
A Simple Dynamic Controller for Emulating

Human Balance Control

J. Stu McNeal(B) and Alexander Hunt

Department of Mechanical and Materials Engineering, Maseeh College of Engineering and
Computer Science, Portland State University, Portland, OR 97201, USA

mcneal@pdx.edu

Abstract. This paper presents a biologically inspired control system developed
for maintaining balance in a simulated human atop an oscillating platform. This
work advances our previous research by adapting a human balance controller to
an inverted pendulum and controlled by linear-Hill muscle models. To expedite
neuron/synapse parameter value selection, we employ a novel two-stage process
that pairs a previously developed analytic method with particle swarm optimiza-
tion. Using the parameter values found analytically as inputs for particle swarm
optimization (PSO), we take advantage of the benefits of each method while
avoiding their pitfalls. Our results show that PSO optimization allowed improved
balance control from modest (<10%) changes to the synaptic parameters. The
improved performance was accompanied by muscle coactivations, however, and
further refinement is needed to better align overall behavior of the neural controller
with biological systems.

Keywords: Neural Controller · Balance Control · Functional Subnetwork
Approach · Particle Swarm Optimization

1 Introduction

Robots and neural networks are gaining in popularity, but studies that make use of
synthetic nervous systems (SNSs) as robotic controllers, especially in motor control
applications, have thus far not found much traction in the research community. Most
studies are preoccupied with image processing, pattern recognition, or decision-making
(e.g. [1–3]). Here we pause to draw a distinction between SNS models such as the
one used in this study, and artificial- or recurrent neural networks (ANNs or RNNs),
namely that the former features neurons and synapses governed by differential equations
(see §2.1 below) that make them behave similarly to the structures they mimic. Of the
works interested in the motor control of SNS-driven robots, most explore the utility
of CPGs (e.g. [4–6]), with few concerned with balance control. This work presents a
novel approach in developing a muscle-actuated adaptive balance controller driven by a
synthetic nervous system.

This work was supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC
next Generation Networks for Neuroscience Program

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Meder et al. (Eds.): Living Machines 2023, LNAI 14158, pp. 227–239, 2023.
https://doi.org/10.1007/978-3-031-39504-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39504-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-39504-8_16


228 J. S. McNeal and A. Hunt

It is our hypothesis that the addition of numerical optimization to our previously
developed analytic methods [7], will enable a synthetic nervous system (SNS) to dynam-
ically balance a muscle-actuated inverted pendulum. We test our hypothesis by adapting
our previously developed SNS-driven balance controller [8] to be more biorealistic by
replacing the torque-controlled motor with simulated muscles and refining the values of
the parameters with particle swarm optimization. Our results show the viability of the
method and allow us to more quickly and accurately find parameter values that produce
desirable model behaviors.

2 Background

One of the primary inspirations for this work is the balance studies of Peterka (2002,
2003) [23]. During the experiments, the balance of patients with severe vestibular con-
ditions was measured by situating them atop an oscillating platform and securing their
trunk and legs to a vertical plank that restricted bulk motion to bending at the ankle
(Fig. 1, left). The patients were subjected to a pseudorandom stimulus that tilted their
feet back and forth along the sagittal plane. Angle and velocity data were collected
from sensors situated at the ankle. Their results introduced the common “Independent
Channel” bipedal balance control model that connects weighted sensory inputs to mus-
cle activations, and was later validated by [24] using PostuRob II. Peterka’s subsequent
2003 study [25] repeated the analysis on a subset of the original study focusing on
patients whose inputs were limited to proprioception and found that the best control
equation that described the human balance data was a PD controller with force feedback
and passive muscle dynamics (see Fig. 2,[25]). This control equation was used as the
basis for the Hilts et al., (2018) SNS model [8], which was adapted for use here. The
Hilts SNS incorporated force feedback but not passive muscle dynamics since it drove
a torque motor rather than muscles.

The present study extends our previous work, in which an SNS emulated
proprioception-based human balance control on an inverted pendulum controlled by
a torque motor [8, 9]. Here, we employ a novel two-stage approach to parameter value
selection. To understand the theoretical framework used in this study, an understanding
of two subjects is required: the functional subnetwork approach (FSA) constraint equa-
tions that begin in §2.1 with a description of the neurons and synapses used, and particle
swarm optimization (PSO).

2.1 Neurons and Synapses

The neuron model used in this study is a conductance-based non-spiking variant [10, 11],
chosen because it captures neuronal subthreshold behavior while keeping computational
costs low. Another benefit of this model is that it allows a single neuron to represent the
aggregate behavior of a population of neurons [12]. The mathematical framework starts
with calculating the membrane voltage V as the sum of various currents I:

Cm

dV

dt
= Ileak + Isyn + Iapp, (1)



A Simple Dynamic Controller for Emulating Human Balance Control 229

where the leak and synaptic currents can be modeled as:

Ileak = Gm · (Er − V ) (2)

Isyn =
∑n

i=1
Gs,i ·

(

Es,i − V
)

(3)

and Iapp is an optional applied current. Here Cm is the membrane capacitance, Gm and Gs

are the neuronal and synaptic conductance, respectively. The reversal potentials, E, are
in units of mV and the subscripts indicate whether they apply to the membrane (i.e. Er)
or the synapse (Es). The synaptic conductance, Gs,i, is envisioned as a piecewise-linear
function for simplicity:

Gs,i =

⎧

⎪

⎨

⎪

⎩

0, if Vpre ≤ Elo,

gs,i ·
Vpre−Elo

Ehi−Elo
, if Elo ≤ Vpre ≤ Ehi,

gs,i, if Vpre ≥ Ehi.

(4)

where gs,i represents the synapse’s maximum conductance, Elo and Ehi represent the
lower threshold and saturation, respectively. Here we introduce the variable R = Ehi−Elo

that describes the operating range of the network, in mV. For this study, we assign a value
of R = 20 mV. Also, we introduce �Es = Es,i − Er,post , where Er,post is the resting
potential of the post-synaptic neuron. Based on the design rules set forth in [7], parameter
value selection is primarily a matter of estimating the values of gs,i and �Es.

2.2 Functional Subnetwork Approach

The functional subnetwork approach (FSA) refers to a set of constraint equations ana-
lytically derived by [7], that provide design rules that can be used to build subnetworks
for specific mathematical functions (i.e. addition, subtraction, etc.). The constraints are
based on the observation that small clusters of neurons can be envisioned as mathe-
matical operators, leading to their classification of synapses as being either for signal
transmission or signal modulation. FSA allows designers to analytically develop net-
works that perform mathematical operations and to quickly find parameter values for
the model. We refer the reader to [7] for the full derivation.

While the FSA provides a vehicle with which to find parameter values, the output
constraint equations rely on simplifications that can introduce error [7]. As a result, some
additional tuning of parameters is often required for optimal model behavior.

2.3 Particle Swarm Optimization

To further tune the SNS, we implement particle swarm optimization (PSO), a metaheuris-
tic genetic algorithm created in 1995 by Kennedy and Eberhart [13]. It was originally
envisioned for deployment in describing natural systems [14], as a simplified social
milieu of collision-proof birds and fish [13]. PSO was quickly applied to optimization
problems with success and has since been the subject of much interest and study. PSO



230 J. S. McNeal and A. Hunt

makes use of parameter sets (swarms) called particles (Xt) that move through the solu-
tion space at some velocity (V ) determined by some error measurement (Xi). This study
makes use of the PSO framework where

Vt+1 = w ∗ Vt + c1r1
(

Pbest,i − Xi

)

+ c2r2
(

gbest,i − Xi

)

(5)

Xt+1 = Xt + Vt+1 (6)

with Eq. (4) having three terms that we call the inertia term, personal term, and group
term, from left to right, respectively. The inertia term, which describes the particle’s
previous velocity, is weighted by w, and the personal and group terms contain a random
number 0 ≤ r1,2 ≤ 1 and a weighting variable c1,2 that scale the calculated error in
the solution space. The new velocity Vt+1 is the sum of the weighted inertial term plus
weighted inputs based on comparisons of the current error Xi with the particle’s personal

best configuration, Pbest,i, and the best group configuration, gbest,i.
Rapid convergence is a hallmark characteristic of PSO but can lead to swarm stag-

nation if the early solution is sub-optimal [15]. Some modified methods have attempted
to address this, with varying degrees of success. Some efforts, for example, have found
means of guaranteeing convergence (GCPSO) (see [16]), but these algorithms require a
priori solution knowledge and have shown to perform similarly to PSO in multimodal
problems [15]. Riget and Vesterstrom (2002) implemented a scheme that alternated
attraction and repulsion phases, resulting in better algorithm performance that scaled
with model dimensionality [17]. Silva et al., 2002 utilized a predator particle that forces
other particles to disperse [18]. While these latter strategies proved effective, they intro-
duce further complexity and computational cost to the effort. Veeramachaneni et al.
(2003) sought to avoid stagnation by slowing convergence using at fitness-distance-ratio-
PSO [19]. This study addresses stagnation by setting the weights such that increment is
slowed by small parameter values. Here w was set to 0.8 and both c values in Eq. (5)
were set to 0.1 so that the overall influence of the personal and group terms was 10%
per epoch.

Although PSO converges quickly, the algorithm’s continuous reliance on gbest means
that particles naturally move toward convergence. This behavior makes PSO ill-suited
to deployment in vast solution spaces, which is a significant barrier for SNSs and ANNs
alike. To combat this and access PSO’s rapid convergence, several studies have shown
the utility of pre-seeding the particles so that they are proximal to solution troughs.
Parsopolous and Vrhatis (2002) [20] initialized particles using Nelder-Mead (1965)’s
Nonlinear Simplex Method NSM [21]. While the NSM overhead added to the overall
cost, the benefits could be significant. Trelea (2003) added to this effort by adding
evidence-based guidance on this while investigating the exploration-exploitation tradeoff
inherent to optimization algorithms [22]. This study bypasses this limitation by using
FSA output parameter values as a seed for PSO.

3 Experimental Methods

Physical Model. A physical model was developed that approximates the humans tested
during the balance trials (Fig. 1, right) [23]. Wherever possible, physical model parame-
ters represent the average physical characteristics of the patients who participated in the



A Simple Dynamic Controller for Emulating Human Balance Control 231

original study. Average height (165 cm), mass (60 kg), and center of mass (80 cm) were
used. The model, henceforth called the block person, consists of a single body and a foot
situated atop an oscillating platform. A simple hinge joint between the body and the foot
represented the ankle joint and was controlled by two muscles, situated contralaterally
on the posterior and anterior sides of the lower portion of the body. Thus, balance is
maintained by actuating either the anterior or posterior muscle, controlled by the SNS.
Note that no effort was made to consider human physiology when creating or placing
the linear-Hill muscle models (see [26]) between the lower section of the body and the
feet. However, the model does capture the basic mechanics of actuation that connect an
input signal to muscle activation. Angle data from the ankle joint is transformed to an
applied current and sent to the SNS and used as an input for balance control.

Fig. 1. (Left) Human on platform during balance experiments. (Right) Human balance control
model generated in AnimatLab [27]. Lines indicate analogous elements. Red: body, blue: ankle
joint, green: foot. Image on left courtesy of [23]

Hill Muscles. AnimatLab makes use of a linear-Hill muscle model. While the modeled
muscles do not precisely mimic the detailed properties of the muscles they emulate, they
readily capture the essential relationships between force, length, and velocity that under-
lie their biological counterparts. The muscles consist of a serial spring with coefficient
kse with a parallel combination of a force actuator A, dashpot with damping coefficient
b, and a parallel spring with coefficient kpe. Contractile tension T is generated by the
model when one or more motor neurons depolarize the muscle membrane, according to

dT

dt
=

kse

b

(

kpex + bẋ −

(

1 +
kpe

kse

)

· T + A

)

(7)

where x is the displacement of the resting muscle length, x = l − lrest . Actuation A

is the product of a sigmoid adapter, Am, and a length-tension component, Al , such that
A = Am ∗ Al . The sigmoid adapter equation,

Am =
Fmax

1 + eC(Vo−V ) + B
, (8)



232 J. S. McNeal and A. Hunt

relates the maximum muscle force Fmax to the motor neuron membrane voltage V by a
slope coefficient C. Vo and B control the V and F offsets, respectively. The length-tension
relation scales A according to

Al = 1 −
x2

l2
width

= 1 −
(l − lrest)

2

l2
width

(9)

where lwidthis the length at which the muscle can no longer produce force.
Implementation of the linear-Hill muscle model in AnimatLab was accomplished by

setting the necessary coefficient values. Wherever possible, reference values were chosen
as the average from values representing people in the 45–69-year range, the demographic
containing the patients in the balance experiments. For this study, Fmax (2300 N) was
estimated based on data presented in Thelen (2003) [28]. Since the SNS model operates
between −40 mV and −60 mV, the upper and lower limits, respectively, Vo was set to
−50 mV. Steepness (530 N/mV) is simply the slope of the sigmoid at Vo. lrest (40 cm)
is estimated as the length of the lower leg, deduced by subtracting the average length of
the upper leg (~41.4 cm)1 from half of the overall body height (82.5 cm). lwidth (2.6 cm)
was calculated by manipulating Eq. (9) and represents the length at which <1% tension
can be attained. Finally, kse (575 KN/m) was set according to data from [29], and kpe

(9.75 KN/m) was set based such that the muscle deflects 4% of its upper limit under
maximum loading conditions [30].

SNS. The Hilts SNS model is a faithful representation of the transfer function from
Peterka (2003) describing a PD controller + force feedback [25]. A passive time delay
was incorporated into the model in the form of lengthened time constants in the feedback
gain loop. The model was adapted for use in this study and is shown in Fig. 2. The ankle
joint angle θ serves as the input and is mapped such that −R/2 ≤ θ ≤ R/2, and is
transformed to an applied current that bounds the receiving neuron, θnow, between −

40 mV and −60 mV. Since the calculations made by the SNS model must be “positive”
and align with the relative value of the input and output neurons, error calculations
are made in parallel such that the reference voltage (−50 mV) is subtracted from the
incoming θ voltage, and vice versa. The difference is conveyed along excitatory synapses,
and out-of-bounds (i.e. inhibitory) values are ignored. To account for this limitation, the
model is symmetrical about the horizontal midline (Fig. 2) with most structures featured
twice. The SNS model is configured such that the neurons in the top half are active when
the body is rotated counterclockwise relative to the foot and the neurons in the bottom half
are active when the body is rotated clockwise relative to the foot. Structures appearing
equivalently in the CW and CCW halves were grouped during the optimizations. The
network outputs muscle activation to the CW and CCW muscles from the Sum neurons
that represent the sum of the Kp and Kd pathways. The Kt force feedback circuit functions
to minimize steady state errors (see Eq. 6, [31]). Parameter values were initially set to
those reported in [8] and according to the FSA constraints.

Optimization. Gain in the Hilts SNS is the product of a tonic input current and the
parameter it attenuates, manifested as multiplication subnetworks as described by [7].

1 See Table 29, https://www.cdc.gov/nchs/data/series/sr_03/sr03-046-508.pdf.

https://www.cdc.gov/nchs/data/series/sr_03/sr03-046-508.pdf


A Simple Dynamic Controller for Emulating Human Balance Control 233

Fig. 2. The synthetic nervous system (SNS) developed by Hilts (2018) and modified for use in
this study. For this study, a new system identification was performed using PSO.

For example, the Kp neuron (Fig. 2) receives a tonic stimulus and is multiplied times θerr

atKp · θerr . The multiplications subnetworks are comprised of a single excitatory neuron
and two inhibitory neurons with synapse Es-gs values set identically (e.g., synapses 16 =

17 = 32). Consequently, each SNS gain circuit is comprised of two sets of Es-gs values
and a tonic stimulus. To avoid mathematically ambiguous solutions, optimization of the
gain circuits was done in two steps, beginning with finding optimized tonic stimulus
values. In total, two optimizations were performed. The parameters optimized during
the experiment are shown with their start/end values in §4 in Tables 1 and 2.

To perform the PSO, python code was written that implements PSO and iterates
AnimatLab simulation files in a standalone capacity, saving time and computational cost.
Optimizations are divided into epochs that begin by assigning new parameter values to
each particle, using Eqs. (5) and (6). For each particle during an epoch, the code.

• Writes a standalone AnimatLab file using the newly calculated parameter values.
• Runs an AnimatLab iteration using the file generated in the previous step.
• Reads from the AnimatLab text file and fetches the output orientation data for the

platform and the block person.
• Calculates the particle error. Error estimations are comprised of three calculations that

measure θplatform- θperson variance, muscle tensions T{CW ,CCW } (a proxy for preventing
muscle coactivation), and a muscle activation roughness metric that addresses SNS
instabilities. Each error element is scaled such that muscle activation is the most
heavily penalized component, and curve roughness is the least. The error for each
particle is calculated after each iteration according to:

Error = eangles + etensions + erough (10)



234 J. S. McNeal and A. Hunt

where

eangles =
1

θmax

· sqrt
(

mean
(

(

θplatform − θperson

)2
))

(11)

etensions =
1

Tmax

· sqrt
(

mean
(

(T − (TCW + TCCW ))2
))

(12)

erough = (mean(abs(diff (TCW ))) + mean(abs(diff (TCW )))) ·
1

2
− φ (13)

Here θmax represents the largest difference in angle allowed by the physical model (8
◦), Tmax is the maximum value of T , calculated based on the static torque needed at
θ = θmax. For erough, an offset φ is imposed to scale output values (i.e. erough → 0) for
target performance.

• Returns the error data matrix to the PSO manager.

The PSO manager then calculates new parameter values (velocities) according to
Eqs. (5) and (6) and a new epoch begins. This code is on the AARL GitHub repository
and available to the public.

Test Conditions. During the experiments, the oscillating platform, which mapped to
oscillations described by a cosine wave θ = sin(t), where θ is in degrees and t is in
seconds, from π ≤ t < 60. This configuration differs from the original experiments
in that it only captures a single frequency, although it represents the maximum point-
to-point variance of 4 degrees used for the patients with vestibular issues. Error was
calculated on values during the interval from π ≤ t < 60 seconds according to Eq. (10).
Since PSO convergence conditions are difficult to establish analytically [32], tests were
performed to establish convergence based on parameter variance across the particles
optimized. Bench tests showed the lowest variance occurred at about 60 epochs and 20
particles. Trials performed during the experiments incorporated 20 particles and 200
epochs, and the output solution was the particle configuration with the lowest overall
error, gbest from Eq. (5).

4 Results

Figure 3 shows a comparison the block body orientation in various solution stages plotted
with the platform orientation. During the simulations, the overall goal of the model
was to actuate the muscles such that the body and platform maintained alignment. For
reference, line (2) shows the output orientation of the block body when the muscles
failed to actuate: the body slumped to one side and remained stationary for the duration
of the run. Line (3) shows orientation after FSA-guided parameter value selection. The
muscles actuated, but the behavior is erratic and the muscles are overcompensating. Line
(4) shows orientation after FSA and PSO optimization. The body tracks well with the
platform as it oscillates and the phase lag appears to show a delay similar to that seen in
human balance control.



A Simple Dynamic Controller for Emulating Human Balance Control 235

Fig. 3. Orientation of the oscillating platform (1) plotted with block person orientation for various
solutions. (2) shows the results where the muscles failed to support the body and slumped to
one side, (3) shows orientation after setting synapse parameters according to FSA constraints,
indicating a partial solution, and (4) shows body orientation after FSA and PSO solution.

Tables 1 and 2 show the optimized parameter values before and after PSO. Since
the mass and overall dimensions of the block body are much larger than that of Hilts’
inverted pendulum, gain values are expected to be lower in this study. The tonic stimulus’
shown in Table 1 decreased overall, with a 2/3 reduction to Kd and about an order of
magnitude for the Kd and Kt inputs. Parameter value change during PSO was modest
overall (<10%), with the largest shift to gs in the inhibitive side of the Kt circuit.The
modesty of the changes by PSO lend further validate the analytic methods performed
ahead of this work.

Table 1. Neuronal parameters from Hilts SNS optimized by during the first PSO of this study.

Neuron Parameter Hilts PSO

Kd Stim Current, IApp (nA) 12.5 4.2

Kp Stim Current, IApp (nA) 13.5 1.42

Kt Stim Current, IApp (nA) 0.8 0.08



236 J. S. McNeal and A. Hunt

Table 2. Synapse parameters before and after PSO optimization. Type refers to whether the
synapse is excitatory (+) or inhibitory (-). * hand-tuned prior to PSO to stabilize SNS behavior.

Circuit Synapses Type Es(mV) gs(μ S)

Hilts PSO diff (%) Hilts PSO diff (%)

Kp 5, 22 + 134 138.92 3.7 2.2 2.29 4.3

16–17, 32 − −60 −59.29 1.2 20 19.64 1.8

Kd 10–11, 27–28 + 134 138.24 3.2 40* 43.48 4.3

14–15, 31 − −60 −61.37 3.2 20 20.19 0.9

Kt 35, 40 + 134 132.49 1.1 0.558 0.585 4.8

33–34, 38 − −61 −61.37 1.1 20 21.68 8.4

36, 39 − −100 −96.17 3.8 0.558 0.560 0.3

5 Discussion

We hypothesized that the methods presented here would produce dynamic balance con-
trol using muscle activations. We demonstrated that by adopting the FSA-PSO method
to a modified SNS, the model successfully found a solution that resulted in good body-
platform alignment. This proof-of-concept exercise shows that balance can be main-
tained by actuating muscles in a fashion that approximates the basic mechanics of
proprioception-based human balance control.

Although the method found a viable solution that produces the target behavior, the
solution it found relies on high muscle coactivation (Fig. 4), which is not very efficient.
The expectation is that only one muscle should be activated during peak output, and
during the simulation minimum muscle activation only fell to about 20% of the peak
rather than to zero. This is the result of an underconstrained cost function that permitted
unrealistic neural activity that caused the muscles to remain activated during most of
the simulation. To better approximate the energy minimizing nature of the biology, our
next steps will refine the PSO cost calculations to further penalize muscle activation and
produce behavior that better mimics that found in humans.

The methods used in this study can be generalized to encompass a broad range
of balance and control applications where muscle actuation is required. Increasingly
realistic SNSs that incorporate features like type Ib feedback can now be tuned with
minimal increases to optimization time and computational cost. Additionally, increases
in tuning efficiency allow modelers to devote more time to other aspects of biomimetic
modeling, like hardware implementation.



A Simple Dynamic Controller for Emulating Human Balance Control 237

Fig. 4. Muscle activation data output from AnimatLab simulation of the FSA-PSO solution. While
the controller maintained good alignment with the platform, it did so by keeping both muscles
actuated throughout the simulation.

References

1. Franco, J.A.G., Padilla, J.L. del V., Cisneros, S.O.: Event-based image processing using a
neuromorphic vision sensor. In: 2013 IEEE International Autumn Meeting on Power Elec-
tronics and Computing (ROPEC), pp. 1–6 (2013). https://doi.org/10.1109/ROPEC.2013.670
2715

2. Chu, M., et al.: Neuromorphic hardware system for visual pattern recognition with memristor
array and CMOS NEURON. IEEE Trans. Ind. Electron. 62, 2410–2419 (2015). https://doi.
org/10.1109/TIE.2014.2356439

3. Corradi, F., You, H., Giulioni, M., Indiveri, G.: Decision making and perceptual bistability
in spike-based neuromorphic VLSI systems. In: 2015 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 2708–2711 (2015). https://doi.org/10.1109/ISCAS.2015.
7169245

4. Chen, W., Ren, G., Wang, J., Liu, D.: An adaptive locomotion controller for a hexapod robot:
CPG, kinematics and force feedback. Sci. Chin. Inf. Sci. 57(11), 1–18 (2014). https://doi.org/
10.1007/s11432-014-5148-y

5. Deng, K., et al.: Neuromechanical model of rat hind limb walking with two layer CPGs and
muscle synergies. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol.
10928, pp. 134–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_15

6. Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG-based biped
locomotion with a policy gradient method: application to a humanoid robot. Int. J. Robot.
Res. 27, 213–228 (2008). https://doi.org/10.1177/0278364907084980

7. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A Functional subnetwork approach to designing
synthetic nervous systems that control legged robot locomotion. Front. Neurorobotics. 11,
(2017). https://doi.org/10.3389/fnbot.2017.00037

8. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Emulating balance control observed
in human test subjects with a neural network. In: Vouloutsi, V., et al. (eds.) Living Machines
2018. LNCS (LNAI), vol. 10928, pp. 200–212. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-95972-6_21

9. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Simulation of human balance control
using an inverted pendulum model. In: Mangan, M., Cutkosky, M., Mura, A., Verschure,

https://doi.org/10.1109/ROPEC.2013.6702715
https://doi.org/10.1109/TIE.2014.2356439
https://doi.org/10.1109/ISCAS.2015.7169245
https://doi.org/10.1007/s11432-014-5148-y
https://doi.org/10.1007/978-3-319-95972-6_15
https://doi.org/10.1177/0278364907084980
https://doi.org/10.3389/fnbot.2017.00037
https://doi.org/10.1007/978-3-319-95972-6_21


238 J. S. McNeal and A. Hunt

P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384,
pp. 170–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_15

10. Hopfield, J.J.: Neurons with graded response have collective computational properties like
those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984). https://doi.org/10.
1073/pnas.81.10.3088

11. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt.
Behav. 1, 91–122 (1992). https://doi.org/10.1177/105971239200100105

12. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations
of model neurons. Biophys. J. 12, 1–24 (1972). https://doi.org/10.1016/S0006-3495(72)860
68-5

13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the ICNN95 -
International Conference Neural Network (1995)

14. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of 1997
IEEE International Conference on Evolutionary Computation (ICEC 1997), pp. 303–308
(1997). https://doi.org/10.1109/ICEC.1997.592326

15. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: back-
ground and development. Nat. Comput. 6, 467–484 (2007). https://doi.org/10.1007/s11047-
007-9049-5

16. van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm optimiser. In:
IEEE International Conference on Systems, Man and Cybernetics, vol. 3, p. 6 (2002). https://
doi.org/10.1109/ICSMC.2002.1176018

17. Riget, J., Vesterstrøm, J.S.: A diversity-guided particle swarm optimizer-the ARPSO. Dept.
Comput. Sci Univ Aarhus Aarhus Den. Technical report. 2, 2002 (2002)

18. Silva, A., Neves, A., Costa, E.: An empirical comparison of particle swarm and predator
prey optimisation. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L.
(eds.) Artificial Intelligence and Cognitive Science. AICS 2002. Lecture Notes in Computer
Science, vol. 2464, pp. 103–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45750-X_13

19. Veeramachaneni, K., Peram, T., Mohan, C., Osadciw, L.A.: Optimization using particle
swarms with near neighbor interactions. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2723, pp. 110–121. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-
6_10

20. Parsopoulos, K.E., Vrahatis, M.N.: Initializing the particle swarm optimizer using the
nonlinear simplex method. Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. 216, 1–6 (2002)

21. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313
(1965). https://doi.org/10.1093/comjnl/7.4.308

22. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter
selection. Inf. Process. Lett. 85, 317–325 (2003). https://doi.org/10.1016/S0020-0190(02)004
47-7

23. Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–
1118 (2002)

24. Pasma, J.H., Assländer, L., van Kordelaar, J., de Kam, D., Mergner, T., Schouten, A.C.:
Evidence in support of the independent channel model describing the sensorimotor control
of human stance using a humanoid robot. Front. Comput. Neurosci. 12, 13 (2018)

25. Peterka, R.J.: Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol.
Mag. 22, 63–68 (2003). https://doi.org/10.1109/MEMB.2003.1195698

26. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond.
B Biol. Sci. 126, 136–195 (1938). https://doi.org/10.1098/rspb.1938.0050

27. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W., Edwards, D.: AnimatLab: a 3D
graphics environment for neuromechanical simulations. J. Neurosci. Meth. 187, 280–288
(2010). https://doi.org/10.1016/j.jneumeth.2010.01.005

https://doi.org/10.1007/978-3-319-63537-8_15
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1177/105971239200100105
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1109/ICEC.1997.592326
https://doi.org/10.1007/s11047-007-9049-5
https://doi.org/10.1109/ICSMC.2002.1176018
https://doi.org/10.1007/3-540-45750-X_13
https://doi.org/10.1007/3-540-45105-6_10
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.1109/MEMB.2003.1195698
https://doi.org/10.1098/rspb.1938.0050
https://doi.org/10.1016/j.jneumeth.2010.01.005


A Simple Dynamic Controller for Emulating Human Balance Control 239

28. Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic con-
tractions in older adults. J. Biomech. Eng. 125, 70–77 (2003). https://doi.org/10.1115/1.153
1112

29. Pearson, K.G., Ekeberg, Ö., Büschges, A.: Assessing sensory function in locomotor systems
using neuro-mechanical simulations. Trends Neurosci. 29, 625–631 (2006). https://doi.org/
10.1016/j.tins.2006.08.007

30. Meijer, K., Grootenboer, H.J., Koopman, H.F.J.M., van der Linden, B.J.J.J., Huijing, P.A.:
A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history
effects. J. Biomech. 31, 555–563 (1998). https://doi.org/10.1016/S0021-9290(98)00048-7

31. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: A Dynamic neural network designed
using analytical methods produces dynamic control properties similar to an analogous classi-
cal controller. IEEE Control Syst. Lett. 3, 320–325 (2019). https://doi.org/10.1109/LCSYS.
2018.2871126

32. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multi-
dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002). https://doi.org/10.
1109/4235.985692

https://doi.org/10.1115/1.1531112
https://doi.org/10.1016/j.tins.2006.08.007
https://doi.org/10.1016/S0021-9290(98)00048-7
https://doi.org/10.1109/LCSYS.2018.2871126
https://doi.org/10.1109/4235.985692

	A Simple Dynamic Controller for Emulating Human Balance Control
	1 Introduction
	2 Background
	2.1 Neurons and Synapses
	2.2 Functional Subnetwork Approach
	2.3 Particle Swarm Optimization

	3 Experimental Methods
	4 Results
	5 Discussion
	References


