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Abstract. We study the problem of fairly allocating indivisible goods
(positively valued items) and chores (negatively valued items) among
agents with decreasing marginal utilities over items. Our focus is on
instances where all the agents have simple preferences; specifically, we
assume the marginal value of an item can be either —1, 0 or some posi-
tive integer c¢. Under this assumption, we present an efficient algorithm
to compute leximin allocations for a broad class of valuation functions
we call order-neutral submodular valuations. Order-neutral submodular
valuations strictly contain the well-studied class of additive valuations
but are a strict subset of the class of submodular valuations. We show
that these leximin allocations are Lorenz dominating and approximately
proportional. We also show that, under further restriction to additive
valuations, these leximin allocations are approximately envy-free and
guarantee each agent their maximin share. We complement this algorith-
mic result with a lower bound showing that the problem of computing
leximin allocations is NP-hard when c is a rational number.

Keywords: Fair Allocation - Indivisible Items - Mixed Manna.

1 Introduction

Fair allocation is a fundamental problem in computational economics. The prob-
lem asks how to divide a set of indivisible items among agents with subjective
preferences (or valuations) over the items. Most of the literature focuses on
the problem of dividing goods — items with positive value. However, in several
practical applications, such as dividing a set of tasks or allocating shifts to em-
ployees, items can be chores which provide a negative value to the agents they
are allocated to.

Fair allocation with mixed manna (instances containing both goods and
chores) is, unsurprisingly, a harder problem than the case with only goods. Sev-
eral questions which have been answered positively in the only goods setting are
either still open or face a negative (impossibility or intractability) result in the
mixed goods and chores setting. In particular, very little is known about the
computability of leximin allocations. A leximin allocation is one that maximizes
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the utility of the agent with the least utility; subject to that, it maximizes the
second-least utility, and so on.

In the only goods setting, maximizing Nash welfare is arguably one of the
most popular fairness objectives. Unfortunately, the Nash welfare of an alloca-
tion, defined as the product of agent utilities, loses its meaning in settings where
agent utilities can be negative. In such settings, the leximin objective is a natural
substitute. The leximin objective is easy to understand, and it implies an appeal-
ing egalitarian notion of fairness. Therefore, designing algorithms that efficiently
compute exact (or approximate) leximin allocations in the mixed manna setting
is an important research problem.

In this work, we present the first non-trivial results for this problem.

1.1 Owur Results

Contributions to the Theory of Fair Allocation. We take a systematic approach
towards solving this problem and start with a simple class of valuation functions.
We assume all goods are symmetric and provide value ¢ (where ¢ is a positive
integer), and all chores are symmetric and provide value —1. We also allow
items to provide a value of 0. We assume there are decreasing marginal gains
over items; that is, after receiving many items, a good may provide value 0
or even turn into a chore and provide a value of —1. We refer to this class of
valuations as {—1,0, c}-submodular valuations. With such valuations, there is
no clear demarcation between goods and chores; an item may provide positive
marginal value when added to an empty bundle but provide negative marginal
value when added to a non-empty bundle.

We present an algorithm to compute a leximin allocation for a broad subclass
of {—1,0,c} submodular valuations. More specifically, we show that leximin
allocations can be computed efficiently when agents have {—1,0, ¢} submodular
valuation functions that satisfy an additional property we call order-neutrality.
Order-neutrality can be very loosely thought of as a property that requires the
number of c-valued items in a bundle to be a monotonically non-decreasing
function of the bundle. We analyze these leximin allocations in further detail
showing that they are Lorenz dominating and proportional up to one item. We
also show that under further restriction to the case where agents have {—1,0, c}
additive (or linear) valuations, leximin allocations are approximately envy-free
as well as offer each agent their maximin share. We complement this result
with lower bounds showing that the problem of computing leximin allocations
becomes computationally intractable when c is relaxed to being an arbitrary
rational number as opposed to a positive integer.

Technical Contributions. We put forward several interesting combinatorial and
algorithmic contributions. We introduce an interesting function class — Order-
Neutral Submodular (ONSUB) Valuations. This is a subclass of submodular
valuations for which items’ marginal contributions takes on a regular structure.
While we only analyze this class within the context of fair allocation of indivisible
goods, we suspect that the function class may serve as a useful object of study in
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other domains featuring agents with combinatorial valuations such as matching
markets, committee election and participatory budgeting.

In addition, we introduce the weighted item exchange graph. This is an ex-
tension of the exchange graph used in matroid theory [24], and more recently
in the fair allocation literature [7,4, 27, 25] to analyze the specific case where all
agents have binary submodular valuations. The weighted exchange graph is a
more general theoretical tool which allows us to carefully manipulate allocations
when agents do not necessarily have binary submodular valuations.

Finally, our key algorithmic contribution is Algorithm 1 which computes
leximin allocations. Algorithm 1 operates in three phases: first, it computes a
utility maximizing partial allocation. Next, it uses transfer paths to obtain a
partial leximin allocation. These partial allocations do not allocate any items
that provide a negative marginal value to the agents they are allocated to. To
make the allocation complete and allocate the final set of items, the algorithm
proceeds to greedily allocate items, whose marginal gain is —1, to the highest
utility agents.

1.2 Related Work

Fair allocation with mixed goods and chores has recently gained popularity in
the literature. [2] presents definitions of envy-free up to one item (EF1) and pro-
portionality up to one item (PROP1) for the mixed goods and chores setting; [2]
also presents an algorithm to efficiently compute EF1 allocations. [11] and [9]
further study the existence and computation of approximate envy-free alloca-
tions. There have also been a couple of papers studying maximin share fairness
with mixed goods and chores. [18] shows that there exists a PTAS to compute
a maximin share fair allocation under certain assumptions. On the other hand,
[19] shows that the problem of approximating the maximin share of each agent
is computationally intractable under additive valuations.

To the best of our knowledge, there are only two works [11, 9] on the fair allo-
cation of mixed goods and chores which present results for non-additive valuation
classes. [11] presents several positive results for very specific cases, such as iden-
tical valuations, Boolean valuations and settings with two agents. [9] presents
an algorithm to compute EF1 allocations under doubly monotone wvaluations.
Doubly monotone valuations assume each item is a good (always has positive
marginal gain) or a chore (always has negative marginal gain) but otherwise,
do not restrict the valuations. Order-neutral submodular valuations (discussed
in this paper) relax the assumption that each item must be classified as a good
or a chore, but come with the stronger restriction of submodularity. We also
note that [2] presents an algorithm for computing an EF1 allocation for doubly
monotone valuations; however, this algorithm’s correctness was disproved by [9].

The domain restrictions described above are not uncommon in fair allocation.
In the mixed goods and chores setting, [17] studies the problem of fair allocation
with lexicographic valuations — a restricted subclass of additive valuations.
In the goods setting, binary valuations [16,25,27, 4, 8] and bivalued valuations
[1,14] have been extensively studied. In the chores setting, bivalued additive
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valuations [13,3,15] and binary submodular valuations [5,26] have been well
studied. Our results are a natural extension of this line of work.

2 Preliminaries

We use [k] to denote the set {1,2,...,k}. Given a set S and an element o, we
use S + o0 and S — o to denote the sets S U {o} and S\ {0} respectively.
We have a set of n agents N = [n] and a set of m items O = {01,09,...,0m}.

Each agent i € N has a valuation function v; : 2° — R; v;(S) denotes the value
of the set of items S according to agent i. Given a valuation function v, we let
A, (S,0) = v(S + 0) — v(S) denote the marginal utility of adding the item o to
the bundle S under v. When clear from context, we sometimes write A;(.S,0)
instead of A,,(S,0) to denote the marginal utility of giving the item o to agent
i given that they have already been assigned the bundle S.

An allocation X = (Xo, X1,...,X,) is an (n+ 1)-partition of the set of items
O. X; denotes the set of items allocated to agent ¢ and Xy denotes the set of
unallocated items. Our goal is to compute complete fair allocations — allocations
where Xy = (). When we construct an allocation, we sometimes only define the
allocation to each agent ¢« € N; the bundle X is implicitly assumed to contain all
the unallocated items. Given an allocation X, we refer to v;(X;) as the utility of
agent ¢ under the allocation X. We also define the utility vector of an allocation
X as the vector uX = (v1(X1),v2(X2), ..., v (Xn))-

We define two common methods to compare vectors. We will use these meth-
ods extensively in our analysis when comparing allocations.

Definition 2.1 (Lexicographic Dominance). A vector y € R™ lexicograph-
ically dominates a vector z € R™ (written y > 1.5 2) if there exists a k € [n] such
that for all j € [k —1], y; = z; and yi > zx. We sometimes say an allocation X
lezicographically dominates an allocation Y if u™ > o0 uY .

Definition 2.2 (Pareto Dominance). A vector y € R™ Pareto dominates a
vector z € R™ if for all j € [n], y; > z; with the inequality being strict for at least
one j € [n]. An allocation X Pareto dominates an allocation Y if u” Pareto

dominates uY .

2.1 Valuation Functions
In this paper, we will be dealing with the popular class of submodular valuations.

Definition 2.3 (Submodular functions). A function v :2° — R is a sub-
modular function if (a) v(@) = 0, and (b) for any S CT C O and 0o € O\ T,
A, (S,0) > A (T, 0).

We also define restricted submodular valuations to formally capture instances
where the function has a limited set of marginal values. Throughout this paper,
we use the set A to denote an arbitrary set of real numbers.
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Definition 2.4 (A-SUB functions). Given a set of real numbers A, a func-
tion v : 29 — R is an A-SUB function if it is submodular, and every item’s
marginal contribution is in A. That is, for any set S C O and an item o € O\ S,

A,(S,0) € A.

Our analysis of submodular functions requires that they satisfy an additional
property we call order-neutrality. Given a submodular valuation function v :
20 — R, the value of a set of items S can be computed by adding items from
S one by one into an empty set and adding up the |S| marginal gains. More
formally, given a bijective mapping 7 : [|S|] — S which defines the order in
which items are added, v(S) can be written as the following telescoping sum:

0(8) = > Av (Usey-aym(0:7())

jellsl]

While the value v(S) does not depend on , the values of the marginal gains in
the telescoping sum may depend on 7. Given a set S and a bijective mapping
7 [|S]] = S we define the vector v(S, ) as the vector of marginal gains (given
below) sorted in ascending order

(Av(@,wu)),Av<w<1>,7r<2>),...,AU(S—w<|S|>m<|S|>>).

We refer to this vector v(S, ) as a sorted telescoping sum vector . For any
ordering 7 and set S, the sum of the elements of v(S, ) is equal to v(S). A
submodular function v is said to be order-neutral if for all bundles S C O
and any two orderings m, 7’ : [|S|]] — S of items in the bundle S, we have
v(S, ) = v(S,n’); that is, any sorted telescoping sum vector is independent of
the order 7. For order-neutral submodular valuations, we sometimes drop the w
and refer to any sorted telescoping sum vector using v(.S). This definition can be
similarly extended to A-SUB functions. For readability, we refer to order-neutral
A-SUB functions as A-ONSUB functions.

Definition 2.5 (A-ONSUB functions). Given a set of real numbers A, a
function v : 29 — R is an A-ONSUB function if it is both order-neutral and an
A-SUB function.

We will focus on instances with {—1,0,¢c}-ONSUB valuations where ¢ is a
positive integer. Throughout this paper, the only use of ¢ will be to denote an
arbitrary positive integer. We also present some results for the restricted setting
where agents have additive valuations.

Definition 2.6 (A-ADD functions). Given a set of real numbers A, a func-
tion v : 29 — R is an A-additive (or simply A-ADD) function if v({o}) € A for
all o € O and v(S) = Y cgv({o}) for all S C O.

To build intuition for the class of {—1, 0, c}-ONSUB valuations, we present a few
simple examples below.
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Ezample 2.7. Let O = {01, 02, 03,04}, the following functions vy, vq,v3 : 2° — R
are {—1,0,c}-ONSUB:

v1(S) = emin{|S], 2},
’UQ(S) = CH{Ol € S} — H{Oz S S},
v3(S) = emin{|S N {o1,02}|,1} = |S N {03,04}|.

Agent 1’s valuation v; describes a function where any item provides a value of
¢ but the marginal utility of any item drops to 0 after two items are added to
the bundle. vo describes a simple additive function where o, provides a value of
c and o provides a value of —1. v3 describes a slightly more complex function
where 01 and 0o are goods but at most one of them can a provide a marginal
value of ¢; o3 and o4 are chores providing a marginal value of —1 each.

Note that additive valuations are trivially order-neutral submodular valua-
tions. Unsurprisingly, not all submodular valuations are order-neutral — con-
sider a function v over two items {01,092} such that v({o1}) = 0, v({o2}) =1
and v({o1,02}) = 0. This function is submodular, but not order-neutral, since
v({o1,02}) has two different sorted telescoping sum vectors. However, it is worth
noting that there are many interesting non-additive order-neutral submodular
functions. For example, any binary submodular function ({0, 1}-SUB) is order-
neutral.

Proposition 2.8. When |A| = 2, any A-SUB function is order-neutral.

This proposition implies that the class of {0, ¢}-SUB, {—1, ¢}-SUB and {—1,0}-SUB
valuations are all contained in the class of {—1,0, ¢} order-neutral submodular
valuations. It is also worth noting that capped additive valuations, where agents
can only receive a positive marginal utility from a fixed number of items also
falls under the class of {—1,0, ¢} order-neutral submodular valuations.

2.2 Fairness and Efficiency Objectives

There are several reasonable fairness objectives used in the fair allocation liter-
ature. We discuss most of them in this paper. However, to avoid an overload of
definitions, we only define the following two fairness and efficiency objectives in
this section.
Utilitarian Social Welfare (USW): The utilitarian social welfare of an alloca-
tion X is ) ;o vi(X;). An allocation X is said to be MAX-USW if it maximizes
the utilitarian social welfare.
Leximin: An allocation is said to be leximin if it maximizes the utility of the
least valued agent, and subject to that, the utility of the second-least valued
agent, and so on [20]. This is usually formalized using the sorted utility vector.
The sorted utility vector of an allocation X (denoted by sX) is defined as the
utility vector uX sorted in ascending order. An allocation X is leximin if there
is no allocation Y such that s¥ =4 s¥X.

Other objectives like maximin share, proportionality and envy-freeness are
defined in Section 6.
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2.3 Exchange Graphs and Path Augmentations

In this section, we describe the classic technique of path augmentations. A mod-
ified version of these path augmentations is used extensively in our algorithm
design. Path augmentations have been used to carefully manipulate allocations
when agents have binary submodular valuations ({0,1}-SUB functions). How-
ever, they only work with clean allocations.

Definition 2.9 (Clean Allocation). For any agenti € N, a bundle S is clean
with respect to the binary submodualar valuation B; if B;(S) = |S|. An allocation
X is said to be clean (w.r.t {Bntnen) if for all agents i € N, 5;(X;) = |X;].

When agents have binary submodular valuations {f;}ren, given a clean
allocation X (w.r.t. {8y }nen), we define the exzchange graph G(X, 8) as a directed
graph over the set of items O, where an edge exists from o to o in the exchange
graph if o € X; and 3;(X; — o+ 0') = 3;(X;) for some j € N. In other words,
an edge exists if agent j can swap item o with the item o’ and still retain the
same utility level. There is no outgoing edge from any item in Xj.

Let P = (01,02,...,0¢) be a path in the exchange graph G(X, 8) for a clean
allocation X. We define a transfer of items along the path P in the allocation X
as the operation where o; is given to the agent who has o;_1, 0;_1 is given to the
agent who has o;_o, and so on until finally oy is discarded and becomes freely
available. This transfer is called path augmentation; the bundle X; after path
augmentation with the path P is denoted by X; A P and defined as X; A P =
(X; —ot) ® {0j,0j41 : 0; € X;}, where @ denotes the symmetric set difference
operation.

For any clean allocation X and agent ¢, we define Fp, (X,i) = {o € O :
Ag,(X;,0) = 1} as the set of items which give agent ¢ a marginal gain of 1 under
the valuation ;. For any agent ¢, let P = (01,...,0¢) be a shortest path from
Fp,(X,1) to X; for some j # i. Then path augmentation with the path P and
giving 07 to i results in a clean allocation where the size of i’s bundle | X;| goes
up by 1, the size of j’s bundle goes down by 1 and all the other agents do not
see any change in size. This is formalized below and exists in [6, Lemma 1] and
[27, Lemma 3.7].

Lemma 2.10 ([6], [27]). Let X be a clean allocation with respect to the binary
submodular valuations {Bp}tnen. Let P = (01,...,0¢) be a shortest path in the
exchange graph G(X, 8) from Fg,(X,i) to X; for somei € N andj € N +0—i.
Then, the following allocation Y is clean with respect to {Br}nen-

vo _ JXKAP (ke N+0—1i)
"TlX AP+ (k=1)

Moreover, for allk € N+0—i—j, |Yi| = | Xi|, |Yi| = | Xs|+1 and |Y;| = | X,;|—1.

We also present sufficient conditions for a path to exist. A slight variant of
the following lemma appears in [27, Theorem 3.8].
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Lemma 2.11 ([27]). Let X andY be two clean allocations with respect to the

binary submodular valuations {8y }hen. For any agent i € N such that | X;| <

|Y;|, there is a path from Fp, (X,1) to either

(i) some item in Xy for some k € N in the exchange graph G(X,3) such that
|Xk| > |Yk|, or

(ii) some item in Xy in G(X, B).

This technique of path augmentations has been extensively exploited in the
design of the Yankee Swap algorithm [27]. Given an instance with binary sub-
modular valuations, Yankee Swap computes a clean MAX-USW leximin allocation
in polynomial time. We use this procedure as a subroutine in our algorithm to
compute a partial allocation.

Theorem 2.12 (Yankee Swap [27]). When agents have binary submodular
valuations {Br}nen, there exists an efficient algorithm that computes a clean
MAX-USW leximin allocation.

We note that Yankee Swap is not the only algorithm to compute clean leximin
allocations; [4] also presents an efficient algorithm to do so.

3 Understanding A-ONSUB Valuations

We now present a result about A-ONSUB valuations exploring its connection
to binary submodular functions. This connection allows us to adapt path aug-
mentations for our setting. Our arguments generalize the arguments presented
by [12, Section 3] about bivalued submodular valuations.

Our result shows that given a threshold value 7 € R and an A-ONSUB
function v;, the number of values in the sorted telescoping sum vector greater
than or equal to the threshold 7 corresponds to a binary submodular function.
More formally, for any bundle S C O and agent i € N, let 57(S) denote the
number of values in the sorted telescoping sum vector v;(S) greater than or
equal to 7. We show that the function 3] is a binary submodular function.

Lemma 3.1. For any i € N, the function 3] is a binary submodular function.

This lemma is particularly useful: if any allocation is clean with respect to the
valuations {87 }ren, we can use path augmentations to modify the allocation.
In our analysis, we will extensively use the valuations {8} }ren and {85 }ren
corresponding to the cases where 7 = 0 and 7 = ¢ respectively.

4 Understanding {—1,0,c}-ONSUB Valuations

We turn our attention to the specific set of valuations assumed in this paper
— {-1,0,¢}-ONSUB valuations for some positive integer c¢. We establish a few
important technical lemmas for fair allocation instances when all agents have
{-1,0,¢c}-ONSUB valuations.
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We first show that any allocation X can be decomposed into three allocations
X1, XY and X°¢ such that the items with marginal value ¢ are in X¢, items
with marginal value 0 are in X° and items with marginal value —1 are in X 1.

Lemma 4.1. When agents have {—1,0,c}-ONSUB wvaluations, for any alloca-
tion X, there exist three allocations X', X°, and X°¢ such that for each agent
i €N (a) XZ-_1 UXPU XS =X, (b) Xl-_l, X9 and X¢ are pairwise disjoint,
(¢) vi(X§UXY) = vi(XF) = c|X¢|, and (d) vi(X;) = | X¢[ — | X1

We use Y = YU Y?UY! to denote the decomposition of any allocation
Y into three allocations satisfying the conditions of Lemma 4.1. More generally,

given any two allocations X and Y, we refer to the allocation X UY as the
allocation where each agent i € N receives the bundle X; UY;.

Ezample 4.2. Consider an instance with two agents {1, 2} and four items {01, 02, 03, 04}
Agent valuations are defined as follows:

v1(S) = emin{|S N {01,092, }|, 1}, v2(S) = —|S N {os,04}|

Consider an allocation X where X7 = {01,02} and X5 = {03, 04}. The following
is a valid decomposition of X:

X§ ={o02,03,04} X§ = {o1,03,04} Xyt = {o1,00}
X7 ={o1} X7 = {o2} Xit=90
X5 =10 X9 =90 X; " = {03,04}

There may be other decompositions as well. Specifically, if we swap o1 and o5 in
the above decomposition, the new set of allocations still corresponds to a valid
decomposition.

Note that while order-neutral submodular valuations can have multiple de-
compositions, {—1, 0, c}-ADD valuations have a unique decomposition — for any
allocation X = X¢U X%U X! and agent i, X¢ consists of all items in X; that
agent i values at ¢, X consists of the items that i values at 0 and X, ' consists
of the items that ¢ values at —1.

4.1 Weighted Exchange Graphs

Given an allocation X = X°¢U X% U X~!, the path augmentation technique
introduced in Section 2 can be used to manipulate X ¢ (using the exchange graph
G(X¢,B°) or X°UXP (using the exchange graph G(X°UX?, 3%)). However, when
we use path augmentation with the exchange graph G(X¢, 8¢) to manipulate
the allocation X ¢, we may affect the cleanness of X¢U X (w.r.t. the valuations
{BY}ren). To see why, consider the following simple example.

Ezample 4.3. Consider an example with one agent {1} and two items {01, 02}.
The agent’s valuation function is defined as follows:

v1(S) = cmin{|S],1} — max{|S| — 1, 0}.
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In simple words, the first item in the bundle gives agent 1 a value of ¢ but the
second item gives agent 1 a marginal value of —1. Consider the allocations X¢
and X°, where X{ =) and X) = {0, }.

Note that X¢ is clean with respect to {3f }ren and XU X0 is clean with
respect to {89 }nen. The singleton path (03) is one of the shortest paths from
Fge(X€) to X§ in the exchange graph G(X¢, 3°). Augmenting along this path
creates an allocation Y where Y}* = {02} and X = {01}

Validating the correctness of Lemma 2.10, Y ¢ is indeed clean with respect to
{B¢ then. However, YU X° is not clean with respect to {87 }ren. Note that if
we instead chose to augment along the singleton path (o01) instead of (02), we
would have not faced this issue.

In the above example, note that X¢ and X do not form a valid decomposition
of X. This is deliberate; in our algorithm design, we will not assume that X¢,
XY and X! form a valid decomposition of X. We will only assume that X¢ is
clean with respect to {85 }hen and XU X0 is clean with respect to {8)}hen-
Our goal is to use path augmentations to modify X¢ while retaining both these
useful properties. To guarantee that X¢ U X remains clean (w.r.t. {8} }ren)
even after path augmentation, we present a technique to carefully choose paths
in the exchange graph. On a high level, this is done by giving weights to the
edges in the exchange graph and choosing the least-weight path as opposed to a
shortest path. The way we weigh edges is motivated by Example 4.3 — for all
i € N, we give edges from X¢ to X2 a lower weight than other edges. It turns
out that this simple change is sufficient to ensure the cleanness of X¢ U X0 is
clean with respect to {89 }hen-

More formally, we define the weighted exchange graph G*(X¢, X° 3¢) as a
weighted directed graph with the same nodes and edges as G(X°¢, 5¢). Each edge
has a specific weight defined as follows: all edges from 0 € X¢ to o’ € X? for any
i € N are given a weight of %; the remaining edges are given a weight of 1.

For any agent ¢ € IV, we define two paths on this weighted exchange graph.
A Pareto-improving path is a path from Fge (X, i) for some i € N to some item
in X§. An exchange path is a path from Fge(X¢, i) for some i € N to some item
in X7 for some j € N — 4. We first show that path augmentation along the
least-weight Pareto-improving path maintains the cleanness of X°¢ U X0.

Theorem 4.4 (Pareto Improving Paths). When agents have {—1,0, c}-ONSUB
valuations, let X¢ be a clean allocation with respect to {85 then and X° be an
allocation such that X¢U X0 is clean with respect to the valuations {62}h€1\/. Let
XﬁﬂXg = () for all h € N. For some agenti € N, if a Pareto-improving path ex-
ists from Fge(X¢, 1) to X§ in the weighted exchange graph G*(X¢, X0 ), then,
path augmentation along the least-weight Pareto-improving path P = (01,...,0¢)
from Fge(X¢,i) to X§ in the weighted exchange graph G*(X°¢, X0 3°) results in

the following allocations Y¢ and YO°:

T\ X040 (B=0)

. [xeap (k€ N+0—i) o [X0—0 (keN)
Yk}: c . 5 Y]C_
XfAP+o1 (k=1)
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Y is clean with respect to with respect to {B¢hen and YUYV is clean with
respect to {B) }nen. Furthermore, for allh € N, Y, NYY = 0.

In the above Theorem, we also modify Y as part of the path augmentation
operation to ensure o; is not present in two different bundles. We also show
that when Pareto-improving paths do not exist, the least-weight exchange path
maintains the cleanness of X¢ U XV.

Theorem 4.5 (Exchange Paths). When agents have {—1,0, c}-ONSUB val-
uations, let X¢ be a clean allocation with respect to {05} hen and X0 be an
allocation such that XU X" is clean with respect to the valuations {B3 }nen. Let
XeN XY =10 for all h € N. If no Pareto-improving path exists from Fpe(X, 1)
to X§ in the weighted exchange graph G*(X¢, X0, 8¢), then, path augmentation
along the least-weight exchange path P = (o1,...,0¢) from Fge(X, i) to X5 (for
any j € N — i) in the weighted exchange graph G¥(X¢, X0, B3¢ results in the
allocations Y¢ and Y°:

Y,f:{X’fAP (BENHFO=D) © yo_x0  (kewm).

XfAP+or (k=)

Y is clean with respect to with respect to {B¢hen and YUYV is clean with
respect to with respect to {8 }nen. Furthermore, for allh € N, Y, NYY = 0.

Note that since G¥(X¢, X°, 3°) and G(X¢, 3°) have the same set of edges,
Lemma 2.11 applies to the weighted exchange graph as well.

Lemma 4.6. When agents have {—1,0, ¢}-ONSUB valuations, let X¢ be a clean
allocation with respect to {55, }nen and X0 be an allocation such that X¢U X0 is
clean with respect to the valuations {B)}hen. Let XfNXP =0 for allh € N. For
anyi € N and j € N+0, there is a path from Fge(X€,i) to X§ in Gv(Xe, X0 B°)
if and only if there is a path from Fpe(X¢, i) to X5 in G(X°, 5°).

Given an allocation X = X°¢U X% U X!, these results already hint at a
method to modify X¢ such that it becomes a leximin allocation with respect
to the valuations {8¢}nen: greedily use path augmentations in the weighted
exchange graph until X¢ is leximin. This is the high-level approach we use in
our algorithm.

5 Leximin Allocations with {—1, 0, c}-ONSUB Valuations

We are ready to present our algorithm to compute leximin allocations. Our
algorithm has three phases. In the first phase, we use Yankee Swap (Theorem
2.12) to compute a MAX-USW allocation X with respect to the valuations {8 };c .
We also initialize X¢ and X ~! to be empty allocations.

In the second phase, we update X¢ and X using path augmentations (from
Section 4.1) until X€ is a leximin partial allocation. This is done by greedily
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ALGORITHM 1: Leximin Allocations with {—1,0, c}-ONSUB Valuations
Input : A set of items O and a set of agents N with {—1,0,c}-ONSUB
valuations {vp }hen

Output: A complete leximin allocation
// Phase 1: Make X°U X° a MAX-USW allocation w.r.t. {8 }nen

1 X° « the output of Yankee Swap with respect to {8} }nen
2 X°¢=(X§,...,X5) < (0,0,...,0)

// X¢ is clean w.r.t. ¢ and X°U X° is clean w.r.t. f°
X' =(X54 ., X2 « (0,0,...,0)
// Phase 2: Make X°¢ a clean leximin allocation w.r.t. {8} }thren

4 repeat

10

11

12

13
14

15

16
17
18
19

20
21

22

while for some i € N, there exists a Pareto-improving path from Fge (X<,4) in
G¥(x*, X°, °) do
P = (0},...,0;) + a min weight Pareto-improving path from Fpe (X¢, 1) to
X§ in G¥(X°, X", %)
/* Augment the allocation with the path P */
X+ X, APforalke N+0—1
X{+— X;AP+o0)
XY« X —o, forall ke N
X0 + X§ + of
if for some i € N, there exists an exchange path from Fpge(X€,4) to some X7
such that either (a) |X{| < |X5|+1 or (b) |X{| =|X5|+1 and i < j then
P = (01,...,0;) + a min weight exchange path from Fpe(X°, i) to X5 in
GU(X°,X° 5% /* Augment the allocation with the path P */
X+ X;APforalke N+0—1
X+ XCAP+0,

while at least one path augmentation was done in the iteration

// Phase 3: Greedily allocate the items in X§N XJ

while | X§N X0 NX;' >0do /* Unallocated items exist */
S «+ argmax v, (X5 UXpU X, ) /* Set of all max-utility agents */
i+ r;gleasxj /* Break ties using index */
0 + an arbitrary item in X§ N X§ N X;*
X'+ X"+o
Xyt X5t —o

return X°U XU X!

augmenting along min weight Pareto-improving paths and min weight exchange
paths until the allocation is leximin.

In the third phase, we update X ! by allocating the remaining items (in
X& N XJ). We do so greedily by allocating each item to the agent with the
highest utility, under the assumption that these items have a marginal utility of
—1. The exact steps are described in Algorithm 1.

We analyze each phase separately and establish key properties that the al-
locations X¢ X° and X! have at the end of each phase. In order to show
computational efficiency, we use the value oracle model where we have oracle
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access to each agent’s valuation function. A computationally efficient algorithm
runs in polynomial time (in n and m) and only uses a polynomial number of
queries to each value oracle.

5.1 Phase 1

The first phase is a simple setup where we allocate as many non-negative valued
items as possible. X© is initialized as a clean MAX-USW allocation with respect
to the valuations {ﬂg}he ~- X¢and X! are initialized as the empty allocation.
Note that X¢ is trivially clean with respect to the valuations {3 }ren.

Lemma 5.1. At the end of Phase 1, X° is clean with respect to {05 then and
XU XY is a MAX-USW clean allocation with respect to {B)}hen -

The computational efficiency of Phase 1 relies on the computational efficiency
of Yankee Swap. Yankee Swap uses a polynomial number of queries to {7 }ren-
We can easily construct an efficient oracle for each 3Y to ensure Phase 1 runs in
polynomial time and a polynomial number of valuation queries.

5.2 Phase 2

In this phase, we use path augmentations to manipulate X ¢ into a partial leximin
allocation. There are three types of paths we check for and augment if it exists:
(a) A Pareto-improving path from Fse(X¢, i) for some i € N to X§in G¥ (X, X°, 5°).
(b) An exchange path from Fge(X¢, i) for some i € N to some X¢ such that

| X5 < |X5[+ 1.

(c) An exchange path from Fge(X€,4) for some i € N to some X such that

| X5 = [X§[+1and i< j.

Note that these path augmentations work as intended since we maintain the
invariant that X¢ U X? is clean with respect to {Bg}he ~- Since exchange paths
((b) and (c)) are only guaranteed to work when there are no Pareto-improving
paths, we ensure that we augment Pareto-improving paths (a) first before we
check and augment exchange paths. This is clear in the steps of Algorithm 1.

Formally, let Z¢ be a clean leximin allocation with respect to the valuations
{B5 }hen. If there are multiple, let Z° be an allocation that is not lexicograph-
ically dominated (w.r.t. {8 }ren) by any other leximin allocation. Phase 2 en-
sures that for each agent i € N, |X¢| = |Z¢|. We have the following Lemma.

Lemma 5.2. Let X¢ be a clean allocation with respect to {85 }hen and X° be
an allocation such that X¢ U X° is clean with respect to {ﬂg}heN. Let Z¢ be
a clean leximin allocation with respect to the valuations {5 }hen. If there are
multiple, let Z¢ be an allocation that is not lexicographically dominated (w.r.t.
{B5then) by any other leximin allocation. Then there exists an agent ¢ € N
such that | X7| # | Z§| if and only if at least one of the following conditions hold:
(a) There exists a Pareto-improving path from Fge(X¢, i) for some i € N to X§
in G¥(X¢, X0, 5°).
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(b) There exists an exchange path from Fge(X€,i) for some i € N to some X¥
such that | X¢| < | X5+ 1.

(c) There exists an exchange path from Fge(X€,i) for some i € N to some X5
such that | X¢| = |X§| +1 and i < j.

Lemma 5.2 immediately implies that if Phase 2 terminates, it terminates
when |X;| = |Z;| for all h € N. Our next Lemma shows that Phase 2 indeed
terminates in polynomial time. This result follows from bounding the number of
path augmentations our algorithm computes.

Lemma 5.3. Phase 2 terminates in polynomial time and polynomial valuation
queries.

Note that after each path transfer the number of allocated items in X°¢U X°
weakly increases. Therefore, X¢U X remains a clean MAX-USW allocation at the
end of Phase 2. Formally, we can make the following observation.

Lemma 5.4. At the end of Phase 2, X€ is a clean lexicographically dominating
lezimin allocation with respect to the valuations {Bf,}hen and X° U X% is a
MAX-USW clean allocation with respect to {B) }nen-

5.3 Phase 3

At this point, XU X is a MAX-USW clean allocation with respect to {87 }nen-
Thus, all of the remaining items have a marginal value of —1 to every agent. It
remains to assign these items in as equitable a manner as possible. In Phase 3,
we sequentially allocate the remaining items, giving a “bad” item to the agent
with the highest utility.

To carefully compare allocations, we adapt the comparison method of domi-
nation introduced in [12]. To compare two allocations ¥ = YUY UY~! and
Y =Y UY'U f/_l, we first check the sorted utility vectors s¥* and s Yooif

sY" lexicographically dominates s* ", then we say Y domlnates Y. If s¥° and
sYC are equal, we check the utility Vectors Y and w¥"; if w¥° lexicographi-
cally dominates u¥ , then we say Y dominates Y. If ¥ and u Y are equal as
well, we check uY and uY; if u¥ lexicographically dominates uY, then we say
Y dominates Y.

Definition 5.5 (Domination). An allocation Y = YeuYluUY—! domi-
nates the allocatzon Y = Y” U YO uy- L if any of the followmg condztzons hold:
(a) 87" =1ep 8¥ , (b) ¥ =8 and u¥ =i u¥, or (c) u¥ = = u¥* and
Y e uY

Let Y = YCUYYUY~! be a complete leximin allocation for the original
instance with valuations {vj, }pen. If there are multiple leximin allocations, pick
one which is not dominated by any other leximin allocation Y. Due to this
specific choice, we sometimes refer to Y as a dominating leximin allocation.

We first show that, just like X¢, Y¢ is a lexicographically dominating leximin
allocation with respect to the valuations {5 }nen-
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Lemma 5.6. After the end of Phase 2, | X§| = |Y)°| for allh € N.

Next, we show that X¢, X° and X! form a valid decomposition of X° U
X0uXx—h

Lemma 5.7. At every iteration in Phase 3, for any agent i € N, v;(X;) =
ol X7l = 1X71

Combining these Lemmas, we can show the correctness of our algorithm.

Theorem 5.8. When agents have {—1,0,c}-ONSUB wvaluations, Algorithm 1
computes a leximin allocation efficiently.

A useful corollary of this analysis is that Algorithm 1 outputs a MAX-USW
allocation.

Corollary 5.9. When agents have {—1,0,c}-ONSUB wvaluations, Algorithm 1
outputs a MAX-USW allocation.

6 Properties of the Leximin Allocation

Now that we have shown how a leximin allocation can be computed, we explore
its connection to other fairness notions. Specifically, we study the following fair-
ness notions.

Proportionality: An allocation X is said to be proportional if each agent re-
ceives at least an n-th fraction of their value for the entire set of items. This is
not always possible — consider an instance with two agents and one high valued
item. The fair allocation literature has therefore, instead, studied a relaxation
of proportionality called proportionality up to one item [2]. An allocation X is
proportional up to one item (PROP1) if any of the three following conditions hold
for every agent i € N: (a) v;(X;) > Lv;(0), (b) vi(X; + 0) > 1v;(O) for some
0€ 0\ X;, or (¢) v;i(X; — 0) > Lv;(0) for some 0 € X;.

Envy-freeness: An allocation is envy-free if no agent prefers another agent’s
bundle to their own. This, again, is impossible to guarantee when all items are
allocated. We therefore, instead, look at the notion of envy-freeness up to one
item (EF1) [10,22,2]. When there are both goods and chores, an allocation X
is EF1 if for any two agents i,j, there exists either some o € X; such that
v;(X; — 0) > v;(Xj), or some o € X; such that v;(X;) > v;(X; — o).

Maximin Share: The mazimin share (MMS) of an agent ¢ is defined as the
value they would obtain had they divided the items into n bundles themselves
and picked the worst of these bundles. More formally,

MMS; = max min v; (X;).
X:(X17X2a“~7Xn)je[n]
[23] show that agents cannot always be guaranteed their maximin share; past
works [21] instead focus on guaranteeing that every agent receives a fraction of

their maximin share. For some ¢ € (0, 1], an allocation X is e-MMS if for every
agent i € N, v;(X;) > ¢ - MMS;.
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Lorenz Dominance: An allocation X is Lorenz dominating [4] if for all other
allocations Y and all k£ € [n], it holds that 3~ si( > ek s}/ where s¥ is
the sorted utility vector of X (defined in Section 2.2).

Our main result is as follows,

Theorem 6.1. When agents have {—1,0, c}-ONSUB valuations, leximin allo-
cations are guaranteed to be PROP1 and Lorenz dominating. Additionally, when
agents have {—1,0, c}-ADD wvaluations, leximin allocations are guaranteed to be
EF1 and 1-MMS.

7 NP-Hardness when c is not an Integer

In this section, we show that the problem of computing leximin allocations is
NP-hard even for {—p, ¢}-ADD valuations for any co-prime integers p and ¢ such
that p > 3. This proof is very similar to the hardness result in [1]. Note that the
assumption that p and q are co-prime is necessary since if p divides ¢, the problem
reduces to computing a leximin allocation for agents with {—1, %}—ADD valua-
tions and admits a polynomial time algorithm (Theorem 5.8). More generally,
any common divisor of p and g can be eliminated by scaling agent valuations.

Theorem 7.1. The problem of computing leximin allocations is NP-hard even
when agents have {—p, q}-ADD wvaluations for any co-prime positive integers p
and q such that p > 3.

While Theorem 7.1 shows that the problem of computing leximin alloca-
tions is NP-hard for most values of p and ¢, there are two special cases which
still remain unresloved — {—¢, 0,1}-ONSUB valuations and {—2,0, c}-ONSUB
valuations. We leave these two cases for future work.

8 Conclusions and Future Work

In this work, we study the computation of leximin allocations in instances with
mixed goods and chores. We show that when agents have {—1,0,c}-ONSUB
valuations, leximin allocations can be computed efficiently. We also show that
these allocations are Lorenz dominating and approximately proportional.

On a higher level, our work is the first to generalize the path augmentation
technique to tri-valued valuation functions. We are hopeful that the tools of
weighted exchange graphs and decompositions can be applied to even more gen-
eral valuation classes. We are also excited by the class of order-neutral submod-
ular valuations. Much like Rado and OXS valuations, we believe order-neutral
submodular valuations are an appealing sub-class of submodular valuation func-
tions that warrant further study.
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