6 kcal/mol.

The computational cost of PBE0/6-31G* QM/MM simulations quickly becomes pro-

hibitive to apply. Although the DFTB3 and GFN2-xTB QM models provide a practical

alternative in terms of computational efficiency, we find there are important quantitative

differences from the PBE0/6-31G* results. For this system, the performance of the GFN2-

xTB method is competitive with DFTB3; either method may serve as a useful base model to

construct new QM/MM–∆MLP potentials. As a proof of concept demonstration, Figure 4d

illustrates the MTR1 free energy surface calculated from umbrella sampling performed with

a preliminary DFTB3/3ob–∆MLP model trained to reproduce the PBE0/6-31G* QM/MM

energies and forces. The ∆MLP uses the DPRc potential,41 and it is trained in a manner

similar to our previous works.12,41,104 In brief, the DPRc model consists of filtering and fitting

neural networks. The fitting network consists of 3 hidden layers (240 neurons/layer) that

transform an atomic descriptor matrix to an atomic energy contribution to the MLP. In the

current work, we use the two-body embedding smooth edition deep potential descriptor,23

which is calculated from the filtering network consisting of 3 hidden layers (25, 50, and 100

neurons). The input to the filtering network is a “coordinate matrix” that describes an atom’s

environment. This description includes switching functions that smoothly eliminate correc-
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tions between QM and MM atoms as a function of distance such that there is no correction

beyond 6 Å. The training consisted of 10 iterations of active learning with 4 MLP parameter

sets. The parameters were optimized from 100,000 steps of the Adam algorithm105 using

an exponentially decaying learning rate that varied from 10−3 to 5×10−8. Each round of

active learning performed umbrella sampling with 224 umbrella windows covering the rele-

vant areas of the 2-dimensional free energy surface. The simulations were sampled for 1 ps

with a 1 fs time step, and the active learning procedure incorporated approximately 10,000

PBE0/6-31G* samples into the training procedure, in total. After training, the minimum

free energy path of the DFTB3/3ob–∆MLP was found using the finite temperature string

method,87 and production simulations were performed using the same protocol described for

the GFN2-xTB umbrella sampling.

The DFTB3/3ob–∆MLP model shows improved agreement with PBE0/6-31G* than

the uncorrected GFN2-xTB and DFTB3/3ob semiempirical models. The proton transfer

barrier (6.9 kcal/mol) and rate-limiting transition state barrier (19.1 kcal/mol) are within

0.4 kcal/mol of the PBE0/6-31G* values. In this particular application, the ∆MLP was

trained for a specific reaction. Although the scope of applicability is limited, it provides

access to simulation time scales that would not be feasible with ab initio QM/MM sampling.

Similarly, it makes it possible to perform path integral molecular dynamics, which requires

multiple force evaluations at each time step. In the next section, we highlight the use of

∆MLPs for modeling a wider chemical space for drug discovery applications.

Proof of concept demonstration in drug discovery applications

In this section, we show that a GFN2-xTB–∆MLP model can be trained to achieve quan-

titative accuracy with respect to a reference high-level ab initio method. Specifically, we

focus the demonstration on the creation of a preliminary model for improving QM/QM in-

teractions. The parametrization of a ∆MLP to improve QM/MM interactions will require

further training. The QM/MM–∆MLP presented here is a second-generation version of the
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Quantum Deep-learning Potential Interaction model,42,58 designated QDπ-2.

Preliminary GFN2-xTB/∆MLP model for drug-like molecules

We compare energy and force mean absolute errors (MAEs) relative to ωB97M-D3BJ/def2-

TZVPPD against a broad set of databases using GFN2-xTB/∆MLP and several other mod-

els. Table 1 summarizes the MAEs produced by QDπ-2 on the training data. Furthermore,

the MAEs of QDπ-2, ωB97X/6-31G*, GFN2-xTB, DFTB3/3ob (“DFTB3”), and DP-SPICE

methods are compared using the validation data. The QDπ-2 model produces similar errors

between the training and validation data, suggesting the model is not overfit. QDπ-2 out-

performs the other models on all validation datasets; the GFN2-xTB/∆MLP model is more

accurate than GFN2-xTB, the pure MLP model, and even a low-level DFT method. The

results suggest that GFN2-xTB is a more accurate baseline QM model than DFTB3 for these

datasets. This observation is consistent with previous findings.42,58 Table 2 compares force

and relative energy MAEs using subsets of the ANI, COMP6, and RE databases. The subsets

are limited to molecules containing the elements: C, H, O, and N. Similar comparisons were

reported in Ref 58 using ωB97X/6-31G* reference data; however, we recalculated the refer-

ence data in the present work with a higher level of theory (ωB97M-D3BJ/def2-TZVPPD).

Consequently, the models previously trained to reproduce ωB97X/6-31G* calculations do

not appear as accurate in Table 2. The QDπ-2 model is the most accurate method for

all datasets. The GFN1-xTB and GFN2-xTB models are the most accurate semiempirical

models.

The accurate prediction of tautomer and protonation states is important for drug dis-

covery applications because 30% of the compounds in vendor databases and 21% of drug

databases have potential tautomers.106,107 Furthermore, it has been estimated that up to

95% of drug molecules contain ionizable groups.106 Figures 5 and 6 compare relative pro-

tonation energies and tautomerization energies, respectively. These comparisons include

QDπ-2, ωB97X/6-31G*, GFN2-xTB, and DFTB3. The reference values were calculated at
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the ωB97M-D3BJ/def2-TZVPPD level of theory. The QDπ-2 model is the most accurate,

followed by ωB97X/6-31G*, GFN2-xTB, and DFTB3. This illustrates that machine-learning

corrections can be used to achieve quantitative accuracy at an affordable computational cost.

Table 1: Mean absolute error (MAE) of the energies (in kcal/mol) and forces (in kcal/mol/Å)
from the training and validation data.a

Dataset
Training Validation
QDπ-2 QDπ-2 ωB97X GFN2-xTB DFTB3 DP-SPICE
E F E F F F F E F

SPICE 1.19 1.36 1.19 1.36 2.40 3.98 6.02 7.75 2.62
ANI 1.51 2.28 1.55 2.29 3.15 6.75 11.09 14.22 11.44
GEOM 2.22 1.42 1.80 1.32 2.61 3.53 7.03 16.78 3.05
FreeSolv-MD 0.72 1.39 0.71 1.41 3.17 5.18 8.25 27.14 6.85
RE-MD 1.55 1.69 1.26 1.58 2.50 3.92 8.60 5.77 3.15

a The datasets include SPICE,44 ANI,45,46 GEOM,47 FreeSolv-MD,48 and RE-MD.41 The
validation data compares ωB97M-D3BJ/def2-TZVPPD52 using PSI451 and QDπ-2 using
xtb20 and DeePMD-kit,23 ωB97X/6-31G*108 (ωB97X) using PSI4,109 GFN2-xTB29 using
xtb,20 DFTB3/3ob55,56 using DFTB+,57 and the pure Deep-Potential model trained against
the SPICE dataset23 (DP-SPICE).

Figure 5: Comparison of relative protonation energies (kcal/mol). The reference values
are ωB97M-D3BJ/def2-TZVPPD. The comparisons include molecules from the AAMC,116

NAMC,116 and PA26117 databases.
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Table 2: Relative energy (in kcal/mol) and force (kcal/mol/Å) mean absolute errors calcu-
lated from subsets of the ANI (ANI-1x and ANI-2x), COMP6 (S66 and COMP5), and RE
(TB, AA, NA, PA, HB, T15, SQM) databases.a

Method
ANI S66 TB AA NA PA COMP5 HB T15 SQM

F ∆E ∆E ∆E ∆E ∆E F ∆E ∆E ∆E
QDπ-1 4.51 1.14 2.82 6.61 1.94 2.38 3.11 0.74 2.53 3.16
AIQM1 3.45 1.58 1.29 4.60 2.22 5.04 2.08 0.68 1.04 2.84
ANI-1x 6.32 1.94 3.51 84.29 9.64 35.40 4.29 1.33 3.56 16.57
ANI-2x 4.50 1.30 3.08 65.93 7.41 20.04 3.55 1.65 2.41 13.09
GFN2-xTB 6.89 0.94 3.36 5.98 3.90 3.16 4.48 0.47 1.15 4.22
GFN1-xTB 5.82 0.96 3.92 5.55 5.50 3.73 3.94 0.56 4.96 4.19
DFTB3 11.13 1.24 3.23 7.85 6.07 8.01 6.60 0.75 2.59 5.76
DFTB/ChIMES 6.02 2.28 2.97 5.10 3.34 8.98 3.51 1.43 2.11 7.53
ODM2 17.57 1.34 5.20 5.66 4.37 6.22 12.06 0.92 4.62 4.07
PM6 17.39 1.10 4.24 8.12 7.90 5.97 10.65 0.80 5.72 3.37
PM6-D3H4X 18.31 0.96 4.59 6.23 7.72 7.04 11.68 0.59 5.58 3.92
PM7 16.13 0.99 3.44 6.19 6.32 7.19 9.83 0.64 4.04 3.55
AM1 18.64 1.92 3.68 8.37 3.85 5.77 14.14 2.09 3.94 4.18
MNDO/d 20.61 6.49 7.46 13.88 7.28 10.83 13.79 8.92 6.72 5.16
QDπ-2 2.27 1.04 1.17 0.60 0.15 0.37 1.62 0.40 0.69 2.34

a Only molecules containing the elements C, H, O, and N were included in the statistics.
The “ANI” dataset refers to ANI-145 and ANI-2.46 The COMP653 database consists of
S66×853,110,111 and COMP5.112–114 The relative energy (RE) dataset42 is a conglomeration
of the following databases: Tautobase90,115 (TB), amino acid116 (AA), nucleic acid116 (NA),
PA26117 (PA), HB375×10118 (HB), TAUT15117 (T15), and RegioSQM20119 (SQM).

Figure 6: Comparison of tautomerization energies (kcal/mol). The reference values are
ωB97M-D3BJ/def2-TZVPPD. The comparisons include molecules from the Tautobase90,115

and TAUT15117 databases.

25



Alchemical free energy simulation with QM/MM-∆MLP “book-ending” correc-

tions for ligand-protein binding

In this section we demonstrate that the new software infrastructure can be used to perform

QM/MM-∆MLP alchemical free energy calculations using an “indirect” approach. Specif-

ically, the indirect approach is employed to calculate relative solvation free energies of the

tautomers shown in Figure 2 with the QDπ-2 model, whose parametrization was described

in the previous section. Comparisons are made to DFTB3/3ob and GFN2-xTB QM/MM

potentials and experiment, when available. Recall that the QDπ-2 differs from the GFN2-

xTB QM/MM model only by including a MLP correction to the QM/QM interactions; both

models share the same QM/MM interactions.

Table 3 compares the experimental tautomeric free energies in solution to values obtained

from free energy profiles evaluated from umbrella sampling. For clarity, these are the free

energy differences between the solvated tautomeric forms; they are not relative solvation

free energies. The DFTB3/3ob QM/MM potential yields the larges mean absolute error

(maE). The GFN2-xTB QM/MM model reduces the error by approximately 50% (maE 3.3

kcal/mol). The QDπ-2 QM/MM–∆MLP reduces the error to 2.3 kcal/mol despite not having

trained the neural network for the QM/MM interactions. These results show promise that

the development of MLPs for the QM/MM interactions will lead to further improvement.

The MM→QM/MM–∆MLP book-ending approach provides corrections to thermody-

namic cycles where counterpoised transformations occur in two environments to obtain a

relative free energy. When the environments are in the gas phase and aqueous solution,

this implies a relative solvation free energy, whereas relative binding free energies calcu-

late the free energies in solution and when complexed with a protein. We examine two

strategies for evaluating MM→QM/MM–∆MLP book-ending corrections. The first strat-

egy analyzes equilibrium sampling produced by a λ-dependent potential energy function

at a series of 21 uniformly spaced λ values. This strategy will be referred to as equilibrium

book-ending (EBE). The second strategy analyzes nonequilibrium sampling with Jarzynski’s
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Table 3: Tautomer reaction free energies (kcal/mol) in solution.a

Reaction Expt. DFTB3 GFN2-xTB QDπ-2
∆A ∆A σ∆A ∆A σ∆A ∆A σ∆A

1A→1B -4.78 -12.93 0.12 -1.96 0.08 -2.93 0.12
2A→2B -6.10 -14.82 0.14 -6.53 0.06 -6.96 0.09
3A→3B -7.23 -14.81 0.13 -6.18 0.12 -8.59 0.06
4A→4B -2.30 -10.62 0.16 2.30 0.06 1.58 0.13
5A→5B -4.78 -9.75 0.08 -2.12 0.09 -2.13 0.09
6A→6B -9.28 -17.17 0.15 -8.75 0.11 -12.57 0.09
10D→10C -1.23 -6.88 0.17 5.12 0.07 0.95 0.08
12D→12C -1.77 -6.76 0.10 5.31 0.08 1.30 0.15
14D→14C 0.27 -5.42 0.07 4.01 0.04 1.50 0.08
maE 6.88 3.25 2.26
rmsE 7.03 3.97 2.46

a Experimental values taken from Ref. 90. σ∆A is the standard error of the mean from 4 trials. The
summary statistics include the mean of absolute error (maE) and root-mean-square error (rmsE) relative
to experiment.

equation,67,69–72 which we refer to as nonequilibrium book-ending (NEBE). These strategies

are compared to solvation free energies obtained from umbrella sampling (US) performed in

the aqueous and gas phase environments.

Table 4 compares the DFTB3/3ob, GFN2-xTB, and QDπ-2 relative solvation free ener-

gies calculated from the US, EBE, and NEBE strategies. The US results are used here as a

reference to compare the EBE and NEBE values, because the US calculations do not involve

a MM reference potential. The mean absolute deviation of the EBE results is approximately

0.1 kcal/mol. The NEBE values have similar deviations for GFN2-xTB, slightly larger devi-

ations for QDπ-2 (maE 0.24 kcal/mol), and considerably higher deviations for DFTB3 (0.41

kcal/mol). The DFTB3 NEBE deviation is dominated by a 1.8 kcal/mol outlier (10D→10C)

that we are currently unable to rationalize. The NEBE deviations are related to the com-

pleteness of the equilibrium MM distribution and the non-equilibrium “switching time”. A

more detailed study of how these parameters influence the precision of the calculation is

forthcoming. Overall, the close agreement between the EBE and US results illustrate that

the software infrastructure is in place for performing reliable QM/MM–∆MLP alchemical
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Table 4: Comparison of relative solvation free energies (kcal/mol).a

Reaction US EBE NEBE
∆∆A σ∆∆A ∆∆A σ∆∆A ∆A σ∆∆A

DFTB3
1A→1B -15.27 0.16 -15.13 0.08 -15.37 0.09
2A→2B -12.53 0.16 -12.66 0.09 -12.64 0.18
3A→3B -12.01 0.16 -11.84 0.08 -12.23 0.14
4A→4B -18.35 0.18 -18.41 0.10 -18.08 0.14
5A→5B -12.80 0.16 -12.68 0.08 -12.48 0.12
6A→6B -9.66 0.18 -9.48 0.08 -9.43 0.21
10D→10C -19.43 0.19 -19.37 0.12 -18.65 0.29
12D→12C -20.92 0.13 -20.76 0.18 -20.37 0.63
14D→14C -14.15 0.10 -14.13 0.10 -13.65 0.20
maD 0.12 0.34
rmsD 0.13 0.40

GFN2-xTB
1A→1B -2.65 0.10 -2.71 0.06 -2.73 0.09
2A→2B -2.52 0.07 -2.30 0.08 -2.42 0.10
3A→3B -2.11 0.15 -2.25 0.07 -2.10 0.21
4A→4B -3.17 0.08 -3.27 0.11 -2.90 0.21
5A→5B -1.86 0.13 -1.89 0.10 -1.80 0.15
6A→6B -0.95 0.16 -1.07 0.07 -0.92 0.16
10D→10C -3.82 0.14 -3.72 0.09 -3.82 0.13
12D→12C -3.91 0.14 -3.89 0.09 -3.76 0.12
14D→14C -1.66 0.11 -1.67 0.07 -1.82 0.06
maD 0.09 0.10
rmsD 0.11 0.13

QDπ-2
1A→1B -2.69 0.17 -2.73 0.06 -2.79 0.09
2A→2B -2.30 0.14 -2.28 0.08 -2.29 0.17
3A→3B -2.44 0.12 -2.21 0.09 -1.61 0.22
4A→4B -3.20 0.15 -3.12 0.09 -2.96 0.13
5A→5B -2.02 0.16 -1.89 0.09 -1.69 0.13
6A→6B -0.91 0.16 -1.06 0.07 -1.05 0.14
10D→10C -2.89 0.11 -2.83 0.09 -3.00 0.14
12D→12C -3.31 0.17 -3.02 0.09 -2.97 0.10
14D→14C -1.25 0.13 -1.24 0.06 -1.32 0.07
maD 0.11 0.24
rmsD 0.14 0.33

a
σ∆∆A is the standard error of the mean from 4 trials. The summary statistics include the mean absolute

deviation (maD) and root-mean-square deviation (rmsD) relative to the values obtained from umbrella
sampling.
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free energy simulations using an indirect approach with book-ending corrections.

Conclusion

We report the implementation and testing of integrated software for performing free en-

ergy simulations with generalized hybrid QM/MM–∆MLP force fields for enzyme mecha-

nism and drug discovery applications. Specifically, we integrate Amber’s open-source MD

and free energy program sander19 with the xtb20 and DeePMD-kit21–23 to enable periodic

boundary condition condensed phase simulations with rigorous treatment of the long-ranged

electrostatics using QM/MM–Ewald methods.24 We presented several example applications

to demonstrate the capabilities of the software. The free energy surfaces of the SAR and

MTR1 engineered RNA enzymes were calculated from umbrella sampling. The results in-

dicate that the GFN2-xTB and DFTB3/3ob models perform reasonably well but neither

model achieves quantitative agreement with ab initio PBE0/6-31G* QM/MM results. This

suggests there is need to develop QM/MM–∆MLPs to improve the accuracy of fast, semiem-

pirical QM models to enable a broader range of practical applications. A preliminary QDπ-2

force field for drug discovery was presented. The QDπ-2 model supplements GFN2-xTB

with a machine learning potential designed to improve internal QM/QM interactions. Com-

parisons were made to other models using a series of established databases, and we find that

QDπ-2 is superior to the first-generation QDπ model based on DFTB3. Furthermore, the

QDπ-2 potential outperforms other machine-learning models and low-level ab initio DFT

methods such as ωB97X/6-31G*. The new QDπ-2 model was applied to alchemical free

energy simulations using an indirect approach to calculate relative solvation free energies of

small drug-like tautomers. It was demonstrated that the alchemical free energy infrastruc-

ture well-reproduced free energy differences obtained from umbrella sampling, which do not

use a MM reference potential. Taken together, this work reports a significant advance in

the creation of new integrated software infrastructure for the development and application
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of new QM/MM–∆MLP force fields for enzyme mechanism and drug discovery applications.
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