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Abstract. A challenge in robotics is to control interactions with the environment
by modulating the stiffness of a manipulator’s joints. Smart servos are controlled
with proportional feedback gain that is analogous to torsional stiffness of an ani-
mal’s joint. In animals, antagonistic muscle groups can be temporarily coactivated
to stiffen the joint to provide greater opposition to external forces. However, the
joint properties for which coactivation increases the stiffness of the joint remain
unknown. In this study, we explore possible mechanisms by building a math-
ematical model of the stick insect tibia actuated by two muscles, the extensor
and flexor tibiae. Muscle geometry, passive properties, and active properties are
extracted from the literature. Joint stiffness is calculated by tonically activating
the antagonists, perturbing the joint from its equilibrium angle, and calculating
the restoring moment generated by the muscles. No reflexes are modeled. We esti-
mate how joint stiffness depends on parallel elastic element stiffness, the shape of
the muscle activation curve, and properties of the force-length curve. We find that
co-contracting antagonist muscles only stiffens the joint when the peak of the force-
length curve occurs at a muscle length longer than that when the joint is at
equilibrium and the muscle force versus activation curve is concave-up. We dis-
cuss how this information could be applied to the control of a smart servo actuator in
a robot leg.
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1 Introduction

In biologically-inspired robotics, a limitation to function and mobility is the materials
and devices available to construct and control robots. A common and readily-available
actuator for robot limbs is the servo motor. The speed and position of a servo motor are
easily controllable via feedback control, but the output torque must also be controlled if
the robot is to interact with the environment and people properly (e.g., as in impedance
control (Hogan 1985)). In nature, animals have evolved over millions of years to interact
with their environment (e.g., walking, running, climbing) without damaging themselves
or their environment and serve as a model for how robots may more readily control the
forces they exert on the world. If the force control of animals can be mimicked by
robots, then their motion may become less “robotic” and they may become more capable
of walking and accomplishing other tasks.
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Animals may control the forces they exert on the environment by controlling the
stiffness of their joints (Houk 1979). Animals have groups of antagonistic muscles that
apply moments about the joints to move the body, e.g., the biceps and triceps muscles in
the human arm that flex and extend the elbow joint. When simultaneously activated (i.e.,
“co-contracted”) by the nervous system, the muscles increase the stiffness of the joint
(i.e., the moment exerted in response to a change in angle) and can do so at many different
angles (Zajac 1989; Blickhan et al. 2007). In this way, animals can resist external forces
while producing the same motion (Matheson and Dürr 2003; Zakotnik et al. 2006).
However, the properties a joint must possess to have the ability to increase joint stiffness
by co-contracting antagonist muscles remain unknown. To investigate this question, we
modeled a pair of antagonistic muscles that actuate an insect leg joint.

To ensure our model is physiologically plausible, we based our work on extensive
characterization and modeling of the stick insect extensor tibiae muscle and the dynamics
of the femur-tibia joint (Guschlbauer et al. 2007; Blümel et al. 2012a, b; von Twickel et al.
2019). The tibia is actuated by an antagonistic pair of muscles, the extensor and flexor
tibiae. These are pinnate muscles with relatively simple geometry, e.g., their lengths are
approximately sinusoidal functions of the femur-tibia angle (Guschlbauer et al. 2007;
von Twickel et al. 2019). As in these previous studies, we modeled each muscle as a
Hill-type muscle with an elastic element in parallel with the contractile element. The
contractile element’s force is a function of the muscle’s activation and is limited by a
force-length curve. Experiments show that the shape of the force-length curve depends
on the activation of the muscle (Guschlbauer et al. 2007; Blümel et al. 2012a). All
these features are present in our model. However, because we are primarily interested in
understanding the stiffness of the joint (not its entire impedance), we omit the force-
velocity curve from our model. In addition, because the activation dynamics of the flexor
tibiae have not been characterized, the antagonist muscles in our model are both tuned
like the extensor tibiae. Such a model prevents us from obscuring underlying principles of
joint stiffness due to asymmetrical muscle parameters.

In this study, we investigate how muscle co-contraction may increase joint stiffness
by constructing a mathematical model of an antagonistic pair of muscles that actuate an
insect leg joint. Our overall approach is to set the activation of each muscle, calculate
the joint’s equilibrium angle, displace the joint from equilibrium, calculate the restoring
moment generated by the muscle forces, and use this information to calculate the joint’s
stiffness. We calculated the dependence of this stiffness on four parameters:

1. the presence of the parallel elastic element,
2. the shape of the function that maps muscle activation to contractile element force

(i.e., sigmoidal or linear),
3. the shape of the force-length curve (i.e., sine function as in Blümel et al. 2012a or

polynomial as in Shadmehr and Arbib 1992), and
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4. whether or not the peak of the force-length curve depended on muscle activation
(Blümel et al. 2012a).

We find that for the parameters of the extensor tibiae muscle, co-contracting the
muscles only stiffens the joint if:

• the peak of the force-length curve occurs at a muscle length longer than the muscle
at joint equilibrium length OR

• if the function that maps muscle activation to contractile element force is concave-up.

In the discussion, we summarize our findings, discuss their relevance to the neural
control of animal behavior, and propose how these findings could be applied to the
control of walking robots.

2 Methods

2.1 Joint Model
The stiffness of a muscle joint, k mN ·mm , can be calculated following Eq. 1, where τ is the
joint torque (mN · mm) and θ is the joint angle (rad). The joint stiffness can be
represented as the derivative of the torque with respect to the angle,

k =  
dθ 

. (1)

The force in each muscle can be calculated, and then the moment arm lengths of
each muscle are crossed with the corresponding forces to calculate the torque applied to
the joint, as shown in Fig. 1 and Eq. 2. In Eq. 2, Fextn and Fflex are the extensor and flexor
forces, and rextn, rflex are the respective maximum moment arm lengths,

τ =  Fextnrextn sinθ −  Fflexrflex sinθ. (2)

In this model, the length of the moment arms changes as the angle changes. This
model neglects any pinnation angle of muscles, because this angle is so small in compar-
ison with the orientation of the muscles and femur themselves (Blümel et al. 2012a). In
addition to this simplification, we have assumed that the muscle resting lengths, resting
moment arm lengths, and optimal force outputs are equal in the extensor and flexor. In
future work these values can be changed based on parameters measured from the flexor
tibiae or other muscles that actuate other joints.
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Fig. 1. Muscle forces produce a torque with moment arm lengths, r, that change with respect to
the joint angle, θ.

2.2 Calculating Muscle Force

From the Hill-type muscle model, the force of a muscle is produced by a contractile
element (CE), which is controlled by active dynamics from the nervous system, a parallel
element (PE) that mimics the elastic and viscous forces of the inactivated muscle, and a
series elastic element (SEE) that mimics the muscle’s spring-like properties when
activated (Zajac 1989). Because of their arrangement, the forces of the CE and PE add,
and this sum is equal to the tension in the SEE, as well as the total force of the muscle.
This relationship is shown in Eq. 3 and Fig. 2A,

Fmuscle =  FCE +  FPE =  FSEE . (3)

Note that previous studies by Blümel et al. (2012a) calculate muscle force as a func-
tion of the muscle fiber length, not muscle length (differentiated in Fig. 2B). However,
we express our model in terms of muscle length, by replacing the fiber length with
change of the muscle length, as a function of the joint angle and maximum moment arm
lengths. As the joint angle increases, the length of the extensor decreases and the length of
the flexor increases. The difference in these parameters does not impact the accuracy of
this study but is noted for clarity.

Fig. 2. A) The series elastic element (SEE), contractile element (CE), and parallel element (PE)
produce the muscle force according to Eq. 4. B) The length of the muscle fibers compared to the
length of the muscle.
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The series elastic element produces a force shown in Eq. 4 where kSE is the spring
constant of the series elastic element and LSE is the length of the series elastic element
(Guschlbauer et al. 2007),

FSEE =  kSE · LSE . (4)

In steady state, the length of the muscle and force of the muscle do not change with
time, so damping forces are omitted from the model. The elastic property of the parallel
element follow Eq. 5, where k1 and k2 are spring constants and Lmf is the length of the
muscle fibers (Blümel et al. 2012b). Figure 3 shows the relationship between FPE and
change in muscle length from the joint equilibrium length.

FPE =  k1ek2·Lmf . (5)

Fig. 3. Parallel element force against muscle length deviation from rest.

The contractile element (CE) produces force FCE through activation dynamics, where
excitation of the nervous system results in a force in the sarcomeres of the muscle tissue.
FCE depends on the maximum force that the muscle can produce, the activation of the
muscle (Aact), the length of the muscle, and the speed at which the muscle is contracting
(Zajac 1989). Because we are focusing on joint stiffness during tonic muscle activation,
we are neglecting the speed at which the muscle is contracting. As a result, the contractile
element force is the product of the maximum force the muscle can exert (Fmax), the
activation of the muscle, and a function of the muscle length (FL) shown in Eq. 6 (Zajac
1989),

FCE =  Fmax · Aact · FL. (6)

To account for the muscle activation component of the CE force, the normalized
frequency of the motor neurons, f , is a fraction of maximum motor neuron excitation,
normalized to 200 Hz, the maximum frequency observed in the extensor muscle during
walking (Guschlbauer et al. 2007). In doing so this value can be thought of as a percentage
of maximum excitation. Previous work shows that the motor neuron frequency does not
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correlate linearly with the contractile element force, but instead is a sigmoid curve shown
in Fig. 4 (Blümel et al. 2012a). When holding the extensor at the length which the joint is
at equilibrium and exciting the extensor motor neuron, Blümel et al. measured the force
output vs. motor neuron excitation. Note that in Blümel et al. 2012a, they refer to the
normalized motor neuron frequency as act. They fit this curve, using Eqs. 7 and 8, where
Aact represents the muscle activation. Aact is then used as a multiplier in Eq. 9 to calculate
FCE (Blümel et al. 2012a). Figure 4 shows the muscle force plotted against normalized
motor neuron frequency, the rate at which the CE force increases with respect to this
neuron excitation is larger at lower frequencies.

Fig. 4. Muscle force vs activation when the muscle is held at equilibrium angle. Accounted for
in Eqs. 7 and 8.

Because of the actin/myosin filaments and cross bridges in the sarcomere, there is
an optimized muscle length in which the contractile element can produce the greatest
amount of force, and this happens when the muscle is stretched or is longer that at muscle
length at joint equilibrium (Zajac 1989). Guschlbauer et al. found that at lower activation
states, this peak occurs at a longer muscle length than at higher activations (Guschlbauer
et al. 2007). Blümel et al. fit this phenomenon by describing the force-length relationship
as a sine curve, which allowed for a shifting peak as muscle activation increased. This
required the addition of a “frequency”, ω (with units mm−1), that is dependent on the
motor neuron frequency. The calculation for ω is shown in Eq. 7, where curvω is an
animal-dependent constant. Putting this all together, FCE is shown in Eq. 9 and Fig. 5A
(Blümel et al. 2012a),

ω =  2.5 +  
[curvω · (f +  0.05)]2 ,                                           (7)

Aact =  15e−1.06ω ,                                                        (8)

FCE =  Fmax · Aact · FL =  Fmax · Aact · 
1 +  sinωLmf −  

 
2 +  2.7ω

. (9)

Note that at very low activations, the equation produces a curve that does not follow
the pattern at higher activations. This error is discussed further in the discussion.
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To study the effects that each of these aspects has on the stiffness of the joint and
create an estimate that can better be used in robotic applications, we analyze the CE
force equation derived from Blümel et al. and create our own CE force equations that
can be manipulated more easily in our model. Instead of a sine curve for the force-length
curve, we use a parabola in vertex form, similar to the approach taken in other models
(Cofer et al. 2010; Shadmehr and Arbib 1992). This allows us to shift the curve’s peak
easily, while maintaining similar force magnitudes from the constructed sine curve. To
incorporate the non-linearity of the force and activation relationship, we can alter the
muscles’ activation, but we also test a linear relationship between the force and
activation, when Aact =  f . If a linear relationship produces a similar stiffness result to the
non-linear relationship, the linear relationship may be used in servo-motor control to
simplify and accelerate calculations. Equation 10 details the CE force we manipulate to
compare with stiffness. In this equation, a changes the width of the curve, h shifts the
peak with respect to the length of the muscle, and Fmax is the maximum force of the curve,

FCE =  Aact · a(Lm −  h)2 +  Fmax. (10)

The shift in the force-length curve’s peak can be altered with the activation state
by using Eq. 11, where  is machine epsilon. This was added so when the activation is
0, the result will not be undefined, but has a negligible effect on the shifting of the
parabola. h1 and h2 are determined from the maximum and minimum peak shifts in the
curve. These maximum and minimum shifts will resemble the look of the sine curve that
was measured in the stick insect and can be shown in Fig. 5B. Note that Shiftmax was
computed when normalized frequency is 10%. This adds little error to the equation at

low frequencies:

h(f ) =  
f +   

+  h2 ,

Shiftmax −  1
1 −  Shiftmin

h1 =  Shiftmin −  h2.

(11)

(12)

(13)

Figure 5 below compares the sine curve measured from the actual stick insect with
the parabola function of Eq. 10 where the non-linear muscle activation is used, and
the muscle length at which the peak of the parabola occurs decreases as activation
increases. Figure 5C shows the parabola function where the length at which the peak
occurs is constant and linear muscle activation relationship. Figure 5D shows the peak
of the curve at a constant value, but with sigmodal activation. These different ways of
calculating muscle force are labeled and detailed in Table 1 for further comparison.
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Fig. 5. A) Muscle force plotted against muscle length with increasing motor neuron frequency
according to Blümel et al. (2012a). The equation for force is Case A detailed in Table 1. The
force-length relationship is the sine curve measured from the actual stick insect. Note that at lower
motor neuron frequencies, the equation produces maximum force at a very short length, which is
addressed in the discussion. B) Muscle force using the parabolic force-length curve in vertex
form, where h-shift in the peak of the graph is dependent on motor neuron frequency and muscle
activation is non-linear. The force produced in this graph is Case B in Table 1. C) Muscle force
using parabolic force-length curve, where h-shift in the peak of the graph is constant and muscle
activation is linear. D) Muscle force using parabolic force-length curve, where h-shift is constant
and muscle activation is nonlinear according to Eq. 8.

In Case C, the force-length relationship is modeled as a concave-down parabola. In
this case, the parabola’s shift along the length axis is not dependent on activation state,
unlike in real muscles. Figure 6 compares the force-length curve for multiple levels of
normalized frequency and values of h.
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Fig. 6. Muscle force plotted against muscle length deviation from rest with increasing activation in
Case C. Relationship plotted is the concave down parabola, where h represents a shift in the peak
of the graph (i.e., the muscle length which produces the greatest active force).

2.3 Calculating the Stiffness

Using MATLAB R2022a, we calculate the force of each muscle by adding the contractile
and passive forces for every angle and every activation state. The net torque is calculated
and plotted for every activation combination of the extensor and flexor muscles. Figure 7
shows an example of torque vs. joint angle for equal coactivation. The stiffness was
calculated using the centered difference approximation for the closest values of torque
equal to zero, shown in Eq. 14. In this calculation, θ =  1◦  =  0.017 radian:

dτ τ (θ +  θ) −  τ (θ −  θ) dθ
2θ

(14)

Fig. 7. Example Torque vs. Joint Angle plot used to calculate stiffness for set of activation
combinations. Stiffness is calculated when torque is at the closest values to zero.

2.4 Testing Muscle Force Components

To analyze how different muscle parameters affect joint stiffness, we test different details
that make up force, noted in Table 1. In the various cases, muscle force is calculated in
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different ways. We compare Case A, the model derived in Blümel et al. (2012a) with
Case B, sigmodal muscle activation according to Eq. 8, with the parabola force length
curve, and a shifting peak of the curve according to Eq. 11. By comparing these cases we
can demonstrate that the parabolic force-length curve produces a similar result to
previous work measured in the stick insect joint.

To show how non-linear muscle activation affects joint stiffness, we compare Case C
(linear muscle activation) to D (sigmodal muscle activation) with parabolic force-length
curve and no activation-dependent peak shift. To show how shifting the peak of the

Table 1. Muscle Force Calculation Testing parameters

Case

A

B

C

D

E

F

G

Muscle Force Equation

Fm =  Fmax · Aact ·

1 +  sin ωLmf −  2 +  2.7ω
+  k1ek2·Lmf

Fm =  Aact · a(Lm −  h) +  Fmax

+  k1ek2·Lmf

where h =  h(f ) (Eq. 11)

Fm =  f · [a(Lm −  h)2 +  Fmax] +

k1ek2·Lmf

where h =  {0, 0.1, 0.2, 0.3, 0.4}

Fm =  Aact · a(Lm −  h) +  Fmax

+  k1ek2·Lmf

where h =  0.1

Fm =  f · a(Lm −  h) +  Fmax

+  k1ek2·Lmf

where h =  h(f ) (Eq. 11)

Fm =  Fmax · Aact

· 
1 +  sin ωLmf −  2 +  2.7ω

Fm =  Aact · a(Lm −  h) +  Fmax ,

where h =  h(f ) Eq. 11)

Properties

Muscle Activation: Sigmodal
Force Length Curve: Blümel Sine Curve
Force Length Peak: Dependent on f
Parallel Element: Present

Muscle Activation: Sigmodal
Force Length Curve: Parabola
Force Length Peak: Dependent on f
Parallel Element: Present

Muscle Activation: Linear
Force Length Curve: Parabola
Force Length Peak: Constant
Parallel Element: Present

Muscle Activation: Sigmodal
Force Length Curve: Parabola
Force Length Peak: Constant
Parallel Element: Present

Muscle Activation: Linear
Force Length Curve: Parabola
Force Length Peak: Dependent on f
Parallel Element: Present

Muscle Activation: Sigmodal
Force Length Curve: Blümel Sine Curve
Force Length Peak: Dependent on f
Parallel Element: Absent

Muscle Activation: Sigmodal
Force Length Curve: Parabola
Force Length Peak: Dependent on f
Parallel Element: Absent
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force-length curve affects joint stiffness, Case C includes multiple force-length curves
with static but differing peaks between 0 mm and 0.4 mm.

Comparing Case C to E and Case D to B shows how the force-length curve’s peak
shifting dependence on motor frequency alters the stiffness, for a linear activation and
the sigmodal activation, respectively. This analysis compares a constant peak shift to the
peak shift dependent on motor neuron frequency according to Eq. 11.

Lastly, to analyze what affect the parallel element has on stiffness, in cases A and
F we compare the Blümel et al. (2012a) model with and without the parallel element.
Additionally, we compare the parabolic force-length curve with non-linear muscle acti-
vation and shifting peak with motor neuron frequency as observed in the animal, with
and without the parallel element in Cases B and G.

The parameters used to calculate values of forces and their origin are listed in Table 2.
Note that parameter values for the extensor muscle are used for both the extensor and
flexor (see note in introduction). When choosing animal dependent parameters, animal E
in Table 1 of Blümel et al. 2012b was used.

Table 2. Extensor parameter values used in model.

Parameter

rextn

Lmf

Fmax

curvω

k1

k2

a

Shiftmin

Shiftmax

Value

0.28 mm

1.41 mm

189 mN

4.51 mm0.5

3.13 · 10−3 mN

4.38 mm−1

−200 
mm

0.1 mm

0.4 mm

Source

Fig. 5 Guschlbauer et al. 2007

Fig. 3B Guschlbauer et al. 2007

Table 1 Blümel et al. 2012b

Table 1 Blümel et al. 2012b

Table 1 Blümel et al. 2012b

Table 1 Blümel et al. 2012b

Not measured in animal

Fig. 6a Blümel et al. 2012a

Fig. 6a Blümel et al. 2012a

3 Results

Because the muscles in this model are equal and opposite, the equilibrium angle is 90
degrees when the muscles are activated the same amount. All stiffness graphs detailed
below are plotted for a joint angle of 90 degrees. Figure 8 plots the joint stiffness against
the motor neuron frequency for all cases listed in Table 1. Figure 8A shows Cases A
through E and Fig. 8B shows Cases A, B, F, and G. Case A contains the most biological
detail, including a sinusoidal force-length curve whose peak shifts to shorter lengths as
muscle activation increases. Although the model contains some simplifications (see
Methods), this model is likely closest to the animal’s physiology. Co-activating the
antagonist muscles increases the stiffness by a factor of 20 relative to the relaxed joint.
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However, the joint stiffness decreases with muscle activation greater than approximation
20%. Furthermore, the stiffness of the joint is negative for some low motor neuron
frequencies. This is due to the way the model from Blümel et al. (Eq. 9, Fig. 5A) maps
from motor neuron frequency to muscle force. This is addressed in the Discussion.

Altering the form of the functions within the model shows the effect that each has
on joint stiffness. When the sinusoidal force-length curve is replaced with a parabolic
curve whose peak shifts with muscle activation (Case B), the peak stiffness is only about
8 times the baseline joint stiffness. Despite this difference, the maximum joint stiffness
occurs at the same normalized frequency as in Case A, about 20%. This is where the
inflection point of the activation curve occurs, suggesting that co-contracting antagonist
muscles can stiffen the joint if the activation curve is concave-up. However, if the peak of
the force-length curve does not shift with muscle activation (Case D), the joint stiffness
always increases with increasing activation. This suggests that the location of the force-
length curve’s peak also affects joint stiffness. If the muscle activation is made a linear
function of motor neuron frequency and the force-length parabola’s peak is constant,
the joint stiffness increases linearly with increasing motor neuron frequency (Case C).
With linear activation and force-length curve peak shifting (Case E), stiffness increases
linearly with motor neuron frequency and has a greater stiffness at lower frequencies.

Figure 8B enables the comparison of how the parallel element affects the stiffness
of the joint. Because this element is in parallel with the contractile element, it simply
raises the stiffness of the joint at all muscle activations.

Fig. 8. A) Stiffness vs. Normalized motor neuron frequency for Cases A through E of Table 1. B)
Stiffness vs. Normalized motor neuron frequency for Cases A, B, F, and G. Cases F and G are
equivalent to Cases A and B respectively, minus the parallel element force.

Figure 9 shows the joint stiffness as a function of muscle activation for Case C in
which the constant force-length curve peak shift is varied from 0 to 0.4 mm. As the
peak of the force length curve is shifted a greater amount, the stiffness that the joint can
achieve through co-contraction increases. When the peak shift is 0 mm, co-contracting
the muscles does not stiffen the joint. This suggests that the force-length curve, a property
of the active muscle, plays an important role in the stiffening of the joint during antagonist
co-contraction.
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Fig. 9. Joint stiffness vs. muscle activation for Case C. Greater peak shifts (shown in Fig. 6) create
greater maximum stiffness.

4 Discussion

To better understand how co-contracting antagonist muscles stiffens an animal’s joint
(Houk 1979; Blickhan et al. 2007), we developed a mathematical model of the muscular
actuation of an insect joint based on experimental measurements and previous models
(Guschlbauer et al. 2007, Blümel et al. 2012a, b; von Twickel et al. 2019). Each muscle in
our model is a Hill muscle with a sigmoidal muscle activation curve, a parallel elastic
element, a force-length curve, and an angle-dependent moment arm about the joint.
Because we are interested in stiffness, we omitted the inertia of the distal limb segment
and velocity-dependent terms in the muscle model, e.g., the force-velocity curve. By
systematically altering the model, we found that co-activating the muscles increases
joint stiffness if the peak of the force-length curve occurs at a muscle length longer than
that at joint equilibrium or if the function that maps muscle activation to contractile
element force is concave-up.

4.1 Limitations and Future Work

Although this study provided some insight into the joint properties by which co-
contracting antagonist muscles may stiffen a joint, it has limitations as a model of the
animal’s joint. In the stick insect, the flexor muscle has a longer moment arm than the
extensor, higher PE forces and maximum contractile forces, and unknown CE force-
length dependence (Guschlbauer et al. 2007). Future studies may more accurately model
the animal’s joint by approximating the flexor’s unique parameter values. To the authors’
knowledge, no study measures the stiffness of the femoral/tibial joint in the stick insect
and how it depends on muscle activation. Such data would be valuable for creating a
more biologically accurate model.

Another limitation of this study is the omission of dynamic muscle properties, such
as the force-velocity curve and the series elastic element. These properties are known to
affect the force a muscle develops when the joint is disturbed from equilibrium (Zajac
1989; von Twickel et al. 2019). As a result, our model only approximates the full behavior
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of a leg joint. Without these dynamic properties, our model most closely models a joint
undergoing a slow perturbation, such that velocity-dependent effects do not dominate the
response. In future work, we will incorporate these effects and test whether they affect
joint stiffness during periods of co-contraction. We will also need a broader definition of
stiffness than that in Eq. 1 that more broadly quantifies resistance to perturbations.

4.2 Implications of this Work

For the sine wave force-length curve proposed by Blümel et al. (Case A), the model
deviates from the qualitative pattern at low motor neuron frequencies, with peak muscle
force occurring at very short muscle lengths (Fig. 5A). This error occurs at 15% and
less of normalized motor neuron frequency and is caused by a shifting in the sine curve.
When data was taken from the stick insect, only muscle forces for some motor neuron
frequencies were measured. When constructing the sine curve, Blümel et al. may not
have accounted for motor neuron frequencies less than 30 Hz. Because of this, forces
and stiffnesses measured with normalized frequencies less than 15% should be neglected
when analyzing the sine curve data.

As an alternative to the sine force-length curve in Case A, we created the parabolic
force-length curve in Case B (Fig. 5A and 5B). There are some differences in the mag-
nitude of muscle force related to motor neuron frequency. At 10% of max normalized
frequency, the largest percent difference between the two calculations for FM for every
joint angle was 106%, such a high value can be attributed to the error in the sine curve for
frequencies less than 15% of maximum. However, at higher frequencies, the parabolic
equation better matches the Blümel et al. sine curve. At 80% maximum normalized fre-
quency, the largest percent difference between these two curves was 26%. At maximum
motor neuron frequency, the largest percent difference was 6%. In future work, better
approximations for the biological sine curve will allow for closer approximations for
muscle force. When comparing the stiffness curves in Fig. 8A, Case A creates a notice-
ably greater joint stiffness than Case B, although the general shape of the curves is the
same. Both curves produce a peak stiffness around 20% of maximum motor neuron fre-
quency, and then decrease to a stiffness of about 7 mN·mm at full motor neuron excitation.

The difference in maximum stiffness is probably due to the non-linearity of the peak
shifting noted in Eq. 11. We derived this equation as an approximation of the shifting of
the peak in the sine curve, but its accuracy could be improved e.g., by replacing it with a
second-order Taylor approximation of the sinusoidal relationship from Blümel et al.
2012a. However, because the shape of the stiffness curves in Fig. 8A is similar, we infer
that the parabolic force-length curve does not fundamentally alter the behavior of the
joint.

In Case C, when the peak of the force-length curve, h, is constant, shifting h to be
longer increased the maximum stiffness the joint could produce, shown in Fig. 9. When
the shift of the peak of the force length curve is zero, as in the FCE is largest when the
muscle is at joint equilibrium length, then the joint stiffness does not increase with
increasing motor neuron frequency. For this reason, the maximum force that the muscle
can provide must occur when the muscle is stretched past its length at joint equilibrium
for stiffness to increase with motor neuron activation. The greater this shift, the greater
stiffness the joint can produce. Comparing Case C (linear muscle activation and constant
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peak shift) with Case D (sigmodal muscle activation and constant peak shift), we found
that the non-linear muscle activation creates a non-linear relationship between motor
neuron frequency and joint stiffness. The non-linear relationship between motor neuron
frequency and muscle force also creates a maximum stiffness around 20% of maximum
excitation.

When this peak shift is dependent on activation in Case E, h =  h(f ), the dependency
on motor neuron frequency in Case E increases the stiffness for lower frequencies,
however the stiffness still increases with increasing frequency. This means that when the
peak shift is a function of frequency, the maximum joint stiffness is not changed from
the linear case when h =  0.1 mm, as shown in Case C in Fig. 8A.

Looking at Cases B and D allows us to compare how the stiffness changes with a
peak dependent on motor neuron frequency when the muscle activation is nonlinear.
Looking at Fig. 8A we observe that when the peak shift is dependent on motor neuron
frequency (Case B) the maximum stiffness is much higher than in the constant peak case
(Case D). Therefore, by comparing Cases C to E and Cases B to D we find that when the
peak of the force length curve decreases with respect to motor neuron frequency, the
stiffness that the joint can produce increases for lower motor neuron frequencies.

Lastly, we compare how removing the parallel element affects the stiffness in Cases A
to F and B to G. When the parallel element was removed from the systems the magnitude
of the stiffness decreases by a small amount and does not alter the relationship to motor
neuron frequency, as shown in Fig. 8B. This phenomenon is observed both in the sine
curve based (Case A) function and in the parabola function (Case B). Although including
the parallel element in the model only increases the stiffness by little, the PE also sets the
minimum stiffness the joint can have. If the PE were to be removed from the muscles,
they would be allowed to have zero stiffness when activation is zero. To conclude,
including the parallel element would be necessary for controlling a servo motor for
setting minimum stiffness, but does not have much of an effect on stiffness at higher
motor neuron firing frequencies.

4.3 Application to Robotics

Variable stiffness actuators (or more generally, variable impedance actuators) have been
of interest in the field of robotics for several decades (for a review, see Wolf et al. 2016).
Such actuators are of particular interest in the field of “collaborative robotics” (i.e.,
cobots), which must operate safely around humans (for a review, see Et Zaatari et al.
2019). Recently, some work has been done on modeling the joint stiffness of animals for
use in robotics. Takuma et al. 2011 created a humanoid robot, Kojiro, with tendon-driven
actuators that can resist applied forces from the environment by increasing the stiffness
of joints. Zhang et al. 2022 analyzed the variable stiffness in human joints and
neurological signals and matched them with a variable stiffness actuator to perform a
lifting experiment. In both studies the actuators can change stiffness to adapt to the
environment. However, the actuators in both cases were not just servo motors acting as
a joint. For example, Kojiro’s tendon-drive actuators are elastic bands that act as
tendon and muscle, contracted by servo motors (Takuma et al. 2011). Zhang et al. 2022
implemented an extra stiffening motor with belt and circular springs surrounding the
drive motor to stiffen the joint. These solutions are clever and effective, but add to the
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size, weight, and mechanical complexity of the robot. In the future, we seek to apply the
lessons learned from our current study to develop a software solution to be used with
compact, commercially available smart-servo actuators. Nonetheless, more research is
required to apply principles from animal muscle activation to develop more effective
control strategies for the stiffness of a walking robot’s leg joints in real time.

Acknowledgements. This work was funded by NSF DBI NeuroNex 2015317 to NSS. This work
was also funded by NSF IIS 2113028 to NSS.

References

Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Günther, M.: Intelligence by
mechanics. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 365(1850), 199–220 (2007). https://
doi.org/10.1098/rsta.2006.1911

Blümel, M., Hooper, S.L., Guschlbauer, C., White, E.W., Büschges, A.: Determining all parameters
necessary to build Hill-type muscle models from experiments on single muscles. Biol. Cybern.
106(10), 543–558 (2012a). https://doi.org/10.1007/s00422-012-0530-5

Blümel, M., Guschlbauer, C., Daun-Gruhn, S., Hooper, S.L., Büschges, A.: Hill-type muscle
model parameters determined from experiments on single muscles show large animal-to-
animal variation. Biol. Cybern. 106(10), 559–571 (2012b). https://doi.org/10.1007/s00422-
012-0530-6

Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D
graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288
(2010). https://doi.org/10.1016/j.jneumeth.2010.01.005

El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative industrial tasks:
an overview. Robot. Auton. Syst. 116, 162–180 (2019). https://doi.org/10.1016/j.robot.2019.
03.003

Guschlbauer, C., Scharstein, H., Buschges, A.: The extensor tibiae muscle of the stick insect:
biomechanical properties of an insect walking leg muscle. J. Exp. Biol. 210(6), 1092–1108
(2007). https://doi.org/10.1242/jeb.0272

Hogan, N.: Impedance control: an approach to manipulation: part I—theory. J. Dyn. Syst. Meas.
Contr. 107(1), 1–7 (1985). https://doi.org/10.1115/1.3140702

Houk, J.C.: Regulation of stiffness by skeletomotor reflexes. Annu. Rev. Physiol. 41(1), 99–114
(1979). https://doi.org/10.1146/annurev.ph.41.030179.000531

Matheson, T., Dürr, V.: Load compensation in targeted limb movements of an insect. J. Exp. Biol.
206(18), 3175–3186 (2003). https://doi.org/10.1242/jeb.00534

Shadmehr, R., Arbib, M.A.: A mathematical analysis of the force-stiffness characteristics of mus-
cles in control of a single joint system. Biol. Cybern. 66(6), 463–477 (1992). https://doi.org/
10.1007/BF00204111

Takuma, S., Urata, J., Nakanishi, Y., Okada, K., Inaba, M.: Whole body adapting behavior
with muscle level stiffness control of tendon-driven multijoint robot. In: IEEE International
Conference on Robotics and Biomimetics (2011). https://doi.org/10.1109/robio.2011.6181623

Von Twickel, A., Guschlbauer, C., Hooper, S.L., Büschges, A.: Swing velocity profiles of small
limbs can arise from transient passive torques of the antagonist muscle alone. Curr. Biol. 29(1),

1-12.e7 (2019). https://doi.org/10.1016/j.cub.2018.11.016
Wolf, S., et al.: Variable stiffness actuators: review on design and components. IEEE/ASME Trans.

Mechatron. 21(5), 2418–2430 (2016). https://doi.org/10.1109/TMECH.2015.2501019

https://doi.org/10.1098/rsta.2006.1911
https://doi.org/10.1098/rsta.2006.1911
https://doi.org/10.1007/s00422-012-0530-5
https://doi.org/10.1007/s00422-012-0530-6
https://doi.org/10.1007/s00422-012-0530-6
https://doi.org/10.1016/j.jneumeth.2010.01.005
https://doi.org/10.1016/j.robot.2019.03.003
https://doi.org/10.1016/j.robot.2019.03.003
https://doi.org/10.1242/jeb.0272
https://doi.org/10.1115/1.3140702
https://doi.org/10.1146/annurev.ph.41.030179.000531
https://doi.org/10.1242/jeb.00534
https://doi.org/10.1007/BF00204111
https://doi.org/10.1007/BF00204111
https://doi.org/10.1109/robio.2011.6181623
https://doi.org/10.1016/j.cub.2018.11.016
https://doi.org/10.1109/TMECH.2015.2501019


Model Reveals Joint Properties 19

Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and
motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989). https://doi.org/10.1113/jph
ysiol.1965.sp007626

Zakotnik, J., Matheson, T., Dürr, V.: Co-contraction and passive forces facilitate load compensation
of aimed limb movements. J. Neurosci. 26(19), 4995–5007 (2006). https://doi.org/10.1523/JNE
UROSCI.0161-06.2006

Zhang, X., Huang, L., Niu, H.: Structural design and stiffness matching control of bionic variable
stiffness joint for human-robot collaboration. Biomimetic Intell. Robot. 3, 100084 (2022).
https://doi.org/10.1016/j.birob.2022.100084

https://doi.org/10.1113/jphysiol.1965.sp007626
https://doi.org/10.1113/jphysiol.1965.sp007626
https://doi.org/10.1523/JNEUROSCI.0161-06.2006
https://doi.org/10.1523/JNEUROSCI.0161-06.2006
https://doi.org/10.1016/j.birob.2022.100084

