
Statistics and Its Interface Volume 17 (2024) 291–303

Robust and covariance-assisted tensor response
regression

Ning Wang and Xin Zhang
∗

Tensor data analysis is gaining increasing popularity in
modern multivariate statistics. When analyzing real-world
tensor data, many existing tensor estimation approaches are
sensitive to heavy-tailed data and outliers, in addition to
the apparent high-dimensionality. In this article, we develop
a robust and covariance-assisted tensor response regression
model based on a recently proposed tensor t-distribution
to address these issues in tensor data. This model assumes
that the tensor regression coefficient has a low-rank struc-
ture that can be learned more effectively using the addi-
tional covariance information. This enables a fast and ro-
bust decomposition-based estimation method. Theoretical
analysis and numerical experiments demonstrate the supe-
rior performance of our approach. By addressing the heavy-
tail, high-order, and high-dimensional issues, our work con-
tributes to robust and effective estimation methods for ten-
sor response regression, with broad applicability in various
domains.

Keywords and phrases: Dimension reduction, Envelope
method, t-distributions, Tensor decomposition.

1. INTRODUCTION

Many modern data sets are collected as a multidimen-
sional array, also known as a tensor. Examples include neu-
roimaging data [28, 8], multiple-tissue genetic data [7], and
data sets studied in economics and finance [2]. In contrast
to the traditionally used vector/multivariate data, tensor
data has more complex structures and usually higher di-
mensions. Different modes of the tensor represent different
natures and aspects of the data collection processes. For ex-
ample, in the electroencephalography (EEG) data, the first
model of the data represents the time/frequency, and the
second mode represents different electrode positions. Tra-
ditional vector-based methods vectorize the tensor data di-
rectly, which breaks the special tensor structure and usually
results in the loss of information. Moreover, because of the
multiple modes, the tensor dimension is usually high. The
high dimensionality results in an excessive number of param-
eters in statistical modeling and thus makes the tensor data
analysis even more challenging. In recent years, there has
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been a rapidly growing literature on the analysis of tensor
data, for example, in tensor decomposition [9, 3, 19, 21, 25],
tensor regression [28, 6, 11, 27, 20, 12, 18] and tensor clas-
sification and clustering [13, 16, 14, 23, 22]. These methods,
among many others, can avoid vectorization and take advan-
tage of the special tensor structure to achieve more accurate
estimations.

Besides the complex structure and high dimensionality,
we note that many tensor data analysis tools may suffer from
heavy-tail issues and potential outliers. Some observations
can be far from the population’s center, bringing more chal-
lenges to estimating a tensor model. We study the problem
of tensor response regression with heavy-tail errors. Tensor
response regression is a generalization of the multivariate
linear regression model: [11] proposed a parsimonious ten-
sor response regression using the tensor envelope; [20] devel-
oped a sparse and low-rank model based on the CP decom-
position. However, the above-mentioned methods are not
designed for tensor response with heavy-tail errors and may
suffer from potential outliers. More recently, [24] proposed
a tensor t-distribution and applied it to the tensor response
regression model to achieve robust estimations. The ten-
sor t-distribution generalizes the multivariate t-distribution
from vector to tensor data. In addition, it includes the ten-
sor normal distribution [e.g. 11] as a special case. Both the
tensor normal and tensor t-distribution assume that the co-
variance has a separable structure, which can reduce the free
parameters in the covariance matrix substantially. The ten-
sor t-distribution was shown to be closed for various tensor
operators such as vectorization, linear transformation, rota-
tion, and sub-tensor extraction. The simple definition and
nice properties of the tensor t-distribution bring convenience
for both algorithm implementation and theoretical studies
and provide insights for its application in tensor analysis.

In this article, we focus on studying the tensor response
regression model with tensor t-distributed errors. The ten-
sor regression coefficient is high-dimensional for many tensor
applications. Additional assumptions are usually required to
avoid over-fitting and guarantee estimation accuracy. [24]
considered the sparsity assumption and proposed several pe-
nalized estimation methods. Although the popular sparsity
assumption has been shown to work well for many high-
dimensional data sets, it may not be suitable when we have
a dense signal (i.e., the true regression coefficient tensor
is not sparse). Therefore, we propose a covariance-assisted
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low-rank structure for the tensor coefficient, which jointly
parametrizes the mean and covariance parameters in the
tensor data. We assume that the tensor response Y can
be decomposed as Y = P(Y) + Q(Y). Only P(Y) is lin-
early associated with the predictor, while Q(Y) has no lin-
ear association with the predictor and thus can be viewed
as redundant information. More specifically, we assume that
P(Y) is a low-rank projection of Y, which takes advantage
of the tensor structure. As such, the tensor regression co-
efficients are in the form of the CP decomposition [e.g. 9].
In addition, we assume that the immaterial part Q(Y) is
uncorrelated with P(Y) to eliminate its effects on P(Y).
As a consequence, the mean and covariance of the tensor
response can be jointly parameterized by the condition that
the basics of the low-rank projection are the eigenvectors of
the covariance matrices. We will provide more detailed mo-
tivations and explanations of the model assumption in Sec-
tion 3. Thanks to the separable covariance structure, we can
construct estimations for the covariance matrices with nice
convergence results, which enhance the estimation accuracy
of the tensor regression coefficient. The proposed structure
shares similarities with the envelope [4] and tensor envelope
[11, 27] models, in which they assume that the regression
coefficient has a low-rank structure, with the basis matrices
belonging to a reducing subspace of the covariance matri-
ces. Their strategies and ours are common: by projecting the
large response onto a low-dimensional subspace, we identify
the part of the response relevant to regression and move
the immaterial parts, which reduces the number of free pa-
rameters and facilitates the estimation efficiency. However,
we will discuss later that the tensor envelope finds more
directions than ours and estimates a surrogate subspace of
ours. Besides, the envelope and tensor envelope are devel-
oped based on the normal distribution. As a comparison, the
proposed method is developed based on the t-distribution
and is robust against outliers. We then developed a robust
and decomposition-based algorithm. The core idea of the al-
gorithm is similar to that of [26], which developed a straight-
forward way of envelope modeling from a principal compo-
nents regression perspective and decomposition-based algo-
rithms for the envelope method. The common procedure
of our algorithm and theirs is that we first eigen-decompose
the covariance matrices and then select the eigenvectors that
belong to the target subspaces. The difference is that our al-
gorithm is designed for the tensor data and is robust against
potential outliers. Our algorithm has several advantages over
the likelihood-based estimation method used in most litera-
ture about the tensor envelope. Firstly, our estimation con-
siders the heavy-tail issue in the tensor response and is ro-
bust against outliers. Secondly, we do not need any iterations
to obtain the estimate. The algorithm only involves matrix
multiplication and eigendecomposition. Thirdly, there are
no local solution problems in our estimation. As a compar-
ison, the likelihood-based objective function for the tensor
envelope is complex and non-convex. The optimization for

it is much more challenging and cannot guarantee to obtain
the global solution.

The contributions of this article are multi-fold. Firstly,
we propose a covariance-assisted low-rank structure. Com-
pared with the first moment-based tensor low-rank methods
[e.g. 20, 12], it jointly parametrizes the mean and covari-
ance parameters to enhance estimation efficiency. Secondly,
based on the tensor t-distribution, we propose a robust
decomposition-based estimation method, which circumvents
the iterations and non-convex problems in likelihood-based
methods for the tensor envelope and is more computation-
ally efficient. Thirdly, we obtain a non-asymptotic conver-
gence rate for the proposed decomposition-based estimation
method, which is strong enough for most tensor data. Note
that we are handling the case where the tensor response is
heavy-tail, which makes the theoretical analysis non-trivial.
To our best knowledge, the proposed method is the first
robust low-rank one for tensor response regression, which
jointly parameterizes the tensor mean and covariance.

The rest of the paper is organized as follows. Sec-
tion 2 introduces tensor notations and reviews the tensor
t-distribution and tensor response regression. We propose
the covariance-assisted tensor low-rank regression model in
Second 3 and develop the robust decomposition-base estima-
tion in Second 4. Section 5 shows the non-asymptotic conver-
gence result of the proposed estimation method. Section 6
compares the proposed method with several related articles.
Section 7 contains the numerical studies. Finally, Section 8
includes a short discussion. Proofs are provided in the Sup-
plementary Materials (http://intlpress.com/site/pub/files/
supp/sii/2024/0017/0002/sii-2024-0017-0002-s002.zip).

2. PREPARATIONS

2.1 Tensor notation

The following notation and (multi-)linear algebra will be
used in this article. We call a multidimensional array A ∈
R

p1×···×pM an M -way tensor or M -th order tensor, while
M = 1 corresponds to vectors and M = 2 corresponds to
matrices. Some key operators on a generalM -th order tensor
A are defined as follows.

• Vectorization. The vectorization of A is denoted by
vec(A) ∈ R

∏
m pm , where the (i1, . . . iM )-th scalar in

A is mapped to the j-th entry of vec(A), j = 1 +∑M
m=1{(im − 1)

∏m−1
k=1 pk}.

• Matricization. The mode-n matricization, reshapes
the tensor A into a matrix denoted by A(n) ∈
R

pn×
∏

m�=n pm , so that the (i1, . . . , iM )-th element in
A becomes the (in, j)-th element of the matrix A(n),
where j = 1 +

∑
k �=n{(ik − 1)

∏
l<k,l �=n pl}.

• Vector product. The mode-n vector product of A and
a vector c ∈ R

pn is represented by A×̄nc ∈
R

p1×···×pn−1×pn+1×···×pM results in an (M−1)-th order
tensor. This product is the result of the inner products
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between every mode-n fiber in A with vector c. The
mode-n fibers of A are the vectors obtained by fixing
all indices except the n-th index.

• Matrix product. The mode-n product of tensor A
and a matrix G ∈ R

s×pn , denoted as A×n G,
is anM -th order tensor with dimension p1×· · ·×pn−1×
s × pn+1 × · · · × pM . Similar to the vector product,
the product is a result of multiplication between every
mode-n fibers of A and the matrix G.

• Tucker product. The Tucker product of the core tensor
A and a series of factor matrices G1, . . . ,GM , is
defined as A×1G1×2 · · ·×M GM ≡ �A;G1, . . . ,GM �.

• Tensor Mahalanobis distance. The tensor Maha-
lanobis of A with respect Ξ = {Σ1, . . . ,ΣM}, where
Σm ∈ P

pm×pm , m = 1, . . . ,M , are positive and
symmetric definite matrices, is defined as ‖A‖Ξ =
vec(A)T (⊗1

m=MΣ−1
m )vec(A).

• Inner product of two tensors with the matching
dimensions is 〈A,B〉 = vecT (A)vec(B) and Frobenius
norm of A is ‖A‖F = ‖vec(A)‖2.

For more background on tensor algebra, see [9]. For a ten-

sor A ∈ R
p1×···×pM , we define p =

∏M
m=1 pm and p−m =∏

j �=m pj .

2.2 Tensor t-distribution

In this section, we briefly review the tensor t-distribution
[24], which aims to handle the heavy-tail issues in the tensor
data. We start with the formal definition of it.

Definition 1. A tensor-variate random variable Y ∈
R

p1×···×pM follows the tensor t-distribution TT(μ,Ξ, ν) if
and only if it has probability density function,

f(Y | μ,Φ, ν) =
Γ(ν+p

2 )
∏M

m=1 |Σm|−p−m/2

(πν)p/2Γ(ν/2)
(1)

× (1 + ‖Y − μ‖2Ξ/ν)−
ν+p
2 ,

where Ξ = {Σ1, . . . ,ΣM}, p =
∏M

m=1 pm, p−m =
∏

j �=m pj
and Γ(·) is the Gamma function.

The tensor t-distribution can be viewed as a generaliza-
tion of the tensor normal distribution [e.g. 11, 15]. A gen-
erative definition of tensor normal distribution is that Y ∼
TN(μ,Ξ) ifY = μ+�Z;Σ

1/2
1 , . . . ,Σ

1/2
M � for a random tensor

Z that consists of independent standard normal entries. The
following proposition shows an equivalent representation for
the tensor t-distribution, which is more intuitive and builds
the connection with the tensor normal distribution.

Proposition 1. Suppose X ∼ TN(0,Ξ) and G ∼ χ2
ν/ν are

independent, where χ2
ν is the Chi-square distribution with

degree freedom ν > 0, then Y ∼ X/
√
G+ μ ∼ TT(μ,Ξ, ν).

The tensor t-distribution makes the tail of the tensor
normal distribution heavier by introducing a single ran-
dom variable G ∼ χ2

ν/ν. When ν is small, the tensor t-
distribution has a much heavier tail compared with the

tensor normal distribution and thus can account for the
potential outliers in tensor data sets, and when ν → ∞,
the tensor t-distribution reduces to the tensor normal dis-
tribution. Another important property of the tensor t-
distribution is that vec(Y) ∼ tp

(
vec(μ),

⊗1
m=M Σm, ν

)
,

where tp
(
vec(μ),

⊗1
m=M Σm, ν

)
is a p dimensional multi-

variate t-distribution with mean vec(μ), scale parameter⊗1
m=M Σm, and degree of freedom ν. Compared with mul-

tivariate t-distribution, the tensor t-distribution has a sep-
arable covariance structure as the tensor normal distribu-
tion, which reduces the number of the free parameters in
the scale parameter from (

∏M
m=1 pm)(

∏M
m=1 pm + 1)/2 to∑M

m=1 pm(pm + 1)/2−M + 1. Intuitively, less free parame-
ters can enhance the estimation accuracy of statistical mod-
els. For more properties and interpretations of the tensor
t-distribution, please refer to [24].

2.3 Robust tensor response regression

To model the linear association between a response tensor
Y ∈ R

p1×···×pM and a covariate vector X = (X1, . . . , Xq)
T ,

[24] considered the following robust response regression
model

(2) Y = B1X1 + · · ·+BqXq +E,

where Bk are the tensor coefficients, for k = 1, . . . , q, and
E ∼ TT(0,Ξ, ν) is independent of X. Without loss of gen-
erality, we assume that E(Y) = 0, E(X) = 0, and the
data is centered. Let B ∈ R

p1×···×pM×q be the stacked
tensor coefficient {B1, . . . ,Bq}. Model (2) is equivalent to
Y = B×̄M+1X + E. Compared with most existing ap-
proaches that assume the error E to be tensor normal [e.g.,
11] or inexplicitly use the least squares loss that corresponds
to the isotropic normal distribution [e.g. 17, 20], the ro-
bust tensor response regression model is based on a ten-
sor t-distribution whose tail can be much heavier. To gain
more intuition, [24] considered the maximum likelihood es-
timation (MLE) of B. For independent and identically dis-
tributed data {(Xi,Yi)}ni=1 from (2), the MLE satisfies

B̂MLE = Y×M+1 (XWX
T )−1

XW,

where W ∈ R
n×n is a diagonal matrix with the i-th diagonal

element wi = (ν + p)/
(
ν + ‖Yi − B̂MLE×̄M+1Xi‖2Ξ

)
, Y ∈

R
p1×···×pM×n is the sample tensor for the response, and X ∈

R
q×n is the sample matrix for the predictor. The MLE B̂MLE

can be viewed as a weighted least squares estimator. For
the potential outliers far away from the center of the data,
the tensor Mahalanobis distance ‖Yi − B̂MLE×̄M+1Xi‖2Ξ is
large, which makes the weights small. Hence, the outliers
have a minor influence on the estimation.

For tensor data sets, the dimension of the response tensor
p =

∏M
m=1 pm is usually high, which makes the tensor coef-

ficient less interpretable and the estimation more challeng-
ing. [24] assumed the tensor coefficient B to be sparse and

Robust and covariance-assisted tensor response regression 293



proposed regularized estimations using the adaptive lasso
or adaptive group lasso penalties. Although the popular
sparsity assumption works well for many high-dimensional
data sets, the computation can be slow, especially when the
model is not sparse enough, p is large, and the covariance
information is considered.

3. MODEL

Instead of the sparsity assumption, we consider a ten-
sor low-rank structure for the regression coefficients. Specif-
ically, we consider the following parameterizations of B and
Σm, m = 1, . . . ,M ,

(3)
Bk =

R∑
r=1

αrkγ1r ◦ · · · ◦ γMr, k = 1, . . . , q,

Σmγmr = λmrγmr, m = 1, . . . ,M, r = 1, . . . , R,

where ◦ is the outer product. We refer (3) as the
covariance-assisted tensor low-rank model (CATL) and
PΣ(B) = span{⊗1

m=Mγm1, . . . ,⊗1
m=MγmR} as the

covariance-assisted tensor low-rank subspace. The structure
Bk =

∑R
r=1 αrkγ1r ◦ · · · ◦ γMr is usually referred to as

the CP decomposition [e.g. 9], and R is called the rank
of the decomposition. We use Figures 1 and 2 to help ex-
plain the motivation of (3). Firstly, as is shown in Fig-
ure 1, the basics γmr, m = 1, . . . ,M , r = 1, . . . , R, are
common for all the coefficients Bk, k = 1, . . . , q. As such,
when we project the response Y along each of its modes us-
ing basics γ1r, . . . ,γMr, (2) reduces to �Y;γ1r, . . . ,γMr� =

αr1X1 + · · · + αrqXq + Zr, where Zr ∼ t(0,
∏M

m=1 λmr, ν).
Meanwhile, if we project Y onto subspaces orthogonal to
PΣ(B), the projected response has no linear association with
the predictor X. Thus, we can write Y in the form of Y =
P(Y) +Q(Y), where P(Y) = �Y;γ11γ

T
11, . . . ,γM1γ

T
M1� +

· · ·+�Y;γ1Rγ
T
1R, . . . ,γMRγ

T
MR�. Under this decomposition

of Y, only P(Y), a low-rank projection of Y, has a linear
association with the predictor, and Q(Y) = Y−P(Y) is the
immaterial part for regression. Since γmr is also an eigenvec-
tor ofΣm, we have cov

(
P(Y),Q(Y)

)
= 0, which means that

the immaterial part will not influence the material part by
correlation. Hence, if we can identify the subspace PΣ(B)
successfully, the regression problem will reduce to a low-
dimensional one.

We make two remarks for CATL. Firstly, although the CP
decomposition is easy to interpret and widely used, obtain-
ing the CP decomposition is computationally intractable [9].
One of the most popular methods of obtaining CP decompo-
sition is the alternating least squares (ALS) method, which
may take many iterations to converge and is not guaranteed
to converge to a global minimum or even a stationary point.
As a comparison, by linking the mean and covariance, we
will propose a non-iterative approach, which does not in-
volve local-solution issues and is much more computation-
ally efficient. Secondly, CATL finds a smaller subspace than

Figure 1. Parameterization for Model (3).

Figure 2. Dimension Reduction in Model (3).

the tensor response envelope method [11], which assumes
that

Bk = �Θk;Γ1, . . . ,ΓM �

for some Θk ∈ R
d1×···×dM , k = 1, . . . , q,

Σm = ΓmΩmΓT
m + Γm0Ωm0Γ

T
m0, m = 1, . . . ,M,

where (Γm,Γm0) ∈ R
pm×pm is an orthogonal matrix, dm =

dim(span(Γm)), and Ωm and Ωm0 are positive and symmet-
ric matrices. The rank (d1, . . . , dM ) is defined as the “tensor
envelope rank”. Note that Bk can also be written as

Bk =
∑

j1,...,jm

θ
(k)
j1,...,jM

Γ1j1 ◦ · · · ◦ ΓMjM ,

where θ
(k)
j1,...,jM

is the (j1, . . . , jm)-th element of Θk

and Γmjm is the jm-th column of Γm. Let TΣ(B) =
span(⊗1

m=MΓm). It is obvious that PΣ(B) ⊆ TΣ(B) be-

cause θ
(k)
j1,...,jM

can be zero. Hence, the tensor envelope sub-
space TΣ(B) can be viewed as a surrogate subspace of

PΣ(B) and R ≤
∏M

m=1 dm.
To gain more intuition, we use a toy example to show

the connection and difference between PΣ(B) and TΣ(B).
Suppose p1 = p2 = 5, q = 1, B ∈ R

5×5 with its first and
second diagonal elements b11 and b22 to be 1 and the other
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elements to be 0, and Σm ∈ R
5×5, m = 1 and 2, are di-

agonal matrices, whose diagonal elements are all different.
For this example, PΣ(B) = span(e1 ⊗ e1, e2 ⊗ e2) is a 2-
dimensional linear subspace. As a comparison, TΣ(B) =
span(e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2) is a 4-dimensional
subspace. CATL can always identify a smaller or, at most,
the same subspace as the tensor envelope for tensor response
regression models.

4. A ROBUST DECOMPOSITION-BASED
ESTIMATION METHOD

In this section, we propose a non-iterative decomposition-
based estimation method for CATL model. By definition,
γmr, r = 1, . . . , R, are the eigenvectors of Σm. Hence, we
first obtain the eigen-decomposition of Σm, m = 1, . . . ,M ,
and then identify the eigenvectors that belong to PΣ(B).
The detailed algorithm in population is as follows.

1. Obtain the eigenvectors of Σm: v
(m)
1 , . . . ,v

(m)
pm , with or-

dered eigenvalues λ
(m)
1 ≥ · · · ≥ λ

(m)
pm .

2. Calculate the envelope scores: φl1,...,lM = ‖�B;v
(1)
l1

, . . . ,

v
(M)
lM

�‖2, for lm = 1, . . . , pm, m = 1, . . . ,M . Orga-
nize the envelope scores in the descending order φ(1) ≥
φ(2) ≥ · · · ≥ φ(

∏M
m=1 pm), and let (v

(1)

l
(j)
1

, . . . ,v
(M)

l
(j)
M

) be the

eigenvectors corresponding to φ(j).

3. Output: FΣ(B) = span(⊗1
m=Mv

(m)

l
(1)
m

,⊗1
m=Mv

(m)

l
(2)
m

, . . . ,

⊗1
m=Mv

(m)

l
(R̃)
m

), where R̃ is the smallest number such that

φ(R̃+1) = 0.

Let γm = (γm1, . . . ,γmR), Pγm
be the projection ma-

trix onto the subspace spanned by the columns of γm, and
Qγm

= Ipm − PΓm . The motivation behind this algorithm

is that if v
(1)
l1

, . . . ,v
(M)
lM

are all belongs to Pγ1
, . . . ,PγM

, re-
spectively, then the envelope score is non-zero. Otherwise,
the envelope score is exactly zero.

The following Lemma shows the connection between the
estimated subspace FΣ(B) and PΣ(B).

Lemma 1. If the eigenvalues of Pγm
ΣmPγm

are all dif-
ferent and are distinct from those of Qγm

ΣmQγm
, for

m = 1, . . . ,M , then FΣ(B) = PΣ(B) and R̃ = R; If
the eigenvalues of Pγm

ΣmPγm
are distinct from those of

Qγm
ΣmQγm

, then PΣ(B) ⊆ FΣ(B) ⊆ TΣ(B) and R ≤
R̃ ≤

∏M
m=1 dm. More specifically, let V(m)

lm
, lm = 1, . . . , um,

where um ≤ dm, be the eigenspaces with non-zero eigenvalue

of Pγm
ΣmPγm

, and V
(m)
lm

be a basis matrix of V(m)
lm

. We

have FΣ(B) = span(⊗1
m=M γ̃m1, . . . ,⊗1

m=M γ̃mR), where

γ̃mr = V
(m)
lm

if γmr ∈ V(m)
lm

for some lm and dim(V(m)
lm

) > 1,
and γ̃mr = γmr otherwise.

Lemma 1 indicates that when the eigenvalues of
Pγm

ΣmPγm
are all different and are distinct from those of

Qγm
ΣmQγm

, for m = 1, . . . ,M , the subspace FΣ(B) ob-
tained by the algorithm is exactly the same as PΣ(B). When
the eigenvalues of Pγm

ΣmPγm
are distinct from those of

Qγm
ΣmQγm

but are not all different, the algorithm can
estimate a subspace that is larger than PΣ(B) but smaller
than or equal to the tensor envelope subspace TΣ(B).

Next, we consider the finite sample case. Suppose we
have n independent and identical distributed samples
{(Yi,Xi)}ni=1 from CATL model. Recall that the tail of the
tensor error is heavier than the tensor normal distribution,
and our goal is to provide a robust estimation for the tensor
coefficient B. We first consider the MLE for B and Σm’s.
Motivated by Proposition 1, we can construct the following
EM algorithm for solving the MLE by treating G as the
latent variable.

1. Let B(0) be the OLS estimator, and Σ(0)
m = Ipm .

2. For k = 0, 1, . . . , repeat the following updates until con-
vergence.

(a) Update ω
(k)
i = (ν + p)/(ν + ‖Yi −

B(k)×̄M+1Xi‖2Ξ(k)) and let W(k) = diag(ω
(k)
1 , . . . ,

ω
(k)
n ).

(b) Update Ξ(k+1) by cyclically updating

Σ̃m =
1

np−m

n∑
i=1

ω
(k)
i (Yi −B(k)×̄M+1Xi)(m)

×
(⊗

j �=m

Σ̃
−1

j

)
(Yi −B(k)×̄M+1Xi)

T
(m).

(c) Update B(k+1) = Y×M+1 (XW
(k)

X
T )−1

XW
(k).

3. At convergence, output B̂MLE and Σ̂
MLE

m , m =
1, . . . ,M .

To obtain the MLE, we need iterations between ωi and B
and Ξ, and cyclically updates among Σ1, . . . ,ΣM within
each iteration. Those iterations can be time-consuming in
high dimensions. The EM algorithm motivates us to con-
struct the following non-iterative robust estimates for the
coefficient and the covariance matrices as an alternative ap-
proach.

Let B̂OLS = Y ×M+1 {(XXT )−1
X} be the OLS estima-

tor, ω̂i = p/‖Yi − B̂OLS×̄M+1Xi‖2F , and Ŵ ∈ R
n×n be a

diagonal matrix with the i-th diagonal elements to be ωi.
Define

B̂ = Y×M+1 (XŴX
T )−1

XŴ,(4)

Σ̂m =
1

np−m

n∑
i=1

ω̂i(Yi − B̂OLS×̄M+1Xi)(m)

× (Yi − B̂OLS×̄M+1Xi)
T
(m).

Robust and covariance-assisted tensor response regression 295



The sample algorithm is readily available by replacing Σm

and B with Σ̂m and B̂. Then, the robust low-rank estima-
tion B̂CATL is given by

B̂CATL =

R̃∑
j=1

�B̂;v
(1)

l
(j)
1

(v
(1)

l
(j)
1

)T , . . . ,v
(M)

l
(j)
M

(v
(M)

l
(j)
M

)T �.

In practice, the estimated envelope scores cannot be exactly
zero. We use 5-fold cross validation to select the rank R̃,
which makes the cross-validation prediction error smallest.
The full sample algorithm is summarized in Algorithm 1.

Algorithm 1 Robust decomposition-based algorithm for
CATL.

1. Calculate ω̂i = p/‖Yi − B̂OLS×̄M+1Xi‖2F , for i = 1, . . . , n,

and let Ŵ be a n× n matrix with its ith diagonal elements
to be ω̂i and other elements to be 0.

2. Calculate B̂ and Σ̂m, m = 1, . . . ,M , using (4).

3. Obtain the eigenvectors of Σ̂m: v
(m)
1 , . . . ,v

(m)
pm , with ordered

eigenvalues λ
(m)
1 ≥ · · · ≥ λ

(m)
pm .

4. Calculate the envelope scores: φ̂l1,...,lM = ‖�B̂;v
(1)
l1

, . . . ,

v
(M)
lM

�‖2, for lm = 1, . . . , pm, m = 1, . . . ,M . Organize the

envelope scores in the descending order φ̂(1) ≥ φ̂(2) ≥ · · · ≥
φ̂(

∏M
m=1 pm), and let (v

(1)

l
(j)
1

, . . . ,v
(M)

l
(j)
M

) be the eigenvectors cor-

responding to φ̂(j).

5. Output: B̂CATL=
∑R̃

j=1�B̂;v
(1)

l
(j)
1

(v
(1)

l
(j)
1

)T , . . . ,v
(M)

l
(j)
M

(v
(M)

l
(j)
M

)T �.

We make several remarks for estimations B̂ and Σ̂m.
Firstly, in B̂ and Σ̂m, the weights ω̂i are different from those
used in the MLE. We replace the tensor Mahalanobius dis-
tance ‖Yi − B̂MLE×̄M+1Xi‖Ξ by the Euclidean distance

‖Yi − B̂OLS×̄M+1Xi‖F . By making this adjustment, we
avoid the iterations between the weights and the covariance
matrices and thus accelerate the computation. Although
those two weights are usually different, they measure how
far the sample is away from the center of the data. Thus,
the potential outliers are assigned with small weights. Theo-
retically, we proved that ω̂i estimates the latent variable Gi

in the tensor t-error consistently up to a constant. It guar-
antees the consistency of B̂ and Σ̂m and enhances the ro-
bustness of the estimation. Secondly, we estimate Σ̂m with
an explicit formula. As a comparison, to obtain the MLE
for Σm, m = 1, . . . ,M , we need cyclically updates between
all the covariance matrices, which can be time-consuming
for high-dimensional tensor data sets. Although the itera-
tions are omitted, Σ̂m is still a consistent estimation for
Σm up to a universal constant and thus the consistency of
B̂CATL is not affected. Thirdly, the formula of ω̂i does not
involve the degree of freedom. Note that the expectation of
‖Yi − B̂×̄M+1Xi‖F is in the same order as p. Because the
dimension p is large in most tensor datasets, the weights

are very insensitive to the choice of ν. The ω̂i we use can
circumvent the problem of selecting the degree of freedom
ν, which is also a challanging problem in high dimensions.

5. THEORY

In this section, we will establish the non-asymptotic con-
vergence results for B̂CATL. Due to technical reasons, we
split the data into two batches and use the first batch to
estimate B̂ and the second batch to estimate Σ̂m, m =
1, . . . ,M . The data splitting is a compromise to the limi-
tation of the current techniques. In high-dimensional the-
oretical studies of iterative algorithms [e.g. 5, 1], such an
assumption is often used to provide theoretical insights. In
our algorithm, we use data splitting in theoretical analysis
to make B̂ and Σ̂m independent. In our theoretical anal-
ysis, we allow the dimension of the tensor response to di-
verge and treat the dimension of the vector predictor q as a
fixed number. Besides, we assume that R does not diverge
with p and n. We first introduce some technical assump-
tions. Throughout this section, C and c represent generic
constants that can vary line by line.

(A1) The eigenvalues ofΣm,m = 1, . . . ,M , are all bounded
between positive constants c1 and c2. And the eigen-
values of Pγm

ΣmPγm
are distinct from those of

Qγm
ΣmQγm

.
(A2) The eigenvalues of ΣX,G =

∑n
i=1 GiXiX

T
i , where Gi

is the latent random variable for the i-th observation,
are all bounded between positive constants c3 and c4.

(A4) The absolute value of Xij , which is the j-th element
of Xi, are upper bounded above by Mx for all i and j.

(A4) c5 ≤ αrk ≤ c6 for all r and k.

(A5)
√

pm

np−m
= o(1) for all m = 1, . . . ,M .

(A6) The degree of freedom ν > 4.
(A7)

√
log(n)/p → 0.

The first requirement of Assumption (A1) implies that
the population parameter Σm is well-conditioned regardless
of how pm grows. By Lemma 1, the second requirement of
Assumption (A1) ensures the proposed algorithm can es-
timate a good subspace. Since q is fixed, when n is large
enough, Assumption (A2) is true for many distributions of
Xi, such as sub-Gaussian and sub-exponential distributions
with positive definite covariance. Assumption (A3) assumes
all the elements of Xi are bounded, which is a mild assump-
tion in practice. Assumption (A4) states that the signal αrk

in (3) is well-conditioned, which is greater than a generic
constant. Assumption (A5) is about the growth rate of n
and pm, m = 1, . . . ,M . When M ≥ 3, it is true for most
cases since p−m is usually greater than pm. It is even a mild
assumption when M = 2 as long as the growth rates of pm
are consistent for m = 1 and 2. It guarantees the conver-
gence of the proposed estimator. Assumption (A6) requires
the existence of the fourth moment of the response. Note
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that the requirement of the fourth moment is only for fa-
cilitating theoretical studies. It is not required in numerical
studies. Assumption (A7) is used to show convergence of the
weights ω̂i to Gi, i = 1, . . . , n. The weight ω̂i can be viewed
as an imputation for the latent variable Gi. By re-weighting
the observations with ω̂i = p/‖Yi − B̂OLS×̄(M+1)Xi‖2F , we
can reduce the impact of the outliers. An especially interest-
ing phenomenon is that, in evaluating ωi, the high dimen-
sionality is beneficial. Since all the elements in Yi share the
same latent variable Gi, having more of such elements gives
us more information about Gi, and improves the accuracy
in our imputation of Gi.

Theorem 1. Under Assumptions (A1)–(A7),

‖B̂CATL−B‖F = O(CM

√
1/n+max

m

√
pm

np−m
+
√

log(n)/p)

with probability at least 1 − C1n
−C2 − C3 exp(−C4CM ) −

C5

∑M
m=1 exp(−pm).

Corollary 1. Under Assumptions (A1)–(A7), when pm →
∞ and n → ∞, B̂CATL → B in probability.

Note that our model’s distribution of the tensor re-
sponse does not satisfy the popular sub-Gaussian or sub-
exponential assumption. The moment-generating function
for each element of the response does not exist. Both this
heavy-tail issue and the complex structure of the tensor
make the theoretical analysis more challenging. The result
in Theorem 1 is sufficiently strong for most tensor data ap-
plications since p−m is usually greater than pm, especially
when the M ≥ 3. If the dimensions pm, m = 1, . . . ,M ,
grow at the same rate, the ratio pm/p−m either converges
to zero (M ≥ 3) or is bounded from above by a constant
(M = 2). Then, we have

√
n-consistency for arbitrarily high-

dimensional pm when M ≥ 2. However, for vector data, the
rate becomes (p/n)1/2, which means p can not grow too
fast. By aggregating the information from different modes,
we obtained a consistent estimation of Σm, for which the
convergence rate is much faster than the conventional sam-
ple covariance matrix. As such, by the joint parametriza-
tion (3), we obtained a consistent estimation for B with a
faster convergence rate than the vector-based approaches.

6. COMPARISON

In this section, we compare the proposed method with
several related models and methods. In particular, we dis-
cuss connections and new contributions to [11] and [24],
from model assumptions, estimation methods, and theoret-
ical studies.

6.1 Tensor response envelope regression

[11] first proposed the concept of tensor envelope for the
tensor response regression model. Our solution differs from
[11] in the following aspects.

Firstly, the proposed method finds a potentially smaller
subspace than the tensor response envelope. As is discussed
in the last two paragraphs of Section 3, the tensor response
envelope structure can also be expressed using the proposed
structure. However, the tensor envelope subspace can be
much larger than the targeted subspace in this article. The
analogy is similar to, but not exactly the same as, how tensor
CP decomposition is different from tensor Tucker decompo-
sition.

Secondly, the estimation method is completely different
from that in [11], which considers the maximum likelihood
estimation and its variants that involve solving a complex
and non-convex objective function. In contrast, the proposed
estimation method is decomposition-based and avoids the
local optima issues.

Thirdly, besides the computational advantages, the
new estimation approach allows us to establish the non-
asymptotic convergence results and allows both p and n to
diverge. To the best of our knowledge, the theoretical prop-
erties of the tensor envelope MLE is still unclear when p
diverges. This is because of the iterative process in [11].

Finally, the proposed estimation is based on the newly
proposed tensor t-distribution [24], which includes the ten-
sor normal distributional assumption in [11] as a special
case. The t-distributional assumption is robust against out-
liers and a useful non-trivial extension to tensor envelope
methods.

6.2 Robust tensor response regression and
other related methods

[24] introduced a tensor t-distribution and applied it
to the tensor response regression model to achieve robust
estimation. The method is relying solely on the sparsity
assumption without incorporating any low-rank or low-
dimensionality in their model assumptions. The method in
this paper is based on matrix decomposition and can be
much faster when the signal is dense than sparse.

In addition to the two most closely related articles, we
summarize the connections between the proposed method
and two other related articles in Table 1. [26] developed
a straightforward way of envelope modeling from a princi-
pal components regression perspective and decomposition-
based algorithms for the envelope method, but their meth-
ods are limited to vector data and are not robust against
outliers. [22] considered a parsimonious tensor linear dis-
criminant model and both iterative and non-iterative algo-
rithms, but their methods do not work for regression models
and are also not robust.

7. NUMERICAL STUDIES

In this section, we use several simulation models to inves-
tigate the finite sample performance of the proposed robust
decomposition-based estimator. We include several estima-
tors for tensor response regression as competitors: 1) The
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Table 1. Comparisons with some related articles

Tensor method Low-rank Robust Non-iterative Regression

[11] � � �
[24] � � �
[26] � � �
[22] � � �

This paper � � � � �

Table 2. The averaged estimation error for B (in Frobenius norm) and the associated standard errors (in parentheses) over
100 replicates

Model
M1 M2

(C1) (C2) (C3) (C1) (C2) (C3)

OLS 22.45 (3.62) 47.42 (7.45) 43.63 (6.75) 22.44 (3.62) 47.42 (7.45) 43.63 (6.75)

WOLS 7.56 (0.12) 16.01 (0.24) 14.89 (0.23) 7.56 (0.12) 16.01 (0.24) 14.89 (0.23)

CATL 1.52 (0.02) 1.96 (0.02) 1.99 (0.04) 2.05 (0.03) 2.98 (0.03) 2.38 (0.05)

CATL(N) 3.12 (0.16) 6.27 (0.46) 2.23 (0.08) 4.48 (0.25) 9.02 (0.65) 3.44 (0.14)

TE 2.94 (0.15) 4.65 (0.35) 3.71 (0.39) 3.44 (0.14) 5.16 (0.34) 4.30 (0.38)

Model
M3 M4

(C1) (C2) (C3) (C1) (C2) (C3)

OLS 31.30 (1.89) 62.99 (0.23) 28.79 (0.49) 58.77 (5.52) 184.63 (17.37) 58.14 (3.48)

WOLS 11.36 (0.12) 22.87 (0.23) 17.96 (0.11) 21.08 (0.26) 66.25 (0.83) 21.16 (0.21)

CATL 1.79 (0.04) 3.01 (0.02) 3.67 (0.03) 2.38 (0.02) 2.68 (0.01) 2.64 (0.02)

CATL(N) 4.86 (0.27) 8.98 (0.67) 5.00 (0.10) 3.31 (0.31) 5.20 (0.94) 3.03 (0.07)

TE 3.26 (0.10) 5.35 (0.07) 4.06 (0.06) 3.49 (0.29) 7.16 (0.72) 3.66 (0.23)

OLS estimator; 2) The weighted OLS estimator (WOLS) B̂
defined in Section 4; 3) Non-robust version of proposed esti-
mation method (CATL(N)), where the weights ω̂i in (4) are
replaced by 1; 4) Tensor envelope estimator (TE) proposed
by [11], which is a likelihood-based low-rank estimator for
tensor response regression. The proposed estimation method
is represented by CATL. The evaluation criterion we use is
the tensor Frobenius norm of the difference between the es-
timated B and the true parameter B.

7.1 Simulation settings

We generate data from (2) with Ξ = {σ2Σ1, . . . ,ΣM}.
We let Bk =

∑R
r=1 αrkγ1r ◦ · · · ◦ γMr with R, αrk, for

r = 1, . . . , R, to be specified later. The basics γmr, m =
1, . . . ,M , r = 1, . . . , R, unless otherwise specified, are ran-
domly generated, which are orthogonal to each other for
r = 1, . . . , R. To make γmr, r = 1, . . . , R, be the eigenvec-

tors for Σm, we assume that Σm =
∑R

r=1 λmrγmrγ
T
mr +

γm0Ωm0γ
T
m0, where γm0 is a basis matrix of the comple-

ment subspace for span(γm1, . . . ,γmr) and Ω0 is a diagonal
matrix, for m = 1, . . . ,M . The sample size n = 100 and the
dimension of the predictor q = 5 unless otherwise specified.
Each element of the predictor X is generated from stan-
dard normal distribution independently. We set the degree
of freedom ν to be 2. The covariance matrices we consider
include three types:

(C1) λmr = r, for r = 1, . . . , R, and Ω0m = 0.5Ipm−um ,
where um = dim

(
span(γm1, . . . ,γmr)

)
.

(C2) Each element of (λm1, . . . , λmR) and diag(Ωm0) is ran-
domly generated from Uniform(0.5, 2) independently.

(C3) λmr=2r, for r=1, . . . , R, and diag(Ωm0) = exp(km,1,
. . . , km,pm−um), where (km,1, . . . , km,pm−um) are pm−
um evenly spaced numbers between −2 and 2.

We consider the following 4 simulation models.

(M1) We consider a 2-way matrix response Y ∈ R
p1×p2 .

We set p1 = p2 = 30 and R = 2 and α1k and α2k

be randomly generated from Uniform(0, 1) indepen-
dently, for k = 1, . . . , q. The parameter σ2 is 6, 12,
and 15 for covariances (C1)–(C3), respectively. For
this model, envelope rank (d1, d2) for TΣ(B) is (2, 2).

(M2) Similar to (M1) but R = 4. For basics γm1, . . . ,γm4,
we first generate γm1 and γm2 randomly, then let
γm3 = γm1 and γm4 = γm2. For this model, the en-
velope rank is (2, 2).

(M3) Similar to (M2) but with higher dimensions p1 = p2 =
64.

(M4) Similar to (M1) but a 3-way example. We consider
Y ∈ R

20×30×40 and R = 3. The parameter σ2 is 6, 8,
and 8 for covariances (C1)–(C3), respectively. For this
model, the envelope rank (d1, d2, d3) is (3, 3, 3).

In simulation studies, we use true rank R for CATL and
CATL(N) and true envelope rank (d1, . . . , dM ) for TE unless
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Table 3. Dimension selection accuracy for M1–M4 with
covariance (C1). For each model setup, we repeated 100
simulations and reported the number of cases (out of 100)

where the rank R is correctly selected

M1 M2 M3 M4

n = 100 18 17 23 20

n = 500 90 83 82 32

otherwise specified.
Under Covariance (C1), the material variation in the re-

sponse is larger than the immaterial variation. The estima-
tion results for OLS andWOLS are not too bad. Covariances
(C2) and (C3) are more complex, and the immaterial vari-
ation can also be large, which makes the models more chal-
lenging. For those two covariances, OLS and WOLS fail to
give meaningful estimation results. From Table 2, we can see
that CATL is the best method for all simulation examples by
considering both the heavy-tail issue of the data and using
the tensor low-rank structure. Compared with CATL(N), by
assigning small weights for the potential outliers, CATL is
more robust and accurate. We have the same observation for
OLS and WOLS that WOLS can improve the performance
of OLS by considering the heavy-tail issue. Due to the high
dimensionality of the tensor response, the estimation errors
for OLS and WOLS are quite large, especially for the 3-way
tenor model. By introducing the tensor low-rank structure,
we obtain a substantial improvement in CATL, CATL(N),
and TE. Note that CATL(N) has comparable performance
as TE, a likelihood-based method, which demonstrates the
estimation efficiency of the proposed decomposition-based
method.

In Table 3, we also report the rank selection results based
on a 5-fold cross-validation for M1–M4 with covariance (C1).
With the increase in the sample size, cross-validation gains
more accuracy in rank selection. When n = 500, the rank
selection accuracy is over 80% for M1–M3. For M4, due to
the high dimensionality, a larger sample size is required for
higher rank selection accuracy. Note that choosing a slightly
larger rank is not problematic for the proposed method as
long as the eigenvectors belonging to PΣ(B) are all selected.
Thus, we can use a slightly larger rank than that selected
by BIC in practice.

We further use the simulation models M3 and M4, which
have high dimensions, as examples to show the computa-
tional advantage of the proposed algorithm over Tensor en-
velope estimator (TE). Please see Table 4 for the results.
Note that TE is implemented by a one-step estimator [11],
which is an approximation of the MLE. Nevertheless, the
proposed algorithm is more than two times faster.

7.2 Signal recovery

To further show the outperformance of CATL, we use
another simulation example to visualize the tensor coeffi-
cients estimated by different methods. We generate data

Table 4. Average computational time for M3 and M4 over
100 replicates

Model
M1 M2

(C1) (C2) (C3) (C1) (C2) (C3)

CATL 0.83 s 0.84 s 0.84 s 0.86 s 1.41 s 1.41 s

TE 1.80 s 1.68 s 2.16 s 2.13 s 3.87 s 4.31 s

from CATL model (2) with p1 = p2 = 64 and q = 1. The
model settings are parallel to those of (M1), except that the
regression coefficient B ∈ R

64×64. We assume that some ele-
ments of B are 1, while the others are all 0. The shape of B
we consider includes a square, a cross, and a bat. For covari-
ance matrices Σ1 and Σ2, we use the (C2) structure with
σ2 = 15. To guarantee TΣ(B) is made up of the eigenval-
ues of Σ1 and Σ2, we eigendecompose the coefficient matrix
as B = G1DGT

2 . Then we let γmr = Gmr, where r takes
value from 1 to the rank of Gm, for m = 1 and 2. The
CP rank for the three shapes is 1, 2, and 169, respectively.
Figure 3 visualizes the estimated coefficient matrix B by dif-
ferent methods. It is clearly seen that CATL performs much
better than the OLS and WOLS estimators for square and
cross shapes. For the bat shape, the coefficient is of rela-
tively large rank, CATL performs similarly to WOLS and
better than the other methods. Compared with CATL(N)
and TE, by considering the heavy-tail issue and assigning
small weights to the outliers, the estimated shapes of CATL
are more clear.

7.3 Model mis-specification

In this section, we consider the model mis-specification is-
sue. In particular, we examine the scenarios where the mean
subspace and the covariance subspace are different. The sim-
ulation example is the same as M1 except that we replace
the covariance Σm as (1− α)Σm + αΦm for each m = 1, 2.
The additional covariance Φ is constructed to induce model
mis-specification and α ∈ (0, 1) indicates the magnitude of
model mis-specification. Specifically, we set the diagonal el-
ements of Φ to be the same as those of Σm, but the off-
diagonal elements are Φij = 0.3

√
(Σm)ii(Σm)jj . This co-

variance setting keeps the regression error term’s magnitude
at the same level for different α. When α = 0, the model is
the same as the original model M1. But when we increase
the value of α, the covariance subspace becomes more and
more unaligned from the mean subspace.

The average estimation error of the proposed method is
shown in Figure 4, where we include all three covariance
setting (C1)–(C3) (given in Section 7.1). As expected, the
estimation error increases with α but slowly. In comparison,
the averaged estimation errors for WOLS are 7.6, 16.0, and
14.9 for the three covariance models (C1)–(C3), respectively.
The performance of the proposed method is still much better
than WOLS even when α = 0.8.
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Figure 3. Pattern recovery results. Reported values are the absolute values of the estimated coefficients. The larger the
absolute value is, the darker the pixel is.

Figure 4. Average estimation error of the propose CATL
method for varying magnitude of model mis-specification

given in α.

7.4 Real data

We analyze an electroencephalography (EEG) data
for an alcoholism study. The data was obtained from
https://archive.ics.uci.edu/ml/datasets/EEG+Database. It
contains 77 alcoholic individuals and 44 controls. Each indi-
vidual was measured with 64 electrodes placed on the scalp
sampled at 256 Hz for one second, resulting in an EEG im-
age of 64 channels by 256 time points. More information

Figure 5. Quantile-Quantile (Q-Q) plot for EEG data.

about data collection and some analysis can be found in
[10] and [11]. To facilitate the analysis and visualization, we
downsized the data along the time domain by averaging four
consecutive time points, yielding a 64× 64 matrix response.
We draw the QQ plot for the EEG data set to check its nor-
mality. Specifically, we first regress the response tensor on
predictors using least squares estimation and then standard-
ize the residual tensor along each mode of it by the estimated
covariance matrices in (4). We compare the quantiles of the
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Figure 6. EEG data analysis: The five panels show the estimated coefficient tensor using different methods.

Figure 7. EEG data analysis: the five panels are the truncated tensor coefficient estimated by different methods at level 0.2.

standardized residuals with those of a χ2 distribution with
degree of freedom 64× 64. From Figure 5, the heavy-tailed
behavior is clear, and the potential outliers are possibly due
to poor scan quality or problematic scan registration.

We report the results of several estimators in Figure 5.
For CATL and CATL(N), 5-fold cross-validation selects
rank R = 24. For TE, following [11], we use envelope di-
mension (1, 1). In Figures 6 and 7, we report the estimated
tensor coefficient and its truncated version. To get truncated
coefficients, we first calculate the maximum absolute value

for the coefficients and then set the elements whose abso-
lute value is smaller than 0.2 times the maximum absolute
value to be 0, while the others to be 1. We observe that
CATL identifies the channels between about 0 to 10, 20 to
40, and 45 to 60 at time range from 80 to 160 and 200 to 240,
which are most relevant to distinguish the alcoholic group
from the control. The results of TE is similar to CATL. As a
comparison, the other estimators, especially CATL(N), are
much more variable, with the revealed signal regions being
less clear.
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8. DISCUSSION

We propose a covariance-assisted robust tensor response
regression model and develop a fast decomposition-based
estimation method. The idea is closely related to the ten-
sor envelope methods but is built on tensor t-distribution
instead of normality assumptions. Moreover, the low-rank
structural shared by mean and covariance parameters is es-
sentially a simpler version of envelope subspace structural.
The difference between our model assumptions and the ten-
sor envelope models is analogous to the difference between
the CP and Tucker tensor decompositions. Although this
article focuses on the tensor regression model, the proposed
robust decomposition-based estimation method can be ex-
tended naturally to tensor classification, tensor clustering,
and other tensor envelope models.

The proposed method gains advantages over existing low-
rank tensor methods mainly from two aspects. The first is
the tensor t-distribution, a very recently proposed model-
ing strategy. The second is the covariance-assisted low-rank
decompositions. For the covariance-assisted method to be
effective, the key assumption is that the eigenvectors of Σm

are identifiable and useful for constructing the regression
mean parameter. If the covariance provides no useful eigen-
vector information, e.g., Σm = σ2

mIpm , then the proposed
method would fail. Nevertheless, we note that the proposed
method works reasonably well even when the covariance sub-
space is not perfectly aligned with the mean subspace (see
Section 7.3). In our experience, this proposal provides a good
alternative to the least square-type estimation methods in
low-rank tensor regression, even when the mode-wise cor-
relation structure is weak. In practice, one way to perform
model diagnostics is by visualizing the projected response
in Figure 2 versus the predictors (or a linear combination
of the predictors). When the model is valid, the projected
response and the predictors will have a non-trivial linear
relationship.
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