Dividing Good and Great Items among Agents
with Bivalued Submodular Valuations

Cyrus Cousinsl0000-0002—-1691-0282] ' y/jonesh Viswanathan!0000—0002-6261—6228]
and Yair Zick[0000—0002—0635-6230]

University of Massachusetts, Amherst, MA 01002, USA
{cbcousins, vviswanathan, yzick}Qumass.edu

Abstract. We study the problem of fairly allocating a set of indivisible
goods among agents with bivalued submodular valuations — each good
provides a marginal gain of either a or b (a < b) and goods have decreas-
ing marginal gains. This is a natural generalization of two well-studied
valuation classes — bivalued additive valuations and binary submodular
valuations. We present a simple sequential algorithmic framework, based
on the recently introduced Yankee Swap mechanism, that can be adapted
to compute a variety of solution concepts, including max Nash welfare
(MNW), leximin and p-mean welfare maximizing allocations when a di-
vides b. This result is complemented by an existing result on the compu-
tational intractability of MNW and leximin allocations when a does not
divide b. We show that MNW and leximin allocations guarantee each
agent at least % and ﬁ of their maximin share, respectively, when a
divides b. We also show that neither the leximin nor the MNW allocation
is guaranteed to be envy free up to one good (EF1). This is surprising
since for the simpler classes of bivalued additive valuations and binary
submodular valuations, MNW allocations are known to be envy free up
to any good (EFX).

Keywords: Fair Allocation - Indivisible Goods - Submodular Valuations

1 Introduction

Fair allocation of indivisible goods has gained significant attention in recent
years. The problem is simple: we need to assign a set of indivisible goods to a
set of agents. Each agent has a subjective preference over the bundle of goods
they receive. Our objective is to find an allocation that satisfies certain fairness
and efficiency (or more generally justice) criteria. For example, some allocations
maximize the product of agents’ utilities, whereas others guarantee that no agent
prefers another agent’s bundle to their own. The fair allocation literature focuses
on the existence and computation of allocations that satisfy a set of justice
criteria (see [4] for a recent survey). For example, [26] focuses on computing
envy free up to any good (EFX) allocations while [12] focuses on computing
max Nash welfare allocations. Indeed, as these papers show, computing “fair”
allocations without any constraint on agent valuations is an intractable problem
for most justice criteria [26,12,23].

2 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

Justice Crite- {0,1}-SUB {1,c}-ADD {1,¢}-SUB {a,b}-ADD

rion

Nash Welfare P [5] P[1] P (Theorem 2) NPhQ[1]
Leximin P [5] P (Theorem 3) P (Theorem 3) NPh [1]
p-mean Welfare P [5] P (Theorem 4) P (Theorem 4) NPh [1]

Table 1: The computational complexity of computing various justice criteria
under various valuation classes. a, b and c are positive integers. NPh is short for
NP-hard. SUB is short for submodular and ADD is short for additive.

This has led to a recent systematic attempt to “push the computational
envelope” — identify simpler classes of agent valuations for which there exist
efficiently computable allocations satisfying multiple fairness and efficiency cri-
teria. Several positive results are known when agents have binary submodular
valuations; that is, their valuations exhibit diminishing returns to scale, and the
added benefit of any good is either 0 or 1 [5,7,8,10,29,28]. Other works offer
positive results when agents have bivalued additive preferences, i.e., each good
has a value of either a or b, and agents’ values for a bundle of goods is the sum
of their utility for individual goods [1,3,18,19]. These results are encouraging in
the face of known intractability barriers. Moreover, they offer practical benefits:
binary submodular valuations naturally arise in settings such as course alloca-
tion [29], shift allocation [5] and in public housing assignment [9]. We take this
line of work a step further and study a generalization of both bivalued additive
valuations and binary submodular valuations.

1.1 Owur Contributions

When agents have binary submodular valuations, leximin allocations are known
to satisfy several desirable criteria. An allocation is leximin (or more precisely,
leximin dominant) if it maximizes the welfare of the worst-off agent, then subject
to that the welfare of the second worst-off agent and so on. When agents have
binary submodular valuations, a leximin allocation maximizes utilitarian and
Nash social welfare, is envy-free up to any good (EFX), and offers each agent at
least % of their maximin share [5]. Furthermore, there exists a simple sequential
allocation mechanism that computes a leximin allocation [29].

We consider settings where agents have bivalued submodular valuations. That
is, the marginal contribution of any good is either a or b, and marginal gains
decrease as agents gain more goods. We assume that a divides b, or w.l.o.g. (by
rescaling) that a = 1 and b is a positive integer. When agents have bivalued sub-
modular valuations, unlike binary submodular valuations, leximin allocations no
longer satisfy multiple fairness and efficiency guarantees (see Example 2). Thus,
different justice criteria cannot be satisfied by a single allocation. To address
this, we present a general, yet surprisingly simple algorithm (called Bivalued
Yankee Swap) that efficiently computes allocations for a broad number of jus-
tice criteria. The algorithm (Algorithm 1) is based on the Yankee Swap protocol
proposed by [29]: we start with all goods unassigned. At every round we select

Fair Allocation under Bivalued Submodular Valuations 3

an agent (based on a selection criterion ¢). If the selected agent can pick an
unassigned good that offers them a high marginal benefit, they do so and we
move on. Otherwise, we check whether they can steal a high-value good from an-
other agent. We allow an agent to steal a high-value good if the agent who they
want to steal from can recover their utility by either taking an unassigned good
or stealing a good from another agent. This results in a transfer path where the
initiating agent increases their utility by b, every other agent retains the same
utility, and one good is removed from the pile of unassigned goods. If no such
path exists, the agent is no longer allowed to “play” for high-value goods, and
can either take low-value goods or none at all.

By simply modifying the agent selection criterion ¢, this protocol outputs
allocations that satisfy a number of “acceptable” justice criteria. We think of
justice criteria as ways of comparing allocations; for example, an allocation X is
better than an allocation Y according to the Nash-Welfare criterion if it either
has fewer agents with zero utilities, or if the product of agent utilities under
X is greater than the product of agent utilities under Y. A justice criterion ¥
is acceptable if (informally), it satisfies a notion of Pareto dominance, and if it
admits a selection criterion (also referred to as a gain function) ¢ that decides
which agent should receive a good in a manner consistent with ¥ (see Section
4.1 for details).

Several well-known justice criteria are acceptable (see Table 1). For every
acceptable justice criterion, our result immediately implies a simple algorithmic
framework that computes an allocation maximizing that justice criterion: one
needs to simply implement Algorithm 1 with the appropriate gain function ¢.

To complement our algorithmic results, we further analyze Nash welfare max-
imizing and leximin allocations. We show that neither are guaranteed to even
be envy free up to one good (EF1). This result shows that bivalued submod-
ular valuations signify a departure from both binary submodular and bivalued
additive valuations, where the max Nash welfare allocation is guaranteed to be
envy free up to any good (EFX). While envy-freeness is not guaranteed under
bivalued submodular valuations, we do show that max Nash welfare and leximin
allocations offer approximate MMS (maximin share) guarantees to agents. Specif-
ically, we show that max Nash welfare allocations and leximin allocations are
2

£-MMS and b%a—MMS respectively.

1.2 Related Work

Our work is closely related to works on fair allocation under matroid rank (bi-
nary submodular) valuations. The problem of fair allocation under matroid rank
valuations is reasonably well studied and has seen a surprising number of posi-
tive results. [10] shows that utilitarian welfare maximizing envy free up to one
good (EF1) allocations always exist and can be computed efficiently. [7] shows
that an MMS allocation is guaranteed to exist and can be computed efficiently.
[5] shows that a Lorenz dominating allocation (which is both leximin and maxi-
mizes Nash welfare) is guaranteed to exist and can be computed efficiently. More
recently, [28] presents a general framework (called General Yankee Swap) that

4 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

can be used to compute weighted notions of fairness such as weighted max Nash
welfare and weighted leximin efficiently, in addition to several others. Almost
all of the papers in this field use path transfers in their algorithms [29,28,5,7];
a technique which we exploit as well. Our algorithm (called Bivalued Yankee
Swap) is closely related to the General Yankee Swap framework [28]. However,
due to the complexity of bivalued submodular valuations, the analysis in our
setting is more involved.

Our paper also builds on results for fair allocation under bivalued additive
valuations. 3] shows that the max Nash welfare allocation is envy free up to any
good (EFX) when agents have bivalued additive valuations. [19] showed that an
EFX and Pareto optimal allocation can be computed efficiently under bivalued
preferences. [1] presents an algorithm to compute a max Nash welfare allocation
efficiently when a divides b. This work is arguably the closest to ours. While
their algorithm is different, the essential technical ingredients are the same; their
algorithm uses transfer paths and decompositions as well. However, their analysis
is restricted to bivalued additive valuations and the max Nash welfare allocation.
Our results generalize their work both in terms of the class of valuations and the
justice criteria considered. In a recent follow up work, [2] presents a polynomial
time algorithm to compute a max Nash welfare allocation for the case where
a divides 2b. This case turns out to be surprisingly more complicated than the
case where a divides b, requiring a different set of techniques to manipulate the
high and low valued goods.

Bivalued additive valuations have also been studied in the realm of chores.
[20] and [18] present efficient algorithms to compute an EF1 and Pareto optimal
allocation when agents have bivalued preferences.

2 Preliminaries

We use [t] to denote the set {1,2,...,¢}. For ease of readability, we replace
AU{g} and A\ {g} with A+ g and A — g respectively.

We have a set of n agents N = [n] and m goods G = {g1,92,...,9m}- Each
agent i € N has a valuation function v; : 2¢ — R>o0; v;(S) specifies agent
i’s value for the bundle S. Given a valuation function v, we let A,(S,g) =
v(S+ g) —v(S) denote the marginal utility of the good g to the bundle S under
v. When clear from context, we write A;(.5, g) instead of A, (S, g) to denote the
marginal utility of giving the good g to agent ¢ given that they have already
been assigned the bundle S.

Given a,b € R>g such that a < b, we say that v; is an (a, b)-bivalued sub-
modular valuation if v; satisfies the following three properties: (a) v;(0) = 0,
(b) A;(S,g) € {a,b} for all S C G and g € G\ S, and (c) A;(S,g) > A(T,9)
forall SCT C G and g € G\ T. We use {a,b}-SUB to denote (a,b)-bivalued
submodular valuation functions.

A lot of our analysis uses the class of {0, 1}-SUB valuations. {0,1}-SUB valu-
ations are also known as binary submodular valuations, and have been extensively
studied (see Section 1.2 for a discussion). When a = 0, the valuation function

Fair Allocation under Bivalued Submodular Valuations 5

v; is essentially a scaled binary submodular valuation; specifically, %vi(-) is a
{0,1}-SUB valuation. Existing results under {0, 1}-SUB valuations trivially ex-
tend to {0,b}-SUB valuations as well, and generally offer stronger guarantees
than the ones offered in this work. Thus, we focus our attention on the case
where b > a > 0.

For ease of readability, we scale valuations by a. Under this scaling, all agents
have {1, 2}-SUB valuations. We further simplify notation and replace the value
3 by ¢; under this notation, all agents have {1, c}-SUB valuations where ¢ > 1.
The value of ¢ is the same for all agents. Note that when a divides b, c is a
natural number.

An allocation X = (Xo, X1, Xa,...,X,) is a partition of G into n+1 bundles.
Each X, denotes the bundle allocated to agent i; Xy denotes the unallocated
goods. Our goal is to compute complete allocations — allocations where Xg = ().
We refer to the value v;(X;) as the utility of agent ¢ under the allocation X and
we define the utility vector of an allocation X (denoted by u*X) as the vector
(v1(X1),v2(X2), ..., vn(Xp)).

For ease of analysis, we sometimes refer to 0 as a dummy agent with valuation
function vo(S) = ¢|S] and allocated bundle X,. This is trivially a {1,c}-SUB
function. None of our justice criteria consider agent 0. Our analysis will also use
the following definition of lexicographic dominance.

Definition 1 (Lexicographic Dominance). A wvector y € RY, is said to
lexicographically dominate another vector z € RZ if there exists some k € [n]
such that for all j € [k — 1], y; = zj and yy > zx. This is denoted by Y = 1eq 2.
An allocation X is said to lexicographically dominate another allocation Y if

u~ > lez uY.

2.1 Justice Criteria

We consider three central justice criteria.

Leximin: An allocation X is leximin if it maximizes the least utility in the allo-
cation and subject to that, maximizes the second lowest utility and so on. This
can be formalized using the sorted utility vector. The sorted utility vector of an al-
location X (denoted by s%) is defined as the utility vector
(v1(X1),v2(X2), ..., v.(X,)) sorted in ascending order. An allocation X is lex-
imin if, for no other allocation Y, we have s¥ 1oy s~.

Max Nash Welfare (MNW): Let the set of agents who receive a positive utility
under an allocation X be denoted by Px. An allocation X maximizes Nash
welfare if it first maximizes the number of agents who receive a positive utility
|Px| and subject to that, maximizes the value [[;.p vi(X;) [12].

p-Mean Welfare: The p-mean welfare of an allocation X is defined as
(L3 cn vi(X)P)H/P for p < 1. Since this value is undefined when v;(X;) = 0
for any i € N and p < 0, we modify the definition slightly when defining a max
p-mean welfare allocation. We again denote Py as the set of agents who receive

a positive utility under the allocation X. An allocation X is said to be a max

6 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

p-mean welfare allocation for any p < 1 if the allocation/ maximizes the size of
1/p
Px and subject to that, maximizes (% Y icpy vl-(Xi)p) .

The p-mean welfare functions have been extensively studied in economics
[25], fair machine learning [22,15,14,16,17|, and, more recently, fair allocation
[6]. When p approaches —oo, the p-mean welfare corresponds to the leximin
objective and when p approaches 0, the p-mean welfare corresponds to the max
Nash welfare objective.

Leximin dominance, Nash welfare and p-mean welfare are three ways of com-
paring allocations. More generally, we can think of a justice criterion ¥ as a way
of comparing two allocations X and Y. Notice that we are specifically comparing
the utility vectors of allocations. Therefore, we say allocation X is better than
Y according to ¥ if u® =y uY. To ensure that there indeed exists a ¥ maximiz-
ing allocation, we require that =y be a total ordering over all allocations. An
allocation X is maximal with respect to ¥ if it is not ¥-dominated by any other
allocation, i.e., for any other allocation Y, it is not the case that u¥ =y u*.
For ease of readability, we sometimes abuse notation and use X >y Y to denote

uX b4 uY.

3 Bivalued Submodular Valuations

We now present some useful properties of bivalued submodular valuations that
we use in our algorithms. Informally, we show that the number of high valued
goods in any agent’s bundle corresponds to a binary submodular function. This
allows us to use existing techniques from the fair allocation under binary sub-
modular functions literature in our analysis.

More formally, for each agent i € N 4 0, we define a valuation function
Bi : 29+ Rxg as follows: for any S C G, 3;(S) is equal to the size of the largest
subset T of S such that v;(T) = ¢|T|; that is, 5;(S) = max{|T|: T C S,v;(T) =
¢|T|}. In other words, all the goods in T provide a marginal gain of ¢ to i. 8;(5)
captures the number of goods in S that provide a value of ¢ to . We show that
B; €{0, 1}-SUB.

Lemma 1. For each agenti € N +0 when v; is a {1,c}-SUB valuation, B; is a
binary submodular valuation.

Using B;, we can leverage the properties of binary submodular valuations
used in the fair allocation literature. However, these properties require bundles
to be clean as well, as given by the following definition.

Definition 2 (Clean). For any agent i € N 4+ 0, a bundle S is clean with
respect to the binary submodular valuation B; if 5;(S) = |S|. By definition, this
is equivalent to saying v;(S) = c|S|. An allocation X is said to be clean if for all
agents i € N + 0, B;(X;) = |X;|. By our definition of vg, any bundle S is clean
with respect to the dummy agent 0.

Fair Allocation under Bivalued Submodular Valuations 7

This is similar to the notion of non-wastefulness used in [1] and cleanness
used in [10].

When agents have binary submodular valuations, given a clean allocation X,
we define the exchange graph G(X) as a directed graph over the set of goods. An
edge exists from g to ¢’ in the exchange graph if g € X; and 8;(X; —g+¢') =
B;(X;) for some j € N+0. Since our problem instances have bivalued submodular
valuations, whenever we refer to the exchange graph of an allocation, we refer
to it with respect to the binary submodular valuations {3;}ien.

Let P =(g1,92,...,9¢) be a path in the exchange graph for a clean allocation
X. We define a transfer of goods along the path P in the allocation X as the
operation where g; is given to the agent who has ¢g;_1, g:—1 is given to the
agent who has g;_o and so on till finally g; is discarded. We call this transfer
path augmentation; the bundle X; after path augmentation with the path P is
denoted by X; A P and defined as X; AP = (X; — g¢) ® {95, 9j+1 : 9; € Xi},
where @ denotes the symmetric set difference operation.

For any clean allocation X and agent i, we define F;(X) = {g € G :
Ag,(X;,g9) = 1} as the set of goods which give agent ¢ a marginal gain of 1
under the valuation f;, i.e., the set of all goods that give agent ¢ a marginal
gain of ¢ under v;. For any agent i, let P = (¢1,...,9:) be the shortest path
from F;(X) to X, for some j # i. Then path augmentation with the path P and
giving ¢; to i results in an allocation where i’s value for their bundle goes up by
¢, j’s value for their bundle goes down by ¢ and all the other agents do not see
any change in value. This is formalized below and exists in [7, Lemma 1] and
[29, Lemma 3.7].

Lemma 2 ([7], [29]). Let X be a clean allocation with respect to the binary
submodular valuations {B;}ien+o. Let P = (g1,...,9:) be the shortest path in
the exchange graph G(X) from Fy(X) to X; for somei € N+0 and j € N+0—:.
Define the allocation Y as follows

[xpAP ki
FTYXiAP+g k=i

Then, we have for allk € N —i—j, Br(Yi) = Bu(Xk), Bi(Y:) = Bi(X;) + 1 and
B;(Y;) = B;(X;) — 1. Furthermore, the new allocation Y is clean.

We now establish sufficient conditions for a path to exist. We say there is a
path from some agent i to some agent j in an allocation X if there is a path
from F;(X) to X; in the exchange graph G(X). The following lemma appears in
[29, Theorem 3.8].

Lemma 3 ([29]). Let X and Y be two clean allocations with respect to the
binary submodular valuations {5;}iento. For any agent i such that | X;| < |Y;],
there is a path in the exchange graph G(X) from F;(X) to some good in Xy, for
some k € N + 0 such that | Xy| > |Yi/|.

Unfortunately, unlike binary submodular valuations [10], we cannot make any
allocation clean without causing a loss in utility to some agents. We can however,

8 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

efficiently decompose any allocation into a clean allocation and a supplementary
allocation. For any allocation X, the clean part is denoted using X¢ (since each
good provides a value of ¢ in a clean allocation) and the supplementary allocation
is denoted using X'. The supplementary allocation is a tuple of n disjoint bundles
of G, that is X' = (X{, XJ,..., X}).

The supplementary allocation is not technically an allocation since it is not an
n + 1 partition of G; we call it an allocation nevertheless to improve readability.

Ezample 1. Consider an example with two agents {1, 2} and four goods {g1,...,94}-
Agent valuations are given as follows

v1(S) = ¢|9] v2(S) = cmin{|S|,1} + max{|S| — 1,0}

Consider an allocation X where X7 = {g1,92} and X2 = {g3,94}. Note that
both goods in X; give agent 1 a value of ¢ but only one good in X5 gives agent
2 a value of ¢. A natural decomposition in this case would be

Xg = {94} Xf = {91,92} X§ = {93}
Xi=0 X5 = {g4}

X°¢ is the clean part and X! is the supplementary part. Note that, decompositions
need not be unique. Swapping g4 and g3 in the above allocation would result in
another decomposition.

Formally, X¢ and X! is a decomposition of X if for all agents i € N, we have
We show that a decomposition always exists.

Lemma 4. For any allocation X, there exists a decomposition into a clean al-
location X¢ and a supplementary allocation X' such that for all i € N, we have

Note that by design, X§ contains all the goods in X'!. This is done to ensure
X°€is an n + 1 partition of G. We do not need to do this for X*.

We define the union of a clean allocation X¢ and a supplementary allocation
X1 (denoted X¢U X1!) as follows: for each agent i € N, X; = X¢U X} and
Xo = G\U,cn Xi- This definition holds for any pair of clean and supplementary
allocations and not just decompositions via Lemma 4. It is easy to see that if
an allocation X was decomposed into X¢ and X! (satisfying the properties of
Lemma 4), then X = X¢U X!. We will refer to an allocation X as X = X¢U X"
to denote a decomposition of the allocation (via Lemma 4) into a clean allocation
X°¢ and a supplementary allocation X'. As we saw in Example 1, decompositions
need not be unique. When we use X = X°¢U X!, we will refer to any one of the
possible decompositions. The exact one will not matter.

Finally, we present a useful metric to compare allocations using their decom-
positions. We refer to this metric as domination. To compare two allocations X
and Y, we first compare the sorted utility vectors of X¢ and Y°. If the sorted
utility vector X¢ lexicographically dominates that of Y¢, then X dominates Y;

Fair Allocation under Bivalued Submodular Valuations 9

if the two allocations X ¢ and Y ¢ have the same sorted utility vectors, we com-
pare their utility vectors. If X¢ is lexicographically greater than Y ¢, then X
dominates Y. If X¢ and Y ¢ have the same utility vectors, we compare X and Y
lexicographically. This definition is formalized below. Recall that X and s* de-
note the utility vector and sorted utility vector of the allocation X respectively.

Definition 3 (Domination). We say an allocation X = X°¢U X! dominates
an allocation Y = YUY if any of the following three conditions hold:

(a) 8%° =1ep 87"
(b) sXCV: schand uX = uY”
(c) uX" =u¥" and u® =, u¥

An allocation X is a dominating ¥ mazimizing allocation if no other ¥ maxi-
mizing allocation Y dominates X .

4 Bivalued Yankee Swap

We now present Bivalued Yankee Swap — a flexible framework for fair allocation
under {1, ¢c}-SUB valuations. The results in this section assume that ¢ is a natural
number; in other words, we are interested in {a,b}-SUB valuations where a
divides b.

In the original Yankee Swap algorithm [29], all goods start off initially unallo-
cated. The algorithm proceeds in rounds; at each round, we select an agent based
on some criteria. This agent can either take an unallocated good, or initiate a
transfer path by stealing a good from another agent, who then steals a good from
another agent and so on until some agent steals a good from the pool of unal-
located goods. [29] shows that these transfer paths can be efficiently computed
and are equivalent to paths on the exchange graph. If there is no transfer path
from the agent to an unassigned good, the agent is removed from the game. We
continue until all goods have been assigned. This algorithm can also be thought
of as a variant of the classical matroid path augmentation algorithm where paths
are chosen more carefully so as to maximize a specific justice criterion.

The Bivalued Yankee Swap algorithm is a modified version of this approach.
We start by letting agents run Yankee Swap, but require that whenever an agent
receives a good (by either taking an unassigned good or by stealing a good from
another agent), that good must offer them a marginal gain of ¢. In addition, we
require that every agent who had a good stolen from them fully recovers their
utility, i.e., an agent who lost a good of marginal value ¢, must receive a good
of marginal value ¢ in exchange; an agent who lost a good of marginal value 1
must receive a good of marginal value 1 in exchange. Thus, whenever an agent
initiates a transfer path, that path results in them receiving an additional utility
of ¢, while all other agents’ utilities remain the same. More formally, every agent
starts in the set U. If the agent is able to find a path in the exchange graph to
an unallocated good, we augment the allocation using this path. If the agent is

10 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

unable find a path, we remove them from U. Once the agent is removed from
U, no transfer path exists that can give the agent a value of c. Therefore, if
an agent outside of U is chosen, we provisionally give the agent an arbitrary
unassigned good, offering them a marginal gain of 1. Since all unassigned goods
offer a marginal gain of 1 for every agent not in U, the choice of which good
to allocate to guarantee a value of 1 does not matter. Therefore, we treat this
provisionally allocated good as an unallocated good as well; thereby allowing
transfer paths to steal this good. If this provisionally allocated good gets stolen,
we replace it with another low-value good. The algorithm stops when there are
no unallocated goods left. These steps are described in Algorithm 1.

We use a gain function ¢ to pick the next agent to invoke a transfer path.
Informally, ¢ computes the change in the justice criterion ¥ when a good is
assigned to an agent. The gain function concept is used to compute allocations
satisfying a diverse set of justice criteria in [28], when agents have binary sub-
modular valuations.

More formally, ¢ maps a tuple (uX,4,d) consisting of the utility vector of an
allocation X, an agent ¢ and a value d € {1,c} to a finite real value. The value
#(uX,i,d) quantifies the gain in the justice criterion ¥ of adding a value of d
to the agent 7 given the allocation X. We abuse notation and use ¢(X,1i,d) to
denote ¢p(u”™ i, d).

At each round, we find the agent ¢ € U who maximizes ¢(X,i,c) (implicitly
assuming that ¢ can find a good with a marginal gain of ¢), and the agent
j € N\ U who maximizes ¢(X, j,1) (implicitly assuming that all goods offer j a
marginal gain of 1). We then choose the agent, among i and j, who maximizes ¢;
in the algorithm, these values are denoted by Gain. and Gain;. Ties are broken
first in favor of agents in U and second, in favor of agents with a lower index.
Let us present an example of how Algorithm 1 works, with two candidate gain
functions: Example 2 shows how a leximin allocation and an MNW allocation are
computed for a simple two-agent instance.

Ezample 2. Consider a setting with six goods G = {¢1, ..., gs }, and two additive
agents 1 and 2. Agent 1’s valuation function is v1(S) = |S|, and Agent 2’s
valuation is v2(S) = 5|S|. In other words, Agent 1 values every good at 1, whereas
Agent 2 values every good at 5. We set the gain function to be ¢1exinin(X, 7, d) =
—6v;(X;) + d, to compute a leximin allocation (as per Theorem 3), and run
Algorithm 1. All agents are initially in U, and we compute Gain.,Gain;. In the
first iteration, Gain; = —oo since all agents are in U and Gain, = —6x vy (0)+5 =
5. Both agents 1 and 2 have equal ¢ values so we break ties and choose Agent 1.
However, there is no way to give Agent 1 a good which gives them a marginal
gain of 5. We therefore remove Agent 1 from U.

In the next iteration, Gain, = —6 x v2() +5 = —6 x 0+ 5 = 5, and
Gain; = —6 X v1(0) +1 = 1. Since Gain, > Gain;, we choose Agent 2 to receive
a good. Since they value all the goods at 5, we pick an arbitrary good (say g¢1)
and allocate it to them.

In the next iteration, Gain, = —6xv3(g1)+5 = —6x5+5 = —25 but Gain =
—6 x v1(0) + 1 = 1 still. So we have Gain; > Gain. and we choose agent 1 to

Fair Allocation under Bivalued Submodular Valuations

11

ALGORITHM 1: Bivalued Yankee Swap

Input : A set of goods G, a set of agents N with {1, c}-SUB valuations {vp }ren
and a gain function ¢.
Output: A dominating ¥ maximizing allocation.

1 X°=(X§,Xt,...,X5) « (G,0,...,0) /* X has no goods allocated. */
// Invariant: X stores the provisionally allocated goods as well as
the unallocated goods.
2 X'=(X{,...,X}) < (®,...,0) /* Stores the provisional allocation. */
3 U<+ N /* Set of agents still in play for c valued goods. */
4 while 7, |X1| < |X§| do /* While unallocated goods exist. */
. {maxkeUgb(XCUXl,k,c) U#0Q
5 Gain. =
—00 U=10
o | cains = {maxkeN\U HXUXY k1) N\U#D
—00 N\U=90
7 if Gain. > Gain; then
// Try to give an agent from U a value of c.
8 S < argmax ¢(X°U X' k,¢)
9 i ¢ minses j
10 if a path in the exchange graph G(X€¢) from F;(X°€) to X§ exists then
11 P =(g1,9%,...,9%) + the shortest path from F;(X¢) to X° in G(X°)
// Augment the allocation with the path P and give gi to i
12 Xp+ Xy APforal ke N+0—1i
13 X+ Xi AP+ gy
14 if g, € X]1 for some j € N then
// Replace good stolen from X; with an arbitrary
unallocated good
15 X} + X} — g}, + g for some g € X§\ U, ey Xi
16 else
17 L U+U-—1 /* i is no longer in play for c valued goods. */
18 else if Gain. < Gain; then
// Give an agent from N \ U a value of 1.
19 S ¢+ argmax (XU X'k, 1)
ke
20 1 < minjeg j
21 kXileX}+gforsomeg€X8\UheNX,1l
22 return X°¢U X!

provisionally receive an arbitrary good (say g2). We will have Gain; > Gain,. for
the remaining iterations as well, yielding the allocation X7 = {go,..., 96}, X2 =

{g1}, which is indeed leximin.
By modifying the gain function ¢ to be

X,i,d = v; (X4) (% i
O () {Md 0i(X;) =0

12 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

as per Theorem 2 (where M is a very large number), Algorithm 1 outputs an MNW
allocation. When no goods are assigned, the first iteration proceeds the exact
same way as that of the leximin allocation and Agent 1 is removed from U.

In the second iteration, we have Gain, = 5x M and Gain; = M. Thus, Agent

2 receives a good (say g1). Next, we have that Gain, = ¢(X,2,¢) = vfj(zg(z);)rc =

Q—CC =2, and Gain; = ¢(X,1,1) = M x 1 = M. Now we have Gain; > Gain,, so
Agent 1 gets go. In the next iteration, we still have Gain, = ¢(X,2,¢) = 2—; =2,

but Gain; = ¢(X,1,1) = % = % = 2 as well. Thus, according to our
tiebreaking scheme, we let agent 2 pick a good next, and they get g3. We continue
in a similar manner, and end up with the allocation X; = {g2, 94,96}, X2 =
{91, 93, g5}, which is indeed MNW.

This example also shows how, unlike the binary submodular valuations case,
max Nash welfare and leximin allocations can have significantly different sorted

utility vectors.

4.1 When Does Bivalued Yankee Swap Work?

Bivalued Yankee Swap computes a ¥-maximizing allocation when the following
conditions are satisfied. The conditions are defined for any general vector x but
it would help to think of x,y and z as utility vectors.

(C1) — Symmetric Pareto Dominance Let x,y € Z2, be two vectors. Let
s(x) denote the vector x sorted in increasing order. If for all i € N, s(x); >
s(y)s, then & =y y. Equality holds if and only if s(x) = s(y).

(C2) — Gain Function ¥ admits a finite valued gain function ¢ that satisfies
the following properties:

(G1) Let & € Z%, be some vector, let i, 7 € N be two agents, and dy,ds be
two values in {1,c}. Let y € Z2, be the vector resulting from adding a
value of d; to x;. Let z be the vector resulting from adding a value of ds
to z;. If ¢(x,4,d1) > o(x,j,da), we must have y >y z. Equality holds
if and only if ¢(x,i,d1) = ¢(x, j,ds).

(G2) For any two vectors x,y € Z%,, an agent ¢ € N such that z; < y;
and any d € {1, c}, we must have ¢(x,i,d) > é(y,i,d). Equality holds if
T = Yi-

(G3) For any vector € Z%, and any two agents ¢,j € N, if 2; < z;, then
é(x,i,d) > ¢(x,j,d) for any d € {1,c}. Equality holds if and only if

Ti=Tj-.

There are two differences between our conditions and the conditions of the Gen-
eral Yankee Swap algorithm [28]. First, we strengthen Pareto Dominance to
Symmetric Pareto Dominance (C1). Symmetric Pareto Dominance is not biased
towards any agent and therefore, two allocations with the same sorted utility
vector have the same objective value. As an immediate corollary, weighted no-
tions of fairness like the max weighted Nash welfare objective [13] do not satisfy
Symmetric Pareto Dominance (C1); that is, when agents have weights, two al-
locations with the same sorted utility vector may not have the same objective

Fair Allocation under Bivalued Submodular Valuations 13

value. Second, we introduce (G3) which further strengthens our conditions; (G3)
states that all things being equal, it is better to increase the utility of lower utility
agents than higher utility agents. We conjecture that the justice criteria satis-
fying the conditions (C1) and (C2) correspond exactly to the set of generalized
welfare functions [25, Chapter 3] but are unable to provide a proof. We leave
this question to future work.

Our main result is the following.

Theorem 1. Suppose that all agents in N have {1,c}-SUB wvaluations. Let ¥
be a justice criterion that satisfies (C1) and (C2), with a gain function ¢. Bival-
ued Yankee Swap with the gain function ¢ outputs a dominating ¥-mazimizing
allocation.

To prove this, we first show an important Lemma stating that for any agent
i € N, if there is a path in the exchange graph G(Y°) from F;(Y°) to Y} such
that |Y,?| < [Yf| — 1, then Y is not a dominating ¥ maximizing allocation. We
then use this Lemma to show that when an agent ¢ is removed from U, it happens
at the right time. The main idea is somewhat similar to that of General Yankee
Swap [28] but the arguments require a significantly more careful analysis.

5 Applying Bivalued Yankee Swap

We now turn to applying Theorem 1 to well known fairness objectives. While
we do not prove this explicitly, in all cases, the gain function ¢ can be trivially
computed in time O(7) (where 7 is an upper bound on the time to compute
v;(S) for any i and any 5).

5.1 Max Nash Welfare

Recall that a max Nash Welfare allocation X is one that maximizes the number
of agents | Px| who receive a non-zero utility, and subject to that maximizes the

product [[;cp, vi(Xi).

Theorem 2. When ¥ corresponds to the Nash welfare, Bivalued Yankee Swap
run with the following gain function ¢yyy computes a Nash welfare mazimizing
allocation.

ouny(X,i,d) = vilX) vi(Xi) > 0
Md ’Ui(Xi) =0

where M is a very large positive number.

5.2 Leximin

Recall that a leximin allocation is one that maximizes the utility of the worst off
agent, subject to that, maximizes the utility of the second worst off agent, and
SO on.

14 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

Theorem 3. When ¥ corresponds to the leximin fairness objective, Bivalued
Yankee Swap run with the gain function @reginin(X,i,d) = —(c+ Dvi(X;) +d
computes a leximin allocation.

5.3 p-mean Welfare

Recall that the max p-mean welfare allocation X first maximizes the number

of agents who receive a positive utility |Px| and subject to that, maximizes
1/p
My(X) = (711 > icpy vi(Xi)p> where p < 1. We have already shown how

to compute this justice criterion for certain p values: My corresponds to Nash
welfare (Section 5.1) and M_., corresponds to leximin (Section 5.2). We now
show how to compute a p-mean welfare maximizing allocation for all the other
p-values.

Theorem 4. When ¥ corresponds to the p-mean welfare objective with finite
p <1 and p # 0, Bivalued Yankee Swap run with the following gain function
computes a p-mean welfare allocation.

(Ui(XZ) =+ d)p — Ul'(Xi)p pE (0, 1) and ’Uz(Xl) >0
Op-w(X,0,d) = S v (X;)P — (vi(X;) +d)P p <0 and vy (X;) >0
Md vi(Xi) =0

where M is a very large number.

Note that Theorem 4 does not include the case where p = 1. This is because
the gain function ¢(X,i,d) = d does not satisfy (G3). The case where p = 1
corresponds to the utilitarian social welfare (USW) of an allocation. While we can
construct a valid gain function to compute a USW optimal allocation, we do not
need to. There exists an efficient algorithm for computing a USW optimal alloca-
tion without using Bivalued Yankee Swap; that is, compute a clean utilitarian
welfare maximizing allocation with respect to the binary submodular valuations
{Bi}ien and allocate the remaining goods arbitrarily.

5.4 When c is not a Natural Number

If ¢ is not a natural number (or equivalently, a does not divide b), the complexity
of the problem increases significantly and Bivalued Yankee Swap no longer works.
This complexity is captured by [1], who show that computing MNW allocations
under bivalued additive valuations when a € N>; and b € N>, are coprime is
NP-hard. More formally, they show that for every coprime ¢ > 3 and b > a,
the problem of computing an MNW allocation is NP-hard. Note that this hardness
result does not cover the case where a = 2; this case has been recently shown to
be in P for additive valuations [2] but remains open for submodular valuations.

Fair Allocation under Bivalued Submodular Valuations 15

6 Maximin Share Guarantees of MNW and Leximin
Allocations

We explore the maximin share guarantees of leximin and max Nash welfare
allocations. The maximin share of an agent ¢ € N (denoted by MMS;) is defined
as the utility agent ¢ would receive if they divided the set of goods G into n
bundles and picked the worst one (according to their preferences). More formally,
MMS; = maxx min ey v;(X;). An allocation X is defined as e-MMS for some ¢ >
0 if for all agents i € N, v;(X;) > eMMS; [11,27]. When agents have binary
submodular valuations, both the max Nash welfare and the leximin allocation
1

are guaranteed to be 5-MMS. We prove the following two results about bivalued

submodular valuations.

Theorem 5. Let ¢ be an integer > 2. When agents have {1, c}-SUB valuations,
then any max Nash welfare allocation X is %-MMS.

Theorem 6. Let ¢ be an integer > 2. When agents have {1, c}-SUB valuations,
then any leximin allocation X s CJ%Q—I'ﬂlfs.

It is worth noting that the best known MMS-guarantee for submodular valu-

ations is § [21]. Theorem 5 shows that the max Nash welfare allocation offers

better MMS guarantees, albeit for a restricted subclass of submodular valuations.

7 Envy-Freeness of MNW and Leximin Allocations

Our final technical section deals with the envy-freeness of max Nash welfare and
leximin allocations. An allocation X is envy free up to one good (EF1) if for
all agents 4,7 € N, v;(X;) > v;(X;) or there exists a good g € X, such that
v;(X;) > vi(X; — g) [11,24]. An allocation is envy free up to any good (EFX) if
for all agents ¢,j € N, and for all goods g € X, we have v;(X;) > v;(X; — g)
[12].

Under binary submodular valuations, both the leximin and MNW allocations
are known to be EFX [5]. Under bivalued additive valuations, MNW allocations
are known to be EFX [3]. However, we now show that neither MNW nor leximin
allocations are EF1 under bivalued submodular valuations.

Proposition 1. For every integer ¢ > 2, neither the max Nash welfare nor the

leximin allocation is guaranteed to be EF1 under {1, c}-SUB valuations.

8 Conclusions and Future Work

In this work, we study fair allocation under bivalued submodular valuations. Our
insights about this class of valuation functions enable us to use path transfers
to compute allocations which satisfy strong fairness and efficiency guarantees.

16 Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

As the first work to study bivalued submodular valuations, we believe our
results are merely the tip of this iceberg. We believe that several other positive
results can be shown, specifically with respect to MMS guarantees. It is unknown
whether MMS allocations exist for this class of valuations. Prior results show
that, while they may not exist under general submodular valuations [21], they
indeed exist for the simpler classes of bivalued additive valuations [18] and bi-
nary submodular valuations [7]. Resolving this problem for bivalued submodular
valuations is a natural next step.

We also believe extending these results and the technique of path transfers
beyond bivalued submodular valuations is a worthy pursuit. It is unlikely that we
will be able to compute optimal MNW or leximin allocations due to several known
intractability results. However, we conjecture that it is possible to use a Yankee
Swap based method to compute approximate max Nash welfare allocations for
more general classes of submodular valuations. One specific class of interest is
that of trivalued submodular valuations, e.g. the marginal gain of each good is
either 0, 1 or ¢ > 1. We intend to explore this class in future work.

Acknowledgements The authors would like to thank anonymous WINE 2023
reviewers for useful comments. Viswanathan and Zick are funded by the National
Science Foundation grant I1S-2327057.

References

1. Akrami, H., Chaudhury, B.R., Hoefer, M., Mehlhorn, K., Schmalhofer, M.,
Shahkarami, G., Varricchio, G., Vermande, Q., van Wijland, E.: Maximizing nash
social welfare in 2-value instances. In: Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI) (2022)

2. Akrami, H., Chaudhury, B.R., Hoefer, M., Mehlhorn, K., Schmalhofer, M.,
Shahkarami, G., Varricchio, G., Vermande, Q., van Wijland, E.: Maximizing nash
social welfare in 2-value instances: The half-integer case. CoRR abs/2207.10949

2022

3. (Aman)atidis, G., Birmpas, G., Filos-Ratsikas, A., Hollender, A., Voudouris, A.A.:
Maximum nash welfare and other stories about efx. Theoretical Computer Science
863, 69-85 (2021)

4. Aziz, H., Li, B., Moulin, H., Wu, X.: Algorithmic fair allocation of indivisible items:
A survey and new questions. CoRR abs/2202.08713 (2022)

5. Babaioff, M., Ezra, T., Feige, U.: Fair and truthful mechanisms for dichotomous
valuations. In: Proceedings of the 35th AAATI Conference on Artificial Intelligence
(AAAI). pp. 5119-5126 (2021)

6. Barman, S., Bhaskar, U., Krishna, A., Sundaram, R.G.: Tight Approximation Al-
gorithms for p-Mean Welfare Under Subadditive Valuations. In: Proceedings of the
28th Annual European Symposium on Algorithms (ESA). pp. 11:1-11:17 (2020)

7. Barman, S., Verma, P.: Existence and computation of maximin fair allocations un-
der matroid-rank valuations. In: Proceedings of the 20th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS). pp. 169-177 (2021)

8. Barman, S., Verma, P.: Truthful and fair mechanisms for matroid-rank valuations.
In: Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)
(2022)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Fair Allocation under Bivalued Submodular Valuations 17

Benabbou, N., Chakraborty, M., Elkind, E., Zick, Y.: Fairness towards groups of
agents in the allocation of indivisible items. In: Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). pp. 95-101 (2019)
Benabbou, N., Chakraborty, M., Igarashi, A., Zick, Y.: Finding fair and efficient al-
locations for matroid rank valuations. ACM Transactions on Economics and Com-
putation 9(4) (2021)

Budish, E.: The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes. Journal of Political Economy 119(6), 1061 — 1103
(2011)

Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.:
The unreasonable fairness of maximum nash welfare. In: Proceedings of the 17th
ACM Conference on Economics and Computation (EC). p. 305-322 (2016)
Chakraborty, M., Igarashi, A., Suksompong, W., Zick, Y.: Weighted envy-freeness
in indivisible item allocation. ACM Transactions on Economics and Computation
9 (2021)

Cousins, C.: An axiomatic theory of provably-fair welfare-centric machine learning.
In: Proceedings of the 35th Annual Conference on Neural Information Processing
Systems (NeurIPS). pp. 16610-16621 (2021)

Cousins, C.: Bounds and Applications of Concentration of Measure in Fair Machine
Learning and Data Science. Ph.D. thesis, Brown University (2021)

Cousins, C.: Uncertainty and the social planner’s problem: Why sample complexity
matters. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency (2022)

Cousins, C.: Revisiting fair-PAC learning and the axioms of cardinal welfare. In:
Artificial Intelligence and Statistics (AISTATS) (2023)

Ebadian, S., Peters, D., Shah, N.: How to fairly allocate easy and difficult chores.
In: Proceedings of the 21st International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS). p. 372-380 (2022)

Garg, J., Murhekar, A.: Computing fair and efficient allocations with few utility
values. In: Proceedings of the 14th International Symposium on Algorithmic Game
Theory (SAGT). pp. 345-359. Springer International Publishing (2021)

Garg, J., Murhekar, A., Qin, J.: Fair and efficient allocations of chores under bi-
valued preferences. In: Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI) (2022)

Ghodsi, M., HajiAghayi, M., Seddighin, M., Seddighin, S., Yami, H.: Fair allocation
of indivisible goods: Improvements and generalizations. In: Proceedings of the 19th
ACM Conference on Economics and Computation (EC). pp. 539-556 (2018)
Heidari, H., Ferrari, C., Gummadi, K., Krause, A.: Fairness behind a veil of igno-
rance: A welfare analysis for automated decision making. In: Advances in Neural
Information Processing Systems. pp. 1265-1276 (2018)

Kurokawa, D., Procaccia, A.D., Shah, N.: Leximin allocations in the real world.
ACM Transactions of Economics and Computation 6(3-4) (2018)

Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations
of indivisible goods. In: Proceedings of the 5th ACM Conference on Economics and
Computation (EC). p. 125-131 (2004)

Moulin, H.: Fair division and collective welfare. MIT Press (2004)

Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. STAM
Journal on Discrete Mathematics 34(2), 1039-1068 (2020)

Procaccia, A.D., Wang, J.: Fair enough: Guaranteeing approximate maximin
shares. In: Proceedings of the 15th ACM Conference on Economics and Com-
putation (EC). pp. 675-692 (2014)

18

28.

29.

Cyrus Cousins, Vignesh Viswanathan, and Yair Zick

Viswanathan, V., Zick, Y.: A general framework for fair allocation with matroid
rank valuations. In: Proceedings of the 24th ACM Conference on Economics and
Computation (EC) (2023)

Viswanathan, V., Zick, Y.: Yankee swap: a fast and simple fair allocation mecha-
nism for matroid rank valuations. In: Proceedings of the 22nd International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS) (2023)

	Dividing Good and Great Items among Agents with Bivalued Submodular Valuations

